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Abstract
The goal of this paper is the assessment of an optimal reimbursement strategy for employer-
based health insurance plans (HP), that cover several categories of medical services. Indeed,
a health plan may offer several cost-sharing provisions for these categories, and the “Percent
Expense Paid” by the plan also known as “Actuarial Value” represents a summary measure
of the protection provided. Starting from a wide industrial applied model in insurance for
rate-making, the generalized linear models (GLM), we estimate the expected value and vari-
ance of the health expenditure for each category. Moreover, different reimbursement rules
(e.g. deductibles, co-payments, policy limits, etc.) involve a change of the “Actuarial Value”
calculated as the ratio between the benefits paid by the plan (i.e. reimbursement amounts)
and the expenses paid by policyholders (i.e. expenditures). The latter is the percentage of
expenditure reimbursed by the plan and is sometimes defined in actuarial literature as Indi-
cated Deductible Relativity (IDR); an IDR can be calculated for each category covered by
the Health Plan or per policyholder and is a commonly used method for scoring the bene-
fits of health insurance. Hence, we calculate the optimal IDR for each category, using the
optimization problem proposed by de by Finetti (Il problema dei pieni, Giornale dell’istituto
italiano degli attuari, 1940) in the context of proportional reinsurance. The goal is the min-
imization of the variance of the total reimbursement of the Health Plan by fixing the total
gain. Furthermore, we propose a numerical application to a real dataset, containing observed
expenditures of an Italian HP.
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1 Introduction

In many developed countries, the ageing of the population due to lower fertility and mortality
rates and the increasing cost of new medical technologies are leading to increase in health
spending. This phenomenon has been accentuated by the spread of the Covid-19. In 2019,
OECD countries spent, on average, around 8.8% of their GDP on health care, with an average
per capita health expenditure estimated to be more than USD 4000 (OECD, 2021). Govern-
ment financing schemes are the main form of financing of health care in many of OECD
countries but rising costs, the economic crisis and budgetary constraints have led to financial
cuts in many countries and a reduction of the overall share of public health spending (Rechel,
2019). This leads to an increased demand for enrolment in health plans and for buying health
insurance policy on the market. e.g., in Italy health plans policyholders increased from less
than 7 million in 2013 to more than 14 million in 2019 (Ministero della Salute, 2021).

The first pillar in the Italian health system is represented by the National Health Insurance
(Servizio Sanitario Nazionale, SSN) that accounts for 74% of total health spending (OECD,
2021). TheSSNdoes not allowpeople to opt out of the system, therefore there are no substitute
insurance but only complementary and supplementary private health insurance. They cover
several medical services not provided by SSN, offer a higher level of comfort in hospital
facilities and allow for a wider choice between public and private providers (Tikkanen et
al., 2020). The second pillar is mainly characterized by private group health plans that are
differentiated in “full-insured” and “self-insured”.

Financial sustainability analysis of “full-insured” and “self-insured” health plans requires
the adoption of the actuarial risk assessment methodology (Carroll & Mange, 2017). This is
especially true for a self-insured health plan which is a true risk-taking entity as it retains the
risk for paying medical claims made by the plan’s participants and operates on its own.

Academic literature hasmainly focused on forecasting the annual cost of healthcare in both
the public and the private sectors due to the overall impact on the economy. Projections for
annual healthcare expenditure, for an individual or a group, has been obtained using several
methodologies: lossmodels, multivariate regressionmodels (Frees et al., 2011, 2013), phase-
type model (see Govorun et al. (2015) and literature therein) and, more recently, artificial
intelligence methodologies (Vimont et al., 2021; Duncan et al., 2016). For a review of models
applied to healthcare in an actuarial context reader can refer to Yang et al. (2016) and Duncan
(2018).

A standard methodology to estimate health plans expenditure are two-part models, where
the first part models a frequency component and the second a claim amount (or expenditure)
(Frees et al., 2011; Duncan et al., 2016). In actuarial literature, frequency-severity approach
(Frees, 2014) has been extensively used in modeling non-life insurance claim amount. In a
standard frequency-severity approach the number of claims and expenditure per claim are
used. For an example of the use of a frequency-severity model in health insurance see (Keeler
& Rolph, 1988).

A key element in determining the expenditure of a health plan is the introduction of
reimbursement limitations (e.g. deductibles, co-payments,...). On the one hand, they reduce
costs for the health plan through cost sharing between plan and policyholders and allow
contribution reduction, on the other hand they motivate policyholders to reduce expenses
and, more in general, counteract moral hazard (Daykin et al., 1993; van Winssen et al.,
2016).

Coverage modification changes the claim frequency and severity distributions (e.g. cen-
soring or truncation). Parametric loss models for deductible ratemaking allow to measure
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the effects of coverage modification on claim frequency and severity distributions. The main
advantage of these models is that they are accurate and allow to calculate theoretically correct
deductible rates (Klugman et al., 2012).

Alternatively, the regression approach could be adopted, including the deductible as an
explanatory variable inside a Generalized Linear Models (GLM) (Lee, 2017). A standard
approach proposed in the actuarial literature for reimbursement limitation is focused on the
estimate of “IndicatedDeductible Relativity” (IDR) that provides an assessment of howmuch
the insurance loss is reduced by a deductible. Considering that a health plan offers several
medical services, reimbursement rules may differ among services (e.g. dental care, specialist
medical visits). Therefore, in determining a reimbursement limitation strategy the level of
protection offered to members should also be considered, along with the costs and risks of the
health plan. Cost sharing strategies canmake it difficult for members to understand the degree
of coverage offered by a health plan. A possible index is given by the Actuarial Value (AV).
AV is a measure of the relative percentages paid by a health benefits plan and its members.
It is calculated using the expected health claims from a standard population, along with a
plan’s cost-sharing provisions, to simulate the payment of claims. It ranges from 0 for a plan
that pays nothing to 1 for a plan that pays all medical expenses.

