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Abstract
The cryptocurrency crash on the 5th of September, 2018, resulted in price decreases in 95
of the 100 leading digital currencies. We obtained millisecond data of some of the more
prominent cryptocurrencies–bitcoin, ethereum, ripple, bitcoin cash and eos–and some of the
smaller cryptocurrencies–neo, nem, omg, tezos and lisk–that were most affected in the crash
and investigated what caused the digital market to collapse. We find that the behaviour of the
more prominent cryptocurrencies and bitcoin, in particular, was the dominant factor behind
the crash.We also find that smaller cryptocurrencies followed the behaviour of the larger ones
in the crash. Furthermore, our empirical findings show that the trading behaviour of cryptocur-
rency traders (CTs) did not trigger the digital market crash. We propose the introduction of
a single-cryptocurrency circuit breaker most prominent largest cryptocurrency–bitcoin–that
will halt trading during market disruptions.

Keywords Cryptocurrency · Herding behaviour · Market efficiency

1 Introduction

Cryptocurrencies have often been compared to the biggest ‘bubbles’ in history, such as
the Dutch Tulip mania of the seventeenth century, the Mississippi bubble of the eighteenth
century, the UK Canal and Railway mania of the nineteenth century, and the more recent
Dot-com bubble in 2000. The first crash of the biggest cryptocurrency, bitcoin, occurred in
June 2011, when $8.75 million in bitcoin was stolen from the Mt. Gox

1
exchange through an

online attack using stolen passwords; this resulted in the bitcoin price crashing from $17.51
to $0.01 on the exchange. The second bitcoin crash was triggered by an incident in which
trading at Mt. Gox was suspended between the 11th of April 2013 and the 12th of April

1 Mt. Gox was a bitcoin exchange based in Japan. The trading venue was launched in July 2010; by 2013 and
into 2014 it was handling over 70% of all bitcoin transactions worldwide, as the largest bitcoin intermediary
and the world’s leading bitcoin exchange. In February 2014, Mt. Gox suspended trading, closed its website
and exchange service, and filed for bankruptcy protection from creditors. A year later, the company began
liquidation proceedings. Mt. Gox announced that approximately 850,000 bitcoins belonging to customers and
the company were missing and likely stolen, an amount valued at more than $450 million at the time.

B Viktor Manahov
viktor.manahov@york.ac.uk

1 School for Business and Society, University of York, York YO10 5DD, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-023-05575-0&domain=pdf
http://orcid.org/0000-0002-6092-1843


580 Annals of Operations Research (2024) 332:579–616

2013 for a ‘market cool-down’, facilitating a sharp sell-off. As a result, the value of a single
bitcoin fell to a low of $55.59 after the resumption of trading. Mt. Gox’s decision to suspend
all bitcoin withdrawals on the 7th of February 2014 and to shut down its trading activities on
the 25th of February 2014 led to the third crash (Cheung, Roca and Su, 2015). The next bitcoin
bubble occurred between December 2017 and December 2018, when the price of the largest
cryptocurrency decreased by more than 83%, following a massive increase in value-from
$1,000 at the beginning of 2017 to $20,000 in December of the same year. The price of the
second-largest cryptocurrency by market capitalisation, ethereum, decreased significantly,
registering a monthly loss of 56% in August 2015 and 45% in September 2015, following the
launch of the cryptocurrency live release, ethereum frontier, in late July 2015 (DiGeorgia,
2018).

On the 5th of September 2018, the value of 95 of the top 100 cryptocurrencies decreased
over 24 h, creating a massive sell-off period known as the Great Crypto Crash. During
this cryptocurrency meltdown, the value of bitcoin fell by more than 12% to approximately
$6,450. Ethereum experienced an even more significant decrease of 19%, while ripple was
downmore than12%andbitcoin cash, eos, neo, andomgdecreasedbymore than20%(Meyer,
2018). At the same time, the MVIS CryptoCompare Digital Assets 10 Index experienced a
decrease of 80% from January 2018 to September 2018. This crash surpassed even Nasdaq
Composite Index decline of 78% after the dot-com bubble in 2000.

There are several likely reasons behind the Great Crypto Crash. First, Goldman Sachs
abandoned its plans to launch a dedicated cryptocurrency trading desk. The investment bank
has been a significant institution related to cryptocurrency trading, having financed the ‘bit-
coin start-up circle’ in 2015 and has expressed interest in launching a crypto trading desk
(Meyer, 2018). Second, on the day of the crash, a ‘whale’2 with no previously recorded
transactions transferred more than 22,100 bitcoins out of the wallet, leading the market to
collapse in price because the supportwas insufficient to handle thismove (CoinSwitch, 2018a,
2018b, 2018c, 2018d, 2018e, 2018f). Third, more than 111,000 bitcoins (worth more than
$700 million) were transferred to the wallets of different trading venues to sell them on the
black-market platform Silk Road (Schroeder, 2018).

Therefore, the cryptocurrency market participants would ask the central question: What
caused the crash? Also, an important question concerns how cryptocurrency traders (CTs)
behave during significant and temporary selling pressure in digital markets. Finance theory
suggests that a period of substantial and temporary selling pressure can generate a market
collapse even when a fundamental shock is not present (Kirilenko, Kyle, Samadi, and Tuzun,
2017).

To the best of our knowledge, this study represents the first investigation of the crash. We
obtained millisecond data of the five largest and five smaller most affected cryptocurrencies
in the crash. We investigate what caused these cryptocurrencies to decline during a single

2 Whales represent people or a group of people working together to hold a large fraction of any particular
cryptocurrency; such people can use this to their advantage to manipulate the price of that coin. Whales often
deploy a strategy known as ‘rinse and repeat’, which is very profitable to a whale if executed at the right
time. The whale usually begins selling lower than the market rate, which in turn causes cryptocurrency market
participants to start selling off their digital money in panic. Then, the whale will re-purchase when the price
of the coin reaches a new low level. This process is repeated to accumulate more wealth, more coins, and
more control over that particular coin. Another strategy that whales use to manipulate cryptocurrency prices
is by deploying buy and sell walls. If the cryptocurrency price decreases, investors will usually purchase at a
lower price and sell when it reaches a higher price. A whale can impose either buy or sell walls and closely
monitor the price when it hits exactly the anticipated price. Subsequently, the wall vanishes because a whale
has cancelled their large buy or sell order.
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trading day. More specifically, we examine the implications of bitcoin activities on the rest
of the market to shed light on what triggered the cryptocurrency crash.

Our contributions are threefold. First, we observe that the entire cryptocurrency market
experienced herding behaviour when prices of the larger cryptocurrencies decreased on the
5th of September 2018.

We also observe that bitcoin could facilitate the herding phenomenon on its own, and the
other cryptocurrencies followed the behaviour of bitcoin. Moreover, we find that the more
prominent cryptocurrencies–such as bitcoin, ethereum, ripple, bitcoin cash, and eos–drove
the remainder of the market during the crash. Therefore, we conclude that the behaviour of
the more significant digital currencies-and bitcoin in particular-was the driving factor behind
the collapse of digital markets.

Second, we deploy several state-space models to investigate whether the activity of cryp-
tocurrency traders (CTs) caused the crash. Our empirical findings show that the trading
behaviour of CTs did not trigger the cryptocurrency crash. Furthermore, we find that sig-
nificantly more information is incorporated into the bid prices of the ten cryptocurrencies
under investigation. An examination of the risk-bearing ability of intermediaries during the
market collapse reveals that changes in inventories of CTs are statistically significantly
related to contemporaneous and lagged changes in cryptocurrency prices. The regression
results indicate that this relationship did not change when cryptocurrency prices signif-
icantly decreased during the crash. We also examine market quality before, during, and
after the crash, including bid-ask spreads and quote depth measures. We find that bid-ask
spreads increased, whereas quote depth decreased after the crash. Overall, the deteriora-
tion in market quality can be linked directly to the crash, as it could have had the potential
to negatively affect investor confidence, cryptocurrency market participation, and liquid-
ity.

Third, we propose the introduction of single-currency circuit breakers or limit up-limit
down trading halts (price limit rule). A single-cryptocurrency circuit breaker for the most
major currency–bitcoin–will halt trading during market disruptions like the cryptocurrency
crash. Similar to equity markets, we suggest that a trading halt can be triggered after a change
of 5% on either side of the average reference price is estimated using the average price over
the previous five minutes of trading. Therefore, trading can be halted for five minutes when
a bitcoin price decline of more than 5% below the average price of the cryptocurrency over
the immediately preceding five-minute trading interval occurs.3 This should also be the case
for a corresponding price increase.

MacDonnell (2014) was among the first to investigate the 2013 bitcoin price crash. This
study uses weekly data covering the period from July 2010 until August 2013 and employs
Autoregressive Moving Average (ARMA) methodologies and the Log Periodic Power Law
(LPPL)models to predict crashes. It can be noted that the LPPLmodel successfully predicted
the crash that took place in December 2013. Similarly, Cheah and Fry (2015) obtained daily
closing prices for the Bitcoin Coindesk Index from July 2010 to July 2014 to detect the
existence of bubbles. The empirical results reveal that a bubble exists in the bitcoin market
and therefore rejects the concept of cryptocurrency market efficiency. Like Cheah and Fry
(2015), Donier and Bouchaud’s (2015) study reveals that when the bitcoin price is clearly
out of bounds-as it was in the pre-April 2013 period-the market is undoubtedly in a bubble
state. The authors also show that the three liquidity measures under examination are highly
correlated and do indeed predict the amplitude of a cryptocurrency market crash triggered by

3 Gronwald (2019) used bitcoin daily data from Mt.Gox and Bitstamp and deployed a number of linear
and nonlinear GARCH models to observe that bitcoin price dynamics are strongly influenced by extreme
price.movements.
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a significant sell order imbalance.4 Bouri, Jalkh, Mornár, and Roubaud (2017) obtained daily
bitcoin and commodity indices data from July 2010 to December 2015, and they demonstrate
that bitcoin hedge and safe-haven properties against commodities and energy commodities
are only present in the pre-crash period, while the corresponding post-crash period acts as a
diversifier.

