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Abstract
We define decision-making functions which arise from studying the multidimensional
generalization of the weighted Bajraktarević means. It allows a nonlinear approach to opti-
mization problems. These functions admit several interesting (from the point of view of
decision-making) properties, for example, delegativity (which states that each subgroup of
decision-makers can aggregate their decisions and efforts), casuativity (each decision affects
the final outcome except two trivial cases) and convexity-type properties. Beyond establishing
the most important properties of such means, we solve their equality problem, we introduce
a notion of synergy and characterize the null-synergy decision-making functions of this type.

Keywords Decision making function · Aggregation function · Effort function · Synergy ·
Generalized Bajraktarević mean · Equality problem

Mathematics Subject Classification Primary: 90B50; Secondary: 26D15 · 26E60 · 39B62

1 Introduction

The mathematical models for decision-making create challenging and important problems
binding computer science, economy, mathematics and psychology. In one of such models
there is a set D of all possible decisions and a finite number n of players (decision makers)
with their individual nonnegative weights (efforts) and decisions. Obviously, the sum of all
weights cannot be zero and thus (as a vector) it belongs to the set

Wn := [0,+∞)n \ {(0, . . . , 0)}.
The issue is to aggregate all the individual decisions with the corresponding weights to one
(common) decision. For this purpose, we need the notion of an aggregation function on D,
which is defined to be a mapping
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M : W(D) → D, where W(D) :=
∞⋃

n=1

Dn × Wn .

For instance, when the set D of decisions is a convex subset of a linear space X , then the
weighted arithmetic mean A, which is defined as

A(x, λ) := λ1x1 + · · · + λnxn
λ1 + · · · + λn

, (x = (x1, . . . , xn) ∈ Dn, λ = (λ1, . . . , λn) ∈ Wn),

is a well-known aggregation function. Further examples for aggregation functions are as
follows (see for example Henson (1998)):

(1) The Primacy Effect DPE : W(D) → D is defined by

DPE (x, λ) := xi , if λi �= 0 and λ j = 0 for all j ∈ {1, . . . , i − 1}.
(2) The Recency Effect DRE : W(D) → D is defined by

DRE (x, λ) := xi , if λi �= 0 and λ j = 0 for all j ∈ {i + 1, . . . , n}.
(3) The First Dominating Decision DFDD : W(D) → D is given by

DFDD(x, λ) := xi , if λi = max(λ) and λ j < λi for all j ∈ {1, . . . , i − 1}.
(4) The First Dominant DFD : W(D) → D is given by

DFD(x, λ) := DFDD(x, λ∗), where λ∗
i :=

∑

j : x j=xi

λ j .

All functions listed in (1)–(4) are reflexive, eliminative, nullhomogeneous in the weights but
not symmetric (see the relevant definitions below). Furthermore, they are all conservative (or
selective), which means that the aggregated decision is always one of the individual ones. For
a detailed study of (nonweighted) conservative aggregation functions, we refer the reader to
the recent study by Couceiro et al. (2018) and Devillet et al. (2019). The theory of means,
which seems to be an instrumental field for decision making has been surveyed and applied
in several recent and former books, see Gini (1958), Bullen (2003), Bullen et al. (1988),
Beliakov et al. (2007, 2016) and Grabisch et al. (2009).

In many settings, D is an infinite set which often refers to the position of the players in a
space before the game.An aggregation function unites the positions of all the players into one.
An individual nonnegative weight measures the impact of the decision of the corresponding
players to the final outcome. In order to introduce plausible and natural properties for aggre-
gation functions, we introduce the concept of decision-making functions on an arbitrary set
D. For this aim, we adopt the notion of weighted means (which were defined on an interval)
from the paper Páles and Pasteczka (2018) to our more general setting. An aggregation func-
tionM : W(D) → D is called a decision-making function (on D) if it satisfies the following
five conditions:

(i) M is reflexive: For all x ∈ D and λ ∈ R+, we have M(x, λ) = x .
(ii) M is nullhomogeneous in the weights: For all n ∈ N, (x1, . . . , xn) ∈ Dn ,

(λ1, . . . , λn) ∈ Wn , and t ∈ R+, we have

M
(
(x1, . . . , xn), (tλ1, . . . , tλn)

) = M
(
(x1, . . . , xn), (λ1, . . . , λn)

)
.

(iii) M is symmetric: For all n ∈ N, (x1, . . . , xn) ∈ Dn , (λ1, . . . , λn) ∈ Wn and for all
permutations σ of {1, . . . , n}, we have

M
(
(xσ(1), . . . , xσ(n)), (λσ(1), . . . , λσ(n))

) = M
(
(x1, . . . , xn), (λ1, . . . , λn)

)
.
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(iv) M is eliminative or neglective: For all n ≥ 2, (x1, . . . , xn) ∈ Dn and (λ1, . . . , λn) ∈
Wn with λ1 = 0, we have

M
(
(x1, . . . , xn), (λ1, . . . , λn)

) = M
(
(x2, . . . , xn), (λ2, . . . , λn)

)
.

(v) M is reductive: For all n ≥ 2, (x1, . . . , xn) ∈ Dn with x1 = x2 and (λ1, . . . , λn) ∈ Wn ,
we have

M
(
(x1, . . . , xn), (λ1, . . . , λn)

) = M
(
(x2, x3, . . . , xn), (λ1 + λ2, λ3, . . . , λn)

)
.

We also introduce the concept of the effort function, which is aiming to aggregate the
individual weights (efforts) into one positive number:

A function E : W(D) → R+ is called an effort function (on D) if it satisfies the following
five conditions:

(i) E is reflexive in the weights: For all x ∈ D and λ ∈ R+, we have E(x, λ) = λ.
(ii) E ishomogeneous in theweights: For alln ∈ N, (x1, . . . , xn) ∈ Dn , (λ1, . . . , λn) ∈ Wn ,

and t ∈ R+, we have

E
(
(x1, . . . , xn), (tλ1, . . . , tλn)

) = tE
(
(x1, . . . , xn), (λ1, . . . , λn)

)
.

(iii) E is symmetric.
(iv) E is eliminative or neglective.
(v) E is reductive.

One can easily see that the map α : W(D) → R+ given by

α(x, λ) := λ1 + · · · + λn, (x ∈ Dn, λ = (λ1, . . . , λn) ∈ Wn),

is an effort function, which we call the arithmetic effort function.
The symmetry property of decision-making and effort functions means that there is no

distinction between players and also their order is irrelevant for the decision. This property
has a far-reaching consequences especially for conservative functions, as it determines the
anty-symmetric preference relation on D by x � y :⇐⇒ x = M((x, y), (1, 1)) (cf. Devillet
(2019) for details). It was proved experimentally that this relation cannot be generalized to
multivariable choice; this phenomena is known as a decoy effect (see for example Huber et
al. (1982)).

