
Annals of Operations Research
https://doi.org/10.1007/s10479-023-05576-z

ORIG INAL RESEARCH

Penalized enhanced portfolio replication with asymmetric
deviation measures

Gabriele Torri1,2 · Rosella Giacometti1 · Sandra Paterlini3

Received: 5 April 2022 / Accepted: 16 August 2023
© The Author(s) 2023

Abstract
Passive investment strategies, such as those implemented by Exchange Traded Funds (ETFs),
have gained increasing popularity among investors. In this context, smart beta products
promise to deliver improved performance or lower risk through the implementation of sys-
tematic investing strategies, and they are also typically more cost-effective than traditional
active management. The majority of research on index replication focuses on minimizing
tracking error relative to a benchmark index, implementing constraints to improve perfor-
mance, or restricting the number of assets included in portfolios. Our focus is on enhancing
the benchmark through a limited number of deviations from the benchmark. We propose a
range of innovative investment strategies aimed at minimizing asymmetric deviation mea-
sures related to expectiles and quantiles, while also controlling for the deviation of portfolio
weights from the benchmark composition through penalization. This approach, as compared
to traditional minimum tracking error volatility strategies, places a greater emphasis on the
overall risk of the portfolio, rather than just the risk relative to the benchmark. The use of
penalization also helps to mitigate estimation risk and minimize turnover, as compared to
strategies without penalization. Through empirical analysis using simulated and real-world
data, we critically examine the benefits and drawbacks of the proposed strategies in compar-
ison to state-of-the-art tracking models.
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1 Introduction

Over the past few decades, there has been a growing attention towards passive investment
products, including ETFs and similar offerings, which aim to mimic the performance of a
benchmark with lower management costs than active funds. The popularity of these instru-
ments is largely driven by the low fees, high liquidity and high transparency (Trackinsight,
2022). In recent years the market of passive investment funds witnessed an increasing diver-
sification in the product lines to meet investors’ needs. Among these, a category that raised
the interest of the investors are the active ETFs and the smart beta products. These products
are positioned as a compromise between active and passive investment, promising improved
performance and lower risk, while still maintaining low management costs through the use
of systematic investment strategies (Richard & Roncalli, 2015).

According to the Global ETF Survey conducted by Trackinsight (Trackinsight, 2022), the
percentage of institutional investors with active ETFs in their portfolios is above 55%, and
37% of the investors plan to increase their exposures to these products by at least 5% in the
next year. The interest is motivated by portfolio diversification, alpha potential, and reduced
costs compared to active funds. The range of strategies and investment goals adopted by
these funds is vast, and further research is necessary in order to fully understand their future
development and backtesting their performance (Arnott et al., 2016).

The extended academic literature on enhanced index tracking is mostly concentrated on
the replication of the index with a limited number of asset and on the increase of expected
returns over the benchmark (see for example de Paulo et al., 2016 and Guastaroba et al.,
2020 and references therein). The classical set-up typically involves the minimization of
the so-called tracking error volatility (TEV) with respect to the benchmark, while imposing
a constraint on the excess return (Roll, 1992). Enhanced index tracking with cardinality
constraints (Maringer & Oyewumi, 2007; Canakgoz & Beasley, 2009; Guastaroba et al.,
2016) is known to be NP-hard and different methods have been proposed, ranging from
using global search heuristics to relying on regularization methods for finding the optimal
sparse portfolios (Krink et al., 2009; Sant’Anna et al., 2017). While heuristics can address
the optimization problem directly, they often come with a cost in terms of computational
complexity and may not guarantee convergence to the global optimum (Scozzari et al.,
2013). Regularization methods based on convex penalties, such as Slope (Kremer et al.,
2020, 2021) can identify sparse optimal solutions by imposing a penalty on the asset weight
vector. As an alternative, non convex penalties, such as �q , Log and Scad, have also shown
interesting performance in index tracking (Giuzio et al., 2018), although they come with
further optimization and computational burden. Additionally, optimization models have been
used to improve the trade-off between transaction costs and similarity to the benchmark (Strub
& Baumann, 2018), and to handle liquidity constraints (Vieira et al., 2021).

So far, the literature has largely centered on improving replication models with the aim
of enhancing performance and controlling portfolio size. However, little attention has been
given to reducing the overall risk of portfolios in relation to replication strategies. Jorion
(2003) highlights that focusing solely on tracking error volatility may result in suboptimal
allocations that decrease the TEV from the benchmark, but increase the overall risk. In fact,
as Jorion (2003) and Bertrand (2010) pointed out, constraining the tracking error volatility
induces themanager to optimize only in the excess-return space, while ignoring the investor’s
overall portfolio risk. Hence, the variance of the tracking error of the optimal portfolios does
not depend on the choice of the benchmark and it is positively connected with the excess
expected return. Indeed, Jorion (2002) found that a sample of enhanced index funds, which
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may be generated through excess-return optimization, tend to exhibit higher risk levels than
the benchmark. The study shows that by setting a fixed tracking error volatility (TEV) and
adding a constraint on the total portfolio volatility, the performance of the managed portfolio
can be significantly improved.Moreover, Bertrand (2010) suggests that allowing the tracking
error to vary while maintaining a fixed level of risk aversion to variance can lead to desirable
properties for the tracking portfolio.

Unlike traditional replication strategies, which tend to concentrate on higher returns and
portfolio size control, we propose an approach that places emphasis on risk management
as part of the replication process. This is in line with Jorion (2002, 2003) and Bertrand
(2010), and our contribution introduces two main improvements compared to these works.
First, we go beyond a mean-variance framework, proposing investment strategies based on
the minimization of asymmetric deviation and risk measures as in Giacometti et al. (2021).
Hence we expect an improvement in the tail risk of the portfolio. Second, we control the
deviations from the benchmark portfolio composition using penalization methods rather than
by considering the TEV or other tracking error measures. In fact, we set up an optimization
problem where we minimize a deviation measure under a set of constraints, and we add a
penalty term in the objective function on the difference between portfolio’s and benchmark’s
weights. This penalty has the role of limiting the deviations from the benchmark in a flexible
and effective way. The penalty-based control of the benchmark deviation offers practical
benefits for the implementation of investment strategies: by using LASSO and elastic net
penalties we obtain portfolios in which only a limited number of assets have weights different
from the ones in the benchmark. This allows the asset manager to implement the optimal
strategy by first replicating the benchmark, and then add a limited number of positions in
individual stocks. An alternative approch to limit the number of assets whose exposure differ
from the benchmark is to include cardinality constraints, that have the drawback to increase
significantly the complexity of the optimization problem.1

Our strategy has several advantages. First, compared to minimum TEV optimization it
allows to focus on the total risk of the portfolio instead of the risk relative to the benchmark.
Second, compared to Jorion (2003), the model can be easily used outside the mean-variance
framework (e.g. using more appropriate risk measures capable to focus on the tails). We
show that the optimization problem can be easily solved by quadratic programming. Instead
introducing TEV constraints or non-convex penalties could lead to non-quadratic problems.
Third, the introduction of regularization by elastic net penalty brings advantages in terms
of out-of-sample performances, as it allows to effectively deal with multicollinearity and
large dimensional problems (i.e. a large number of assets and short time series). Finally,
by penalizing deviations in weights from the benchmark instead of constraining TEV, our
strategy potentially reducesmodeling risk, as new constraintsmay further increase estimation
error.

The general framework is flexible and can accommodate different types of risk functionals
and regularization penalties. Empirical analysis on simulated data and on the S&P 100 US,
FTSE 100, and EUROSTOXX 50 indices provides the opportunity to critically evaluate the

1 Our approach still requires to invest in all the assets in the benchmark, leading potentially to relatively
high costs, especially for the tracking of indices with a large number of constituents. Still, according to Dyer
and Guest (2022) 52% of funds that track an index use a full replication strategy and, when compared to
products that adopt a sampling replication strategy, the ones with full replication have typically lower costs,
lower turnover, and better tracking performances. This suggests that in several setting full replication may be
a feasible strategy. Moreover, even if the replication of the index is not convenient, an investors could buy a
passive ETF for the index and adjust this position with exposures to individual securities to obtain the desired
optimal allocation.
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advantages and disadvantages of the proposed framework in comparison to current state-of-
the-art tracking models.

The paper is structured as follow. In Sect. 2, we discuss the building blocks of our model,
in particular asymmetric deviation measures and the choice of the appropriate loss function.
Many application of risk management can be nested providing a link between finance and
estimation theory. In Sect. 3, we introduce the Minimum Tracking Error Deviation Measures
portfolio. In Sect. 4, we present our enhanced replication model, while Sect. 5 comments on
the empirical results. Section6 reports the main conclusion.

2 Deviationmeasures and loss function

We start our analysis with the discussion of deviation measures since our benchmark repli-
cation framework requires, from one side, to quantify the deviation of a portfolio from the
benchmark and, on the other hand, tominimize a riskmeasure computed on the entire tracking
portfolio. A key aspect of the analysis is the notion of deviation measures and their relation-
ship with risk measures. Let us focus here on a family of asymmetric deviation measures,
presenting the main analytical concept useful for the analysis.

Denote by L
p the set of all random variables X with E[|X |p] < +∞, defined on a

probability space (�,F,P), where p ∈ [1,+∞). Consider a univariate random variable X
with X ∈ L

p , a real value function L(·), called the loss function, and a scalar ξ ∈ R.
A location measure is the value around which the data have the minimum dispersion. Mean
andmedian are the most popular. Denote SL(X) the location measure (following Rockafellar
and Uryasev, 2013, also called the statistic) induced by the loss function L(·), which can be
obtained as the solution of the following variational problem:

SL(X) = argmin
ξ

{E(L(X − ξ))}, (1)

where E(·) is the expectation operator.
The associated deviation measure DL (X) describes the dispersion of a random variable

around the measure of location SL(X), which can be obtained as:

DL(X) = min
ξ

{E(L(X − ξ))}.