Several studies have investigated the bitcoin price crash of 2017. Yaya, Ogbonna, and
Olubusoye (2019) collected daily data on thirteen cryptocurrencies between August 2015
and November 2018. Their work observed higher persistence of price shocks after the crash,
which speculative actions can explain among cryptocurrency traders. The authors also wit-
ness the interdependence of bitcoin on other cryptocurrencies and evidence of non-mean
reversions, suggesting the existence of chances of further price decreases in cryptocurren-
cies. Fruehwirt, Hochfilzer, Weydemann, and Roberts (2020) collected data from January
2017 to April 2018 from the Bittrex exchange to conclude that the events in 2017 resulted
in a fundamental change, leading to the instability of the cryptocurrency system. Similar
to Yaya, Ogbonna, and Olubusoye (2019), this study also reports increased interdependen-
cies of cryptocurrency time series. Eom (2020) added a Korean bitcoin dataset to the most
extensively used US data between January 2015 and September 2018 to show that funda-
mental uncertainty generates more dispersion in heterogeneous beliefs among investors and
leads to speculative bubbles. Using a somewhat different data collection technique, Corbet,
Lucey, and Yarovaya (2018) sourced data from documented APIs (application program-
ming interfaces) for the period between the 9th of January 2009 and the 9th of November
2017 (3227 data observations in total) to conclude that there are periods of apparent bub-
ble behaviour, with bitcoin almost certainly in a bubble phase at the time of writing their
paper. Bianchetti, Ricci, and Scaringi (2018) employ daily data of bitcoin and ethereum cov-
ering the period from December 2016 until January 2018 to detect bubbles in their prices.
Different estimations reveal that a bitcoin bubble occurs in mid-December 2017 and the first
half of January 2018. In terms of ethereum, bubble behaviour appeared mid-June 2017 and
a weaker bubble sign was detected around January 12, 2018. Cretarola and Figà-Talamanca
(2020) employ a continuous time stochastic model for bitcoin dynamics. They provide evi-
dence that bubbles in digital instruments are connected with the correlation between the
market attention factor on bitcoin and bitcoin returns being above a non-negative threshold.
Hence, market exuberance is the driving force behind bitcoin bubbles. Wheatley, Sornette,
Huber, Reppen, and Gantner (2018) implement a generalised Metcalfe’s law in combina-
tion with the Log Periodic Power Law Singularity (LPPLS) model to forecast bubbles and
crashes in bitcoin markets. This study documents that four bubbles appeared in the bit-
coin market, varying heights and lengths. These bubbles took place on the following dates:
28th of August 2012, 10th of April 2013, 5th of December 2013 and 28th of December
2017. Shu and Zhu (2020) support the study of Wheatley, Sornette, Huber, Reppen, and
Gantner (2018) by presenting evidence that an adaptive multilevel time series detection
methodology based on the LPPLS model and high-frequency data can effectively detect and
forecast bubbles. In another vein, Xiong, Liu, and Zhao (2019) justify that bubble estimation
based on the production cost by applying the LPPL model shows good forecasting abilities.
They predict that the next large bitcoin bubble is expected to occur in the second half of
2020.

Using higher data frequency,Kalyvas, Papakyriakou, Sakkas, andUrquhart (2020) employ
tick-level data of bitcoin from September 2011 to December 2018 to examine the drivers

4 While Donier and Bouchaud (2015) examine the ‘order − book liquidity’, the ‘impact liquidity’ and the
‘theoretical liquidity’, Brauneis,Mestel, Riordan andTheissen (2021) demonstrate that low frequency liquidity
measures are relatively good estimates of actual liquidity in cryptocurrency markets.
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behind bitcoin price crash risks after taking into account two distinct elements–economic
uncertainty and behavioural factors. The authors report that economic uncertainty shows a
negative and significant association with bitcoin price risk, implying that the crash risk of
bitcoin is low when economic uncertainty is high.

Shu and Zhu (2020) implement an adaptive multilevel time series detection methodol-
ogy and two levels of bitcoin price data–hourly and half-hourly–to examine the existence
of bubbles and monitor the development of the bubbles in the bitcoin price sequence
between October 2017 and June 2018. Their analysis shows that the adaptive multilevel
time series detection methodology has an outstanding performance in bubble detection and
crash forecast, even if the bubble exists in a short period of time. Chaim and Laurini (2019)
analyse high-frequency five-minute bitcoin data from January 2013 to September 2018 and
confirm the existence of a bubble in bitcoin prices between early 2013 and the middle of
2014, but, interestingly, not in late 2017. Geuder, Kinateder report a similar finding, and
Wagner (2019), observes that bubble behaviour is a common and reoccurring characteristic
of bitcoin prices in daily data from March 2016 to September 2018. However, a critical time
point is identified as the 6th of December 2017, after which neither testing model provides
evidence of ongoing bubble behaviour.

Someother studies have contributed to the topic by examining broader datasets that include
different cryptocurrencies. Bouri et al. (2019) used daily data of bitcoin, ripple, ethereum,
litecoin, nem, dash, and stellar fromAugust 2015 untilDecember 2017 to study co-explosivity
in their markets. On the one hand, bitcoin’s explosivity is found to lower ripple’s explosivity.
On the other hand, ethereum’s explosivity is reinforced by bitcoin, ripple, nem, and dash,
while it receives a negative impact from stellar. In terms of litecoin, there is evidence that
bitcoin, ripple, nem, dash, and stellar facilitate its bubbling. It can be noted that contrary to
our empirical findings, lower capitalisation currencies prove to be influential towards larger
ones. In a similar study, Cagli (2019) examines explosive behaviour in the market values of
bitcoin, ethereum, ripple, litecoin, stellar, nem, dash, and monero by collecting daily data
for the period between September 2015 and January 2018. Empirical evidence suggests
that all cryptocurrencies except for nem present explosive behaviour and exhibit significant
pairwise comovement linkages. Chen and Hafner (2019) are the first to examine bubble
behaviour in the CRIX index by observing locally volatile price dynamics comparable to
speculative bubbles. More recently, Enoksen et al. (2020) detected multiple bubble periods
(particularly in 2017 and early 2018) in eight different cryptocurrencies. The authors also
find that higher volatility, trading volume and transactions positively relate to bubbles across
cryptocurrencies.

Based on much academic research, Kyriazis, Papadamou, and Corbet (2020) survey the
academic literature concerning the formation of pricing bubbles in the cryptocurrencymarkets
and suggest that bitcoin appears to have been in a bubble phase since June 2015, while
ethereum, nem, stellar, ripple, litecoin, and dash have possessed bubble-related characteristics
since September 2015.

The remainder of this paper is organised as follows: Sect. 2 comprises the cryptocurrency
data description and data management; Sect. 3 represents the empirical findings; Sect. 4
shows the robustness checks; and Sect. 5 concludes the paper.
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2 Cryptocurrency data description and datamanagement

2.1 Cryptocurrency data description

We obtained millisecond data for bitcoin, ethereum, ripple, bitcoin cash, eos, neo, nem, omg,
tezos and lisk (described in Appendix B) between the 26th of August and 15th of September,
2018 from Kaiko5 (Kaiko.com). Kaiko also provides data for approximately 5,000 crypto-
to-crypto and crypto-to-fiat currency pairs traded on 28 different exchanges: Btcbox, BTCC,
Bittrex, Bitstamp, BTCe, Bitfinex, Bithumb, Bit-Z, bitFlyer, BTC38, BitMEX, Binance,
Coinbase, CEX.io, Gatecoin, Gemini, Ethfinex, HitBTC, Huobi, Itbit, Kraken, MtGox,
OKEx, OkCoin, Poloniex, Quoine, Yobit and Zaif. Kaiko receives the data by querying
Application Programming Interfaces (APIs) provided by the above trading venues. The data
is stamped at the millisecond timeframe (reported in Universal Coordinated Time) and pre-
sented in the form of a different series of comma-separated files, with each row recording
the trade and user ID, transaction type (buy or sell), cryptocurrency volume, transaction fees
and a time stamp. In addition, the dataset specifies whether trading orders are initiated by the
buyer or the seller and, more specifically, if they are aggressive bids or asks. This particular
information is essential for our empirical analysis.

We perform a data-cleaning procedure by aggregating trades following their trade IDs.
We remove transactions where bid or ask orders are missing, those that are duplicated and
those that have the same identifier for buy and sell orders. Also, we only consider US dollar-
denominated trades.

2.2 Cryptocurrency datamanagement

We follow Meade (2002) to model the statistical properties of our millisecond dataset by
implementing the following linearARMA-GARCHmodel (1−φ1B−...−φp B p)(xt − θ0) �(
1 − θ1B... − θq Bq

) ∈t , where V (∈t |�t−1) � σ 2
t ; σ

2
t � a0 + a1 ∈2

t−1 +bσ
2
t−1, �t denotes

the available information at timeperiod t,while theStudent’s tv randomvariable is represented
by (∈t /σt ). We use the GARCH aspect of the above model to detect the time-varying
variance.

The very high presence of no price changes is one of the statistical properties of the
millisecond cryptocurrency data. We implemented Meade’s (2002) empirical procedure to
account for this cryptocurrency market inactivity. We modified the Student’s t distribution6

for the standardised residuals and made their density conditional on market activity:

f

(
εt

σt
|δt

)
�

⎧
⎪⎨

⎪⎩
p0
gv

(
εt
σt

)

1 − p0

i f δt�1

i f δt�0

⎫
⎪⎬

⎪⎭
(1)

5 We use proper traded prices to execute the topics under our investigation. Alexander and Dakos (2019)
suggest that it is very important to use traded data from crypto trading venues rather than data from coin −
ranking sites when examining market efficiency, hedging and portfolio optimisation and trading in cryptocur-
rency markets.
6 The Student’s t distribution represent one–parameter family of curves. The Student’s t distribution is usually
used in hypothesis examination with respect to the population mean in cases when the population standard
deviation is unknown.
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where gv(·) represents the Student’s t density function7; (εt/σt ) is the Student’s tv random
variable; p0 denotes the population proportion and δt measures market inactivity as follows:

δt �
{
1 i f |xt | + |xt−1| � 0

0 otherwise

}

(2)

If δt � 1, the forecast x̂t+i |t � 0 for i � 1, 2, ...
The above procedure aims to determine periods ofmarket inactivity and detect the kurtosis

and heteroskedasticity when the cryptocurrency market is active.
Considering the large dataset size, another critical statistical issue is Lindley’s (1957)

paradox. This paradox could lead to the overstatement of statistical significance and a ten-
dency to reject the null hypothesis, even when the posterior odds favour the null. Connolly
(1989) addressed Lindley’s paradox by developing a procedure for estimating the critical val-
ues for t-statistics and F-statistics as a function of the sample size and degrees of freedom.
Consequently, the estimated critical values provide a crucial point for when posterior odds
favour the alternative hypothesis over the null.

However, in a later study, Szakmary and Keifer (2004) pointed out that the critical t-values
equation in the study of Connolly (1989) ‘contains an obvious typo and should read’:

t∗ �
[
(T − k)

(
T 1/T − 1

)]0.5
(3)

where T represents the sample size and k measures the number of estimated parameters.8

We conduct large-sample adjustments to the critical t-values to eliminate the statistical sig-
nificance overstatement. When the absolute value of a regression t-statistic is greater than
the t* value of Eq. 3, its absolute value is reduced by the adjustment t*. The null hypothesis
is rejected when the estimated standard statistic exceeds the critical value of t*.

3 Empirical findings

3.1 Cryptocurrencies’behaviour during the crash.

Figure 1 shows the decline in the price of bitcoin, ethereum, ripple, bitcoin cash, eos, neo,
nem, omg, tezos and lisk on the 5th of September, 2018, and Table 1 represents the descriptive
statistics of returns for the ten cryptocurrencies under investigation.