The nullhomogeneity of M and the homogeneity of E in the weights states that if the
weights are scaled by the same factor, then the decision remains unchanged and the effort
is scaled by the same factor. The meaning of the elimination principle is that players with
zero weight do not affect the decision and the effort. One can easily check that the arithmetic
mean is a decision-making function over any convex subset of a linear space.

We introduce now an aggregation-type property which will play a significant role in the
sequel. We say that a decision-making functionM on D is delegative (admits the delegation
principle or partial aggregation principle) if, for all (y, μ) ∈ W(D), there exists a pair
(y0, μ0) ∈ D × R+ such that

M((x, y), (λ, μ)) = M((x, y0), (λ, μ0)), ((x, λ) ∈ W(D)). (1.1)

Analogously, we can speak about the delgativity of an effort function E on D which means
that, for all (y, μ) ∈ W(D), there exists a pair (y0, μ0) ∈ D × R+ such that

E((x, y), (λ, μ)) = E((x, y0), (λ, μ0)), ((x, λ) ∈ W(D)). (1.2)
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Lemma 1 Let (y, μ) ∈ W(D) be fixed. If M : W(D) → D is a delegative decision-making
function, then (1.1) holds if and only if y0 = M(y, μ). Analogously, if E : W(D) → R+ is a
delegative effort function, then (1.2) holds if and only if μ0 = E(y, μ).

Proof Using the properties of decision making functions and applying the delegativity ofM
for (x, λ) = (y, μ) twice, we get

M(y, μ) = M((y, y), (μ,μ)) = M((y, y0), (μ,μ0)) = M((y0, y0), (μ0, μ0)) = y0.

Similarly, the properties of effort functions and applying the delegativity of E yield

E(y, μ) = 1

2
E((y, y), (μ,μ)) = 1

2
E((y, y0), (μ,μ0)) = 1

2
E((y0, y0), (μ0, μ0)) = μ0,

which completes the proof of the lemma. ��
Motivated by the above statement, a delegative decision-making function M and a del-

egative effort function E are called associated if, for all (y, μ) ∈ W(D), the equalities (1.1)
and (1.2) hold with (y0, μ0) = (M(y, μ),E(y, μ)).

The aim of this paper is to present a construction of a broad class of decision-making
and effort functions which arise from studying the so-called weighted Bajraktarević means
(whose definition will be recalled at the beginning of Section 3). Despite of the analytical
background of this paper, we are convinced that our construction could provide useful models
for game theoretical and for decision-making problems.

Our motivation is to present a mean-type approach to studying the Farm Structure Opti-
mization Problem—cf. for example Abd El-Wahed and Abo-Sinna (2001), Czyżak (1990),
Słowiński and Teghem (1990), Tzeng and Huang (2014) and Jiuping and Zhou (2011).

2 Observability and conical convexity

A subset S of a linear space X over R is called a ray if S = Rx := R+x := {λx | λ ∈ R+}
holds for some nonzero element x ∈ X . If y ∈ Rx , then the unique positive numbers λ for
which y = λx holds will be denoted by [y : x].

A set S is called a cone if it is the union of rays of X . One can see that S is a cone precisely if
it is closed under multiplication by positive scalars. The cone generated by the set S – denoted
by cone(S) – is the smallest cone containing S. It is clear that cone(S) = R+S = ⋃

x∈S Rx .
A subset S of X over R is called observable (from the origin) if the rays generated by two

distinct elements of S are disjoint. Note that for an observable subset S, every ray contained
in cone(S) intersects S at exactly one point. Moreover, the family {Rx | x ∈ S} is a partition
of cone(S). Due to this fact, for every observable set S, one can define the projection along
rays (briefly, the ray projection) πS : cone(S) → S as follows: For every x ∈ S and y ∈ Rx ,
we have πS(y) = x . As a matter of fact, observability of S is not only sufficient but also
necessary to define such map.

We say that a function f : D → X is observable if it is injective and has an observable
image. Analogously to the previous setup, we define π f := π f (D). The extended inverse of
f , denoted by f (−1) : cone( f (D)) → D is defined by

f (−1) := f −1 ◦ π f .

Clearly, f (−1)(x) = f −1(x) if x ∈ f (D).
We say that a subset S of X is conically convex if cone(S) is a convex set and convex

hull of S does not contain the origin. Note that conical convexity is a weaker property than
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convexity: every convex set which does not contain zero is conically convex, the converse
implication is not true.

Hereafter an observable function f : D → X such that f (D) is conically convex is called
admissible.

In the next result we give a characterization of admissibility for functions defined on an
interval with a 2-dimensional range.

Theorem 1 Let I be a real interval and let f = ( f1, f2) : I → R
2 be continuous. Then f

is admissible if and only if, for all distinct elements x, y ∈ I , f (x) and f (y) are linearly
independent, that is,

∣∣∣∣
f1(x) f1(y)
f2(x) f2(y)

∣∣∣∣ �= 0. (2.1)

Proof Assume first that f is admissible but (2.1) is not valid for some x, y ∈ I with x �= y.
Then the two vectors f (x) and f (y) are linearly dependent. Thus, there exist (α, β) �= (0, 0)
such that α f (x) + β f (y) = 0. Because (0, 0) is not contained in f (I ), we have that
f (x) �= (0, 0) �= f (y), hence αβ �= 0. In the case when αβ < 0, we get that the rays
generated by f (x) and f (y) are the same, which contradicts the observability. If αβ > 0,
then (0, 0) is in the segment connecting [ f (x), f (y)], which contradicts the property that
the convex hull of f (I ) does not contain the origin.

Assume now that (2.1) holds for all (x, y) ∈ �(I ) := {(x, y) | x, y ∈ I , x < y}. This
immediately shows that f (I ) is observable.

Since�(I ) is a convex set and f is continuous, therefore the determinant is either positive
on �(I ) or negative on �(I ). We may assume that it is positive everywhere on �(I ). Then
the pair ( f1, f2) is a so-called Chebyshev system on I . According to Bessenyei and Páles
(2003, Theorem 2), there exist two real constants α and β such that α f1 + β f2 is positive
over the interior of I and thus it is nonnegative over I . This implies that the curve f (I ) is
contained in the closed half plain P = {(u, v) ∈ R

2 | αu + βv ≥ 0}. Consider now the unit
circle and project the curve f (I ) into it. Then, by the continuity of the projection mapping,
the projection of the curve is an arc of the unit circle which is contained in P . It is obvious
that the conical hull of the curve f (I ) and the conical hull of the arc are identical. On the
other hand, the property that the arc is contained in the half plain P , implies that its conical
hull is convex. This shows the conical hull of f (I ) is also convex.