Variance and standard deviation are the most commonly used deviation measures in the
financial literature.
A popular family of loss functions is L(x) = |x |p , the p-th power of the absolute value.
If p = 1 we recover the median as location and the mean absolute deviation (MAD) as
deviation, while if p = 2 we recover the mean as the location and the variance as deviation.

In both cases the deviation is computed by weighting in the same way departures above
and below the location measure. In order to introduce an asymmetric deviation measure, an
asymmetric loss function is considered:

L p,τ (X) = X p
+ + (1 − τ)

τ
X p

−,

Positive and negative departures are identified by the two piecewise linear functions X+ =
max (0, X) and and X− = max (0,−X). The measure is asymmetric as it assigns different
weights to negative and positive departures (1 − τ to X− and τ to X+, with τ ∈ (0, 1)). For
financial application, it is sensible to use a value of τ < 0.5 that overweights the negative
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values, thus giving more relevance to the lower tail compared to the upper one. Considering
specific cases, for p equal to 1 and 2 we notice that:

• if p = 1, the loss function is an asymmetric piecewise linear, convex function

L1,τ (X) = ρ(X) = X+ + (1 − τ)

τ
X−

and we have as the location the Value at Risk with a confidence level 1 − τ , denoted
VaR1−τ , where

VaR1−τ (X) := − argmin
ξ∈R (E[(X − ξ)+] + (1 − τ)/τE[(X − ξ)−]) .

The deviationDρ(X) is strictly linked to the Conditional Value at Risk with a confidence
level 1−τ denotedCVaR1−τ . The relationship between deviationDρ(X) andCVaR1−τ

is given by

Dρ(X) = CVaR1−τ (X) + E[X ].
The relationship between risk and deviation measures has been investigated by Rockafel-
lar and Uryasev (2013), who proposed the risk quadrangle, a framework that links risk
and deviation measures, proposing an estimation procedure based on the minimization
of an error measure given by the expected value of a loss function.

• If p = 2, the loss function is a piecewise quadratic convex function:

L2,τ (X) = η(X) = X2+ + (1 − τ)

τ
X2−

and the obtained location is the expectile, introduced by Newey and Powell (1987).
Expectiles have attracted a lot of research attention (e.g. Bellini and Di Bernardino,
2017; Jakobsons, 2016) thanks to their properties, namely that they are coherent and
elicitable. The extension of the quadrangle to expectiles is discussed in Giacometti et al.
(2021). The 1 − τ expectile is defined as:

EVaR1−τ (X) := − argmin
ξ∈R(E[(X − ξ)2+] + (1 − τ)/τE[(X − ξ)2−].

The associated deviation Dη(X) is known as asymmetric variance or variancile:

Dη(X) = min
ξ∈R E[η(X − ξ)].

In practice, it is relevant to quantify how different two random variables are. A replicating
portfolio is constructed byminimizing some tracking error deviationmeasureswhich quantify
how different a benchmark and a portfolio (i.e. a linear combination of stocks) are. A natural
way to quantify the discrepancy is to replicate what we do for scalars: we compute a measure
of divergence between the two. The most popular are the Euclidean distance, the squared
distance or alternatively the absolute difference. Hence, consider the deviation measure L p,τ

computed on the absolute difference between X and Y :

L p,τ (X , Y ) = min
ξ

|X − Y − ξ |p

defined for variables X , Y ∈ L
p . As discussed in the following section, the divergence L p,τ

has a straightforward application in the index tracking problem, where an investor needs to
find an asset allocation that tracks as closely as possible a benchmark.More specifically, when
one of the random variables is given (the benchmark), we can search for a set of portfolio
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weights which minimizes the deviation between the tracking portfolio and the benchmark.
Depending on the values of p and τ we have different properties:

• Piecewise quadratic function (p = 2).When τ = 0.5, we obtain the squared loss function
typically used in regression settings, where the error is the expected loss. This choice of
the loss function has two properties: it is always non negative and it grows quadratically
with the absolute difference, penalizing symmetrically large departures from the mean.
On the opposite, when the two random variables are very close, their squared difference
will be tiny. If τ < 0.5 we have an asymmetric penalization of the errors, assigning more
weight to negative departures. This allows to estimate and better control for left tail risk.

• Piecewise linear function (p = 1). When τ = 0.5, the loss function is the absolute loss.
This choice of the loss function has two properties: it is always non negative but it grows
linearly with the absolute difference and is more accurate than the previous in the search
of a zero loss solution of the associated median regression model. When τ < 0.5, we
have an asymmetric penalization of the errors (i.e. modified Koenker and Bassett error
function), used in the estimation of the quantile regression. The use of quantile regression
to explain the behavior of random variables at different quantiles is ideal for examining
tail risk and is one of the main tools commonly employed by researchers to analyze the
tail risk of asset of portfolio returns (Adrian, 2016).

3 Theminimum tracking error deviationmeasures portfolio

ETFs provide a convenient and low-cost way to implement indexing or passive management.
While ETFs are structured to track an index, they could just be easily designed to mirror any
existing mutual fund or pursue a particular investment objective. These products typically
aim to replicate the performance of an index as accurately as possible, either by perfectly
replicating the composition of the index, or by performing an optimized sampling of the index
asset holdings. Other ETFs can provide investor products that aim to deliver above-average
returns i.e. with an enhancement component. These instruments, that are typically known as
smart beta ETFs or active ETFs, are increasingly popular, and lie between active and passive
investment strategies.

Looking at the academic literature, an enhanced tracking portfolio is typically built by
minimizing some tracking error deviationmeasures such as the TEV (tracking error volatility,
Rudolf et al., 1992), TEMAD (tracking error mean absolute deviation Rudolf et al., 1999)
or CVaR-based ratio measures (Guastaroba et al., 2020), while including constraints on the
performances, such as an expected return larger than the benchmark.
Given R an n-variate random variable denoting the universe of stock returns and Rbmk the
univariate benchmark return, consider an [n × 1] vector of weights w ∈ R

n , where n is the
number of assets, and τ is the confidence level with τ ∈ (0, 1) for VaR, CVaR and expectiles.
An index tracking portfolio scheme that minimizes the deviation based on the loss L p,τ can
be formulated as:

min
w∈Rn

E(L p,τ (T E(w))

s.t .

w′1 = 1

(w − wbmk)
′
E(R) ≥ κ (2)
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wherewbmk is the vector of benchmark’sweights, the tracking error is T E(w) = w′R−Rbmk ,
Rbmk = w′

bmkR and k is an enhancement parameter.2

This approach has two main drawbacks. First, the tracking portfolio composition is likely
to be different from the benchmark, showing more concentrated positions, or short/long
extreme position, increasing the potential effect of estimation error on out-of-sample portfolio
performance. Second, the overall risk of the replicating portfolio is ignored as the optimization
focuses onminimizing the deviations from the benchmark, without any constraint on the total
risk of the portfolio. This leads to a sub-optimal replication in terms of total risk. The sub-
optimality is due to a lack of control of the co-movements between the benchmark and the
replicating portfolio. To illustrate the point, consider a mean-variance setting in which the
risk of the portfolio is measured by its variance V(Rw). Let be q = w − wbmk , then we can
decompose the portfolio variance as:

V(Rw) = w′	w = (wbmk + q)′	(wbmk + q)

= w′
bmk	wbmk + q ′	q + 2q ′	wbmk

= V(Rbmk) + V(T E) + 2C(bmk, T E) (3)

where C(bmk, T E) is the covariance between the benchmark and the tracking error. Since
the variance of the tracking error V(T E) cannot be negative, the risk of the portfolio can be
smaller than the one of the benchmark only if the sign ofC(bmk, T E) is negative. Hence, by
minimizing the TEV= √

V(T E) as in Roll (1992), an investor can not guarantee to reduce the
risk of the portfolio as it does not controls explicitly the sign and magnitude of the correlation
C(bmk, T E).3

Coming back to problem in Eq. (2), assume we consider the p-power loss function with p
= 2 and τ = 0.5. In other words the asset manager minimizes the TEV of the portfolio. The
minimization of the TEV is equivalent to the minimization of the variance of the replication
portfolio minus its covariance with the benchmark.4

min
w∈Rn

T EV (w) ⇐⇒ min
w∈Rn

w′�w − 2w′�wbmk

s.t .w′
E[R − 1Rbmk] = κ w′

E[R − 1Rbmk] = κ

w′1 = 1 w′1 = 1 (4)

Ideally, the investor can end up with the minimum TEV but with an overall riskier portfolio
positively correlated with the benchmark as highlighted by Jorion (2003). A less correlated
portfolio can provide a better solution, in terms of risk of the tracking portfolio, with a similar
tracking error and a lower overall risk level. As suggested by Jorion (2003) a possible solution
to control the overall risk can be obtained reformulating the problem and maximizing the
excess return constraining the portfolio volatility and the tracking error volatility to equate
the benchmark volatility and a positive constant, respectively. These constraints imply that
(w−wbmk)

′�wbmk = −T EV 2(w) i.e. the benchmark deviations have a negative covariance
with the index.5

2 Note that if k = 0 and there are no additional constraints, then w = wbmk and the optimal solution is an
exact replication of the benchmark.
3 Indeed, Jorion (2002) shows that for a sample of stock based enhanced index funds the risk of the portfolios
is systematically higher than the benchmark.
4 Let be q = w − wbmk then T EV = √

q ′	q. We can decompose as follows: T EV 2(w) = w′�w −
2w′�wbmk + w′

bmk�wbmk where the last addendum is constant.
5 Let be q = w − wbmk then (wbmk + q)′	(wbmk + q) = σ 2

bmk , which implies 2q ′	wbmk = −T EV 2

where T EV = √
q ′	q.
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Having in mind these considerations, we propose an alternative framework that aims to
control directly for the replicating portfolio risk and to avoid the problem related to a high
concentration in few assets.