Themain goal of the paper is to assess the optimal IDR for each health service, by defining
a mean-variance optimization problem. In this way, we calculate the IDRs by minimizing
the total variance of the expenditure of the Health Plan (HP), fixing the expected gain. The
optimization problem is solved both in the special case of no-correlation and the general
case of correlation among health services. Such a problem adapts, in the health insurance
context, the original optimization problem introduced by de Finetti De Finetti (1940) in
the context of proportional reinsurance. Furthermore, our optimization problem requests as
input the estimate of the mean and variance of expenditure for each health service. Hence,
we propose a regression approach based on GLM. Starting from an Italian health plan data
set, we compare two approaches: Two-Part and Tweedy. In general, these two approaches are
used to determine the expected value of the response variable but results are not significantly
different. However, for the purposes of this work is relevant to measure the variance of the
expenditure in order to compare the optimization results using different methods to estimate
mean and variance of the expenditure.

The paper is organized as follows. Section 2 describes the actuarial framework, the intro-
duction of reimbursement limitation and the optimization problem. Section 3 compares
Two-Part regression model and Tweedie regression model for the estimate of mean and
variance of the expenditure. Section 4 presents a case study based on a real dataset and
discusses the main findings. Section 5 concludes.

2 Actuarial framework and optimization problem

2.1 The frequency-severity model

We consider a health plan (HP) offering health care services to r policyholders. We group
the health services in J groups (or ’branch’). Let:

• i index the i th policyholder, 1 ≤ i ≤ r ;
• j index the j th branch of health expenditure, 1 ≤ j ≤ J .

Following a standard approach in actuarial literature, we adopt a double stochastic aggregate
expenditure model, where both the number of claims and the size of each claim are stochastic
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variables (see, for instance, (Daykin et al., 1993)), the so called frequency-severity model.
Therefore, we separately model the number of claims in a certain time period (frequency)
and the expenditure per claim (severity). In the following we denote with:

• N the random variable (r.v.), number of claims per year;
• Y the r.v. expenditure for single claim;

In the classical collective risk model, the expenditure of the i-th policyholder given a specific
branch j is:

Zi, j =
Ni, j∑

k=1

Yi, j,k, (1)

where Yi, j,k is the r.v. expenditure for i th policyholder, due to the kth claim in the j th branch.
Under the typical assumption of independence between Ni, j and Yi, j,k and identical

distribution on Yi, j,k ∼ Yi, j ,∀k = 1, . . . , Ni, j (However, there are works that investigate
the dependence between frequency and claim amount. For further details, see Garrido et al.
(2016) and Clemente et al. (2022)), we get the well-known formulas for mean and variance
of Zi j see (Daykin et al., 1993):

E
[
Zi, j

] = E
[
Ni, j

] · E [
Yi, j

]
. (2)

Var
[
Zi, j

] = E
[
Ni, j

] · Var [Yi, j
] + Var

[
Ni, j

] · E [
Yi, j

]2
. (3)

In order to reduce its expenditures, the health plan could introduce some payment limita-
tions. The reimbursement amount Li, j,k , after the application of a coverage modification,
is obtained as a function h(Yi, j,k,�), with � a set of possible coverage limitation rules.
To measure the impact of the reimbursement rules on the expenditure, we focus on the r.v.
proportion of expenditure reimbursed (IDR) for a single policyholder, service and claim:

I DRi, j,k = Li, j,k

Yi, j,k
. (4)

whereas, the I DR j at branch level is:

I DR j =
∑r

i=1
∑Ni, j

k=1 Li, j,k
∑r

i=1
∑Ni, j

k=1 Yi, j,k

. (5)

2.2 The effect of reimbursement limitations in the profit and loss of an health plan.

In the following we assume no administrative and operational costs and the related expense
loading.We assume that the total contribution requested by the health plan for the j th service
group, C j , is determined as the sum of the expected expenditures for the service, E[Z j ], and
a safety loading m j :

C j = E[Z j ] + m j (6)

Considering the typical actuarial assumption of independence between policyholders, the
expected value and variance of the expenditure for single branch are:

E[Z j ] =
r∑

i=i

E
[
Zi, j

]
, (7)
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Var[Z j ] =
r∑

i=i

Var
[
Zi, j

]
, (8)

respectively.
In the following, we assume that a proportional reimbursement rule (coinsurance) is

applied to each claim, based on a coinsurance factor 0 ≤ α j ≤ 1 for each branch j . Hence
the r.v. reimbursement for single claim Li, j,k are obtained as follows:

Li, j,k = Yi, j,k · α j (9)

where α j is the j th element of the J -vector α = (α1, . . . , αJ ) and it represents the proportion
of expenditure reimbursed for a single claim.

It is easy to show by Eq. (5) that α j corresponds to the Indicated Deductible Relativity of
the j th branch (i.e. I DR j = α j ).

Anyway, the introduction of a policy limitation reduces not only the reimbursement at
branch level but also the contribution of the same proportion. Then, we can define a new r.v.
profit (loss) for the j th branch as follows:

G j (α j ) = α j · (
C j − Z j

)
(10)

whose expected value is E
[
G j (α j )

] = α j · m j .
Therefore, the total expected gain of the HP after the introduction of the reimbursement

rule is a function of the I DR j = α j as follows:

E [G(α)] =
J∑

j=1

E
[
G j (α j )

] =
J∑

j=1

α j · m j (11)

It is important to note that the r.v. expected total profit for the HP, before the application
of the reimbursement rules, i.e. if α j = 1, j = 1, . . . , J , is E [G(1)] = ∑J

j=1 m j .
Under the assumption that the health service groups are uncorrelated, the variance of total

profit is given by:

Var[G(α)] =
J∑

j=1

Var[G j (α j )] =
J∑

j=1

α2
j · σ 2

j (12)

whereas, for correlated service groups V ar [G(α)] is:

Var[G(α)] =
J∑

j=1

J∑

w=1

α jαwσ jw (13)

where σ 2
j = Var

[
Z j

]
is the variance of Z j and σ jw = cov

[
Z j , Zw

]
is the covariance

between Z j and Zw .