Table 1 shows that the distribution of returns for the ten cryptocurrencies is negatively
skewed, indicating that significant negative price changes are more likely than large positive
price changes on the 5th of September, 2018. The kurtosis is significantly higher than three
for all cryptocurrencies, implying a fat-tailed distribution of returns.

The Jarque-Bera statistics suggest that the null hypothesis of normally distributed returns
is rejected for all financial instruments.

7 Density function represents a statistical articulation illustrating the likelihood of a series of outcomes for a
discrete variable, such as a digital currency.
8 Therefore, we have taken Szakmary and Keifer’s (2004) argument into account and presented Eq. 3 as
suggested in their study. The T values for the ten cryptocurrencies are as follows: 17,258 observations for
bitcoin; 12,366 for ethereum; 9,812 for ripple; 8,799 for bitcoin cash; 6,073 for eos; 2,277 for neo; 2,315 for
nem; 2,005 for omg; 1,974 for tezos and 1,244 for lisk. K represents the number of parameters to be estimated,
allocated 0 and 1 for the alternative and null hypotheses.
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We construct an equally-weighted market portfolio to examine the behaviour of cryp-
tocurrencies in comparison to the market consensus:

CMRm,t �
∑N

i�1 ri,t
N

(4)

where N measures the number of cryptocurrencies;CMRm,t represents the cryptocurrency
market return; and ri,t measures each cryptocurrency’s daily return. We estimate each cryp-
tocurrency’s daily return as:

ri,t � (Pt − Pt−1)

Pt−1
(5)

where Pt denotes the cryptocurrency price at time t.
Since the main reasons for the cryptocurrency crash are mostly related to bitcoin, we

first examine the effect of the more prominent cryptocurrencies on the rest of the market.
Similar to Chiang and Zheng (2010), we divide cryptocurrencymarket returns to differentiate
asymmetric herding behaviour in cases when the entire market, including bitcoin, is up or
down:

CSADm,t � α + β1(1 − D)rm,t + β2Drm,t + β3(1 − D)r2m,t + β4Dr
2
m,t + ut (6)

where CSADm,t measures the cross-sectional absolute deviation of returns; (1 − D) and D
are dummy variables equal to 1 when rm,t ≥ 0 and rm,t < 0, respectively; rm,t represents the
cross-sectional average of the N returns at t; and r2m,t is the cross-sectional average market
returns squared term.9

The regression results of CSADm,t on market returns are reported in Table 2 (Panel B) and
suggest that the entire cryptocurrency market experiences herding behaviour when prices are
decreasing–the coefficient (D)r2m,t is negative and significant.

We also observe a significant negative value when examining the generalised form
r2m,t (Table 2, Panel A). This finding is consistent with several other studies. Leclair (2018)
uses five-minute data on the 12 most popular cryptocurrencies and presents significant evi-
dence of increasing herding behaviour in the cryptocurrency markets. Bouri et al. (2019)
perform a rolling-window analysis with the daily closing prices of 14 leading cryptocurren-
cies from2013 to 2018 and observe significant time-varying herding behaviour,mostly driven
by the uncertainty of economic policy.Vidal-Tomás, Ibánes and Farinós (2018) obtained daily
data from 65 digital currencies from January, 2015 to December, 2017 and cross-sectional
standard deviation of returns as a measure of herding dispersion to analyse the existence of
herding behaviour in cryptocurrency markets. This study shows that the most minor cryp-
tocurrencies are herding with the largest ones, and speculators are making decisions based on
the performance of the leading digital currencies. Poyser (2018) obtained daily closing prices
of the 100 top cryptocurrencies and detected the presence of significant herding behaviour.
More recently, Giudici and Polinesi (2021) suggest that bitcoin exchange prices are positively
related and, among them, the largest exchanges, such as Bitstamp, drive the prices. King and
Koutmos (2021) documented that some cryptocurrency markets show evidence of herding
behaviours, while in other markets, the authors show evidence of contrarian-type behaviours.

9 In Appendix C, we explain both the linear and the non − linear relationship between the cross − sectional
absolute deviation of returns (CSAD) and the cryptocurrency market return (CMR). We also provide further
explanations on the relationship between the CMR and rm,t.
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To investigate whether the cryptocurrency market is behaving in the same way as bitcoin,
we compute the following regression for a market without bitcoin:

(7)

CSADwb,t � α + β1 (1 − D) rwb,t + β2Drwb,t + β3 (1 − D) r2wb,t

+ β4Dr
2
wb,t + β5 (1 − D) r2b,t + β6Dr

2
b,t + ut

where CSADwb,t measures the cross-sectional absolute deviation of returns without bit-
coin, using the subscript wb; (1 − D)rwb,t , Drwb,t , (1 − D)r2wb,t , and Dr2wb,t represent the

variables without bitcoin; and (1 − D)r2b,t and Dr2b,t are the variables with bitcoin included
(Vidal-Tomás, Ibánes and Farinós, 2018).

The regression results of CSADwb,t on market returns differentiating between bitcoin and
the rest of the cryptocurrencymarket (presented inTable 3) suggest that other cryptocurrencies
follow the behaviour of bitcoin. This is evident by the significant negative coefficients of both
(1 − D)r2b,t and (D)r2b,t . Moreover, the cryptocurrency market without bitcoin experiences
herding behaviour when prices of the financial instruments under investigation are decreas-
ing–the coefficient (D)r2wb,t is negative and significant. We also observe that the weight of
bitcoin in the equally weighted market portfolio increased from − 0.8266 for the entire mar-
ket, (D)r2m,t in Table 2, Panel B, to − 0.5725 for the market without bitcoin, (D)r2wb,t in
Table 3. This important finding implies that bitcoin can create the herding phenomenon by
itself and that the other cryptocurrencies, therefore, followed the behaviour of bitcoin on the
5th of September, 2018, to trigger the crash. This finding is in line with Yaya, Ogbonna and
Olubusoye (2019) and Fruehwirt, Hochfilzer, Weydemann and Roberts (2020) who observe
interdependence of bitcoin on other popular cryptocurrencies in the 2107 bitcoin price crash
but opposite to Bouri et al. (2019) who report that lower capitalisation currencies prove to
be influential towards larger ones.

We next investigate whether the smaller cryptocurrencies affected in the crash behave in
the same way as the larger ones by dividing the dataset into two sub-samples. The first sub-
sample includes the more prominent cryptocurrencies, while the second sub-sample consists
of the smaller ones. We compute the following regression:

(8)

CSADs,t � α + β1 (1 − D) rs,t + β2Drs,t + β3 (1 − D) r2s,t + β4Dr
2
s,t

+ β5CSADl,t + β6 (1 − D) r2l,t + β7Dr
2
l,t + ut

where the s subscript in CSADs,t , (1 − D)rs,t , Drs,t , (1 − D)r2s,t and Dr2s,t denotes a sub-
market with the smaller cryptocurrencies, while the l denotes a sub-market with the larger
ones. This model enables the examination of the more minor cryptocurrency behaviour to
identify–whether they follow the mean return of their sub-market

(
rs,t

)
or the mean return

of the larger ones
(
rl,t

)
.

Table 4 shows that the coefficients of (1 − D)r2l,t and Dr2l,t are both negative and signif-
icant, indicating that the larger digital currencies are driving the remainder of the market.
In addition, the coefficient of CSADl,t is positive and significant, highlighting the dominant
influence of the larger cryptocurrency return dispersions in the digital market. Hence, the
driving factor behind the crash is the behaviour of the more prominent cryptocurrencies. At
the same time, the mean return of the more minor virtual currencies is related to the dynamics
of themarket to a lesser extent. This is confirmed by the insignificant and positive coefficients
of (1 − D)r2s,t and (D)r2s,t .

While Banerjee (1992) and Yao et al. (2014) explain this with the relatively limited infor-
mation available about the smaller stocks in traditional financial markets, Nguyen et al.
(2020) suggest that bitcoin and litecoin facilitate tail risk when markets are bullish and
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ethereum and ethereum classic are the significant drivers of tail risk in bearish markets. More
recently, Zhang et al. (2021) demonstrated a positive cross-sectional relation between down-
side risk and future returns in the cryptocurrency market in both portfolio-level analyses and
cryptocurrency-level cross-sectional regressions. However, another driver of price crashes
could be the impact of operational risk and the related losses, as documented by Giudici and
Bilotta (2004), who demonstrate that Bayesian networks represent a valid model for measur-
ing and managing operational risks. In a related study, Fantazzini et al. (2008) implemented
copula distributions to model high dimensional operational risks more flexibly, including
partial dependence.

Our empirical findings align with the existing literature on the interconnectedness in
the cryptocurrency markets. Fry and Cheah (2016) examine cryptocurrency market crashes
and demonstrate that in the period of the negative bubble, there is a spillover effect from
ripple to bitcoin. Ji, Bouri, Lau and Roubaud (2019) investigated interconnectedness in six
prominent cryptocurrencies and reported that bitcoin and litecoin are the main drivers of
connected cryptocurrency returns, while Antonakakis et al. (2019) examine the transmission
mechanism in nine major cryptocurrencies and shows that ethereum has recently become the
leading transmitting cryptocurrency. However, bitcoin maintains its influencing role in the
market.

3.2 The activity of CTs andmarket quality before, during and after the crash.

To investigate whether the activity of CTs triggers the crash, we examine the trading direction
relative to permanent price changes and transitory pricing errors of a state spacemodel.When
CTs trading is orientated in the opposite direction of the permanent pricing error (negatively
correlated with the permanent pricing error) and oriented in the direction of the transitory
pricing error (positively correlated with the transitory pricing error), we can conclude that
CTs facilitated the crash. In contrast, when CTs trading is orientated in the direction of
the permanent pricing error (positively correlated with the permanent pricing error) and
oriented in the opposite direction to the transitory pricing error (negatively correlated with
the transitory pricing error), we can conclude that CTs did not trigger the crash.

The state space model of the cryptocurrencies can be decomposed into two distinguished
parts–permanent and transitory constituents:

pi,t � mi,t + si,t (9)

where pi,t represents the (log) mid quote (the average of the bid and ask quote) at a time t
for a financial instrument i ; mi,t is the permanent component of a martingale type-mi,t �
mi,t−1 + wi,t with an innovative element wi,t included in the permanent price component;
and si,t represents the transitory price component.

We develop two different state space models to examine the implications of CTs activity
on the crash. The first model looks all trading activity denoted CT sNET while the second
model analyses the demand and supply components of CTs denoted as CT sD and CT sS .
We compute the aggregate model as:

wi,t � kalli
˜CT s

NET
i,t + μi,t (10)

where ˜CT s
NET
i,t is the surprise innovation factor in CT sNET , which is the residual of an

autoregressive model used to eliminate autocorrelation. We implement the Kalman filter
where cryptocurrency price changes,CT sNET ,CT sD and CT sS are non-zero, in order to
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estimate the state space model for each digital currency in a trading day for the entire sample
period. Table 5 shows the empirical results of the CT sNET related to the permanent price
component of the state spacemodel for each financial instrument and the overall spacemodel.
Table 6 represents the empirical findings related to the transitory price component of the state
space model for each cryptocurrency and the overall space model. We observe that all space
models listed in the last row of Table 5 are positively correlated with the permanent price
component.