4 Penalized enhanced replication strategies

The aim of this section is to formulate an enhancement tracking model which controls for the
deviation between an index or benchmark and a replicating portfolio, while minimizing the
overall portfolio risk and at the same time maintaining a high diversification. This strategy
follows the guidelines proposed by Jorion (2003). The idea is to find the portfolio with
the best risk-return profile imposing a penalization on the portfolio weights rather than an
explicit constraint on the tracking error volatility. The advantage of our framework is that
it can be applied outside the mean-variance approach, considering for instance deviation
measures that focus on the tails, while resulting in quadratic programming formulations easy
to solve with available software for suitable penalization functions. On the contrary, TEV
constraints may lead to non-quadratic optimization problems. The goal of our model is to
reduce the tracking error by shrinking the number of positions with weights different from
the benchmark, reducing at the same the estimation error, as specified below:

min
w∈Rn ,ξ∈RD[w′R − ξ ] + fλ(w − wbmk)

s.t .w′
E[R] ≥ E[Rbmk] + κ

w′1 = 1 (5)

where D(·) is a suitable deviation measure, fλ(·) is a penalization function applied to the
difference between portfolio’s and benchmark’s weights, and k is a target expected return.
When the optimization problem includes an expected return constraint, it is equivalent to
minimize a risk measure or a corresponding deviation measure computed using the risk
quadrangle framework: R(X) = D(X) − E(X) (Rockafellar & Uryasev, 2013). For this
reason in the rest of the work we will talk interchangeably of the minimization of risk, and
the minimization of a deviation measure.

The proposed penalization function applied to the difference between portfolio’s and
benchmark’s weights is known as elastic net (EN), a convex combination of the piecewise
linear LASSO and the piecewise quadratic RIDGE functions:

fλ(·) = λ(α‖ · ‖1 + (1 − α)‖ · ‖22),
where ‖ · ‖1 and ‖ · ‖2 are the �1- and �2-norm, respectively. α ∈ [0, 1] and λ > 0 are the
parameters which control the shape and intensity of the penalization (Zou & Hastie, 2005).
The ENmethod combines the characteristics of the LASSO and RIDGE (see Fig. 1). LASSO
does both continuous shrinkage toward zero and automatic selection inducing sparsity.More-
over, if there is a group of highly correlated variables, then the LASSO tends to select one
variable from a group and ignore the others. RIDGE does not produce parsimonious models,
keeping all the variables in the model. The advantage of this technique is that it can better to
deal with multicollinearity and exhibits better prediction properties than LASSO (Tibshirani,
1996). The EN penalty exploits the characteristics of both LASSO and RIDGE, while still
resulting in a convex penalty.

The parameter λ controls the intensity or amount of regularization. We obtain for λ =
0 the un-regularized optimal portfolio, which does not control for the deviation from the
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Fig. 1 Shape of the three penalty functions: LASSO (a), RIDGE (b), and elastic net (c)

Fig. 2 On the left EN estimates of the portfolio weights of the tracking portfolio as a function of λ for α = 0.5.
On the right the EN estimates of the weights difference between the tracking portfolio and the benchmark

benchmark. For positive and increasing values of λwe have a progressively more regularized
portfolio and finally for λ → ∞ and κ = 0 the solution collapses to the benchmark portfolio
(see Fig. 2).

The parameter α controls the model selection ability i.e. sparsity of the portfolios weights
relative to the benchmark’s ones. For α = 1 we have a pure LASSO penalty, while for α = 0
we have a pure RIDGE penalty. In our analysis we set either α = 0.5 or α = 1.

For the deviation measures Dη and Dρ , we propose a formulation of the optimization
problem with EN penalty as a quadratic program. For the minimum ητ deviation portfolio
(expectile), the optimization can be expressed as follows:

min
w∈Rn; ν∈Rn+; φ,γ ∈Rt+; ξ∈R

⎧
⎨

⎩
τ

t∑

i=1

γ i
2 + (1 − τ)

t∑

i=1

φi
2 + λ

n∑

j=1

(αν j + (1 − α)ν2j )

⎫
⎬

⎭

s.t . γi − φi = Riw − ξ ∀i = 1, . . . , t

− ν j ≤ w j − w j,bmk ≤ ν j ∀i = 1, . . . , n

w′1 = 1
(

t∑

i=1

Ri/t

)

(w) ≥ E[Rbmk] + κ

ν j ≥ 0; γ j ≥ 0;φ ≥ 0 j = 1, . . . , n. (6)
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For theminimum ηρ deviation portfolio (quantile), the optimization problem is formulated
as follows:

min
w∈Rn; ν∈Rn+; φ,γ ∈Rt+; ξ∈R

⎧
⎨

⎩
τ

t∑

i=1

γ i + (1 − τ)

t∑

i=1

φi + λ

n∑

j=1

(αν j + (1 − α)ν2j )

⎫
⎬

⎭

s.t . γi − φi = Riw − ξ ∀i = 1, . . . , t

− ν j ≤ w j − w j,bmk ≤ ν j ∀ j = 1, . . . , n

w′1 = 1
(

t∑

i=1

Ri/t

)

(w) ≥ E[Rbmk] + κ

ν j ≥ 0; γ j ≥ 0;φ ≥ 0 j = 1, . . . , n (7)

where ν, γ , and φ are positive auxiliary variables. Both optimization are quadratic with linear
constraints and can be easily solved with available software, making the proposed framework
even more appealing.

Tomake the portfoliosmore suitable for real-world implementation, we further introduced
turnover and gross exposures constraints:

‖w‖1 ≤ GE (8)

‖w − wt−‖1 ≤ T O (9)

where wt− is the vector of portfolio weights immediately before the rebalancing, and GE ,
T O ∈ R

+ are the maximum gross exposure and turnover, respectively. The constraints can
be linearized using standard linear programming techniques (see e.g. Gass, 2003).

5 Empirical analysis

In this section, we present an in-sample study on simulated data and an out-of sample analysis
on real data. In the in-sample analysis, we compare the optimal portfolio in Eq. (5) estimated
a grid of values of λ, to the minimum TEV portfolio in Eq. (2) and to the benchmark. The aim
of this analysis is to test the effectiveness of the weight penalization scheme in reducing the
tracking error volatility of the portfolio as the strength of the penalization increases, as shown
in Sect. 4, and to compare the proposed portfolio strategies that minimize different deviation
measures. Finally, we test the out-of-sample performances of the optimal asset allocations
proposed on three datasets, constructed including the constituents of three US and European
indices.

5.1 In-sample simulation analysis

We generated the data from a n-variate Student’s t-distribution with n = 90 and degrees of
freedomequal to 5.Moreover, the first and secondmoment of the distribution are calibrated on
the return of 90 randomly selected constituents of the S&P500 index in the period 01/01/2007
– 30/06/2020 in order to have synthetic but still realistic data.6

6 The estimated parameters and the sample of random data used for the estimation are available upon request.
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Fig. 3 A Tracking Error Volatility (TEV). B portfolio volatility.C Covariance between the Tracking Error and
the benchmark (Cov(T E, bmk)). D �1-norm of the difference between portfolio and benchmark weights for
our penalizedminimum risk (Eq.5) based on variance, andminimumTEVportfolio, for a grid of exponentially
spaced values of λ

We first study the role of the parameter λ on the portfolio by computing the optimal penalized
portfolio strategy with a grid of lambda values. We set the values to be exponentially spaced
and the extremes are tuned to include a relevant range of portfolios.

Figure 3 shows the in-sample tracking error volatility, the portfolio volatility, the correla-
tion between the tracking error and the benchmark, and the �1-norm of the difference between
the weights of the portfolio and the weights of the benchmark. In other words, we analyze
separately the different constituents of Eq.3 in relation to the strength of the penalization.We
set the length of the estimation windows equal to 500 days and we take the average across 10
simulation runs. For brevity, in this in-sample analysis, we focus on a quadratic and symmet-
ric loss function consistent with the mean-variance framework, imposing an expected extra
return k = 1% per year of the portfolio over the benchmark. We call these portfolios mini-
mum risk portfolios to evoke the idea that we minimize a risk or deviation measure (in this
example the variance) and progressively approach the benchmark by increasing the strength
of the penalization applied on the weights. In this analysis, we set α = 1, which corresponds
to the case of the LASSO penalty. As a comparison forminimum risk portfolios, we consider
the portfolio obtained minimizing directly the TEV portfolio as in problem (2), with the same
extra expected return constraint. We call these portfolios minimum TEV portfolio.

Figure 3 shows in Panels from A to D the behavior of the constituents of Eq.3 as the
strength of the penalization increases, as well as the deviation from the benchmark in terms
of weight composition. We see in Panel A that the minimum risk portfolio has lower TEV
for larger values of λ, as the portfolio weights approach the benchmark (see Fig. 2). The
relationship is not linear, and the value of TEV does not reach zero due to the presence
of the extra expected return constraint. The TEV of the minimum risk portfolios remains
higher compared to the minimum TEV portfolios for all level of λ, although it converges to
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Fig. 4 In-sample portfolio variance, portfolio deviationDη andDρ versus tracking error volatility for portfolio
strategies that minimize Variance, Dη and Dρ for a set of penalized portfolios computed using a grid of
exponentially spaced values of λ

reasonably small levels (less than 1% per year). Panel B shows the volatility of the portfolio,
a quantity that measures the total risk of the portfolio, rather than the risk relative to the
benchmark. Here, we notice that the minimum TEV portfolio has a standard deviation very
close to the benchmark, while the minimum risk portfolio has a smaller standard deviation
for lower values of the penalization parameter λ. That is, by using a minimum risk portfolio
with a low penalization, the investor has the opportunity to reduce the overall risk compared
to the benchmark, albeit at the cost of a higher tracking error volatility. Panel C shows that
the optimal portfolios are characterized by a negative covariance between the tracking error
(TE) and the benchmark, which is consistent with the analysis in Sect. 3. Hence, the negative
covariance between the two portfolios contributes to reducing the risk of the optimal portfolio
compared to the benchmark. Finally, Panel D shows the �1-norm (i.e. the sum of the absolute
value difference) of the differences between portfolio and benchmark weights, and we see an
inverse relationship between this indicator and the penalization parameter λ, meaning that
the weights of the portfolio converge to the ones of the benchmark as λ increases. Together,
the plots in Fig. 3 show that the proposed framework allows to handle the trade-off between
risk control and adherence to the benchmark without imposing any explicit constraint on the
tracking error volatility or other deviation measure computed on the tracking error, offering
flexibility in terms of choice of the risk measure targeted in the optimization, and extending
the principles of the papers of Jorion (2003) and Bertrand (2010) outside the mean-variance
framework.