The origin cannot be contained in the conical hull of f (I ) because then there were two
distinct points of f (I ) belonging to the boundary line {(u, v) ∈ R

2 | αu + βv = 0} such
that the origin were in the segment connecting them. This contradicts the property that every
two distinct points of f (I ) are linearly independent. ��

3 Generalized Bajraktarević means and their properties

In what follows, based on the concept of the generalized inverse of vector-valued functions
defined in the previous section, we will introduce a new class of means. In the 2 dimensional
case, after Theorem 3, we will point out that this concept includes the classical Bajraktarević
means, which will be described later. Therefore, we take the liberty to call them generalized
Bajraktarević means.
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Fig. 1 Evaluation of m = B f ((x1, x2), (1, 1))

Given an admissible function f : D → X , we can define the (weighted) generalized
Bajraktarević mean B f : W(D) → D by

B f (x, λ) = f (−1)
( n∑

k=1

λk f (xk)
)
,

(n ∈ N, x = (x1, . . . , xn) ∈ Dn, λ = (λ1, . . . , λn) ∈ Wn), (3.1)

where the coordinates of x are the entries and coordinates of λ are the corresponding weights.
We also define β f : W(D) → R+ by

β f (x, λ) :=
[

n∑

k=1

λk f (xk) : f (B f (x, λ))

]
,

which we call the effort function associated to B f .
Formally, the definition given in (3.1) is similar (in fact, almost identical) to the definition of

weighted quasiarithmeticmeans. However, the generalized inverse function f (−1) is different
from f −1 in general. These two inverses coincide only in the case when the range of f is
convex. Therefore, our definition provides a true extension.

Intuitively, D is the space of all possible decisions, the coordinates of the vector x are the
considered decisions, and the corresponding coordinates of λ are the effort of players invested
into the option. In this way B f (x, λ) is the decision derived from the possible decisions and
their weights.

Example 1 To illustrate the concept of the generalized Bajraktarević mean of two elements of
D, assume that f = ( f1, f2) : D → R

2 is an admissible function and f (D) has a range like
the green curve in Fig. 1. We can see that the distinct points of f (D) belong to disjoint rays,
whence it follows that f is observable. Furthermore conv( f (D)) does not contain zero and
cone( f (D)) (being an angle domain bounded by the two black halflines) is convex. Whence
we obtain that f is admissible.

Take x1, x2 ∈ D in order to calculate B f ((x1, x2), (1, 1)). We first compute the vector
y := f (x1)+ f (x2). Then the rayR+y intersects the range f (D) at some point, say at f (m)

(where m ∈ D). Then π f (y) = π f ( f (x1) + f (x2)) = f (m) and, consequently,

B f ((x1, x2), (1, 1)) = f (−1)
(
f (x1) + f (x2)

)
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= f −1
(

π f ( f (x1) + f (x2))

)
= f −1( f (m)) = m.

The corresponding effort β f ((x1, x2), (1, 1)) is the ratio of the vectors f (x1) + f (x2) and
f (m) (on the picture, this ratio is approximately 1.7).

Lemma 2 Let f : D → X be an admissible function. Then, for all n ∈ N and (x, λ) ∈
Dn × Wn, there exists exactly one pair (u, η) ∈ D × R+ satisfying

η f (u) =
n∑

k=1

λk f (xk). (3.2)

Furthermore, u = B f (x, λ) and η = β f (x, λ).

Proof As f (D) is conically convex, we know that
∑n

k=1 λk f (xk)∑n
k=1 λk

∈ cone f (D).

Thus there exists η ∈ R+ such that

η−1
n∑

k=1

λk f (xk) ∈ f (D).

Moreover, as f (D) is observable, the constant η is uniquely determined by x and λ. Now, as
f is injective, there exists exactly one u ∈ D such that

η−1
n∑

k=1

λk f (xk) = f (u),

which is trivially equivalent to (3.2). The last assertion simply follows from the definition of
B f (x, λ) and β f (x, λ). ��

Now B f is the equivalent (or aggregated) decision, β f is the equivalent (or aggregated)
effort. In fact β f , can be considered as the amount of goods we need to invest into a single
decision to be irrelevant between the diversed an the aggregated situation. This property is
much more transparent in view of Theorem 4.

Theorem 2 Let f : D → X beanadmissible function. ThenB f is a decision-making function
and β f is an effort function on D.

Proof Fix n ∈ N and (x, λ) ∈ Dn × Wn . In view of Lemma 2 both B f (x, λ) and β f (x, λ)

depend on its arguments implicitly via the sum
∑n

k=1 λk f (xk). This immediately implies
that B f and β f are both symmetric, reductive and eliminative. The nullhomogeneity of B f

is obvious in view of the definition of f (−1) = f −1 ◦ π f . The reflexivity properties of B f

and β f are immediate consequences of the equalities

B f (y, λ) = f (−1)(λ f (y)) = f −1 ◦ f (y) = y,

β f (y, λ) = [λ f (y) : f (B f (y, λ))] = [λ f (y) : f (y)] = λ, (y ∈ D, λ ∈ R+).

Now we only need to verify the homogeneity of β f in the weights. To this end, take
additionally t ∈ R+. By the definition of β f and the nullhomogeneity of B f , we have
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β f (x, tλ) =
[ n∑

k=1

tλk f (xk) : f (B f (x, tλ))

]

= t

[ n∑

k=1

λk f (xk) : f (B f (x, λ))

]
= tβ f (x, λ),

which completes the proof. ��
Theorem 3 Let f = ( f1, f2) : I → R

2 be a continuous function such that f2 is nowhere zero
and f1/ f2 is strictly monotone. Then f is admissible and, for n ∈ N, x = (x1, . . . , xn) ∈ I n,
and λ = (λ1, . . . , λn) ∈ Wn,

B f (x, λ) =
( f1
f2

)−1
(

λ1 f1(x1) + · · · + λn f1(xn)

λ1 f2(x1) + · · · + λn f2(xn)

)
, (3.3)

β f (x, λ) = λ1 f2(x1) + · · · + λn f2(xn)

f2(B f (x, λ))
. (3.4)

This result shows that the standard Bajraktarević means can be regarded as particular cases
of generalized Bajraktarević means. Indeed, if ϕ : I → R is a continuous strictly monotone
function and w : I → R+ is a continuous function, then with f1 := wϕ and f2 := w, we
can immediately see that B f (x, λ) is of the form

Bϕ,w(x, λ) = ϕ−1
( n∑

k=1
λkw(xk )ϕ(xk )

n∑
k=1

λkw(xk )

)
, (3.5)

which is the so-called Bajraktarević mean, see Bajraktarevic (1958, 1963).