We also observe that all state space models in the last row in Table 6 negatively correlated
with the transitory price component. Therefore, CTs trading is orientated in the direction of
the permanent pricing error and the opposite direction of the transitory pricing error. These
important findings imply that the activity of CTs did not trigger the cryptocurrency crash.

We estimate the values of k andψ in basis points per $1,000,000 traded. The value of 0.85
for the overall k coefficient in Table 5 indicates that $1,000,000 of positive surprise order
flow (bid minus ask orders) corresponds to a 0.85 basis points increase in the permanent price
component.

The aggregate proportion of permanent price variance
(
kNET ∗ σ

(
CT sNET

))2
estimated

at 19.76 basis points is also positively correlated with overall CT sNET order flow. The
negative values of ψ coefficients in the transitory price component in Table 6 suggest that
CTs trade in the opposite direction of the pricing errors, and therefore the activity of CTs did
not trigger the crash. Furthermore, we employ a disaggregated state space model to examine
the individual implications of bid and ask cryptocurrency trading orders on the crash. Table 7
shows that CTs bid and ask orders are positively correlated (kbid and kask values are positive
in all ten cryptocurrencies) with price changes in the permanent price component of the
state space model. The positive values of kask and kbid coefficients suggest that trading is
conducted in the direction of the permanent pricing errors and therefore did not cause the
crash.

At the same time, we find a negative relation between ψbid , ψask and the transitory
price component across all ten cryptocurrencies (Table 8), implying that CTsbid and CTsask

trading orders follow the opposite direction of the transitory component of the state space
model and therefore did not trigger the crash. A direct comparison between CTsbid and
CTsask trading orders reveals more minor pricing errors for theCTsbid orders, suggesting that
significantly more information is incorporated into the bid prices of the ten cryptocurrencies.
Omrane, Guesmi, Qianru and Saadi (2021) demonstrate that U.S. macroeconomic news
releases exhibit significant influence on jumps in bitcoin and ethereum. However, some
studies relate crashes to the risk-bearing ability of intermediaries.10 We further examine the
activity of CTs during the cryptocurrency crash by looking at the risk-bearing ability of CTs.
We do that by reviewing the minute-by-minute co-movement between the inventory changes

10 For example, Huang andWang (2009, 2010) design an equilibriummodel in which market crashes endoge-
nously occur when an unexpected excess of sell orders overcome the insufficient risk − bearing ability of
marketmakers.More recently, Ait−Sahalia and Seglam (2017) relates increases in volatility of prices to tighter
inventory bonds for high − frequency traders, highlighting their ability to accommodate increased volatility
risk. Alomari et al. (2021) investigate the effect of news and social media sentiments on the stock and bond
market volatility and their return dynamic correlation and report that that news sentiments have more pro-
nounced effects on volatility while social media show stronger impacts on the correlation. Ho, Shi and Zhang
(2013) confirm the significant impact of firm − specific news sentiment on intraday volatility persistence with
firm− specific news sentiment responsible for a greater proportion of overall volatility persistence. Cerchiello
and Nicola (2018) implement the Structural Topic Model (STM) to examine the possible evolution of topics
obtained from Reuters and Bloomberg and to investigate a causal effect in the diffusion of the news measured
by the Granger causality test. The authors report that the temporal dynamics and the spatial differentiation
play a role in the news contagion.
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of CTs and cryptocurrency prices. Kirilenko, Kyle, Samadi and Tuzun (2017) suggest that
intermediaries adjust inventories according to price decreases.

In cases when the risk-bearing ability of intermediaries is overcome, they are somewhat
reluctant to hold more inventory without significant price compromise. To investigate the
relationship between inventory changes and changes in cryptocurrency prices on the 5th of
September, 2018, we adopt an empirically similar approach to Kirilenko, Kyle, Samadi and
Tuzun (2017):

�yt � α + φ × �yt−1 + δ × yt−1 +
15∑

i�0

[
βi × �pt−1/0.25

]
+ εt (11)

where yt denotes the inventories of CTs; �yt measures the inventory changes of CTs for
each minute; �p measures price changes between the high-low midpoint of minute t–1 and
the high-low midpoint of minute t to accommodate the bid-ask bounce in prices. Similar to
Kirilenko, Kyle, Samadi and Tuzun (2017), we convert cryptocurrency price changes into the
number of ticks by dividing �p by 0.25. We estimate the t-statistics using the White (1980)
standard errors. Table 9 shows that the regression coefficient of the lagged inventory level is
negative, reflecting the mean-reversion of CTs inventory levels. We observe that changes in
CTs inventories are positively related to lagged and contemporaneous price changes up to ten
lags. CTs inventory changes become negatively associatedwith cryptocurrency price changes
between the 11th and the 15th lagged price changes. This finding is in line with Kirilenko,
Kyle, Samadi and Tuzun (2017) but opposite to Hendershott and Seasholes (2007), who
documented an entirely negative relationship between the inventories of market makers and
price changes. We also investigate whether the observed statistical relationship between CTs
inventory changes and cryptocurrency price changes significantly changed during the crash
by computing the following regressions:

�yt � α + φ�yt−1 + δyt−1 +
15∑

i�0

[
βi × pt−i/0.25

]

+ PD
t

{

αD + φD�yt−1 + δDyt−1 +
15∑

i�0

[
βD
i × pt−i/0.25

]}

(12)

where PD
t denotes the price decrease of the ten cryptocurrencies during the crash.

The empirical results of the above regressions presented in Table 10 suggest that all
interaction coefficients for CTs during the crash are statistically insignificant.

Therefore, the statistical relationship between CTs inventory changes and price changes
of the ten cryptocurrencies did not significantly change during the crash.

We also compute the associated F-test and fail to reject the null hypothesis that the
interaction coefficients in Eq. 12 are jointly different from zero, implying that CTs’ trading
behaviour did not change.

Next, we use different market quality measures to examine the level of liquidity in the
days and weeks surrounding the crash. According to Boulton, Braga-Alves, and Kulchania
(2014), the bid-ask spread is the primary measure of transaction costs in the microstructure
literature. Demsetz (1968) argues that the bid-ask spread compensates investors for supplying
liquidity to the market.

We estimate the following three different spread measures:

Absolute spread � CC (a)i t−CC (b)i t (13)
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where CC (a)it and CC (b)it represents the ask and bid for cryptocurrency i at time t, respec-
tively.

Quoted spread � (
CC (a)i t−CC (b)i t

)
/CPit x 100 (14)

where CPit represents the cryptocurrency price i at time t.
We also estimate the effective spread because some transactions often occur at a price

outside the bid and ask quotes (Lee, 1993).

E f f ective spread � 2 xSit x (Pit−Mit )/Mit x 100 (15)

where Sit denotes the indicator of trade direction which is set equal to + 1 (− 1) for buy
(sell) cryptocurrency trading orders and Mit represents the quote midpoint estimated as the
average of ask and bid cryptocurrency prices.

However, Lee, Mucklow and Ready (1993) argue that market participants who experience
adverse selection can increase spreads and reduce depth, where depth is related to the number
of assets a market participant is willing to trade at the best bid and ask quotes. Therefore, we
incorporate the average quote depth of the best bid and ask prices on 5th of September, 2018
in our robustness checks:

Quote depth � (Depthbid + Depthask)/2 (16)

We report the market quality measures for one day before through one day after the
cryptocurrency crash (4th of September–6th of September 2018) in Table 11.

The presented daily spreads are the mean values of the absolute spread, the quoted spread
and the effective spread in the millisecond dataset. Panels A, B and C of Table 11 show
that the absolute, the quoted, and the effective spreads for bitcoin, ethereum, ripple, bitcoin
cash, eos, neo, nem, omg, tezos, and lisk decreased in the days around the crash. All spread
measures suggest that trading costs are significantly higher on the 6th of September, the day
after the cryptocurrency crash, compared to the 4th of September, the day before the crash.
For instance, the average quoted spread of bitcoin is 77% higher on the day after the crash
compared to the day of the crash (0.821% and 0.463%, respectively). We obtain similar
quoted, effective, and absolute spread results for all other cryptocurrencies. At the same
time, we observe that the quote depth for all cryptocurrencies under investigation decreased
between the 4th of September 2018 and the 6th of September 2018. Panels A, B and C of
Table 11 show that quote depth for the ten cryptocurrencies is significantly lower the day
after the crash compared to the day before and the day of the actual crash. In addition, the
average turnover, measured as the daily number of crypto assets traded divided by the number
of assets outstanding, increased the day after the crash dramatically.

In Table 12, we present the market quality results over ten days before the crash (from
the 26th of August to the 4th of September 2018) and compare the absolute, the quoted,
and the effective spreads and depth measures to the ten days after the crash (from the 6th
of September to the 15th of September 2018). It is evident from Panels A and B of Table
12 that each of the three spread measures has higher values in the ten days after the crash
compared to the ten-day period that preceded the crash for bitcoin, ethereum, ripple, bitcoin
cash, eos, neo, nem, omg, tezos, and lisk. Furthermore, quote depth decreased significantly,
while turnover increased before the cryptocurrency crash.

Overall, we find that changes of inventories of CTs reveal a statistically significant rela-
tionshipwith contemporaneous and lagged changes in cryptocurrency prices.We also observe
that this relationship did not changewhen prices substantially decreased during the crash. Fur-
thermore, our empirical findings suggest that market quality deteriorated during the crash. In
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addition, this deterioration in market quality is evident beyond the 5th of September 2018, as
bid-ask spreads are higher and quote depth is lower in the ten days after the crash compared
to the ten days before the cryptocurrency collapse. Such crashes could negatively impact
cryptocurrency market participants, investor confidence, and liquidity.

4 Robustness checks

To check the robustness of our results, we divide the dataset into bitcoin-related (standalone)
decrease price movements (DPMs) and DPMs that occur simultaneously in several cryp-
tocurrencies (co-DPMs) on the 5th of September, 2018. We define co-DPMs as those that
occur in at least two digital currencies. For empirical testing, we use the three different spread
measures described in Eqs. (13), (14), (15) and the quote depth in Eq. (16).

Table 13 shows that co-DPMs form 89% of the entire sample (21.6 standalone DPMs and
178.9 co-DPMs). The extremely high DPM occurrence could explain the frequent presence
of co-DPMs during the cryptocurrency crash. Table 13 also shows that the average co-DPM
includes 8.5 cryptocurrencies, suggesting that the digital currencies affected in the crash are
following the behaviour of each other. Trading activity and spread metrics are noticeably
different between the two types, with higher volumes and wider spreads recorded during the
standalone DPMs.