2.3 The optimization problem

Once the expected value and variance of r.v. Z j have been defined, it is possible to introduce
an optimization problem to determine the optimal I DR j = α j , j = 1, . . . , J for each
branch. The optimal strategy is achieved by finding the optimal vector (α∗) that minimizes
the total varianceVar [G(α)] once the expected profit target Ḡ has been set. Then, considering
� as the non singular variance covariance matrix, we are able to formalize the optimization
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problem: ⎧
⎪⎪⎨

⎪⎪⎩

min αT � α

s.t.
αTm = Ḡ
0 < α ≤ 1

(14)

where m is the J -vector of safety loadings, whose generic element is m j .
FollowingPressacco andZiani (2010), it is possible towrite theLagrangian of this problem

as:

L(α, τ,u, v) = 1

2
αT �α + τ ·

(
Ḡ − αTm

)
+ u · (α − 1) − v · α (15)

Making recourse to the Karush-Kuhn-Tucker (KKT) conditions, also known as the Kuhn-
Tucker conditions, it turns out that α∗ is optimal if there exists a triplet (τ ∗,u∗, v∗) non
negative vector such that:

i) α∗ minimizes L(α, τ,u∗, v∗);
ii) α∗ is feasible;
iii) either α j

∗ = 0 or v j
∗ = 0 (or both) and either α j

∗ = 1 or u j
∗ = 0 (or both).

The optimization problem (14) is the same proposed in De Finetti (1940), where a solution
for the optimal retention problem in reinsurance market is provided.

De Finetti described an algorithm to solve this optimization problem for uncorrelated
case and suggested a procedure to solve the general case of correlated risks under implicit
“regularity hypothesis” (see Pressacco and Ziani (2010)). The basic idea underlying the de
Finetti solution, even in the case of correlation, is that, rather than dealing with two goal
variables (variance and expectation), it is convenient to work with what he called advantage
functions:

Fj (α) =
⎧
⎨

⎩

σ 2
j

m j
α j , uncorrelated branches

∑J
w=1

σ jw
m j

αw, correlated branches
, j = 1, . . . , J (16)

The advantage functions intuitively capture the advantage coming at α from a small
reduction of the j th risk. As stated in Pressacco and Ziani (2010), “Given the form of the
advantage functions, it was easily seen that this implied a movement on a segment of the
cube characterized by the set of equations Fi (x) = λ for all the current best performers.
Here λ plays the role of the benefit parameter. And we should go on this segment until the
advantage function of another, previously non efficient, risk matches the current value of the
benefit parameter, thus becoming a member of the efficient set. Accordingly, at this point, the
direction of the efficient path is changed as it is defined by a new set of equations, with the
addition of the equation of the newcomer risk.” (Pressacco and Ziani, 73).

In our context it means that, starting from the case of absence of reimbursement rules, i.e.
Ḡ = E [G(1)] = m, the introduction of reimbursement rules requires the reduction of the

most efficient branch in terms of advantage function, i.e.

{
j : max

j
Fj (1)

}
.The reduction on

branch j stops when the advantage function of another branch, say w, becomes higher than
the one measured on j .

To find the path of the optimal solutions, we solve the optimal problem (14) considering
several decreasing value of the expected contribution Ḡ.

In order to solve the optimization problem, it is firstly necessary to get a robust estimate of
Ê

[
Zi j

]
and V̂ar

[
Zi j

]
and than calculate Ê

[
Z j

]
and V̂ar

[
Z j

]
according to Eqs. (7) and (8).
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To this aim we propose in the following section two actuarial approaches based on regression
models.

3 One-part model versus two-part model for health expenditure
estimate

In actuarial literature, to predict the cost of a claim, it is a usual approach to decompose
two-part data, one part for the frequency - indicating whether a claim has occurred or, more
generally, the number of claims - one part for the severity, indicating the amount of a claim.
This approach is also known as Two-Part or Two-Stage model (Duan et al., 1983) and in
health care expenditure analysis has been proposed in Frees (2010), Frees et al. (2013),
among others.

However, the request of health-care services can be influenced by a set of demographic
and/or geographic variables, among others. Hence, an univariate analysis for each homoge-
neous risk class is not feasible, and a multivariate approach is more appropriate. We adopt
a GLM (Mc Cullagh & Nelder, 1989) as it represents the standard model in industry for
ratemaking. For further details on the basic theory of GLM see Appendix 1. For a full
description of the regression model in actuarial and financial application reader can refer to
Frees (2010).

As the expenditure per single policyholder and category has a mass probability at zero
and a positive, continuous, and often right-skewed component for positive values, Tweedie
regression is a valid alternative to predict such an expenditure (Kurz, 2017) respect to Two-
Part models.

3.1 A negative binomial-Gamma two-part regressionmodel for the estimate of the
health expenditure

Fixing the j th branch, the goal is the calculation of E[Ni, j ], Var[Ni, j ], E[Yi, j ], Var[Yi, j ]
necessary for the estimate of mean and variance of Zi, j (see (2) and (3)). To this aim, we
consider a two part model where a Negative binomial regression is used for the estimate of
frequency component N j and a Gamma regression for the estimate of severity component
Y j .