Proof First we show that f = ( f1, f2) is admissible. In view of Theorem 1, it is sufficient
to show that (2.1) holds for all distinct elements x, y of I . Indeed,

∣∣∣∣
f1(x) f1(y)
f2(x) f2(y)

∣∣∣∣ = f1(x) f2(y) − f1(y) f2(x) = f2(x) f2(y)

(
f1(x)

f2(x)
− f1(y)

f2(y)

)
,

which is nonzero by our assumptions.
To prove the identity (3.3), let n ∈ N and a pair (x, λ) ∈ I n × Wn be fixed. According to

Lemma 2, tha pair (u, η) := (B f (x, λ), β f (x, λ)) is the unique solution of the equation

η f (u) = λ1 f (x1) + · · · + λn f (xn).

This (vector) equation is equivalent to the scalar system

η f1(u) = λ1 f1(x1) + · · · + λn f1(xn),

η f2(u) = λ1 f2(x1) + · · · + λn f2(xn).

Dividing the first equality by the second one, side by side, we get that

f1(u)

f2(u)
= λ1 f1(x1) + · · · + λn f1(xn)

λ1 f2(x1) + · · · + λn f2(xn)
.

Using that f1/ f2 is invertible and applying its inverse to both sides, we obtain that

u =
( f1
f2

)−1
(

λ1 f1(x1) + · · · + λn f1(xn)

λ1 f2(x1) + · · · + λn f2(xn)

)
,
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which shows that B f (x, λ) = u has the form given by (3.3). The equality

η =
[ n∑

k=1

λk f (xk) : f (u)

]
=

[ n∑

k=1

λk f2(xk) : f2(u)

]

implies (3.4) immediately. ��

Remark 1 The definition of a mean Bϕ,w : W(I ) → I by formula (3.5) was suggested by
Bajraktarević in his seminal papers Bajraktarević (1958, 1963). Here I ⊆ R is an interval,
ϕ : I → R is a continuous strictly monotone function andw : I → R+ is a positive function.
If the weight function w is constant, then this expression simplifies to the classical formula
for weighted quasiarithmetic means. This is why these means were often called generalized
quasiarithmetic means or quasiarithmetic means with weight function. Nowadays, these
means are termed Bajraktarević means. This class of means was thoroughly investigated
by Aczél, Daróczy and Losonczi in their papers Aczél and Daróczy (1963), Daróczy and
Losonczi (1971), Losonczi (1971a, b) in which they studied the homogeneity property, the
equality as well as the comparison and Hölder- and Minkowski-type inequalities for these
means, respectively. The characterization (or axiomatization) of Bajraktarević means was
established in the paper Páles (1987) by the first author.

Example 2 Another particular case of the above theorem is when f1 and f2 are power func-
tions on I = R+: f1(x) = x p and f2(x) = xq , where p, q ∈ R with p �= q . Then

B f (x, λ) = Gp,q(x, λ) :=
(

λ1x
p
1 +···+λn x

p
n

λ1x
q
1 +···+λn x

q
n

) 1
p−q

,

β f (x, λ) = γp,q(x, λ) := (λ1x
q
1 +···+λn x

q
n )

p
p−q

(λ1x
p
1 +···+λn x

p
n )

q
p−q

, (3.6)

which are called theGini mean and theGini effort function of parameter (p, q)where p �= q
(cf. Gini (1938)). For the case p = q , let f1(x) := x p ln(x) and f2(x) := x p . Then we have

B f (x, λ) = Gp,p(x, λ) := exp

(
λ1x

p
1 ln(x1) + · · · + λnx

p
n ln(xp)

λ1x
p
1 + · · · + λnx

p
n

)
,

β f (x, λ) = γp,p(x, λ) := (λ1x
p
1 + · · · + λnx

p
n ) exp

(
(−p) · λ1x

p
1 ln(x1) + · · · + λnx

p
n ln(xp)

λ1x
p
1 + · · · + λnx

p
n

)
.

Example 3 In this example, we describe a situation when the image space X is three dimen-
sional and the generalizedBajraktarević mean and the related effort function still have explicit
forms. Given a manifold S := {(x, y, z) | x2 + y2 − z2 = −1 ∧ z ≥ 0} ⊆ R

3 with a
parametrization f : R2 → S given by f (x, y) = (x, y,

√
1 + x2 + y2). Then S is observ-

able, f is admissible and the Bajraktarević-type meanB f : W(R2) → R
2 is of the following

form (here and below n ∈ N is fixed, x, y ∈ R
n , and λ ∈ Wn):

B f ((x, y), λ) = f (−1)
( n∑

i=1

λi f (xi , yi )
)

= f (−1)
( n∑

i=1

λi xi ,
n∑

i=1

λi yi ,
n∑

i=1

λi

√
1 + x2i + y2i

)
.
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Now define

�((x, y), λ) :=
(

n∑

i=1

λi

√
1 + x2i + y2i

)2

−
(

n∑

i=1

λi xi

)2

−
(

n∑

i=1

λi yi

)2

.

We can easily verify that

1√
�((x, y), λ)

(
n∑

i=1

λi xi ,
n∑

i=1

λi yi ,
n∑

i=1

λi

√
1 + x2i + y2i

)
∈ S,

which yields

B f ((x, y), λ) =
(

1√
�((x, y), λ)

n∑

i=1

λi xi ,
1√

�((x, y), λ)

n∑

i=1

λi yi

)
;

β f ((x, y), λ) = √
�((x, y), λ).

Furthermore the inverse triangle (Minkowski’s) inequality (for �1/2) applied to the vectors
(λ2i ), (λ2i x

2
i ), (λ2i y

2
i ) implies β f ((x, y), λ) ≥ λ1 + · · · + λn . Later, in Section 7, we will

interpret this property that the synergy of f is nonnegative.
Observe that the above mean is not the standard convex combination of its argu-

ments. Indeed, for the entries (x, y) = ((1, 0), (0, 1)) and weights λ = (1, 1),

we get B f ((x, y), λ) = (
√
6
6 ,

√
6
6 ), which obviously does not belong to the segment

conv((0, 1), (1, 0)).

4 Aggregation-type properties

4.1 Delegativity

In this subsection we establish the delegativity of the generalized Bajraktarević means and
the corresponding effort functions, moreover, we show that these two maps are associated to
each other.