The spread measures suggest that trading costs were higher during the standalone DPMs
due to wider spreads. For example, the average quoted spread is 15% higher for standalone
DPMs than co-DPMs (0.184% and 0.159%, respectively). We find similar results for the
absolute and the effective spreads. We also find that the quote depth is significantly lower for
standalone DPMs than co-DPMs (1719.26 and 1069.14, respectively).

In addition, we use raw data where we did not perform the procedures described in Eqs. 1,
2 and 3 to run another set of robustness checks.11 The raw data results in Table 14 reveal that
co-DPMs form 91% of the entire sample (39.2 standalone DPMs and 424.6 co-DPMs), while
the average co-DPM includes 9.1 cryptocurrencies (compared to 8.5 after we perform data
management process). These results suggest that the cryptocurrencies affected by the crash
are following the behaviour of each other. Similar to Table 13, trading activity and spread
values differ between the two types, with higher volume levels and wider spreads recorded
during the standalone DPMs. Therefore, the spread measures suggest that trading costs were
even higher during the standalone DPMs due to wider spreads when we use raw data. For
instance, the average quoted spread is 0.537% for standalone DPMs compared to 0.429% for
co-DPMs, with similar trends for the absolute and the effective spreads.

We also observe that the quote depth is significantly lower at 4622.18 for standaloneDPMs
compared to 3752.58 for co-DPMs. All these findings imply that bitcoin activities dominated
the market in the day of the crash, which confirms our main analysis results.

In another set of robustness checks, we examine the co−explosiveness in cryptocurrency
market. Bouri, Shahzad andRoubaud (2019) suggest that investigating co-explosivity periods
in the cryptocurrencymarket helpsmake conclusions onwhether the price interaction is strong
or weak, which may impact diversification and trading strategies. We compute the following
logistic regression to examine co-explosivity in the cryptocurrency market:

log

(
P(Y � 1|X)

1 − P(Y � 1|X)

)
� β0 + βi Xi,t + εt (17)

11 Further robustness checks with raw data where we did not perform the procedures described in Eqs. 1, 2
and 3 are available from the authors upon reasonable request.
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where the dependent variable is a dummy variable Y that has a value of 1 if BSADFr2,t ≥
cvαT

r2,t (when there is price explosiveness as evidenced by the increase of the BSADF sequence

above corresponding critical value) and 0 if BSADFr2,t ≤ cvαT
r2,t ; β0 denotes the constant;

Xi,t is a set of nine dummy variables, where i � 1,2…0.9; each dummy variable implies
price explosiveness as shown for the dependent variable, in each of the other remaining
nine cryptocurrencies; εt represents the error term assumed to be distributed as the logistic
distribution.

The backward supremum Augmented Dickey–Fuller (BSADF) test mentioned above is
used to determine the starting and ending points of bubble periods. The BSADF test statistics
are developed by Phillips, Shi and Yu (2015):

BSADFr2(r0) � Supr1∈(0,r2−r0)ADFr2
r1 (18)

where the end of the rolling interval window is set at a fraction r2 and the actual window
size expands from fraction r0 to fraction r2. We define the explosiveness periods based on
the generalised supremum Augmented Dickey–Fuller (GSADF) test:

�
r e � inf

r2∈(r0,1)

{
r2 : BSADFr2 > cvαT

r2

}

�
r f � inf

r2∈
(

�
r e,1

)
{
r2 : BSADFr2 > cvαT

r2

}
(19)

where cvαT
r2 represents the 100(1 − αT )% critical value of the supremum Augmented Dick-

ey–Fuller (SADF) test statistics based on r2 observations, and αT has a permanent value of
5%.

Table 15 results reveal that bitcoin price explosivity is the least dependent on the presence
of explosivity in other cryptocurrencies. In contrast, the ethereum explosivity occurrence
increases with the presence of explosivity in bitcoin, ripple, bitcoin cash and eos. The results
also reveal an important observation that the explosivity in bitcoin increases the probability
of producing explosivity in all other cryptocurrencies under investigation. Moreover, the
explosivity in the more prominent cryptocurrencies such as bitcoin, ethereum, ripple, bitcoin
cash and eos facilitates the occurrence of explosivity in the more minor digital currencies
like neo, nem, omg, tezos and lisk. We also observe a decrease in the explosiveness affect
among some small cryptocurrencies. These observations align with our initial findings that
the more prominent cryptocurrencies−and bitcoin in particular−drove the remainder of the
market during the crash. This is broadly consistent with Bouri, Shahzad and Roubaud (2019)
but opposite the results of Agosto and Cafferata (2020), who observe that bitcoin does not
seem more central than the other cryptocurrencies in the process of bubble burst occurrence.

However, one limitation of our study is that we use linear econometric models. Giudici
and Raffinetti (2021) suggest the increasing data availability and computational power enable
researchers to develop artificial intelligence (AI) machine learning models that are highly
predictive. The authors developed a novel AI model based on applying the Shapley approach
to Lorenz Zonoid and demonstrate that the model helps access both predictive accuracy
and explainability of the explanatory variables in bitcoin prices. Similarly, Lucarelli and
Borrotti (2019) demonstrate that the Double Deep Q−learning trading system based on
Sharpe ratio reward function represents a profitable approach for trading bitcoin. Hitam and
Ismail (2018) obtained amore extensive dataset consisting of bitcoin, ethereum, litecoin, nem,
ripple and stellar to show that the Support Vector Machines (SVM) model characterise with
higher forecasting accuracy compared to other neural networks and deep learning models.
In a similar study, Silva de Souza, Almudhaf, Henrique, Negredo, Ramos, Sobreiro and
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Kimura (2019) report that the SVM model can generate conservative bitcoin returns on the
risk−adjusted basis, even after taking into account transaction costs. Hong (2021) proposed
a new Long Short-Term Memory (LSTM) AI model for automatic cryptocurrency trading,
while Buyrukoğlu (2021) suggests that the LSTM and the single−based LSTM models can
be employed to obtain reliable analysis results in cryptocurrency trading.

Liashenko, Kravets and Repetskyi (2021) also report that the LSTM model can be used
in efficient bitcoin and ethereum exchange rate modelling. Sun, Zhou and Lin (2019) show
that their strategy which includes some factors fromAlpha101 machine learning algorithm is
effective in cryptocurrency trading, while Koker and Koutmos (2020) obtain similar results
with their direct reinforcement (DR) model. In a larger-scale study, Liew, Li, Budavári and
Sharma (2019) apply data from the most significant 100 cryptocurrency returns between
2015 and 2018 to AI and machine learning algorithms. The authors observe that less volatile
cryptocurrencies are slightly more predictable than more volatile ones and suggest that cryp-
tocurrency predictability may be significantly more complex given a set of machine learning
algorithms. The study concludes that near-term cryptocurrencymarkets are semi-strong form
efficient, and therefore, day trading cryptocurrencies may be very challenging. Another lim-
itation of our research is the interconnectedness related to the same asset traded on different
cryptocurrency exchanges.Giudici and Pagnottoni (2019) implement an extension ofDiebold
and Yilmaz (2012) econometric connectedness measures to examine the return spillovers in
five different bitcoin exchanges during the 2017 increase in prices and the 2018 decline. The
authors observe that Bitfinex and Gemini are driving the return spillover transmission, and
the interconnectedness of returns decreased significantly before the hype in bitcoin price. At
the same time, it settled during the down−market period.

For our final robustness checks, we implemented the BDS (Brock, Dechert, Sheinkman
andLeBaron, 1996) statistic testswhere the null that the series in question are independent and
identically distributed (IID) to investigate whether the linear econometric models described
in Eqs. 6, 7, 8, 9, 10, 11 and 12 capture all structures within the data and be representative of
the problem space. We believe that this test represents a direct and appropriate examination
of model accuracy given a large number of different regression assumptions in our study. In
support of this statement, Brock, Dechert, Sheinkman and LeBaron (1996) suggest that their
method can be used as a model selection tool and a specification test because the first−order
asymptotic distribution of the test statistic is independent of estimation error. Moreover, the
authors also suggest that for sample sizes of 500 or more, the test has quite a good size
performance and good power against a range of alternatives.

Wefind this particularly important given our largemillisecond dataset. The null hypothesis
of the BDS test is that a time series sample comes from a data-generating process that is IID
while the alternative hypothesis is unspecified.

The test statistic is based on a measure of spatial correlation in m-dimensional space
defined as ‘correlation integral’ (McMillan, 2003) and can be specified as per Kočenda
(2010):

BDSm,T (d) � T 0.5[Cm,T (d) − C1,T (d)m
]
/σm,T (d) (20)

where σ represents the sample standard deviation of the data, andCm,T (d) denotes the sample
correlation integral given ‘embedding dimension’, m, and distance, d. The BDS statistic is
asymptotically distributed as a standard normal, BDSm,T ∼ N (0, 1) when applied to IID
series.

The BDS test p values presented in parentheses in Table 16 reveal that the test statis-
tics are insignificant for all linear regression models under investigation implying that the
null hypothesis of IID cannot be rejected. This important finding suggests that our linear
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regression models capture all structures within the data and are representative of the problem
space confirming model accuracy. We can also conclude that the residual errors are normally
distributed with constant (homoscedastic) variance.

5 Conclusion

The value of the leading cryptocurrencies significantly decreased on the 5th of September,
2018, creating one of themost prominent digitalmarket crashes. There are three likely reasons
behind the crash. One accepted assumption among investors is that the price crash resulted
from Goldman Sachs abandoning plans to launch a cryptocurrency trading desk. However,
some suggest that this might not reveal the whole story. On the day of the crash a ‘whale’ with
no previously recorded transactions transferred more than 22,100 bitcoins out of the wallet,
leading the market to collapse in price. Also, more than 111,000 bitcoins were transferred to
the wallets of different trading venues to sell them through the black-market platform Silk
Road.

In this study, we investigate what caused the crash using millisecond data of the more
prominent cryptocurrencies affected in the crash–bitcoin, ethereum, ripple, bitcoin cash and
eos–and the smaller cryptocurrencies–neo, nem, omg, tezos and lisk.

We demonstrate that the entire cryptocurrency market experienced herding behaviour
when the prices of the more prominent cryptocurrencies decreased. We observe that bitcoin
could facilitate the herding phenomenon on its own, and the other cryptocurrencies followed
the behaviour of bitcoin on the 5th of September, 2018.

The more prominent cryptocurrencies such as bitcoin, ethereum, ripple, bitcoin cash and
eos drove the remainder of the market during the crash. Therefore, we conclude that the
behaviour of themore significant digital currencies, particularly bitcoin,was the driving factor
behind the collapse of digital markets. We also examine market quality before, during, and
after the crash, including bid−ask spreads and quote depth measures. We find that bid−ask
spreads increased, whereas quote depth decreased after the crash. Overall, the deterioration
in market quality can be linked directly to the crash, as it could have had the potential to
negatively affect investor confidence, cryptocurrency market participation, and liquidity. We
also investigate whether the activity of CTs caused the crash by using several state−space
models. Our empirical findings show that the trading behaviour of CTs did not trigger the
cryptocurrency crash.