Considering the (29) with a logarithm link function it is possible to write the density of
Negative Binomial r.v. as:

fN j

(
ni , xi , βN j , θ j

) = 

(
y + 1/θ j

)


 (y + 1) · 

(
1/θ j

) · (θ j e
xi ·βN j )y

(1 + θ j e
xi ·βN j )y+1/θ j

(17)

Then a likelihood function is associated to the Negative Binomial model:

L N j

(
ni |xi , βN j , θ j

) =
r∏

i=1

= fN j

(
ni , xi , βN j , θ j

)
(18)

Therefore, it is possible to estimate βN j and θ j parameters, by maximizing the (18).
Exploiting (29) and (28) it is possible to calculate an estimate for E

[
Ni, j

]
and Var

[
Ni, j

]
. It

is important to note that a number J of Negative Binomial GLM must be carried on.
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For the severity component, selecting the logarithm link function it is possible to write
the density of Gamma r.v. as:

fY j

(
yi , xi , βY j , η j

) = 1

yi · 
(η j )
·
(

η j · yi

exp(xiβY j )

)ρ j

· e
−η j ·yi /

(
exp(xi βY j )

)

(19)

Then, a likelihood function is associated to the Gamma model:

LY j

(
yi |xi , βY j , η j

) =
r∏

i=1

= fY j

(
yi , xi , βY j , η j

)
(20)

Therefore, it is possible to estimateβY j andη j parameters, bymaximizing the (20). Exploiting
(29) and (28) it is possible to calculate an estimate for E

[
Yi, j

]
and Var

[
Yi, j

]
. It is important

to note that a number J of Gamma GLM must be carried on.

3.2 Tweedie regressionmodel for the estimate of mean and variance of the
expenditure

In this section, we use a Tweedy regression to get by a single model an estimate of mean and
conditional variance of a response variable. Consider the collective risk model in Eq. (1), we
temporarily remove for sake of simplicity the dependence on i and j . Suppose that N has
a Poisson distribution with mean ψ , and each Y has a gamma distribution shape parameter
ζ and scale parameter ρ. The Tweedie distribution is derived as the Poisson sum of gamma
variables. By using iterated expectations, mean and variance can be expressed as:

E(Z) = ψζρ and Var(Z) = ψζ(1 + ζ )ρ2. (21)

Now, define three parameters μ, φ, and p through the following reparametrization

ψ = μ2−p

φ(2 − p)
, ζ = 2 − p

p − 1
, ρ = φ(p − 1)μp−1, (22)

it is easy to show that E(Z) = μ and Var(Z) = φμp (see Kaas (2005), Tweedie (1956)).
As a consequence, under these assumptions Z denotes a Tweedie random variable with
mean μ > 0, variance φμp (φ > 0), where φ is the so-called dispersion parameter, and
p ∈ (−∞, 0] ∪ [1,∞) the power parameter.

It is worth noting that Tweedie distribution is a special case of exponential dispersion
models, a class of models used to describe the random component in GLMs, allowing us to
use the Tweedie distribution with GLMs to model E(Zi, j ) and Var(Zi, j ).

The conditional expected expenditure and variance for the i th policyholder and j th branch
are given by:

E
[
Z j |xi

] = E
[
Zi, j

] = g−1(xi · βZ j ), Var
[
Z j |xi

] = Var
[
Zi, j

] = φ · μ
p
i, j (23)

The estimate of the row-vector of regression parameters βZ j , of the dispersion parameter φ

and the power p are provided by a Maximum Likelihood Estimation (MLE) approach (see
Frees (2014)).

It is worth noting that a number J of Tweedy regressions must be carried on. In the
following section, we report a numerical investigation applied to a real dataset.
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Table 1 Description of branches
policy limitations

j Description Acronym

1 Oral hygiene OH

2 Supplementary care SC

3 Dental care DC

4 Rehabilitation and physical care RPC

5 Specialist medical visits SMV

Table 2 Number of claims and
total expenditure (in EUR
thousand) per branch

j Acronym N. of claims Expenditure

1 OH 8786 755

2 SC 3963 625

3 DC 13,201 5742

4 RPC 4261 433

5 SMV 45,043 2745

Total 75,254 10,300

4 Numerical application

4.1 Data set

We consider a dataset from an Italian HP, where J = 5 branches are covered. A description
of each branch is shown in Table 1.

The observation has a time frame of three years (2017, 2018 and 2019). Each year contains
claims from r = 16, 206 policyholders per year, whose age varies from 0 to 69. In the
following we report some descriptive statistics of this HP between 2017 and 2019.

InTable 2 thenumber of claims and total expenditures (data inEUR thousand) are classified
for branch; SMV ( j = 5) is the branch with the greatest number of claims, whereas the
greatest annual expenditure corresponds to DC ( j = 3).

In Table 3, the observed frequency for the three most claimed branches (SMV, DC and
OH) are reported for sex and age class.

The SMV shows greater frequency for females thanmales with a peak in age class [50,60).
It is also important to highlight that the females have a higher frequency also for DC and
OH, but differences between gender are lower than SMV case.

In Table 4, observed average expenditure per claim for the three most claimed branches
(SMV, DC and OH) are reported for sex and age class.

The OH has no significant differences for sex, conversely females are in general more
expensive than males for SMV and DC.

In Table 5 observed average per policyholder expenditure for the three most claimed
branches (SMV, DC and OH) are reported for sex and age class. It is important to note
that in SMV case females have an expenditure per policyholder greater than males, with a
peak in age class [40;50). In DC and OH case, the higher riskiness of females is confirmed;
furthermore, considering the whole population, the most expensive age classes are [50;60)
for DC (144.85 EUR thousand) and [40;50) for OH (16.67 EUR thousand).
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Table 3 Observed frequency in % of branch j = 5, 3, 1 for sex and age

Age class SMV DC OH

F M Total F M Total F M Total

[10; 20) 0.00 NA 0.00 0.00 NA 0.00 0.00 NA 0.00

[20; 30) 68.47 35.79 60.03 14.76 21.58 16.52 13.20 14.74 13.60

[30; 40) 90.39 43.78 74.82 19.07 16.72 18.29 14.41 14.82 14.55

[40; 50) 109.98 63.36 95.51 31.94 25.46 29.93 20.33 17.81 19.55

[50; 60) 115.63 70.76 100.06 30.80 25.74 29.04 19.83 17.02 18.85

[60; 70) 82.46 59.57 73.34 21.57 20.31 21.07 13.32 12.86 13.14

Total 107.24 63.42 92.65 28.70 24.05 27.15 18.77 16.67 18.07

Table 4 Observed average expenditure per claim (in EUR thousand) of branch j = 5, 3, 1 for sex and age
class