Theorem 4 Let f : D → X be an admissible function. Then both B f and β f are delegative
and associated.

Proof Fix m ∈ N and (y, μ) ∈ Dm × Wm . For an arbitrary (x, λ) ∈ Dn × Wn , according to
the Lemma 2, we have

β f ((x, y), (λ, μ)) f (B f ((x, y), (λ, μ))) =
n∑

k=1

λk f (xk) +
m∑

j=1

μ j f (y j ),

β f (y, μ) f (B f (y, μ)) =
m∑

j=1

μ j f (y j ).

Then, these equalites and Lemma 2 imply

β f ((x, y), (λ, μ)) f (B f ((x, y), (λ, μ))) =
n∑

k=1

λk f (xk) + β f (y, μ) f (B f (y, μ))

= β f ((x, y0), (λ, μ0)) f (B f ((x, y0), (λ, μ0))),

which then yields (1.1). ��
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The following result could be derived from the above theorem, but we shall provide a
direct and short proof for it.

Corollary 1 Let f : D → X be an admissible function. Let n,m ∈ N, x ∈ Dn and
λ(1), . . . , λ(m) ∈ Wn. Denote y j := B f (x, λ( j)) and μ j := β f (x, λ( j)) for j ∈ {1, . . . ,m}.
Then, for all (t1, . . . , tm) ∈ Wm,

B f (x, t1λ
(1) + · · · + tmλ(m)) = B f (y, (t1μ1, . . . , tmμm)),

β f (x, t1λ
(1) + · · · + tmλ(m)) = β f (y, (t1μ1, . . . , tmμm)). (4.1)

Proof By the definitions of y1, . . . , ym and μ1, . . . , μm , according to Lemma 2, we have

μ j f (y j ) = β f (x, λ
( j)) f (B f (x, λ

( j))) =
n∑

i=1

λ
( j)
i f (xi ) ( j ∈ {1, . . . ,m}).

Multiplying this equality by t j side by side, and then summing up the equalities so obtained
for j ∈ {1, . . . ,m}, we get

β f (y, (t1μ1, . . . , tmμm)) f (B f (y, (t1μ1, . . . , tmμm)))

=
m∑

j=1

t jμ j f (y j ) =
m∑

j=1

t j

(
n∑

i=1

λ
( j)
i f (xi )

)
=

n∑

i=1

⎛

⎝
m∑

j=1

t jλ
( j)
i

⎞

⎠ f (xi )

= β f (x, t1λ
(1) + · · · + tmλ(m)) f (B f (x, t1λ

(1) + · · · + tmλ(m))).

This equality, by the observability of f , yields (4.1). ��
The latter corollary can be also rewritten in the matrix form.

Corollary 2 Let f : D → X be an admissible function. Let x ∈ Dn, and � =
(λ(1), . . . , λ(m)) ∈ Wm

n . Define a vector y := (
B f (x, λ(i))

)m
i=1 ∈ Dm and μ :=(

β f (x, λ(i))
)m
i=1 ∈ R

m+. Then, for all t ∈ Wm,

B f (x,�t) = B f (y, μ·t) and β f (x,�t) = β f (y, μ·t), (4.2)

where “·” stands for the coordinate-wise multiplication of the elements of Wm.

4.2 Casuativity

We say that a decision making function M on D is casuative if for all (x, λ) ∈ W(D) and
for all pair (y, μ) ∈ D × (0,+∞), we have

M(x, λ) = M
(
(x, y), (λ, μ)

) ⇐⇒ y = M(x, λ). (4.3)

Casuativity is somehow opposite to conservativity. Namely there holds the following
easy-to-see lemma.

Lemma 3 LetM be a symmetric and casuative decision-making function on D. Then for all
distinct x1, x2 ∈ D and λ1, λ2 ∈ (0,+∞) we haveM((x1, x2), (λ1, λ2)) ∈ D\{x1, x2}.

It is also reasonable to define weak casuativity in the case when the (⇐) implication of
(4.3) holds. Observe that there are number of weakly casuative decision making functions
which are not casuative, for example decision making functions which are induced by a
preference relation.
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Proposition 1 Generalized Bajraktarević meanB f is casuative for every admissible function
f : D → X.

Proof AsB f is delegative it is sufficient to show that (4.3) holds for all (x, λ) ∈ D×R+. The
(⇐) part is then trivial. To prove the converse implication let x, y ∈ D and λ,μ ∈ (0,+∞)

such that

B f
(
(x, y), (λ, μ)

) = B f (x, λ) = x .

Thus, by Lemma 2, there exists η ∈ R+ such that λ f (x) + μ f (y) = η f (x). Consequently,
as μ �= 0 we get f (y) = η−λ

μ
f (x). Now admissibility of f implies 0 /∈ conv f (X) and

therefore η−λ
μ

> 0. Then observability of f yields y = x . ��
This property plays an important role in the definition of effort function.

Corollary 3 Let f : D → X and g : D → Y be two admissible function such thatB f = Bg.
Then β f = βg.

Proof Let (x, λ) ∈ W(D), set m := B f (x, λ) = Bg(x, λ) and assume that d := βg(x, λ) −
β f (x, λ) �= 0. Without loss of generality, we may assume that d > 0.

Take y0 ∈ D \ {m} arbitrarily. By Theorem 4 and the equality B f = Bg we have

B f ((m, y0), (β f (x, λ), 1)) = B f ((x, y0), (λ, 1)) = Bg((x, y0), (λ, 1))

= Bg((m, y0), (βg(x, λ), 1)) = B f ((m, y0), (βg(x, λ), 1))

= B f ((m, y0,m), (β f (x, λ), 1, d)).

Now by casuativity of B f and d > 0, we obtain

B f ((m, y0), (β f (x, λ), 1)) = m,

which implies y0 = m, a contradiction. Therefore, d = 0, i.e., βg(x, λ) = β f (x, λ). ��

5 Convexity induced by admissible functions

For an admissible function f : D → X , a subset S ⊆ D is called f -convex if, for all n ∈ N,
(x, λ) ∈ Sn × Wn , we have that B f (x, λ) ∈ S.

Observe that if I ⊂ R is an interval and f = ( f1, f2) : I → R
2 satisfies conditions

of Theorem 3 then the mean-value property for a Bajraktarević mean can be written as
B f (x, λ) ∈ J for every subinterval J ⊆ I , n ∈ N and (x, λ) ∈ Jn × Wn . This yields that
every subinterval of I is f -convex. Furthermore, in view of continuity of f , the converse
implication is also valid.

The first assertion characterizes f -convexity in terms of standard convexity.