Furthermore, we report that significantly more information is incorporated into the bid
prices of the ten cryptocurrencies under investigation. An examination of the risk−bearing
ability of intermediaries during the market collapse reveals that changes of inventories of
CTs are statistically significantly related to contemporaneous and lagged changes in cryp-
tocurrency prices. The regression results indicate that this relationship did not change when
cryptocurrency prices significantly decreased during the crash.

Considering this study takes the view that cryptocurrency crash of the 5th of September,
2018 was not the result of an unusual occurrence of events and the actions of CTs, but rather a
consequence of herding behaviour among cryptocurrencies triggered by events surrounding
bitcoin, we suggest policies to mitigate the negative implication of herding behaviour and
address the underlying causes are needed to avoid future cryptocurrency crashes. Based on our
empirical findings, we propose the introduction of a single−cryptocurrency circuit breaker
or limit up−limit down trading halt (price limit rule). The significant difference between
the two mechanisms is that trading is allowed to continue within the price bands for the
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limit up−limit down tool. In contrast, trading stops with the single−cryptocurrency circuit
breaker. For example, a single−cryptocurrency circuit breaker for the largest cryptocurrency
bitcoin will estimate the trading threshold and pause trading during market disruptions like
a cryptocurrency crash. The aim of a bitcoin circuit breaker is to prevent extreme price
movements as it provides a cooling−off period.

The trading threshold of bitcoin should depend on the cryptocurrency reference price,
which can be estimated using the average price over the previous five minutes of trading.
A trading halt can be triggered after a change of 5% on either side of the average reference
price. Therefore, trading can be halted for five minutes when a bitcoin price decline of more
than 5% below the average price of the cryptocurrency over the immediately preceding
five−minute interval occurs. This should also be the case for a corresponding price increase.
Alternatively, the limit up−limit−down mechanism should be able to prevent trade in a
cryptocurrency outside upper and lower bonds. The limit up−limit down tool could avoid
extreme cryptocurrency price changes due to speculation and provide CTs with more time
to obtain and interpret information in a fast−moving digital market. One of the advantages
of the limit up−limit down tool is that it does not pause trading activity when there is no
significant change in fundamentals. CTs can continue operating at prices within the specified
price limit bands even when an extreme price is detected. However, the actual trading process
of the digital instrument can continue within the specified limits.

Greenwald and Stein (1991) suggest that circuit breakers play a positive role in reducing
transaction risk, which is the risk related to the uncertainty of execution prices. This study
also indicates that a circuit breaker could persuade market participants to submit trading
orders when current prices do not appropriately present market information.

Lauterbach and Ben-Zion (1993) analysed the trading activities of the Tel-Aviv Stock
Exchange during the 1987 market break. They concluded that a trading halt smoothed the
price adjustment process and minimized trading order imbalances. At the same time, Kodres
and O’Brien (1994) documented that price limits encourage risk sharing in financial markets
when price shocks occur before market participants can execute their orders. In a somewhat
different study, Anderson and Holt (1997) demonstrate the positive role of a circuit breaker in
mitigating unjustified price fluctuations,whileAnshuman andSubrahmanyam (1999) suggest
that price limits are beneficial in lowering the bid−ask spreads and therefore enhancing
liquidity. Similarly, Westerhoff (2003) provides evidence that price limits can reduce price
deviations from fundamental values when traders cannot chase price trends.

Data availability The data that support the findings of this study are available from the corresponding author
upon request.
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Fig. 1 Price fluctuations of bitcoin, ethereum, ripple, bitcoin cash, eos, neo, nem, omg, tezos and lisk on the
5th of September, 2018. We use raw millisecond data of the ten cryptocurrencies as supplied by the data
provider to create a more realistic representation of the dramatic decline in cryptocurrency prices on the 5th
of September, 2018. (For a more realistic representation of the event, we use raw millisecond data where we
did not apply the econometric data management procedures described in Eqs. 1, 2 and 3.)

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A

Appendix B–Cryptocurrency description

This study considers the five largest−capped cryptocurrencies–bitcoin, ethereum, ripple,
litecoin and dash–and two cryptocurrency indices–Crypto Index (CRIX) and CCI30 Crypto
Currencies Index.

Bitcoinwas the first cryptocurrency that appeared in 2009, providing a solution to the issue
of double spending12 (Nakamoto, 2008). The network is peer-to-peer, and all transactions
are conducted between users directly; therefore, there are no third-party entities or financial
institutions. Bitcoin transactions are validated by network nodes using cryptography (the
SHA− 256 algorithm) and are stored in a publicly distributed ledger known as a blockchain.
Bitcoin is separable to around eight decimal places, but this could be increased further if
needed. In economic terms, a single bitcoin can be used at a fractional increment, which can
be as small as 0.0000001 bitcoins per single transaction. This particular fractional increment
is known as Satoshi, named after the developer. As of January, 2018, the current market
capitalisation of bitcoin is $191 billion (Bhosale and Mavale, 2018).

Ethereum was first introduced in 2013 by Vitalik Buterin, providing a decentralised plat-
form for smart contracts and distributed applications (DApps) to operate without fraud,

12 In other words, a bitcoin can be sent securely and one should not be able to spend the same bitcoin again
without anyone else being able to facilitate a transaction and without one being able to chargeback the same
bitcoin.
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Table 1 Descriptive statistics of daily returns for bitcoin, ethereum, ripple, bitcoin cash and eos, neo, nem,
omg, tezos and lisk on the 5th of September, 2018

Cryptocurrency Mean Median Min Max SK SD K J-B

Bitcoin 0.91 0.78 − 85.55 99.36 − 0.94 17.92 13.17 0.00

Ethereum 0.83 0.55 − 76.76 90.18 − 0.80 16.08 12.04 0.00

Ripple 0.80 0.49 − 60.53 82.81 − 0.67 16.06 9.99 0.00

Bitcoin Cash 0.74 0.47 − 61.86 80.99 − 0.72 15.99 11.82 0.00

Eos 0.61 0.31 − 47.77 63.19 − 0.64 10.43 8.77 0.00

Noe 0.48 0.20 − 30.21 42.55 − 0.51 7.80 4.51 0.00

Nim 0.36 0.14 − 24.97 38.19 − 0.33 6.55 4.08 0.00

Omg 0.27 0.09 − 14.76 31.07 − 0.29 6.21 3.99 0.00

Tezos 0.21 0.05 − 12.52 26.66 − 0.17 4.77 3.16 0.00

Lisk 0.13 0.02 − 10.01 17.99 − 0.09 3.18 3.08 0.00

We estimate each cryptocurrency’s daily return as:

ri,t � (Pt−Pt−1)
Pt−1

where Pt denotes the cryptocurrency price at time t.

SK skewness, SD standard deviation, K kurtosis, J-B Jarque-Bera test statistics

Table 2 Regression results of
CSADm,t on market returns for
bitcoin, ethereum, ripple, bitcoin
cash, eos, neo, nem, omg, tezos
and lisk on the 5th of September,
2018

Panel A

α 0.0673*** (0.0002)

rm,t 0.0997*** (0.0240)

r2m,t − 0.3991*** (0.2570)

Ad j R2 0.80

Panel B

α 0.0711*** (0.0003)

(1 − D)rm,t 0.7395*** (0.0274)

(D)rm,t − 0.5336*** (0.0266)

(1 − D)r2m,t 0.8370** (0.8352)

(D)r2m,t − 0.8266*** (0.1904)

Ad j R2 0.81

***Indicates significance at the 1% level; **indicates significance at the
5% level

downtime or intervention from an intermediary. Like bitcoin, this cryptocurrency represents
a public platform with open source, blockchain computing and innovative scripting features.
Ether is the token run on the platform, although the Turing − complete programming lan-
guage can trade, secure and codify financial derivatives, insurance contracts and many other
transactions. As of January, 2018, ethereum has a market capitalisation of approximately
$105 billion (Bhosale and Mavale, 2018).

Ripple was introduced in 2012 by Chris Larsen and his company, OpenCoin, to provide
instant and affordable international payments. Opposite to bitcoin, this cryptocurrency pos-
sesses a consensus ledger that does not require mining from other network users, leading
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Table 3 Regression results of
CSADwb,t on market returns
differentiating between the larger
and the smaller cryptocurrencies
on the 5th of September, 2018

Cryptocurrency market on the 5th September, 2018

α 0.8004*** (0.0012)

(1 − D)rwb,t 0.7734*** (0.1020)

(D)rwb,t − 0.6881** (0.7053)

(1 − D)r2wb,t 0.9906* (0.8571)

(D)r2wb,t − 0.5725*** (0.0363)

(1 − D)r2b,t 0.0689*** (0.0035)

(D)r2b,t − 0.9007*** (0.0268)

Ad j R2 0.82

***Indicates significance at the 1% level; **indicates significance at the
5% level; *indicates significance at the 10% level

Table 4 Regression results of
CSADs,t on market returns
differentiating between the larger
and the smaller cryptocurrencies
on the 5th of September, 2018

Cryptocurrency market on the 5th September, 2018

α 0.7013*** (0.0010)

(1 − D)rs,t 0.6903** (0.4830)

(D)rs,t − 0.0478*** (0.0369)

(1 − D)r2s,t 2.016 (0.9355)

(D)r2s,t 0.7544 (0.8906)

CSADl,t 0.0882*** (0.0067)

(1 − D)r2l,t − 0.8803*** (0.0105)

(D)r2l,t − 0.4991*** (0.0283)

Ad j R2 0.82

***Indicates significance at the 1% level; **indicates significance at the
5% level

to less computing power and lower network latency. The payment mechanism allows pay-
ments to another network user in five seconds, compared to between one and ten minutes in
mining − based protocols. Therefore, ripple has a much better likelihood of competing with
conventional debit and credit cards point − of − sale transactions.

Moreover, some financial institutions have used this particular cryptocurrency as their
main settlement infrastructure technology due to the lack of counterparty credit risk (Phillip,
Chan and Peiris, 2018). As of January, 2018, the market capitalisation of ripple is $48 billion
(Bhosale and Mavale, 2018).