Age class SMV DC OH

F M Total F M Total F M Total

[10; 20) NA NA NA NA NA NA NA NA NA

[20; 30) 74.50 98.67 78.22 255.35 229.31 246.57 82.40 83.05 82.58

[30; 40) 66.79 66.08 66.65 315.20 297.36 309.75 85.65 81.46 84.23

[40; 50) 64.21 54.32 62.17 367.90 368.98 368.18 85.97 83.55 85.29

[50; 60) 59.73 53.97 58.32 504.12 486.64 498.74 87.47 85.45 86.84

[60; 70) 60.14 55.92 58.77 739.17 483.48 640.97 90.58 85.30 88.52

Total 62.43 55.87 60.93 439.24 424.89 435.01 86.71 84.30 85.97

Table 5 Observed average expenditure per policyholder (in EUR thousand) of branch j = 5, 3, 1 for sex and
age class

Age class SMV DC OH

F M Total F M Total F M Total

[10; 20) NA NA NA NA NA NA NA NA NA

[20; 30) 51.01 35.31 46.95 37.68 49.48 40.73 10.88 12.24 11.23

[30; 40) 60.37 28.93 49.87 60.12 49.73 56.65 12.34 12.07 12.25

[40; 50) 70.62 34.42 59.38 117.50 93.95 110.19 17.48 14.88 16.67

[50; 60) 69.07 38.19 58.35 155.26 125.27 144.85 17.34 14.55 16.37

[60; 70) 49.59 33.31 43.10 159.46 98.21 135.06 12.07 10.97 11.63

Total 66.95 35.43 56.45 126.08 102.17 118.12 16.28 14.05 15.54

4.2 Regressionmodels results

In the following paragraph, regressionmodels outcomes are reported. All the regressionmod-
els introduced in the previous section use sex and age as covariates. This choice is motivated
by actuarial practice and literature (Frees, 2014; Duncan, 2018), where this demographic
factors are considered crucial in each model for the annual expenditure. We limit the anal-
ysis to this two risk factors to facilitate the representation of results. Age variable is treated
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Table 6 Output of negative binomial model

j Estimate (p-values)

Intercept Sex = Male Age 2 Age 3 Dispersion

1 − 3.0494 (***) − 0.1154 (***) − 0.1154 (***) 0.0019 (***) 2580.24 (***)

2 − 3.2960 (***) − 0.5278 (***) − 0.5278 (***) 0.0018 (***) 0.0283 (***)

3 − 3.1650 (***) − 0.1751 (***) − 0.1751 (***) 0.0024 (***) 0.2946 (***)

4 − 5.4760 (***) − 0.5721 (***) − 0.5721 (***) 0.0036 (***) 0.0358 (***)

5 − 1.2189 (***) − 0.5358 (***) − 0.5358 (***) 0.0015 (***) 0.1856 (***)

Signif. codes: 0 (***) 0.001 (**) 0.01 (*) 0.05 (.) 0.1 ( ) 1 ’-’ Not Used

Table 7 Output of Gamma model

j Estimate (p-values)

Intercept Sex = Male Age 2 Age 3 Dispersion

1 4.3791 (***) − 0.0289 (*) 0.0001 ’–’ 0 ’–’ 0.1848 (***)

2 4.5845 (***) 0.1252 ’–’ 0.0008 ’–’ 0 ’–’ 14.7782 (***)

3 5.4231 (***) − 0.0443 ’–’ 0.0001 ’–’ 0 ’–’ 3.2889 (***)

4 4.4424 (***) 0.1234 ( ) 0.0002 ’–’ 0 ’–’ 3.2606 (***)

5 4.5011 (***) − 0.1028 (***) − 0.0003 (.) 0 ( ) 5.0953 (***)

Signif. codes: 0 (***) 0.001 (**) 0.01 (*) 0.05 (.) 0.1 ( ) 1 ’–’ Not used

as quantitative and we use a polynomial function whose degree is selected by a stepwise
procedure.

For the estimate of the expected number of claims we consider a negative binomial model;
in Table 6 the results are largely in line with those found in the literature (Frees et al., 2011);
indeed, sex and age are statistically significant and females shows greater frequencies than
males for all the branches in accordance with the observed frequencies in Table 3. The
stepwise regression suggests a third-degree polynomial to model age, without the coefficient
of degree 1.

For the amount of expenditures (Gamma regression model), Table 7 shows that almost
every age coefficient is not significant. It is important to note that the most significant age
coefficients are the ones of SMV, in accordance with 4. Age is modelled by a third-degree
polynomial without the coefficient of degree 1.

As previously explained, a valid alternative approach to estimate mean and variance of
Zi, j consists on the application of Tweedie regression, whose results are reported in Table
8. As one can see, females are riskier than males, in accordance with observations reported
in Table 5. The coefficients are all significant. Age is modeled by a third-degree polynomial
without the coefficient of degree 1.

In order to measure the estimation accuracy, we introduce the goodness-of-fit (GoF)
measure called Nash-Sutcliffe Efficiency (N SE). The latter is a normalized statistic that
determines the relative magnitude of the residual variance compared to the measured data
variance (see (Nash & Sutcliffe, 1970)). Given a dependent variable y and its estimate ŷ,

N SE can be defined as: N SE = 1 −
∑

(y−ŷ)2∑
(y−E(y))2

.