Proposition 2 Let f : D → X be an admissible function. Then S ⊆ D is f -convex if and
only if cone( f (S)) is convex.

Proof Assume first that S is f -convex. It suffices to show that for every n ∈ N and a pair
(x, λ) ∈ Sn × Wn we have ξ := ∑n

i=1 λi f (xi ) ∈ cone( f (S)). But π f (ξ) = f (B f (x, λ)),
thus ξ ∈ R f (B f (x,λ)) ⊆ cone( f (S)).

Conversely, if cone( f (S)) is convex then, as it is positively homogeneous we obtain
r := ∑n

i=1 λi f (xi ) ∈ cone( f (S)) for every n ∈ N and (x, λ) ∈ Sn×Wn . By the definition of
projection we obtain π f (r) ∈ f (S) and thereforeB f (x, λ) = f (−1)(r) = f −1 ◦π f (r) ∈ S,
which shows that S is f -convex. ��
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Now we show that f -convex sets admit two very important properties of convex sets.

Lemma 4 Let f : D → X be an admissible function. Then the class of f -convex subsets of
D is closed with respect to intersection and chain union.

Proof Let S be an arbitrary family of f -convex subsets of D. Fix n ∈ N, and (x, λ) ∈( ⋂S)n ×Wn . Then for every S ∈ S we have x ∈ Sn and, in view f -convexity of S, we also
have B f (x, λ) ∈ S. Therefore B f (x, λ) ∈ ⋂S which shows that

⋂S is f -convex.
Now take a chainQ of f -convex sets. Take n ∈ N and (x, λ) ∈ (

⋃Q)n × Wn arbitrarily.
Then, by the chain property of Q, there exists Q ∈ Q such that x ∈ Qn . As Q is f -convex,
we obtain B f (x, λ) ∈ Q ⊆ ⋃Q. Whence

⋃Q is f -convex subset of D, too. ��

Applying this lemma, for every admissible function f : D → X and S ⊂ D we define
f-convex hull of S as the smallest f -convex subset of D containing S and denote it by
conv f (S). In the next lemmawe show that, similarly to the ordinary convexhull, this definition
can be also expressed as a set of all possible combinations of elements in S.

Lemma 5 Let f : D → X be an admissible function and S ⊆ D. Then

conv f (S) = {
B f (x, λ) | (x, λ) ∈ W(S)

}
.

Proof Denote the set on the right-hand-side of the latter equality by T . The inclusion
T ⊆ conv f (S) is the obvious implication of f -convexity of the hull. To prove the con-
verse inclusion, we need to show that T is f -convex.

Let m ∈ N, y = (y1, . . . , ym) ∈ Tm and ν ∈ Wm be arbitrary. By the definition of T ,
in view of reduction priciple and Corollary 2 there exists n ∈ N, a vector x ∈ Sn and � =
(λ(1), . . . , λ(n)) ∈ Wm

n such that yi = B f (x, λ(i)) for all i ∈ {1, . . . ,m}. Now, Corollary 2
implies that there exists μ ∈ R

m+ such that (4.2) holds. In particular for t := (
νi
μi

)m
i=1 ∈ Wm ,

we get

B f (y, ν) = B f (y, (t1μ1, . . . , tmμm)) = B f (x,�t) ∈ T ,

which shows that T is f -convex, indeed. ��

We now establish the fundamental relationship between the f -convex hull in D and the
standard convex hull in X .

Proposition 3 Let f : D → X be an admissible function and S ⊆ D. Then

conv f (S) = f (−1)( conv( f (S))
)
. (5.1)

Proof Observe that for every y ∈ conv f (S) there exists n ∈ N and (x, λ) ∈ Sn × Wn such
that y = B f (x, λ). Then

y = f (−1)
( n∑

k=1

λk f (xk)

)
∈ f (−1)(

R+ conv( f (S))
) = f (−1)( conv( f (S))

)
.

Conversely, for every y ∈ f (−1)
(
conv( f (S))

)
there exists n ∈ N and (x, λ) ∈ Sn × Wn

with
∑n

k=1 λk = 1 such that y = f (−1)
( ∑n

k=1 λk f (xk)
)
. Then, by the definition of B f , we

obtain y = B f (x, λ) ∈ conv f (S) which completes the proof. ��
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6 Equality of generalized Bajraktarević means

We now state our main result, which characterizes the equality of two generalized Bajrak-
tarević means. In the one-dimensional case this is a classical result due to Aczél and Daróczy
(1963) and Daróczy and Páles (1982).

Theorem 5 Let X and Y be linear spaces, D be an arbitrary set and f : D → X, g : D → Y
be admissible functions. Then B f = Bg if and only if g = A ◦ f for some linear map
A : X → Y .

Proof Take n ∈ N, a pair (x, λ) ∈ Dn × Wn , and denote briefly y := B f (x, λ) ∈ D. By
Lemma 2, applying A side-by-side in (3.2) and using the equality g = A ◦ f twice, we get

β f (x, λ)g(y) = A
(
β f (x, λ) f (y)

) = A

( n∑

k=1

λk f (xk)

)
=

n∑

k=1

λk A f (xk) =
n∑

k=1

λkg(xk).

Now the converse implication in Lemma 2 implies y = Bg(x, λ). As x and λ are arbitrary,
we obtain the equality B f = Bg .

To prove the converse implication assume that B f = Bg . Then by Corollary 3 we have
β f = βg . We shall use to following claim several times in the proof:

Claim 1 Let n ∈ N and (x, λ) ∈ Dn × R
n . Then

n∑

i=1

λi f (xi ) = 0 if and only if
n∑

i=1

λi g(xi ) = 0.

Proof For λ ≡ 0 the statement is trivial. From now on assume that λ is a nonzero vector and
define

λ+ := (max(0, λi ))
n
i=1, λ− := (max(0,−λi ))

n
i=1. (6.1)

Then λ+ and λ− are disjointly supported with nonnegative entries, and λ = λ+ − λ−.
By the first equality we have

n∑

i=1

λ+
i f (xi ) =

n∑

i=1

λ−
i f (xi ).

Therefore as λ is nonzero and 0 /∈ conv f (D), we obtain that both λ−, λ+ ∈ Wn . Further-
more by the definition m := B f (x, λ−) = B f (x, λ+) and μ := β f (x, λ−) = β f (x, λ+).
Therefore as B f = Bg and β f = βg we obtain

n∑

i=1

λi g(xi ) =
n∑

i=1

λ+
i g(xi ) −

n∑

i=1

λ−
i g(xi )

= βg(x, λ
+)g(Bg(x, λ

+)) − βg(x, λ
−)g(Bg(x, λ

−)) = μg(m) − μg(m) = 0.