As further analysis, we compare the portfolio performance of optimization schemes based
on alternative deviation measures on the same dataset. We focus on the following three
measures:Dη(X) (asymmetric piecewise quadratic function),Dρ(X) (asymmetric piecewise
linear function, equivalent to minimize the CVaR of the portfolio) and σ 2(X) (quadratic
function, equivalent to minimize variance). For each of the optimization framework, we
consider as a benchmark the equally weighted portfolio, a target excess return over the
benchmark of k = 1% per year and τ = 0.1. On an exponentially spaced grid of λ values, we
compare the proposed deviationmeasures. Figure4 provides a comparison of the optimization
schemes: Panel A compares the portfolios in terms of standard deviation, Panel B in terms of
Dη(X) and Panel C in terms ofDρ(X). As expected, we see a trade off between risk and TEV
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for all the deviation measures, and that each optimal portfolio provides lower risk according
to the measure optimized for each level of TEV, hence the penalized mean-variance portfolio
obtains a lower variance compared to the others, and so on.

Interestingly, we see that the portfolios are relatively close to each other in terms of risk,
regardless of the specific measure used. This is not surprising as we expect that the advantage
of using measures of deviation focused on the tails may be more relevant for data with non-
elliptical distributions.

5.2 Out-of-sample real-world analysis

5.2.1 The data

In order to test the performances of the optimal asset allocations proposed, we conduct an
empirical analysis on real-world data. We consider three datasets, constructed including the
constituents of the following indices: Standard and Poor’s 100 index (SP100), FTSE 100
index (FTSE100), and EUROSTOXX 50 index (EUROSTOXX). We include in the analysis
only the stocks for which a complete time series of daily data is available, obtaining 91, 90,
and 49 stocks for SP100, FTSE100 and EUROSTOXX, respectively.

We estimate the optimal portfolio weights using a rolling window of 500 daily observa-
tions.We recalibrate the portfolio every twenty days. The investing period is from 01/01/2012
to 12/12/2022. The benchmark is a synthetic cap-weighted index constructed using the stocks
in the dataset in order to avoid dealingwith changing index composition.We impose a turnover
constraint of 10% every recalibration, and we consider a gross exposure constraint of 110%
(meaning that short position should not exceed 5% of the portfolio). Concerning the overper-
formance, we require in the optimization problem a daily extra-return over the benchmark
of 0.0001 (corresponding to roughly 2.5% per year). In Appendix C we perform several
robustness checks on the optimization parameters and the selection of the estimation set.

5.2.2 Tuning of the penalization parameters

The tuning of the parameter λ (for both the LASSO and EN portfolios) is performed using
cross validation on past data, and such calibration aims to find a balance between risk and
tracking error. In particular, for each estimation window we use the previous 10 in-sample
rolling windows as training sets to estimate the optimal portfolios for different values of λ.
The corresponding 10 out-of-sample rolling windows are the test sets to compute the average
standard deviation of the optimal portfolios. We stress the fact that this calibration procedure
uses only past data, and the usage of previous rolling windows for the calibration of the set
allows to improve the code performances: optimal portfolios for the cross validation do not
need to be recomputed as we can use the results obtained for portfolio optimization in the
previous windows. We choose the parameter over an exponentially spaced grid of λ values
by picking the λ that minimizes the following function:

ζλ =
10∑

i=1

(zσX ,λ,i + zT EVX ,λ,i ) (10)

where σX ,λ,i and T EVX ,λ,i are the volatiliy and the standard deviation of the optimal port-

folio X in the i-th estimation window with penalization λ, and z(X) = X−X̄
σX

is the z-score
computed within each cross-validation test window across all lambda values (this standard-
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Table 1 Acronyms of the
different allocation models
considered in the study

Acronym Description

MQ Quantile-based portfolio without penalization

MQ-L Quantile-based portfolio with a LASSO penalization

MQ-EN Quantile-based portfolio with EN penalization

ME Expectile-based portfolio without penalization

ME-L Expectile-based portfolio with a LASSO penalization

ME-EN Expectile-based portfolio with a EN penalization

EW Equally weighted portfolio

min-TEV Minimum tracking error volatility portfolio

BMK Benchmark index

ization is done to avoid that the choice of λ is dominated by testing windows with anomalous
market conditions). This procedure allows us to struck a balance between tracking accuracy
and overall risk: an investor interested in a different equilibrium between risk and tracking
error may apply weights to the two additive components in (10). If the standard deviation
component in (10) is overweighted, then the priority is to reduce portfolio risk and a smaller
lambda is chosen; on the contrary, if tracking is most important for the investor, the TEV
component should be overweighted, leading to a portfolio that tracks more closely the bench-
mark. Finally we underline that the advantage of tuning the lambda using cross-validation,
rather than apply a constraint to the TEV as in Jorion (2002), is that our procedure can account
for the presence of estimation error: In case the optimal portfolios with low lambdas tend to
perform badly in the test windows (e.g. in case of strong market turmoil or regime switches),
the procedure can select a portfolio more aligned to the benchmark, reducing the effects of
estimation error. In the empirical analysis we consider 8 exponentially spaced values, and
the upper and lower values are chosen in order to include a relevant range of portfolios (see
Appendix B for an example of the visual inspection tools used in the empirical analysis).

The parameter α for the EN portfolio, that controls the ratio between the LASSO and
RIDGE penalties, is not tuned but instead is kept fixed at 0.5 and 1 (i.e. equivalent to the
LASSO penalty). As discussed in Giacometti et al. (2021), α represents a choice of the
investors, that is willing to obtain a portfolio that is more or less concentrated in some assets
(in our case the deviations from the benchmark are more or less concentrated in some of
the assets). The value of 0.5 allows a comparison with LASSO, while maintaining a larger
number of assets with zero deviation from the benchmark weight. We stress that a future line
of research may explore parameters’ tuning based on market’s conditions, similarly e.g. to
dynamic smart beta strategies.

5.2.3 Empirical results

A list of the acronyms used for the different asset allocation models is provided in Table 1,
while the description is reported in Appendix A. We consider the asset allocation techniques
discussed so far, as well as the equally weighted portfolio (EW) and minimum tracking error
volatility (min-TEV) portfolios (Roll, 1992) as benchmarks.

Table 2 reports the out-of-sample results in term of risk and performance measures of the
portfolios obtained applying the proposed allocation strategies on the three datasets in the
period 2012–2022 with the target daily expected return 0.0001 higher than the benchmark
(κ = 0.0001). We are mostly interested in evaluating the penalized strategies (MQ-L, MQ-
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EN, ME-L, and ME-EN) compared to the non-penalized optimal strategies (MQ, ME), the
benchmark and two common strategies (min-TEV, and the equally weighted portfolio).

We see that the most effective strategies in reducing risk are the non-penalized portfolios
(MQ, ME), that have smaller CVaR and standard deviation across all the specifications. The
penalized strategies (MQ-L, MQ-EN, ME-L, and ME-EN), despite losing against the non-
penalized ones, are less risky than the benchmark and the min-TEV strategies, and with only
a few exceptions they are less risky than the equally weighted portfolios. Looking at Sharpe
ratios and average returns, we see that the non-penalized portfolios show mixed results,
with large variations (both in positive and negative) with the benchmark performances. In
contrast, the average returns of the penalized strategies are aproximately aligned to the ones
of the benchmark and the ones of the min-TEV portfolios. We stress that expected returns are
known to be challenging to forecast, and their integration in portfolio optimization is always
a relevant source of estimation error (see e.g. Michaud, 1989; Black and Litterman, 1992).
By constraining the weights of the portfolio to be close to the ones in the benchmark we
limit the modeling risk, reducing our exposure to estimation error. The higher modeling risk
is reflected also in the maximum drawdown, that happens to be particularly high for non-
penalized portfolios in the SP100 dataset. This high level ofmaximumdrawdown is likely due
to the underperformance of the non-penalized models in turmoiled markets such as during
the COVID crisis. In contrast, the penalized portfolios show maximum drawdowns lower or
aligned to the ones of the benchmark, since they tend to behave closely to the benchmark and
to control tail risk. Focusing on the TEV, we see that penalized portfolios show a very good
adherence to the benchmark performances. This has both positive and negative implications:
on the positive side it limits the exposures to modeling risk. Moreover, low tracking error
is typically approciated by investors interested in passive funds (Trackinsight, 2022). The
negative note is that a low tracking error may reduce opportunities to obtain better risk-
adjusted performances of the portfolio. As shown in Sect. 3, to reduce the volatility of the
portfolio compared to the benchmark, the correlations between the tracking error and the
benchmarks have to be negative. Indeed, we see that they are negative for all the proposed
portfolios (see last column), while in the FTSE100 and the EUROSTOXX datasets the min-
TEV strategy result in correlations close to zero.

Table 3 reports the corresponding portfolio statistics related to the portfolio turnover,
gross exposure, density and excess density. The portfolio turnover is computed as
∑s̄

s=1(
∑n

i=1 |w(ts )
i − w

(t−s )

i |/2)/s̄, where s = 1, . . . , s̄ is the number of the rebalancing
period, ts the instant at the end of period s, immediately after the portfolio rebalancing, and
t−s the instant immediately before the rebalancing. Gross exposure is the sum of the abso-
lute value of all long and short positions. Finally, the density is defined as the percentage of
assets with non-zero weight, while the excess density is the percentage of assets with weights
different from the benchmark.