The N SE can be interpreted as test statistic for the accuracy of model predictions. The
N SE ranges from −∞ to 1: if N SE = 1, there is a perfect match of the modeled to
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Table 8 Output of Tweedie model

j Estimate (p-values)

Intercept Sex = Male Age 2 Age 3 Dispersion

1 1.3223(∗∗∗) − 0.1442 (***) 0.0019 (***) 0 (***) 79.9719 (***)

2 1.5276(∗∗∗) − 0.3865 (***) 0.0022 (***) 0 (***) 502.5076 (***)

3 2.2128(∗∗∗) − 0.2299 (***) 0.0026 (***) 0 (***) 152.7613 (***)

4 −1.1675(∗) − 0.4614 (***) 0.0039 (***) 0 (***) 191.1936 (***)

5 3.3156(∗∗∗) − 0.6336 (***) 0.0012 (***) 0 (***) 101.1635 (***)

Signif. codes: 0 (***) 0.001 (**) 0.01 (*) 0.05 (.) 0.1 ( ) 1 ’–’ Not used

Table 9 N SE values for branch.
Two-Part and Tweedie case

j 1 2 3 4 5

Two-part 0.9243 0.8188 0.9812 0.9536 0.9771

Tweedie 0.9242 0.7933 0.9837 0.9534 0.9787

Table 10 E[Z j ] (data in EUR) and Var[Z j ] (data in EUR squared) for branch, Year 2019

j Two-part Tweedie

E[Z j ] Var[Z j ] E[Z j ] Var[Z j ]
1 250,879.22 25,598.871 250,863.33 24,147,372

2 202,379.74 190,682,291 201,987.42 343,698,039

3 1,964,390.73 3,060,383,134 1,962,698.06 3,546,897,983

4 145,696.05 76,122,543 146,204.47 75,822,123

5 913,986.92 406,617,622 913,105.17 368,588,641

the observed data; if N SE = 0, the model predictions are as accurate as the mean of the
observed data, if −∞ < N SE < 0, the observed mean is a better predictor than the model.
It is important to note that NSE is a GoF measure that allows to accept or reject the model
using 0 as a critical value.

In Table 9: we report results for N SE :
where all the values are compliant with acceptance.
Finally, exploiting Eqs. (2) and (3) it is possible to calculate E[Zi, j ] and Var[Zi, j ] in the

case of Two-Part model. whereas the Tweedie model gives a direct estimate of this values. By
(7) and (8) we can get an estimate of mean and variance of the expenditure for each branch,
whose results for 2019 are reported in Table 10

The branch DC has the greatest variance of expenditure. If we consider the ratio between
variance and mean representing the variance per unit of mean, the DC value is the greatest
(1558 and 1807 in two-part and Tweedie estimate respectively) and theOH value is the lowest
(102 and 96 in two-part and Tweedie estimate respectively) confirming the ranking observed
in Table 11
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4.3 The calculation of the optimal IDR

We show an example of the calculation of optimal IDRs in the case of no-correlation and
correlation among branches. Before proceeding,we need to establish the general rule to assess
the risk loading m j for each branch j . To this aim, standard actuarial pricing principles (see
Gerber (1979)) use a functional that assigns a loaded premium, called pure premium, to any
distribution of the expenditure per policyholder. Traditional “loaded” net premium principles
correct the equivalence principle to generate a premium that is bigger than the expected loss.
In the following context we use the simplest method, the so-called Equivalence Premium,
that starting from the expected loss assigns a positive “safety loading” to avoid ruin with a
certainty proportional to the expected loss, i.e. m j = β · E[Z j ], β > 0. Therefore, in the
following we consider β = 10% for each branch and the risk loading m j ( j = 1, . . . , 5)
are obtained according to the values E[Z j ] show in Table 10. To find the path of the optimal
solutions, we solve the optimal problem proposed in Eq. (14) considering several decreasing
values of the expected contribution (Ḡ) according to a proportion 0 ≤ δ ≤ 1 of the maximum
contribution E[G(1)], i.e. Ḡ = δ · E[G(1)]. These solutions are equivalent to consider an
overall IDR (or AV) equal to δ.

4.3.1 The no-correlation case

Assuming the absence of correlation among branches, the optimization problem in Eq. (14)
can be solved numerically using Eq. (15) where the objective function is easily expressed as
the weighted sum of the Var[Z j ], with weights α j .

As an alternative, identical solutions can be achieved by following the De Finetti “algo-
rithm” (for further details see Pressacco and Ziani (2010)) proposed in his famous “problema
de pieni” (De Finetti (1940)). The de Finetti “algorithm”, in the uncorrelated case, can be
summarized as follows:

i) order branches by the terms Fj (1) = σ 2
j

m j
, j = 1, . . . , J , which is the expression of the

advantage function in Eq. (16) in the no-correlation case;
ii) by reducing the expected gain to a level Ḡ, the IDRs must be reduced consequently,

following the order defined in step i : the first IDR to be reduced is the one for which
σ 2

j
m j

is maximum and the last to be reduced is the one for which
σ 2

j
m j

is minimum;

iii) For any 0 ≤ λ ≤ max j
σ 2

j
m j

, an optimal retention is given by: α∗
j = min

⎧
⎨

⎩
λ
σ2j
m j

, 1

⎫
⎬

⎭

As previously stated λ plays the role of the benefit parameter. Table 11 shows the values of
Fj (1) obtained using values in Table 10.

As observable, according to the de Finetti algorithm we expect that the first branch to
move is DC and the last O H . This is confirmed by value reported in Table 12 where the
optimal IDR respect to a decreasing contribution δ, according to the Two-Part regression
model. Similar values are obtained with the Tweedie regression model.