The second implication is analogous. Hence, the proof of Claim 1 is complete.
Denote the linear span of f (D) and g(D) by X0 and Y0, respectively. Let H f ⊆ f (D)

be a Hamel base for X0. Then one can choose a system of elements {xγ | γ ∈ �} ⊆ D such
that H f = { f (xγ ) | γ ∈ �}.

We are now going to show that Hg := {g(xγ ) | γ ∈ �} is a Hamel base
for Y0. Indeed, for every collection of pairwise-distinct elements γ1, . . . , γd ∈ �,
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the system { f (xγ1), . . . , f (xγd )} is linearly independent and thus, by our Claim, so is
{g(xγ1), . . . , g(xγd )}.

To show that it is a Hamel base for Y0, we have to prove that Hg is also a generating
system. If not, then there exists an element x∗ ∈ D such that Hg ∪ {g(x∗)} is linearly
independent. Repeating the same argument (by interchanging the roles of f and g) it follows
that H f ∪{ f (x∗)} is linearly independent, which contradicts that H f is a generating system.

As H f and Hg are Hamel bases for X0 and Y0, respectively, there exists a unique linear
mapping A : X0 → Y0 such that

g(x) = A f (x) for all x ∈ D� := {xγ | γ ∈ �}. (6.2)

Our aim is to extend the latter equality to all x ∈ D. To this end, take x ∈ D \ D�

arbitrarily. Using that H f is a Hamel base for X0, we can find elements γ1, . . . , γd ∈ � and
nonzero real numbers λ1, . . . , λd such that

f (x) =
d∑

i=1

λi f (xγi ).

Then
∑d

i=1 λi f (xγi ) − f (x) = 0, and by Claim 1
∑d

i=1 λi g(xγi ) − g(x) = 0. Finally we
obtain

g(x) =
d∑

i=1

λi g(xγi ) =
d∑

i=1

λi A f (xγi ) = A

( d∑

i=1

λi f (xγi )

)
= A f (x).

Therefore (6.2) holds for all x ∈ D which completes the proof. ��

7 Synergy

Before we introduce the notion of synergy let us present some interpretation of the aggregated
effort. The initial issue of coalitions in decision making theory (and, more general, theory
of cooperation in games) is the problem how to measure the coalition quality. Intiuitively,
synergy is the difference between the aggregated effort and the sum of the individual efforts,
i.e., the arithmetic effort. For the detailed study of synergy,we refer the reader to Schulz-Hardt
and Mojzisch (2012) and references therein.

Example 4 In a toy model we have three parties in a parliament with a total number of 100
votes and three parties: Party A (λ1 votes), Party B (λ2 votes), Party C (λ3 votes). Assume
that λ1 ≥ λ2 ≥ λ3. The are three possible coalitions AB, AC and BC. From the point of
view of the dominant decision system (for example DFDD) each coalition above 50 votes,
is equivalent to the same number, the smallest majority which is 51. Thus we have for all
x ∈ D2 and i, j ∈ {1, 2, 3} with i �= j ,

α(λ) =
{
100

∑n
i=1 λi ≥ 51;

∑n
i=1 λi

∑n
i=1 λi ≤ 50.

Now we could compare the sum of weights with the equivalent weight in two cases:
Situation I: (λ1, λ2, λ3) = (45, 35, 20):

sAB = α(λ1, λ2) − (α(λ1) + α(λ2)) = λ3 = 20;
sAC = α(λ1, λ3) − (α(λ1) + α(λ3)) = λ2 = 35;
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sBC = α(λ2, λ3) − (α(λ2) + α(λ3)) = λ1 = 45;
sABC = α(λ1, λ2, λ3) − (α(λ1) + α(λ2) + α(λ3)) = 0.

Obviously, each party wants to be in a coalition. However A prefersC than B (as sAC ≥ sAB )
but both B and C prefer to make a coalition with each other (as sBC ≥ sAB and sBC ≥ sAC ).
Consequently the coalition BC is the unique Nash equilibrium.
Situation II: (λ1, λ2, λ3) = (55, 30, 15):

sAB = α(λ1, λ2) − (α(λ1) + α(λ2)) = −λ2 = −30;
sAC = α(λ1, λ3) − (α(λ1) + α(λ3)) = −λ1 = −15;
sBC = α(λ2, λ3) − (α(λ2) + α(λ3)) = 0;

sABC = α(λ1, λ2, λ3) − (α(λ1) + α(λ2) + α(λ3)) = 0.

Then A does not want to make a coalition with either B or C (as the synergy is negative).
Similarly neither B nor C wants to make a coalition with A (this essentially follows from
the real situation). The coalition BC is irrelevant (which refers to the zero synergy).

Obviously, as it was announced, the examples above are instrumental to dominant decision
systems only. For more complicated decision making systems, we need to define the synergy
in a different way. In general, the synergy depends on the players’ decisions. There are
essentially two important assertions:

(1) zero synergy refers to the situationwhen aggregation is irrelevant to the rest of the system;
(2) positive synergy should be profitable from the point of view of a decision making system.

In our model, for an effort function E : W(D) → R+, the E-synergy is a function
σE : W(D) → R defined as follows

σE(x, λ) := E(x, λ) − (λ1 + · · · + λn), n ∈ N and (x, λ) ∈ Dn × Wn .

In other words, σE measures the difference between the given effort and the arithmetic effort,
which is the sum of individual efforts.

If f : D → X is an admissible function and E = β f , then σE will simply be denoted
as σ f . Furthermore, in view of Corollary 3, we can see that the synergy depends only on
the mean B f , that is, the equality B f = Bg implies σ f = σg . Therefore, we can define
σB f := σ f .

This property has an important interpretation in the theory of coalitional games. The case
when the synergy is negative corresponds to the situationwhen there appear some distractions
in the cooperation (see Example 4.II). The case of positive synergy refers to the situation
when the aggregated effort of the group is greater then sum of efforts of the individuals (see
Example 4.I).

7.1 Generalized quasi-arithmetic means

In the next lemma we characterize the subfamily of zero-synergy generalized Bajraktarević
means. Its single variable counterpart was proved in Pasteczka (2021).