Comparing the optimal portfolios with and without penalization, we see that the non-
penalized have typically higher gross portfolio exposures and turnover, while the penalized
ones have more limited short positions and a smaller turnover. Indeed, the gross exposure
and turnover constraints are typically binding, for the non-penalized portfolios, while they
are not for the penalized ones. The penalized portfolios show their capacity to control the
TEV with limited turnover and short exposures.

The analysis of excess density helps us to appreciate the differences between the LASSO
and the elastic net penality: the former finds portfolios with a lower number of positions with
weights different from the ones of the benchmark. This peculiarity may be preferable if an
investors aims to implement this strategy by adding individual positions to an already existing
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Table 3 Portfolio statistics for different asset allocation strategies. The values are averaged across the rebal-
ancing windows in the period 01/01/2012–31/12/2022. Excess return over benchmark of 0.0001 daily (approx
2.5% per year). Datasets: SP100, FTSE100, EUROSTOXX50. τ is always equal to 0.1. For the EN penalty,
the parameter α has been set to 0.5. Turnover is the portfolio turnover, Gross is the gross exposure or the sum
of the absolute values of all long and short positions,Density is the percentage of assets with non-zero weight,
Excess Density is the ratio of assets with weights different from the benchmark

Turnover (%) Gross (%) Density (%) Excess Density (%)

Portfolio statistics – SP100 – 2012-22 with excess return κ = 0.0001

MQ 13.98 109.62 53.64 65.88

MQ-L 5.35 105.7 97.7 3.68

MQ-EN 5.79 106.05 96.82 6.32

ME 7.98 108.76 48.13 91.31

ME-L 2.67 103.76 97.97 4.8

ME-EN 3.43 104.19 97.37 7.84

min-TEV 1.71 100.02 99.35 62.39

EW 4.09 100.0 100.0 93.08

bmk 0 100.0 98.16 0

Portfolio statistics—FTSE100—2012–22 with excess return κ = 0.0001

MQ 11.13 109.88 42.39 86.82

MQ-L 4.5 104.06 97.95 2.88

MQ-EN 4.67 104.17 97.74 3.95

ME 7.64 109.0 49.17 92.46

ME-L 2.92 102.67 97.57 3.96

ME-EN 3.3 102.18 97.38 7.37

min-TEV 2.14 100.04 98.25 60.25

EW 4.71 100.0 100.0 95.89

bmk 0 100.0 97.87 0

Portfolio statistics—EUROSTOXX—2012–22 with excess return κ = 0.0001

MQ 14.29 109.53 56.86 71.95

MQ-L 7.46 106.79 98.86 7.8

MQ-EN 7.69 106.46 97.58 12.89

ME 8.44 109.51 43.47 94.57

ME-L 4.02 104.69 99.64 7.89

ME-EN 4.77 104.32 99.47 11.81

min-TEV 1.95 100.0 100.0 69.43

EW 4.09 100.0 100.0 95.65

bmk 0 100.0 100.0 0

replicating portfolio or a cheap replication instrument such as an ETF. The minimum-TEV
portfolio in contrast is characterized by more than 60% the assets with non-zero position for
all the dataset considered.

Tables 4, 5, and 6 show the significance of the differences in standard deviation, CVaR,
and Sharpe ratio, respectively. For the standard deviation and the Sharpe we use the bootstrap
procedure of Ledoit andWolf (2011) and Ledoit andWolf (2008). For the CVaR we obtained
a confidence interval by estimating the standard error of the difference between CVaRs

123



Annals of Operations Research

Ta
bl
e
4

St
at
is
tic
al
si
gn
ifi
ca
nc
e
(v
ar
ia
nc
es
).
D
at
as
et
s:
SP

10
0,

FT
SE

10
0,

E
U
R
O
ST

O
X
X
50
.τ

is
al
w
ay
s
eq
ua
lt
o
0.
1.