Fig. 1 gives a straight representation of the concept of the functioning of the de Finetti
algorithm. Indeed, the first branch reduced is DC as it has the maximum F3(1), whereas
the last one is O H where is observed the minimum F1(1).It is worth noting that, that the
second highest value of the ratio is F2(1) (SC) where the Tweedie model shows a higher
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Table 11 de Finetti ordered
Fj (1) values (data in EUR).
No-Correlation case

Acronym Two-Part Tweedie

Fj (1) Ranking Fj (1) Ranking

OH 1020 5 963 5

SC 9422 2 17, 016 2

DC 15, 579 1 18, 072 1

RPC 5224 3 5186 3

SMV 4449 4 4037 4

Table 12 No-correlation case–optimal IDRs for different values of expected contribution reduction δ. Two-
Part regression model. Mean and standard deviation in EUR

Acronym δ

100% 80% 60% 40% 20%

OH 100.00% 100.00% 100.00% 100.00% 100.00%

SC 100.00% 100.00% 55.80% 31.77% 12.39%

DC 100.00% 64.60% 33.75% 19.21% 7.49%

RPC 100.00% 100.00% 100.00% 57.29% 22.34%

SMV 100.00% 100.00% 100.00% 67.28% 26.24%

E
[
G(α∗)

]
347,733.27 278,186.61 208,639.96 139,093.31 69,546.65

σ
[
G(α∗)

]
61,313.90 44,452.37 30,269.15 19,152.56 8,802.89

Fig. 1 No-correlation case–optimal IDR paths for different values of overall IDR δ

value compared to the Two-Part model. This involves a quicker movement from 1 to 0 of SC
IDR concerning higher values of δ, in the Tweedie model compared to Two-Part one.

4.3.2 The general case of correlated branches

To provide an analysis on correlated branches, it is necessary to introduce the correlation
matrix � and, consequently, calculate the variance/covariance matrix �, concerning the two
regression models provided.

� =

⎡

⎢⎢⎢⎢⎣

1.0000 0.0540 0.1048 0.0959 0.2521
0.0540 1.0000 0.0122 0.1537 0.0877
0.1048 0.0122 1.0000 0.0294 0.0926
0.0959 0.1537 0.0294 1.0000 0.1495
0.2521 0.0877 0.0926 0.1495 1.0000

⎤

⎥⎥⎥⎥⎦
(24)
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Table 13 de Finetti ordered
Fj (1) values (data in EUR).
Correlation case

Acronym Two-Part Tweedie

Fj (1) Ranking Fj (1) Ranking

OH 3,534 5 3,493 5

SC 12,191 2 20,700 1

DC 16,374 1 18,914 2

RPC 9,565 3 9,917 3

SMV 6,415 4 6,072 4

Table 14 Correlation case - Optimal IDR for different values of expected contribution reduction δ. Two-Part
regression model. Mean and standard deviation in EUR

Acronym δ

100% 80% 60% 40% 20%

OH 100.00% 100% 100% 100% 100%

SC 100.00% 89% 46% 25% 10%

DC 100.00% 66% 37% 21% 8%

RPC 100.00% 100% 67% 33% 12%

SMV 100.00% 100% 100% 70% 26%

E
[
G(α∗)

]
347,733.27 278,186.61 208,639.96 139,093.31 69,546.65

σ
[
G(α∗)

]
65,403.81 48,797.18 34,190.49 21,949.99 10,364.45

�T wo−Part =

⎡

⎢⎢⎢⎢⎣

25, 598, 871 3, 775, 780 29, 334, 013 4, 234, 214 25, 721, 650
3, 775, 780 190, 682, 291 9, 329, 362 18, 511, 149 24, 418, 098
29, 334, 013 9, 329, 362 3, 060, 383, 134 14, 206, 070 103, 304, 284
4, 234, 214 18, 511, 149 14, 206, 070 76, 112, 543 26, 297, 286
25, 721, 650 24, 418, 098 103, 304, 284 26, 297, 286 406, 617, 622

⎤

⎥⎥⎥⎥⎦

(25)

�T weedie =

⎡

⎢⎢⎢⎢⎣

24, 147, 372 4, 923, 393 30, 671, 320 4, 104, 565 23, 784, 895
4, 923, 393 343, 698, 039 13, 484, 093 24, 804, 849 31, 212, 104
30, 671, 320 13, 484, 093 3, 546, 897, 983 15, 264, 418 105, 884, 565
4, 104, 565 24, 804, 849 15, 264, 418 75, 822, 123 24, 989, 563
23, 784, 895 31, 212, 104 105, 884, 565 24, 989, 563 368, 588, 641

⎤

⎥⎥⎥⎥⎦

(26)

Once again, the optimization problem in Eq. (14) can be solved numerically and, as an
alternative, de Finetti “algorithm” can be improved. Anyway, the latter, is based on the
advantage function in Eq. (16) where the Fj (α) = λ depends on variance and covariance
between branches. Hence, a more complex algorithm compared to the one introduced in
the no-correlation case is required. For further details, the reader can refer to Pressacco and
Serafini (2007). However, the basic rule of the maximum advantage function to identify
starting point for the first declining risk is respected. Table 13 shows the ranking obtained in
the correlated branches cases.

As one can see in Table 14, the first branch to move is DC and the last is O H as in the
no-correlation case. Anyway, this time, the Tweedie model does not show similar values as
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Fig. 2 Correlation case - Optimal IDR paths for different values of overall IDR δ

Fig. 3 A comparison of optimal IDR solutions with δ = 0.6 with no correlated and correlated branches

shown in Fig. 2. Indeed, the ranking in this case changes, as the branch with maximum value
of Fi (1) is SC instead of DC (see Table 13) as in the Two-Part model.