Theorem 6 Let f : D → X be an admissible function. Then the following conditions are
equivalent:
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(i) f (D) is a convex set and

B f (x, λ) = f −1
(∑n

i=1 λi f (xi )∑n
i=1 λi

)
for all n ∈ N and (x, λ) ∈ Dn × Wn, (7.1)

in particular the right hand side is well-defined for all such pairs;
(ii) σ f ≡ 0;
(iii) B f is associative, that is,

B f
(
(x, y), (λ, μ)

) = B f
((
B f (x, λ), y

)
, (α(x, λ), μ)

)
(7.2)

for all pairs (x, λ), (y, μ) ∈ W(D) (where α : W(D) → R+ stands for the arithmetic
effort function);

(iv) Equality (7.2) holds for all (x, λ) ∈ W(D) and (y, μ) ∈ D × R+.

Proof If D is a singleton, then all of the above conditions are satisfied. Therefore, we may
assume that D has at least two distinct elements.

The implications (i) ⇒ (i i), (i i) ⇒ (i i i), and (i i i) ⇒ (iv) are easy to check. To
prove the implication (iv) ⇒ (i), assume that B f satisfies (7.2) for all (x, λ) ∈ W(D) and
(y, μ) ∈ D × R+.

Fix n ∈ N and a pair (x, λ) ∈ Dn ×Wn . We denote briefly x̄ := B f (x, λ), λ̄ := β f (x, λ)

and ᾱ := α(x, λ). Then we have that
∑n

i=1 λi f (xi ) = λ̄ f (x̄).
Now fix y ∈ D\{x̄} and μ > 0. Applying the delegativity of B f and condition (iv), we

have

B f
(
(x̄, y), (λ̄, μ)

) = B f
(
(x, y), (λ, μ)

) = B f
(
(x̄, y), (ᾱ, μ)

)
.

Consequently λ̄ f (x̄) + μ f (y) and ᾱ f (x̄) + μ f (y) are on the same ray, i.e., there exists a
constant C > 0 such that

C · (
λ̄ f (x̄) + μ f (y)

) = ᾱ f (x̄) + μ f (y),

which reduces to

0 = (C λ̄ − ᾱ) f (x̄) + μ(C − 1) f (y).

As y �= x̄ , the admissibility implies that f (y) and f (x̄) are linearly independent. Conse-
quently, the above equality implies C = 1 and λ̄ = ᾱ. Thus,

n∑
i=1

λi f (xi )

n∑
i=1

λi

=

n∑
i=1

λi f (xi )

ᾱ
=

∑n
i=1 λi f (xi )

λ̄
= f (x̄) ∈ f (D),

which implies that f (D) is a convex set. Finally, applying f −1 side-by-side, we get that (7.1)
holds. ��

7.2 Gini means

We are now going to calculate the sign of the synergy for Gini means. Before we go into the
details, we recall a fewproperties of this family. First, it is easy to observe thatGp,q = Gq,p for
all p, q ∈ R. Furthermore, in a case q = 0, theGinimeanGp,0 equals the p-th Powermean (in
particular, it is associative). Thesemeans aremonotonewith respect to their parameters, more
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precisely, for all p, q, r , s ∈ R, we have thatGp,q ≤ Gr ,s if and only ifmin(p, q) ≤ min(r , s)
and max(p, q) ≤ max(r , s) (cf. Daróczy and Losonczi (1971)). Finally, a Gini mean Gp,q is
monotone as a mean (in each of its argument) if and only if pq ≤ 0 (see Losonczi (1971a, b)).
We show that the sign of pq is also important in characterizing the sign of their synergy.

Proposition 4 Sign of the synergy of the Gini mean Gp,q coincides with that of −pq. More
precisely, for all p, q ∈ R, n ∈ N, nonconstant vector x ∈ R

n+ and λ ∈ R
n+, we have

sign
(
σGp,q (x, λ)

) = − sign(pq).

Proof If pq = 0, then Gp,q is associative and thus Lemma 6 implies σGp,q ≡ 0. From now
on assume that pq �= 0. Fix n ∈ N, λ ∈ R

n+ and nonconstant vector x ∈ R
n+. Let

ϕp := λ1x
p
1 + · · · + λnx

p
n and ψp := λ1x

p
1 ln(x1) + · · · + λnx

p
n ln(xn) (p ∈ R).

Assume first that p �= q . As γp,q = γq,p, without loss of generality, we can assume that
p > q . Then by (3.6), we have

γp,q(x, λ) = (λ1x
q
1 + · · · + λnx

q
n )

p
p−q

(λ1x
p
1 + · · · + λnx

p
n )

q
p−q

=
(

ϕ
p
q

ϕ
q
p

) 1
p−q

.

Whence, by the definition of synergy,

σGp,q (x, λ) = γp,q(x, λ) − (λ1 + · · · + λn) =
(

ϕ
p
q

ϕ
q
p

) 1
p−q − ϕ0.

In view of the inequality p > q , we obtain

σGp,q (x, λ) > 0 ⇐⇒
(

ϕ
p
q

ϕ
q
p

) 1
p−q

> ϕ0 ⇐⇒ ϕ
p
q > ϕ

p−q
0 ϕ

q
p ⇐⇒

(
ϕq

ϕ0

)p

>

(
ϕp

ϕ0

)q

.

For pq < 0 we obtain that σGp,q (x, λ) > 0 is equivalent to
(ϕq

ϕ0

)1/q
<

(ϕp
ϕ0

)1/p . But
the last inequality is just the equality between power means. Thus we have σGp,q (x, λ) > 0
whenever pq < 0.

If pq > 0 then σGp,q (x, λ) > 0 is equivalent to
(ϕq

ϕ0

)1/q
>

(ϕp
ϕ0

)1/p . But, as p > q we
know that the converse inequality holds. So in this case we obtain σGp,q (x, λ) < 0.

In the last case, when p = q �= 0, we have

σGp,p (x, λ) = γp,p(x, λ) − (λ1 + · · · + λn) = ϕp exp
(−pψp

ϕp

)
− ϕ0.

Therefore

σGp,p (x, λ) < 0 ⇐⇒ ϕp exp
(−pψp

ϕp

)
− ϕ0 < 0 ⇐⇒ exp

(−pψp

ϕp

)
<

ϕ0

ϕp
.

We can apply the strictly decreasing mapping R+ � ξ �→ sign(p)ξ−1/p side-by-side to
obtain

σGp,p (x, λ) < 0 ⇐⇒ sign(p) exp
(ψp

ϕp

)
> sign(p)

(ϕp

ϕ0

)1/p

⇐⇒ sign(p)Gp,p(x, λ) > sign(p)Gp,0(x, λ).

But the inequality on the right-hand-side holds for all p ∈ R\{0}, which completes the proof.
��
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Remark Observe that Gini mean has a positive synergy if the graph of γp,q is hyperbolic and
negative for parabolic graphs. In the case of hyperboloid in Example 3 the synergy was also
positive.
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