Fo
r
th
e
E
N
pe
na
lty
,t
he

pa
ra
m
et
er

α
ha
s
be
en

se
tt
o
0.
5

M
Q

M
Q
-L

M
Q
-E
N

M
E

M
E
-L

M
E
-E
N

m
in
-T
E
V

E
W

bm
k

L
ed
oi
t-
W
ol
f
si
gn

ifi
ca
nc
e
te
st
fo
r
di
ff
er
en
ce
s
in

va
ri
an
ce
s—

SP
10

0—
20

12
–2

2

M
Q

0
−0

.1
88

∗
−0

.1
69

∗
0.
12

6∗
∗∗

−0
.2
05

∗
−0

.1
82

∗
−0

.2
02

∗
−0

.1
74

∗
−0

.2
13

∗
M
Q
-L

0.
18

8∗
0

0.
01

9∗
∗∗

0.
31

3∗
∗

−0
.0
17

∗∗
0.
00

6
−0

.0
14

0.
01

4
−0

.0
26

∗∗
∗

M
Q
-E
N

0.
16

9∗
−0

.0
19

∗∗
∗

0
0.
29

5∗
∗

−0
.0
36

∗∗
∗

−0
.0
13

−0
.0
33

∗∗
∗

−0
.0
05

−0
.0
44

∗∗
∗

M
E

−0
.1
26

∗∗
∗

−0
.3
13

∗∗
−0

.2
95

∗∗
0

−0
.3
3∗

∗
−0

.3
08

∗∗
−0

.3
28

∗∗
−0

.2
99

∗∗
−0

.3
39

∗∗
M
E
-L

0.
20

5∗
0.
01

7∗
∗

0.
03

6∗
∗∗

0.
33

∗∗
0

0.
02

2∗
∗∗

0.
00

3
0.
03

1
−0

.0
09

M
E
-E
N

0.
18

2∗
−0

.0
06

0.
01

3
0.
30

8∗
∗

−0
.0
22

∗∗
∗

0
−0

.0
2

0.
00

8
−0

.0
31

∗∗
∗

m
in
-T
E
V

0.
20

2∗
0.
01

4
0.
03

3∗
∗∗

0.
32

8∗
∗

−0
.0
03

0.
02

0
0.
02

8
−0

.0
11

∗∗
E
W

0.
17

4∗
−0

.0
14

0.
00

5
0.
29

9∗
∗

−0
.0
31

−0
.0
08

−0
.0
28

0
−0

.0
4∗

bm
k

0.
21

3∗
0.
02

6∗
∗∗

0.
04

4∗
∗∗

0.
33

9∗
∗

0.
00

9
0.
03

1∗
∗∗

0.
01

1∗
∗

0.
04

∗
0

L
ed
oi
t-
W
ol
f
si
gn

ifi
ca
nc
e
te
st
fo
r
di
ff
er
en
ce
s
in

va
ri
an
ce
s—

FT
SE

10
0—

20
12

–2
2

M
Q

0
−0

.2
16

∗∗
∗

−0
.2
1∗

∗∗
0.
04

7∗
∗∗

−0
.2
24

∗∗
∗

−0
.2
14

∗∗
∗

−0
.2
76

∗∗
∗

−0
.4
43

∗∗
∗

−0
.2
7∗

∗∗
M
Q
-L

0.
21

6∗
∗∗

0
0.
00

6∗
∗∗

0.
26

3∗
∗∗

−0
.0
07

∗∗
0.
00

2
−0

.0
6∗

∗∗
−0

.2
27

∗∗
∗

−0
.0
54

∗∗
∗

M
Q
-E
N

0.
21

∗∗
−0

.0
06

∗∗
∗

0
0.
25

7∗
∗∗

−0
.0
13

∗∗
∗

−0
.0
03

−0
.0
66

∗∗
∗

−0
.2
33

∗∗
∗

−0
.0
59

∗∗
∗

M
E

−0
.0
47

∗∗
∗

−0
.2
63

∗∗
∗

−0
.2
57

∗∗
∗

0
−0

.2
7∗

∗∗
−0

.2
61

∗∗
∗

−0
.3
23

∗∗
∗

−0
.4
9∗

∗∗
−0

.3
17

∗∗
∗

M
E
-L

0.
22

4∗
∗∗

0.
00

7∗
∗

0.
01

3∗
∗∗

0.
27

∗∗
∗

0
0.
01

∗∗
−0

.0
52

∗∗
∗

−0
.2
19

∗∗
∗

−0
.0
46

∗∗
∗

M
E
-E
N

0.
21

4∗
∗∗

−0
.0
02

0.
00

3
0.
26

1∗
∗∗

−0
.0
1∗

∗
0

−0
.0
62

∗∗
∗

−0
.2
29

∗∗
∗

−0
.0
56

∗∗
∗

m
in
-T
E
V

0.
27

6∗
∗∗

0.
06

∗∗
∗

0.
06

6∗
∗∗

0.
32

3∗
∗∗

0.
05

2∗
∗∗

0.
06

2∗
∗∗

0
−0

.1
67

∗∗
∗

0.
00

6

E
W

0.
44

3∗
∗∗

0.
22

7∗
∗∗

0.
23

3∗
∗∗

0.
49

∗∗
∗

0.
21

9∗
∗∗

0.
22

9∗
∗∗

0.
16

7∗
∗∗

0
0.
17

3∗
∗∗

bm
k

0.
27

∗∗
∗

0.
05

4∗
∗∗

0.
05

9∗
∗∗

0.
31

7∗
∗∗

0.
04

6∗
∗∗

0.
05

6∗
∗∗

−0
.0
06

−0
.1
73

∗∗
∗

0

123



Annals of Operations Research

Ta
bl
e
4

co
nt
in
ue
d

M
Q

M
Q
-L

M
Q
-E
N

M
E

M
E
-L

M
E
-E
N

m
in
-T
E
V

E
W

bm
k

L
ed
oi
t–
W
ol
f
si
gn
ifi
ca
nc
e
te
st
fo
r
di
ff
er
en
ce
s
in

va
ri
an
ce
s—

E
U
R
O
ST

O
X
X
50
—
20
12
–2
2

M
Q

0
−0

.3
89

∗∗
∗

−0
.3
67

∗∗
∗

0.
07

4∗
∗

−0
.4
09

∗∗
∗

−0
.3
93

∗∗
∗

−0
.4
43

∗∗
∗

−0
.4
63

∗∗
∗

−0
.4
42

∗∗
∗

M
Q
-L

0.
38

9∗
∗∗

0
0.
02

2∗
∗

0.
46

4∗
∗∗

−0
.0
2∗

∗∗
−0

.0
04

−0
.0
54

∗∗
∗

−0
.0
74

∗∗
∗

−0
.0
53

∗∗
∗

M
Q
-E
N

0.
36

7∗
∗∗

−0
.0
22

∗∗
0

0.
44

1∗
∗∗

−0
.0
42

∗∗
∗

−0
.0
26

∗∗
−0

.0
76

∗∗
∗

−0
.0
96

∗∗
∗

−0
.0
75

∗∗
∗

M
E

−0
.0
74

∗∗
−0

.4
64

∗∗
∗

−0
.4
41

∗∗
∗

0
−0

.4
84

∗∗
∗

−0
.4
68

∗∗
∗

−0
.5
18

∗∗
∗

−0
.5
37

∗∗
∗

−0
.5
16

∗∗
∗

M
E
-L

0.
40

9∗
∗∗

0.
02

∗∗
∗

0.
04

2∗
∗∗

0.
48

4∗
∗∗

0
0.
01

6∗
∗∗

−0
.0
34

∗∗
∗

−0
.0
54

∗∗
∗

−0
.0
33

∗∗
∗

M
E
-E
N

0.
39

3∗
∗∗

0.
00

4
0.
02

6∗
∗

0.
46

8∗
∗∗

−0
.0
16

∗∗
∗

0
−0

.0
5∗

∗∗
−0

.0
7∗

∗∗
−0

.0
49

∗∗
∗

m
in
-T
E
V

0.
44

3∗
∗∗

0.
05

4∗
∗∗

0.
07

6∗
∗∗

0.
51

8∗
∗∗

0.
03

4∗
∗∗

0.
05

∗∗
∗

0
−0

.0
2∗

0.
00

2

E
W

0.
46

3∗
∗∗

0.
07

4∗
∗∗

0.
09

6∗
∗∗

0.
53

7∗
∗∗

0.
05

4∗
∗∗

0.
07

∗∗
∗

0.
02

∗
0

0.
02

1∗
bm

k
0.
44

2∗
∗∗

0.
05

3∗
∗∗

0.
07

5∗
∗∗

0.
51

6∗
∗∗

0.
03

3∗
∗∗

0.
04

9∗
∗∗

−0
.0
02

−0
.0
21

∗
0

123



Annals of Operations Research

Ta
bl
e
5

St
at
is
tic
al
si
gn
ifi
ca
nc
e
(C
V
aR

).
D
at
as
et
s:
SP

10
0,

FT
SE

10
0,

E
U
R
O
ST

O
X
X
50
.τ

is
al
w
ay
s
eq
ua
lt
o
0.
1.