The name Bitcoin Cash was suggested by the mining pool ViaBTC in July, 2017 and
began trading on August, 2017. Bitcoin Cash represents a peer-to-peer online cash system
to send money to any recipient in the world, 24 h a day, all year round. Similar to bitcoin,
bitcoin cash protocol is restricted to 21 million coins. Compared to conventional payment
methods, bitcoin cash provides enhanced anonymity because it is impossible to know who
operates the electronic address. The timestamping mining scheme of bitcoin cash is ‘proof
− of − work’ (PoW) and its hash function is SHA − 256 (Coinswitch.co).
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Table 5 Permanent price component of the Sate Space Model for bitcoin, ethereum, ripple, bicoin cash, eos,
neo, nem, omg, tezos and lisk traded on 5th of September, 2018

Permanent price
parameters

kNET (t − stat)
σ 2

(
˜CT s

NET
)

(
kN ET ∗ σ

(
˜CT s

NET
))2

(t −
stat)

σ 2(wi,t
)

Measures bps/$1,000,000 $1,000,000 bps.22 bps.22

Bitcoin 0.97 (12.34) 48.88 24.91 (16.77) 470.62

Ethereum 0.82 (11.07) 40.74 22.68 (14.14) 431.09

Ripple 0.70 (10.16) 39.03 18.80 (11.67) 398.66

Bitcoin Cash 0.68 (9.99) 30.99 17.90 (9.51) 380.77

Eos 0.42 (7.51) 26.87 13.85 (8.97) 312.54

Neo 0.38 (5.02) 20.21 9.61 (5.02) 256.91

Nem 0.30 (4.82) 17.55 5.99 (4.81) 216.77

Omg 0.25 (3.32) 10.37 3.14 (2.20) 182.36

Tezos 0.14 (0.3.05) 8.40 1.99 (2.01) 134.68

Lisk 0.09 (2.15) 4.16 0.74 (1.65) 112.94

All 0.85 (7.26) 31.60 19.76 (11.48) 368.33

The model is estimated for each cryptocurrency using CTs variables to decompose the observable historical
price pi,t for each cryptocurrency i at time t. into two components: the permanent price component mi,t and

the transitory component si,t : pi,t � mi,t + si,t ; mi,t � mi,t−1 + wi,t ; wi,t � kN ET
˜CT s

NET
i,t + μi,t ;

si,t � φsi,t−1 +ψNET CT sN ET
i,t +υi,t .WhereCT sNET

i,t is the overall net order flow and ˜CT s
NET
i,t represent

the surprise component of the order flow. We estimate the t − statistics using standard errors double-clustered
on the ten digital instruments and millisecond data

EOS represents a decentralised blockchain technology system that allows businesses to
develop applications like web − based applications free of transaction fees. The initial plat-
form EOSIO was introduced by a private company called Block.one and was launched as an
open − source software product on June 1, 2018. Apart from hosting applications, the other
objectives of eos are to implement smart contracts and avoid the scalability issues experienced
by bitcoin and ethereum. Eos operates ‘proof-of-stake’ (PoS) mining mechanism instead of
PoW, which enables faster transaction and execution times. Eos allows market participants to
participate in blockchain governance and cast votes associated with a fraction of the owner’s
stake. The programming language used to build eos is WebAssembly, which includes C and
C + + (Coinswitch.co).

NEO was introduced as Antshares by Da Hongfei in 2014 and rebranded in 2017. The
main aim of neo is to convert traditional financial instruments into decentralised digital ones
by using smart contracts. Unlike the above cryptocurrencies, neo is not minable, and there are
100 million tokens. In contrast to other digital currencies based on PoW protocol, neo uses
Delegated Byzantine Fault Tolerance (dBFT) mechanism, which can process up to 10,000
transactions per second at much lower electricity costs. The other advantage of neo is that
contacts can be written in common programming languages such as Java, Python, C + + , etc.,
making it less vulnerable to hackers andmore accessible to general investors (Coinswitch.co).

NEM, short for New Economic Movement relies on its code built from scratch. Nem aim
is to be more technologically advanced blockchain offering easily customizable solutions for
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Table 9 Net prices and CTs’
holdings of bitcoin, ethereum,
ripple, bicoin cash, eos, neo, nem,
omg, tezos and lisk traded on 5th
of September, 2018

Variable �NP CTs

Intercept − 3.18 (− 6.77)

�NP CTst−1 − 0.04 (− 0.86)

NP CTst−1 − 0.03 (− 4.25)

�Pt 51.97 (21.44)

�Pt−1 26.70 (16.83)

�Pt−2 22.68 (13.05)

�Pt−3 20.99 (12.70)

�Pt−4 20.04 (11.82)

�Pt−5 18.55 (9.78)

�Pt−6 15.32 (8.74)

�Pt−7 14.08 (6.27)

�Pt−8 10.26 (5.80)

�Pt−9 8.68 (5.24)

�Pt−10 5.99 (3.63)

�Pt−11 − 0.18 (− 0.25)

�Pt−12 − 0.87 (− 1.26)

�Pt−13 − 1.36 (− 2.80)

�Pt−14 − 2.09 (− 2.93)

�Pt−15 − 3.41 (− 4.02)

Adj. R2 0.73

This table shows the computed coefficients for the regression: �yt �
α + φ × �yt−1 + δ × yt−1 +15i�0

[
βi × �pt−1/0.25

]
+ εt . Change in

holdings of CTs represents the dependent variable. Price changes are
presented in ticks. NP denotes net price of the ten digital instruments.
The sampling frequency is at themillisecond timeframe.We estimate the
t-statistics reported in parentheses by using the White (1980) estimator

different purposes. Like noe, nem cannot be mined, substantially reducing the energy and
time required to process a transaction. The processing time of 4,000 transactions per second
makes nem faster than Visa andMasterCard. Nem can be generated through a process known
as ‘harvesting’, and all 9 billion coins are currently in supply. Harvesting represents a process
when a transaction is processed on the platform; the first computer to see and verify it will
inform other users, creating a block. Moreover, nem uses a ‘proof-of-importance’ (PoI)
method, which is different than PoW and PoS. PoI method assigns more block rewards to
users who own more tokens and actively participate in the network (Coinswitch.co).

OmiseGo (OMG) is an ethereum based open-source payment platform developed in Thai-
land by Jun Hasegawa in 2013. Omg aims to offer banking and financial services worldwide.
These include credit and debit card transactions, currency conversions, remittance services,
etc. All financial services are done through the omg currency, which can be converted to fiat
money, loyalty points or tokens, depending on the type of transaction. The total omg supply
is 140 million tokens.

Tezos (TEZ) is the first self-amending cryptocurrency created by Arthur Breitman after
publishing two white papers in 2014. Tezos represents a secure, innovative contract platform
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Table 10 The relationship
between CTs inventory changes
and cryptocurrency price changes
for bitcoin, ethereum, ripple,
bicoin cash, eos, neo, nem, omg,
tezos and lisk traded on 5th of
September, 2018

Variable �NP CTs Variable (cont)

Intercept − 4.80 (− 7.42) InterceptD

�NPt−1 − 0.013 (− 0.61) �N PD
t−1

NPt−1 − 0.014 (− 0.70) N PD
t−1

�Pt 56.99 (21.16) �PD
t

�Pt−1 28.77 (14.05) �PD
t−1

�Pt−2 27.94 (12.73) �PD
t−2

�Pt−3 23.55 (10.09) �PD
t−3

�Pt−4 20.25 (8.66) �PD
t−4

�Pt−5 19.57 (7.51) �PD
t−5

�Pt−6 17.88 (7.04) �PD
t−6

�Pt−7 15.90 (6.25) �PD
t−7

�Pt−8 14.87 (6.06) �PD
t−8

�Pt−9 9.70 (4.17) �PD
t−9

�Pt−10 8.46 (3.43) �PD
t−10

�Pt−11 − 0.25 (− 0.73) �PD
t−11

�Pt−12 − 0.98 (− 1.79) �PD
t−12

�Pt−13 − 1.83 (− 2.80) �PD
t−13

�Pt−14 − 3.99 (− 4.01) �PD
t−14

�Pt−15 − 5.65 (− 4.74) �PD
t−15

Adj. R2 0.74

This table shows the computed coefficients for the regres-

sion: �yt � α + φ�yt−1 + δyt−1 +15i�0

[
βi × pt−i /0.25

]
+

PD
t

{
αD + φD�yt−1 + δD yt−1 +

15
i�0

[
βD
i × pt−i /0.25

]}
. PD

t repre-

sents a dummy variable related to price decrease of the ten cryptocurren-
cies on the 5th of September, 2018. Change in holdings of CTs represents
the dependent variable. Price changes are presented in ticks. NP denotes
net price of the ten digital instruments. The sampling frequency is at the
millisecond timeframe. We estimate the t-statistics reported in parenthe-
ses by using the White (1980) estimator

with a built-in consensus mechanism. The protocol of this digital currency can evolve and
integrate new information over time. Tesoz uses PoS system, which does not involve mining
and significant amounts of electricity consumption–the primary operational process is called
‘baking’ instead of mining. Bakers in this blockchain system devote deposits and receive
rewards for developing and publishing blocks. An innovative feature of the platform is the
involvement of all stakeholders towards governing Tesoz. Stakeholders can vote on changes
to the main protocol or even the entire voting policy (Tezos.com).

Lisk was developed by Max Kordek and Oliver Beddows and launched in early 2016.
Lisk is a decentralised app system that enables users to design apps in Java, making it much
more accessible to the public. Lisk uses sidechains technology and Sowtware Development
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Table 11 Market quality measures before, during and after the cryptocurrency crash for bitcoin, ethereum,
ripple, bicoin cash, eos, neo, nem, omg, tezos and lisk

Panel A-4th
September

Absolute
spread

Quoted
spread

Effective
spread

Quote depth Turnover
%

Bitcoin 0.196 0.478 0.380 4835.882 3.187

Ethereum 0.164 0.440 0.313 4226.006 2.903

Ripple 0.099 0.391 0.261 2716.993 1.467

Bitcoin cash 0.074 0.255 0.224 1934.264 1.120

Eos 0.061 0.201 0.116 1355.027 1.080

Neo 0.044 0.177 0.074 926.180 0.096

Nem 0.028 0.149 0.055 790.178 0.054

Omg 0.019 0.142 0.029 511.163 0.021

Tezos 0.008 0.121 0.014 217.199 0.014

Lisk 0.006 0.109 0.005 99.103 0.009

Panel B-5th September

Bitcoin 0.182 0.463 0.365 4699.004 3.776

Ethereum 0.151 0.426 0.290 3884.465 3.005

Ripple 0.086 0.382 0.204 2390.774 1.888

Bitcoin cash 0.062 0.237 0.193 1624.193 1.568

Eos 0.042 0.197 0.105 1008.255 1.111

Neo 0.038 0.164 0.051 773.109 0.102

Nem 0.020 0.133 0.028 600.128 0.063

Omg 0.015 0.128 0.015 480.083 0.038

Tezos 0.004 0.105 0.006 156.104 0.028

Lisk 0.001 0.102 0.002 71.190 0.018

Panel C-6th September

Bitcoin 0.662 0.821 0.777 3116.108 4.126

Ethereum 0.630 0.799 0.715 2004.374 3.572

Ripple 0.311 0.711 0.688 1873.006 2.210

Bitcoin cash 0.287 0.664 0.569 1004.526 1.999

Eos 0.216 0.588 0.466 777.172 1.773

Neo 0.188 0.552 0.337 336.124 0.887

Nem 0.173 0.424 0.220 362.199 0.552

Omg 0.126 0.411 0.167 279.073 0.115

Tezos 0.099 0.389 0.121 75.110 0.099

Lisk 0.083 0.366 0.093 32.175 0.064

This table shows the market quality measures for all cryptocurrencies under investigation traded on 4th, 5th
and 6th of September, 2018. We estimate the absolute spread as: Absolute spread � CC (a)it–CC (b)it .
where CC (a)it and CC (b)it represents the ask and bid for cryptocurrency i at time t, respectively. We estimate
the quoted spread as: Quoted spread � (CC (a)it–CC (b)it ) / CPit × 100.
where CPit represents the cryptocurrency price i at time t. We also estimate the effective spread as:
Effective spread � 2 × Sit x (Pit–Mit) / Mit x 100.
where Sit denotes the indicator of trade direction which is set equal to + 1 (− 1) for buy (sell) cryptocurrency
trading orders and Mit represents the quote midpoint estimated as the average of ask and bid cryptocurrency
prices. We calculate the quoted depth as: Quote depth � (Depthbid + Depthask ) / 2. We report the turnover
as the daily number of cryptocurrencies traded divided by the number of cryptocurrencies outstanding (in
percentage). The presented daily spreads are the mean values of the absolute spread, the quoted spread and
the effective spread in the millisecond dataset
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Table 12 Market quality measures ten-days before and ten-days after the cryptocurrency crash for bitcoin,
ethereum, ripple, bicoin cash, eos, neo, nem, omg, tezos and lisk