5 Conclusion

This study investigates a methodological framework to assess optimal reimbursement strat-
egy for employer-based health insurance plans. The reimbursement strategy is measured in
terms of the percentage of expenditure reimbursed by the health plan defined in actuarial
literature as Indicated Deductible Relativity and in the U.S. Actuarial Value. The IDR may
be different for each category of services or branch provided by HP and the optimal strategy
may be found assuming as objective the minimization of the risk, measured through the
variance, or maximizing the expected gain. To this aim, we propose an optimization problem
similar to the one proposed and solved by (De Finetti (1940)) in the context of proportional
reinsurance. Firstly, we adopt a basic actuarial regressionmodel based on a two-part approach
(Negative Binominal - Gamma model) and we compare it with a Tweedie regression model.
The latter has the main advantage to analyze the distribution of the loss, representing the total
expenditure per policyholder, as a whole. This distribution is particularly indicated consid-
ering the large number of zero claims we observe in the data for each group of services. The
regression models allow for the calculation of the mean and variance of the expenditure r.v.
for each policyholder profile considered. Then, assuming independence among policyhold-
ers, we assess the overall expected expenditure and variance for each branch. These values
are considered as the inputs of the optimization problem whose aim is to identify the optimal
IDR for each branch considering the absence or the presence of correlation among branches.
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We calibrate our model to a real database that offers five types of services. The findings
provided confirm that the advantage function, as defined by de Finetti, represents the main
quantity to be controlled to define an optimal strategy. In the case of the HP, the positive
correlation observed among branches represents another relevant element to be considered.
As observable, in the following Fig. 3 we compare the set of optimal solutions obtained with
δ = 0.60.

The quantitative analysis shows that to obtain the same gain, the positive correlation cases
require a greater reduction of IDR. In such cases, the IDR is reduced over 50% but this
condition may be not feasible as the IDR or AV is a commonly used method by policyholders
for scoring a health insurance plan.

In the US HP context, it is relevant that the IDR is not lower than 60% as stated in
Obamacare (2010) to ensure that policyholder can have a proper insurance cover. This means
that further researches can be addressed to use 60% as lower limit for α in the optimization
problem (14). Such new constraint will give a sub-optimal result but is more compliant with
indications in Obamacare (2010).
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Appendix A Basic elements of GLMs

This section deals with the introduction of the essential elements of the Generalized Linear
Models, which are regression techniques that are useful in the insurance context, amongst
others, and were introduced by Nelder and Mc Cullagh (Mc Cullagh and Nelder (1989)).
GLMs are based on the following three building blocks:

1. The dependent variable Y belongs to the exponential family with the probability density

function f (y, κ, ϕ) = exp
{

yκ−b(κ)
a(ϕ)

+ c (y, ϕ)
}
, where a, b and c are known functions;

κ and ϕ are unknown canonical and dispersion parameters, respectively. The function
a (ϕ) is commonly in the form a (ϕ) = ϕ/ω, where ϕ is constant over observation, and
ω is a known prior weight that can vary from observation to observation.

2. A linear combination of independent variables is considered as ϑ = ∑
h xhβh , where βh

are unknown parameters and xh are given values of predictors.
3. The dependence of the conditional mean is described by a link function g, which is

strictly monotonous and twice differentiable E (Y | x) = E (Y ) = μ = g−1 (ϑ).
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Table 15 Characteristics of some common univariate distributions in the exponential family

Name Notation Density Dispersion Canonical Mean Variance
function parameter parameter Value Function
f (y, κ, ϕ) ϕ κ μ (κ) Var (μ)

Poisson P (ψ)
ψ y ·e−ψ

y! 1 log (ψ) eκ ψ

Neg binomial N Bin (μ, θ)

(y+1/θ)


(y+1)·
(1/θ)
· (θμ)y

(1+θμ)y+1/θ θ log (μ) eκ μ + θμ2

Gamma G (ν, η) 1

(ν)y (

y
η )νe

− y
η 1

ν − 1
ην − 1

κ μ2

The expectation and variance can be obtained under the assumption that b is twice con-
tinuously differentiable, as follows:

E [Y ] = b
′
(κ) , Var [Y ] = a (ϕ) b

′′
(κ) . (27)

where the latter expression can be rewritten using the variance function which is defined
as:

Var (μ) = b
′′
[(

b
′)−1

(μ)

]

Var (Y ) = a (ϕ) · V (μ)

(28)

It means that the variance only depends on the mean value. The maximum likelihood
method is used to estimate the parameters of GLMs.

In the following Table 15, the members of the exponential family we refer to herein are
shown.

The gamma distribution is positive right-skewed, with a sharp peak and a long tail to the
right. Gamma is the most adopted distribution in practice for modeling severity.

Let (xi , yi ) be a member of the set of observations (i = 1, . . . , r) where yi is a dependent
variable in the regression equation, and xi = (xi1, . . . , xim) is a row-vector of independent
variables (covariates). The conditional mean for the i th policyholder is given by:

E(Y |xi ) = E(Y (i)) = g−1(xi · β) (29)

where β is the column-vector of regression coefficients, introduced in point 2 of this para-
graph. In some cases, the choice of the link function g is bound with the features of statistical
procedures.

In applications, the choice is often made to simplify practical considerations. In the insur-
ance ratemaking context, a logarithm function is usually selected as it allows to combine two
models by means of a factorization of their conditional expectation. Then a log-link function
eq. (29) could be re-written as:

E
(

Y (i)
)

= exi ·β (30)

Moreover, GLM provide also an estimate of conditioned variance and of the whole condi-
tioned probability distribution by estimating the dispersion parameter ϕ. Overdispersion is a
phenomenon that is often observed in practice where the variance need not to be equal to the
expected value and ϕ scales the relationship between the variance and the mean as in (28).
An estimate of the dispersion parameter could be provided in several ways. The most robust
model error estimation is based on Pearson’s chi-square statistic X2 (see Mc Cullagh and
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Nelder (1989)). An approximately unbiased estimator of ϕ is:

ϕ̂X = ϕ · X2

r − k
= 1

r − k

∑

i

ωi
(yi − μ̂i )

2

V (μ̂i )
(31)

The solution follows statistical theory where X2 is approximately χ2
r−k- distributed, with k

standing for the number of regression coefficients, so that E
[
X2

] ∼ r − k.
The knowledge of conditional mean and variance for each (i = 1, . . . , r) allows to well-

define the parameters for the exponential family distributions used in GLMs.
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