Fo
r
th
e
E
N
pe
na
lty
,t
he

pa
ra
m
et
er

α
ha
s
be
en

se
tt
o
0.
5

M
Q

M
Q
-L

M
Q
-E
N

M
E

M
E
-L

M
E
-E
N

m
in
-T
E
V

E
W

bm
k

Si
gn

ifi
ca
nc
e
te
st
fo
r
di
ff
er
en
ce
s
in

C
V
aR

—
SP

10
0—

20
12

–2
2

M
Q

0
−0

.0
04

∗∗
∗

−0
.0
03

∗∗
∗

0.
00

2∗
∗∗

−0
.0
04

∗∗
∗

−0
.0
04

∗∗
∗

−0
.0
04

∗∗
∗

−0
.0
03

∗∗
∗

−0
.0
04

∗∗
∗

M
Q
-L

0.
00

4∗
∗∗

0
0∗

∗
0.
00

5∗
∗∗

0∗
∗∗

0
0∗

∗
0.
00

1
0∗

∗∗
M
Q
-E
N

0.
00

3∗
∗∗

0∗
∗

0
0.
00

5∗
∗∗

−0
.0
01

∗∗
∗

0∗
∗

−0
.0
01

∗∗
∗

0
−0

.0
01

∗∗
∗

M
E

−0
.0
02

∗∗
∗

−0
.0
05

∗∗
∗

−0
.0
05

∗∗
∗

0
−0

.0
06

∗∗
∗

−0
.0
05

∗∗
∗

−0
.0
06

∗∗
∗

−0
.0
05

∗∗
∗

−0
.0
06

∗∗
∗

M
E
-L

0.
00

4∗
∗∗

0∗
∗∗

0.
00

1∗
∗∗

0.
00

6∗
∗∗

0
0∗

∗∗
0

0.
00

1∗
∗

0

M
E
-E
N

0.
00

4∗
∗∗

0
0∗

∗
0.
00

5∗
∗∗

0∗
∗∗

0
0

0.
00

1
0∗

∗
m
in
-T
E
V

0.
00

4∗
∗∗

0∗
∗

0.
00

1∗
∗∗

0.
00

6∗
∗∗

0
0

0
0.
00

1∗
∗∗

0∗
E
W

0.
00

3∗
∗∗

−0
.0
01

0
0.
00

5∗
∗∗

−0
.0
01

∗∗
−0

.0
01

−0
.0
01

∗∗
∗

0
−0

.0
01

∗∗
∗

bm
k

0.
00

4∗
∗∗

0∗
∗∗

0.
00

1∗
∗∗

0.
00

6∗
∗∗

0
0∗

∗
0∗

0.
00

1∗
∗∗

0

Si
gn

ifi
ca
nc
e
te
st
fo
r
di
ff
er
en
ce
s
in

C
V
aR

—
FT

SE
10

0—
20

12
–2

2

M
Q

0
−0

.0
03

∗∗
∗

−0
.0
03

∗∗
∗

0.
00

1∗
∗∗

−0
.0
03

∗∗
∗

−0
.0
03

∗∗
∗

−0
.0
04

∗∗
∗

−0
.0
05

∗∗
∗

−0
.0
04

∗∗
∗

M
Q
-L

0.
00

3∗
∗∗

0
0

0.
00

4∗
∗∗

0
0

−0
.0
01

∗∗
∗

−0
.0
02

∗∗
∗

−0
.0
01

∗∗
∗

M
Q
-E
N

0.
00

3∗
∗∗

0
0

0.
00

4∗
∗∗

0∗
0

−0
.0
01

∗∗
∗

−0
.0
02

∗∗
∗

−0
.0
01

∗∗
∗

M
E

−0
.0
01

∗∗
∗

−0
.0
04

∗∗
∗

−0
.0
04

∗∗
∗

0
−0

.0
04

∗∗
∗

−0
.0
04

∗∗
∗

−0
.0
04

∗∗
∗

−0
.0
06

∗∗
∗

−0
.0
04

∗∗
∗

M
E
-L

0.
00

3∗
∗∗

0
0∗

0.
00

4∗
∗∗

0
0∗

∗
−0

.0
01

∗∗
∗

−0
.0
02

∗∗
∗

−0
.0
01

∗∗
∗

M
E
-E
N

0.
00

3∗
∗∗

0
0

0.
00

4∗
∗∗

0∗
∗

0
−0

.0
01

∗∗
∗

−0
.0
02

∗∗
∗

−0
.0
01

∗∗
∗

m
in
-T
E
V

0.
00

4∗
∗∗

0.
00

1∗
∗∗

0.
00

1∗
∗∗

0.
00

4∗
∗∗

0.
00

1∗
∗∗

0.
00

1∗
∗∗

0
−0

.0
01

∗∗
∗

0

E
W

0.
00

5∗
∗∗

0.
00

2∗
∗∗

0.
00

2∗
∗∗

0.
00

6∗
∗∗

0.
00

2∗
∗∗

0.
00

2∗
∗∗

0.
00

1∗
∗∗

0
0.
00

1∗
∗∗

bm
k

0.
00

4∗
∗∗

0.
00

1∗
∗∗

0.
00

1∗
∗∗

0.
00

4∗
∗∗

0.
00

1∗
∗∗

0.
00

1∗
∗∗

0
−0

.0
01

∗∗
∗

0

123



Annals of Operations Research

Ta
bl
e
5

co
nt
in
ue
d

M
Q

M
Q
-L

M
Q
-E
N

M
E

M
E
-L

M
E
-E
N

m
in
-T
E
V

E
W

bm
k

Si
gn

ifi
ca
nc
e
te
st
fo
r
di
ff
er
en
ce
s
in

C
V
aR

—
E
U
R
O
ST

O
X
X
50

—
20

12
–2

2

M
Q

0
−0

.0
05

∗∗
∗

−0
.0
05

∗∗
∗

0.
00

1∗
∗

−0
.0
06

∗∗
∗

−0
.0
06

∗∗
∗

−0
.0
06

∗∗
∗

−0
.0
06

∗∗
∗

−0
.0
06

∗∗
∗

M
Q
-L

0.
00

5∗
∗∗

0
0∗

∗
0.
00

6∗
∗∗

0∗
∗

0
−0

.0
01

∗∗
∗

−0
.0
01

∗∗
∗

−0
.0
01

∗∗
∗

M
Q
-E
N

0.
00

5∗
∗∗

0∗
∗

0
0.
00

6∗
∗∗

−0
.0
01

∗∗
∗

−0
.0
01

∗∗
∗

−0
.0
01

∗∗
∗

−0
.0
01

∗∗
∗

−0
.0
01

∗∗
∗

M
E

−0
.0
01

∗∗
−0

.0
06

∗∗
∗

−0
.0
06

∗∗
∗

0
−0

.0
07

∗∗
∗

−0
.0
07

∗∗
∗

−0
.0
07

∗∗
∗

−0
.0
07

∗∗
∗

−0
.0
07

∗∗
∗

M
E
-L

0.
00

6∗
∗∗

0∗
∗

0.
00

1∗
∗∗

0.
00

7∗
∗∗

0
0

−0
.0
01

∗∗
∗

−0
.0
01

∗∗
−0

.0
01

∗∗
∗

M
E
-E
N

0.
00

6∗
∗∗

0
0.
00

1∗
∗∗

0.
00

7∗
∗∗

0
0

−0
.0
01

∗∗
∗

−0
.0
01

∗∗
∗

−0
.0
01

∗∗
∗

m
in
-T
E
V

0.
00

6∗
∗∗

0.
00

1∗
∗∗

0.
00

1∗
∗∗

0.
00

7∗
∗∗

0.
00

1∗
∗∗

0.
00

1∗
∗∗

0
0

0

E
W

0.
00

6∗
∗∗

0.
00

1∗
∗∗

0.
00

1∗
∗∗

0.
00

7∗
∗∗

0.
00

1∗
∗

0.
00

1∗
∗∗

0
0

0

bm
k

0.
00

6∗
∗∗

0.
00

1∗
∗∗

0.
00

1∗
∗∗

0.
00

7∗
∗∗

0.
00

1∗
∗∗

0.
00

1∗
∗∗

0
0

0

123



Annals of Operations Research

Ta
bl
e
6

St
at
is
tic
al
si
gn
ifi
ca
nc
e
(S
ha
rp
e
ra
tio

).
D
at
as
et
s:
SP

10
0,

FT
SE

10
0,

E
U
R
O
ST

O
X
X
50
.τ

is
al
w
ay
s
eq
ua
lt
o
0.
1.
Fo

r
th
e
E
N
pe
na
lty
,t
he

pa
ra
m
et
er

α
ha
s
be
en

se
tt
o
0.
5

M
Q

M
Q
-L

M
Q
-E
N

M
E

M
E
-L

M
E
-E
N

m
in
-T
E
V

E
W

bm
k

Si
gn

ifi
ca
nc
e
te
st
fo
r
di
ff
er
en
ce
s
in

Sh
ar
pe

ra
tio

s—
SP

10
0—

20
12

–2
2

M
Q

0
−0

.0
23

∗
−0

.0
22

∗∗
−0

.0
1∗

−0
.0
2∗

∗
−0

.0
19

∗
−0

.0
19

∗∗
−0

.0
24

∗∗
−0

.0
18

∗
M
Q
-L

0.
02

3∗
∗

0
0.
00

1
0.
01

3
0.
00

3∗
0.
00

4∗
0.
00

4
−0

.0
01

0.
00

4∗
M
Q
-E
N

0.
02

2∗
∗

−0
.0
01

0
0.
01

2
0.
00

2
0.
00

3
0.
00

3
−0

.0
02

0.
00

4

M
E

0.
01

∗
−0

.0
13

−0
.0
12

0
−0

.0
1

−0
.0
09

−0
.0
09

−0
.0
14

−0
.0
09

M
E
-L

0.
02

∗∗
−0

.0
03

∗
−0

.0
02

0.
01

0
0.
00

1
0.
00

1
−0

.0
04

0.
00

2

M
E
-E
N

0.
01

9∗
−0

.0
04

∗
−0

.0
03

0.
00

9
−0

.0
01

0
0

−0
.0
05

0.
00

1

m
in
-T
E
V

0.
01

9∗
∗

−0
.0
04

−0
.0
03

0.
00

9
−0

.0
01

0
0

−0
.0
05

0.
00

1

E
W

0.
02

4∗
∗

0.
00

1
0.
00

2
0.
01

4
0.
00

4
0.
00

5
0.
00

5
0

0.
00

6

bm
k

0.
01

8∗
−0

.0
04

∗
−0

.0
04

0.
00

9
−0

.0
02

−0
.0
01

−0
.0
01

−0
.0
06

0

Si
gn

ifi
ca
nc
e
te
st
fo
r
di
ff
er
en
ce
s
in

Sh
ar
pe

ra
tio

–
FT

SE
10

0
–
20

12
-2
2

M
Q

0
0.
01

5
0.
01

4
−0

.0
04

0.
01

5
0.
01

5
0.
01

4
−0

.0
03

0.
01

5

M
Q
-L

−0
.0
15

0
−0

.0
01

−0
.0
19

∗
−0

.0
01

0
−0

.0
01

−0
.0
18

∗∗
0

M
Q
-E
N

−0
.0
14

0.
00

1
0

−0
.0
18

∗
0

0
0

−0
.0
17

∗∗
0.
00

1

M
E

0.
00

4
0.
01

9∗
0.
01

8∗
0

0.
01

9∗
0.
01

9∗
0.
01

8
0.
00

1
0.
01

9∗
M
E
-L

−0
.0
15

0.
00

1
0

−0
.0
19

∗
0

0
0

−0
.0
17

∗∗
0.
00

1

M
E
-E
N

−0
.0
15

0
0

−0
.0
19

∗
0

0
0

−0
.0
17

∗∗
0

m
in
-T
E
V

−0
.0
14

0.
00

1
0

−0
.0
18

0
0

0
−0

.0
17

∗∗
0.
00

1

E
W

0.
00

3
0.
01

8∗
∗

0.
01

7∗
∗

−0
.0
01

0.
01

7∗
∗

0.
01

7∗
∗

0.
01

7∗
∗

0
0.
01

8∗
∗

bm
k

−0
.0
15

0
−0

.0
01

−0
.0
19

∗
−0

.0
01

0
−0

.0
01

−0
.0
18

∗∗
0

123



Annals of Operations Research

Ta
bl
e
6

co
nt
in
ue
d

M
Q

M
Q
-L

M
Q
-E
N

M
E

M
E
-L

M
E
-E
N

m
in
-T
E
V

E
W

bm
k

Si
gn
ifi
ca
nc
e
te
st
fo
r
di
ff
er
en
ce
s
in

Sh
ar
pe

ra
tio

—
E
U
R
O
ST

O
X
X
50
—
20
12
–2
2

M
Q

0
0.
00

4
0.
00

4
−0

.0
07

0.
00

5
0.
00

5
0.
00

5
0.
00

1
0.
00

5

M
Q
-L

−0
.0
04

0
0

−0
.0
11

0.
00

1
0.
00

1
0.
00

1
−0

.0
03

0.
00

1

M
Q
-E
N

−0
.0
04

0
0

−0
.0
11

0.
00

1
0.
00

1
0.
00

1
−0

.0
02

0.
00

2

M
E

0.
00

7
0.
01

1
0.
01

1
0

0.
01

2
0.
01

2
0.
01

2
0.
00

9
0.
01

3

M
E
-L

−0
.0
05

−0
.0
01

−0
.0
01

−0
.0
12

0
0

0
−0

.0
04

0

M
E
-E
N

−0
.0
05

−0
.0
01

−0
.0
01

−0
.0
12

0
0

0
−0

.0
03

0.
00

1

m
in
-T
E
V

−0
.0
05

−0
.0
01

−0
.0
01

−0
.0
12

0
0

0
−0

.0
04

0

E
W

−0
.0
01

0.
00

3
0.
00

2
−0

.0
09

0.
00

4
0.
00

3
0.
00

4
0

0.
00

4

bm
k

−0
.0
05

−0
.0
01

−0
.0
02

−0
.0
13

0
−0

.0
01

0
−0

.0
04

0

123



Annals of Operations Research

Fig. 5 SP100. Time series evolution of portfolio wealth (1 USD at the beginning of the out-of-sample
period),tracking error volatity (60 days rolling averages), excess returns over benchmark, optimal λ. For
brevity we report only the plots for the MQ and MQ-L. Other results are available upon request

Fig. 6 FTSE100. Time series evolution of portfolio wealth (1 GBP at the beginning of the out-of-sample
period),tracking error volatity (60 days rolling averages), excess returns over benchmark, optimal λ. For
brevity we report only the plots for the MQ and MQ-L. Other results are available upon request

using the bootstrap procedure in Ledoit and Wolf (2008), then we test if the difference
is statistically significantly different from zero. We find that most of the differences are
statistically significant at the 1% or 5% level. On the contrary, the differences of Sharpe
ratios are in most cases not statistically significant. The lack of significance for the Sharpe
ratio may be related to the very high estimation error typically associated to the expected
returns (see e.g. Michaud, 1989; Black and Litterman, 1992.

Figures 5, 6, and 7 report some time series of the portfolios for the three datasets. For
brevity we report only the images for the ME andME-L datasets. Plots for the quantile based
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Fig. 7 EUROSTOXX 50. Time series evolution of portfolio wealth (1 EUR at the beginning of the out-of-
sample period),tracking error volatity (60 days rolling averages), excess returns over benchmark, optimal λ.
For brevity we report only the plots for the MQ and MQ-L. Other results are available upon request

portfolios and for elastic net penalty lead to similar considerations. The top-left panels show
the evolution of wealth of 1 Dollar/Euro/Pound invested in 2012. We see that the wealth of
the penalized portfolios (ME-L) are tracking closely the ones of the benchmark for all three
datasets. For the non penalized (ME) portfolios instead, we see that the final wealth is higher
than the benchmark for the FTSE100 and EUROSTOXX dataset, while it is noticeably lower
for the SP100. The plot of excess returns over the benchmark (bottom-left panels) confirm the
quite relevant deviations of theMEportfolios, both positive and negative. The top-right panels
report the TEV, that is lower and more stable for the penalized portfolios (ME-L) compared
to the unpenalized portfolios (ME). Finally, the bottom-right panels show the evolution of
optimal lambdas.