Panel A:26th
August-4th
September

Absolute spread Quoted spread Effective spread Quote
depth

Turnover
%

Bitcoin 0.215 0.582 0.446 5374.299 6.887

Ethereum 0.189 0.503 0.412 4604.172 5.471

Ripple 0.121 0.412 0.323 3545.006 3.822

Bitcoin cash 0.088 0.290 0.281 2257.016 2.713

Eos 0.073 0.203 0.163 1506.002 2.006

Neo 0.059 0.184 0.104 1003.777 1.850

Nem 0.040 0.173 0.073 886.002 1.477

Omg 0.027 0.152 0.047 636.809 1.102

Tezos 0.016 0.133 0.028 376.929 1.004

Lisk 0.012 0.118 0.014 121.535 0.096

Panel B: 6th September-15th September

Bitcoin 0.286 0.699 0.577 4722.106 4.663

Ethereum 0.207 0.578 0.548 3770.274 3.997

Ripple 0.172 0.498 0.466 2999.728 1.906

Bitcoin cash 0.096 0.313 0.402 1836.152 1.535

Eos 0.085 0.280 0.256 1283.028 1.276

Neo 0.071 0.204 0.249 743.204 1.003

Nem 0.066 0.199 0.184 524.726 0.851

Omg 0.045 0.186 0.126 423.116 0.088

Tezos 0.036 0.167 0.097 226.109 0.046

Lisk 0.024 0.145 0.066 96.277 0.023

This table shows themarket qualitymeasures for all cryptocurrencies under investigation traded in two different
periods–between 26th of August and 4th of September, 2018 and between 6th of September 15th of September,
2018. We estimate the absolute spread as: Absolute spread � CC (a)it–CC (b)it .
where CC (a)it and CC (b)it represents the ask and bid for cryptocurrency i at time t, respectively. We estimate
the quoted spread as: Quoted spread � (CC (a)it–CC (b)it ) / CPit × 100
where CPit represents the cryptocurrency price i at time t. We also estimate the effective spread as:
Effective spread � 2 × Sit x (Pit–Mit) / Mit x 100
where Sit denotes the indicator of trade direction which is set equal to + 1 (− 1) for buy (sell) cryptocurrency
trading orders and Mit represents the quote midpoint estimated as the average of ask and bid cryptocurrency
prices. We calculate the quoted depth as: Quote depth � (Depthbid + Depthask ) / 2. We report the turnover
as the daily number of cryptocurrencies traded divided by the number of cryptocurrencies outstanding (in
percentage)

Kit (SDK), allowing the users to create DApps and individual blockchains within the central
platform.

Unlike most other cryptocurrencies, Lisk does not represent a digital form of money that
retailers will accept as payment but instead as a currency for users of the platform. Lisk uses
PoS protocol and can be mined, but the mining process differs from bitcoin. In contrast to
bitcoin, there is no cap on the maximum number of lisk coins (Coinswitch.co).
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Table 13 Standalone and co-DPMs on the 5th of September, 2018

Bitcoin (standalone) Co-DPMs

mean std.dev mean std.dev

Number of DPMs 21.6 178.9

Number of cryptocurrencies 8.5

Absolute return % 0.67 0.34 0.51 0.28

Traded volume 179.24 121.26 162.38 103.56

Absolute spread 0.062 0.136 0.051 0.121

Quoted spread 0.184 0.927 0.159 0.783

Effective spread 0.105 0.217 0.094 0.199

Quoted depth 1719.26 11.36 1069.14 8.92

This table divides DPMs into standalone (bitcoin) and co-DPMs, with the latter category detecting DPMs that
occur simultaneously in several cryptocurrencies. We estimate the absolute spread as: Absolute spread � CC
(a)it–CC (b)it
where CC (a)it and CC (b)it represents the ask and bid for cryptocurrency i at time t, respectively. We estimate
the quoted spread as: Quoted spread � (CC (a)it–CC (b)it ) / CPit × 100
where CPit represents the cryptocurrency price i at time t. We also estimate the effective spread as:
Effective spread � 2 × Sit x (Pit–Mit) / Mit x 100
where Sit denotes the indicator of trade direction which is set equal to + 1 (− 1) for buy (sell) cryptocurrency
trading orders and Mit represents the quote midpoint estimated as the average of ask and bid cryptocurrency
prices. We calculate the quoted depth as: Quote depth � (Depthbid + Depthask )/2

Table 14 Standalone and co-DPMs on the 5th of September, 2018 with raw data

Bitcoin (standalone) Co-DPMs

mean std.dev mean std.dev

Number of DPMs 39.2 424.6

Number of cryptocurrencies 9.1

Absolute return % 0.94 0.66 0.78 0.49

Traded volume 622.18 446.03 403.57 397.15

Absolute spread 0.183 0.316 0.124 0.412

Quoted spread 0.537 1.015 0.429 0.993

Effective spread 0.682 0.446 0.214 0.307

Quoted depth 4622.18 37.72 3752.58 23.16

For robustness checks we use raw data where we did not perform the procedures described in Eqs. 1, 2 and
3. This table divides DPMs into standalone (bitcoin) and co-DPMs, with the latter category detecting DPMs
that occur simultaneously in several cryptocurrencies. We estimate the absolute spread as: Absolute spread �
CC (a)it–CC (b)it
where CC (a)it and CC (b)it represents the ask and bid for cryptocurrency i at time t, respectively. We estimate
the quoted spread as: Quoted spread � (CC (a)it–CC (b)it ) / CPit × 100
where CPit represents the cryptocurrency price i at time t. We also estimate the effective spread as:
Effective spread � 2 × Sit x (Pit–Mit) / Mit x 100
where Sit denotes the indicator of trade direction which is set equal to + 1 (− 1) for buy (sell) cryptocurrency
trading orders and Mit represents the quote midpoint estimated as the average of ask and bid cryptocurrency
prices. We calculate the quoted depth as: Quote depth � (Depthbid + Depthask ) / 2
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Appendix C

(a) Relationship between CSAD and CMR

We adopted the empirical procedure of Chang, Chen and Khorana (2000) to explain both
the linear and the non-linear relationship between the cross-sectional absolute deviation of
returns (CSAD) and the cryptocurrency market return (CMR):

Et (Ri ) � γ0 + βi Et (CMR − γ0) (21)

where Et represent the expectation in period t ; CMR denote the cryptocurrency market
return; Ri denote the return of each cryptocurrency; γ0 shows the zero-beta portfolio return
while βi represent the time-invariant systematic risk measure of the cryptocurrency, i �
1, ..., N and t � 1, ..., T . Given that βm is the systematic risk in the CAPM, we obtain:

βm � 1

N

N∑

i�1

βi (22)

The absolute value of the deviation (AVD) of cryptocurrency’s i expected return in period
t can be presented as:

AV Di,t � |βi − βm |Et (CMR − γ0) (23)

Therefore, we can compute the expected cross-sectional absolute deviation of cryptocur-
rency returns (ECSAD) in period t in the following way:

ECSADt � 1

N

N∑

i�1

AV Di,t � 1

N

N∑

i�1

|βi − βm |Et (CMR − γ0) (24)

Hence, we can estimate the linear relation between dispersion and the time-varyingmarket
expected returns as:

∂ECSADt

∂Et (CMR)
� 1

N

N∑

i�1

|βi − βm | > 0, (25)

∂2ECSADt

∂Et (CMR)2
� 0, (26)

To represent the non-linear relationship between CSAD and CMR, we use CSADt and
CMR as proxy for the unobservable ECSADt and Et (CMR). There will be a less than
proportional increase in the CSAD estimate when cryptocurrency market participants are
more likely to herd during periods of significant price fluctuations. To capture the likelihood of
asymmetric degree of herding behaviour in the up-against-the-down-cryptocurrency market,
we perform the following econometric specification:

CSADUP
t � α + γU P

1

∣∣∣CMRUP
∣∣∣ + γU P

2

(
CMRUP

)
+ εt (27)

CSADDOWN
t � α + γ DOWN

1

∣∣∣CMRDOWN
∣∣∣ + γ DOWN

2

(
CMRDOWN

)
+ εt (28)

A non-linear relation between CSAD and CMRwould occur when cryptocurrency market
participants experience herding towards indicators such as the average consensus of allmarket
constituents during intervals of large price fluctuations.
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(b) Relationship between CMR and rm,t

Based on Cochrane (2005) we explain the relationship between cryptocurrencymarket return
(CMR) and the cross-sectional averagemarket return (rm,t) in the followingway.WhileCMR
describes how average returns change over time, rm,t measure how average returns change
across different cryptocurrencies. In simple terms, examining the cross section of cruptocur-
rency returns, researcherswant to answer the questionwhy cryptocurrencyAgenerates higher
or lower returns than cryptocurrency B across section of many cryptocurrencies at one point
in time. Cochrane (2005) argues that the CAPM is effectively a model that explains the cross-
section of stock returns with only one factor, the systematic risk of a stock. Considering that
the CAPM is empirically not successful in explaining the stock returns thoroughly, there are
other models, such as the Fama-French 3 factor model.

The existing literature explains the direct relation between market return and cross-
sectional market return, as the former can explain and influence the latter. For example,
Long, Zaremba, Demir, Szczygielski and Vasenin (2020) deploy cross-sectional regressions
to investigate daily returns on 151 cryptocurrencies between 2016 and 2019 and observe
that average past same-weekday returns positively predict future performance in the cross-
section. Moreover, the authors report that cryptocurrencies with high same-day returns in the
past outperform those with low same-day returns. In terms of the stock market, long-term
past returns (DeBondt & Thaler, 1985) and short-term past returns (Jegadeesh & Titman,
1993) can explain the cross-sectional variation in stock returns.
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