Concerning computational times, the optimization runs relatively fast: on an Intel i7-
9750H 6 core processor with 16 gb of RAM, Matlab r2021a, and no parallelization, the EN
penalized portfolios were the slowest, and for each rolling window it took less than 5s to
compute the 8 optimization required for lambda cross-validation on the largest SP100 dataset
(91 assets).

6 Conclusion

Passive and smart-beta strategies are increasingly popular among investors. The literature on
(sparse) index replication portfolio strategies often overlooks the relevance of the correlation
between TE and index returns, leading to potential inefficiencies. Indeed, the focus is often
on minimizing the TEV, failing to consider explicitly the overall portfolio risk, which can be
quantified by different risk measures. Here, we propose a new framework based on general
risk definitions, which allow to explicitly consider tail-riskmeasures.Moreover, we introduce
a penalization scheme based on EN regularization, which controls for the deviations with
respect to the index portfolio holdings. We show that the proposed optimization schemes can
still be solved by quadratic programming for EN, making the new framework an attractive
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and flexible tool for investors. The in-sample analysis allows to point out the effect of the
penalization parameters as well the desirable properties of the proposed optimal strategies
with respect to state-of-art tracking models. In particular, we show that by using a minimum
risk portfolio with low penalization, the investor can reduce the overall risk compared to the
benchmark, despite paying a small price in terms of higher tracking volatility. Moreover, the
optimal portfolios are characterized by a negative covariance between the tracking error and
the benchmark which contributes to reduce the overall portfolio risk. The new framework
allows then to handle the trade-off between the risk control and adherence to the benchmark
without imposing any explicit constraint on the tracking error volatility or other deviation
measures that would potentially result in non-quadratic optimization. An added benefit of
the penalization methods that we use is that they result in portfolios in which the portfolio
weights deviate from the assets for only a small number of assets. This allows us to imple-
ment the strategies more easily as an investor only needs to enter in a limited number of
position on top of a passive replication fund that he/she already manages, or that can be
purchased in the market at low cost. When focusing on real-world out-of-sample analysis,
we notice that the proposed strategies lead to a reduction in risk compared to the benchmark,
together with small tracking error volatility, limited turnover, and conservative asset weights,
thereby avoiding extreme positions. The negative correlations between the tracking error
and the benchmarks allow then to propose a replicating strategy which provides a hedge on
the global portfolio. Further research high on the agenda is to explore parameters’ tuning
based on markets’ conditions, similarly e.g. to dynamic smart beta strategies as well as to
consider alternative penalization functions capable of extending the appealing properties of
the proposed strategies also to further contexts of applications, including robo-advisory.
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SGS Research Project SP2021/15 of VSB–TU Ostrava. Open access funding provided by Università degli
studi di Bergamo within the CRUI-CARE Agreement.
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A The optimizationmodels

Model 1:MQminimize the quantile based deviationDρτ of the portfoliowith no penalization
subject to turnover and gross exposures constrains. Note that this model does not control in
anyway for the tracking error with the benchmark. The expected return of the portfolio can be
set to any value, typically we use the expected return of the benchmark plus an enhancement
κ .

min
w∈Rn

Dρτ [w′(R)]
s.t .w′

E[R] ≥ E[Rbmk] + κ

w′1 = 1

‖w‖1 ≤ GE

‖w − wt−‖1 ≤ T O (11)
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Model 2: MQ-L minimize the same quantile deviation measure Dρτ considered in (11),
but with a LASSO penalty on the difference between the benchmarkweights and the portfolio
weights (the stronger the penalty, the closer is the optimal portfolio to the benchmark). The
parameter λ is calibrated using a cross validation procedure.

min
w∈Rn

Dρτ [w′(R)] + λ‖(w − wbmk)‖1
s.t .w′

E[R] ≥ E[Rbmk] + κ

w′1 = 1

‖w‖1 ≤ GE

‖w − wt−‖1 ≤ T O (12)

Model 3:MQ-ENminimize the same quantile deviation measureDρτ considered in (11),
but with an EN penalty on the difference between the benchmark weights and the portfolio
weights (the stronger the penalty, the closer is the optimal portfolio to the benchmark). The
parameter λ is tuned using a cross validation procedure, while the parameter α is set to 0.5.

min
w∈Rn

Dρτ [w′(R)] + λ
(
α‖(w − wbmk)‖1 + (1 − α)‖(w − wbmk)‖22

)

s.t .w′
E[R] ≥ E[Rbmk] + κ

w′1 = 1

‖w‖1 ≤ GE

‖w − wt−‖1 ≤ T O (13)

Model 4: MEminimize the expectile based deviation Dητ of the portfolio with no penal-
ization. Note that this model does not control in any way for the tracking error with the
benchmark. The expected return of the portfolio can be set to any value, typically we use the
expected return of the benchmark plus an enhancement k.

min
w∈Rn

Dητ [w′(R)]
s.t .w′

E[R] =≥ E[Rbmk] + κ

w′1 = 1

‖w‖1 ≤ GE

‖w − wt−‖1 ≤ T O (14)

Model 5: ME-L minimize the same expectile deviation measure Dητ considered in Eq.
(14), but with a LASSO penalty on the difference between the benchmark weights and
the portfolio weights (the stronger the penalty, the closer is the optimal portfolio to the
benchmark). The parameter λ is calibrated using a cross validation procedure.

min
w∈Rn

Dητ [w′(R)] + λ‖(w − wbmk)‖1
s.t .w′

E[R] ≥ E[Rbmk] + κ

w′1 = 1

‖w‖1 ≤ GE

‖w − wt−‖1 ≤ T O (15)

Model 6: ME-EN minimize the same deviation measure Dρτ considered in Eq.14, but
with an EN penalty on the difference between the benchmark weights and the portfolio
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weights (the stronger the penalty, the closer is the optimal portfolio to the benchmark). The
parameter λ is tuned using a cross validation procedure, while the parameter α is set to 0.5.

min
w∈Rn

Dητ [w′(R)] + λ
(
α‖(w − wbmk)‖1 + (1 − α)‖(w − wbmk)‖22

)

s.t .w′
E[R] = E[Rbmk] + κ

w′1 = 1

‖w‖1 ≤ GE

‖w − wt−‖1 ≤ T O (16)

Model 7: EW Equally weighted portfolio. It is a well known benchmark for portfolio
allocations.

Model 8: TEVMinimize the Tracking Error Volatility under budget and expected return
constraints:

min
w∈Rn

w′(R − Rbmk)w

s.t .w′
E[R] ≥ E[Rbmk] + κ

w′1 = 1

‖w‖1 ≤ GE

‖w − wt−‖1 ≤ T O (17)

We underline that for k = 0 the optimal portfolio is equivalent to the benchmark. For this
reason this portfolio is omitted for the analyses with zero excess return over the benchmark
(Tables 2 and 3).

Model 9: BMK Buy and hold investment in the index. Note that we do not consider the
actual returns of the index, but a synthetic capitalization version of the index to avoid dealing
with changing composition.

B Diagnostic plots for the calibration of �

The penalization procedure applied to the portfolios requires the tuning of the parameter λ.
The goal of this step is to balance risk and TEV, and we use the cross-validation procedure
described in Sect. 5.2.2. The lambda is selected on an exponential grid of values whose
extremes are defined thanks to the analysis of diagnostic plots. Figure8 reports an example
of these plots. The upper panel shows the evolution of the wealth for the portfolios composed
using a fixed lambda, as well as the benchmark and the portfolio with the optimal lambda. The
bottom panels report the out-of-sample CVaR, TEV, and excess density for the portfolios with
fixed lambda (blue line), and for the one with the optimal lambda (horizontal orange line).
We see that the grid of values allows us to span a set of portfolios between the unregularized
optimal portfolios and the (enhanced) benchmark, and that the portfoliowith the tuned lambda
strikes a balance between risk and TEV with a very low excess density (i.e. with only a few
assets deviating from benchmark weights). For illustrative purposes we show here the results
for the entire sample, while in a real-world application the fine-tuning of the extremes for
the lambda grid is performed on past data. For brevity we report the plots for a single dataset
and asset allocation. Other portfolios and dataset show analogous results and are available
upon request.
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Fig. 8 Diagnostic plots for the calibration of lambda. Evolution of wealth for portfolios with fixed lambda, no
penalization (λ = 0), and the benchmark (top panel), CVaR (bottom-left panel), TEV (center-bottom panel),
and excess density (bottom-right panel). CVaR and TEV are computed on the entire out-of-sample period,
excess density is the average across all the investment periods. In the bottom panels the blue line is for fixed
λ portfolios, and the horizontal orange line is the value for the portfolio with the optimal λ tuned with cross
validation. For brevity we report only the plots for the MQ portfolios with EN penalty for the dataset SP100
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C Robustness checks

In this sectionwe report the results for a set of robustness checks. In particularwe test different
length of in-sample time series: 125 days in Table 7 and 250 days in Table 8 (baseline is
500); different length of holding period (10 days in Table 9 and 40 days in Table 10 (baseline
is 20 days); a higher expected excess return (0.0002 per day, corresponding to roughly 5%
per year, Table 11); a long-only constraint in Table 12; portfolios optimized using weekly
returns instead of daily returns (Table 13).

Overall the results confirm the ones in the main text. More in details we notice that the
effect of changing the estimation window sizes or the holding periods is limited, resulting
in qualitatively similar results. Increasing the expected return tends to increase the realized
returns, although the effects are not as sharp as implied by the constraint. This is likely due to
the well know difficulty to estimate expected returns. Interestingly, we see that the imposition
of long-only constraints reduces the ability of the strategy to reduce risk, suggesting that a
moderate amount of short selling has beneficial effects in terms of risk reduction. Increasing
the possibility of short position by setting a max gross exposure to 120% instead has little
effect on the penalized portfolios since the constraint in most cases is not binding (on the
contrary the constraint is typically binding for the non-penalized minimum-deviation portfo-
lios). Finally, the analysis on weekly returns shows qualitatively similar results, suggesting
that the methodology is suitable also for weekly data.
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