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Abstract
We develop a nonlinear duopoly model in which the heuristic expectation formation and
learning behavior of two boundedly rational firms may engender complex dynamics. Most
importantly, we assume that the firms employ different forecasting models to predict the
behavior of their opponent.Moreover, the firms learn by leaningmore strongly on forecasting
models that yield more precise predictions. An eight-dimensional nonlinear map drives the
dynamics of our approach. We analytically derive the conditions under which its unique
steady state is locally stable and numerically study its out-of-equilibrium behavior. In doing
so, we detect multiple scenarios with coexisting attractors at which the firms’ behavior yields
distinctively different market outcomes.

Keywords Duopoly model · Heuristic expectation formation · Learning behavior ·
Nonlinear dynamics · Stability and bifurcation analysis · Coexisting attractors

JEL Classification C73 · D43 · L12

1 Introduction

For firms that operate in oligopoly markets, it is of utmost importance to form expectations
about the supply decisions of their competitors. In the classical duopoly model by Cournot
(1838), for instance, firms have naïve expectations, that is, they expect their rival to continue
to produce the same amount in the next period as it produces in the current period. Naïve
expectations combinedwith a linear demand, constantmarginal costs and a perfect knowledge
of the market features (demand schedules, cost functions) lead to the global stability of the
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so-called Cournot-Nash equilibrium.1 While the experimental evidence by Cox and Walker
(1998) suggests that naïve expectations may be a reasonable description of firms’ expectation
formation behavior, the experimental evidence byStahl (1996),Offerman et al. (2002),Bigoni
(2010) and Assenza et al. (2015) paints a richer picture. In particular, these studies suggest
that firms switch between a limited number of heuristic forecasting models to form their
expectations.2 Importantly, firms’ boundedly rational expectation formation and learning
behavior, rendering the dynamics of the underlyingmarket nonlinear, may prevent them from
reaching correct forecasts. As a result, firms may continuously revise their expectations, with
the consequence that prices and quantities never reach their equilibrium values.

Against this backdrop,we propose a novel duopolymodel inwhich two boundedly rational
firms display a heuristic expectation formation and learning behavior. Within our nonlin-
ear duopoly model, the firms use competing forecasting models to predict their opponent’s
behavior. To simplify matters, we assume that the firms rely on a growth forecasting model,
which predicts that the opponent will increase its production, and a reduction forecasting
model, which predicts that the opponent will decrease its production. Moreover, the firms
learn in the sense that they adjust the weight they assign to a forecasting model accord-
ing to an evolutionary fitness measure based on prediction accuracy. The dynamics of our
nonlinear duopoly model is driven by an eight-dimensional nonlinear map. Our nonlinear
duopoly model possesses a unique steady state at which prices and quantities correspond
to the Cournot-Nash solution of the classical linear duopoly model with naïve expectations.
While the steady state of that model is globally stable, we demonstrate that a Flip bifurcation
may compromise the local stability of the steady state of our nonlinear duopoly model. In
fact, our bifurcation analysis reveals that the stability loss of the steady state of our nonlinear
duopoly model—which may occur, for instance, when firms predict that their opponent will
strongly adjust its supply—is accompanied by the emergence of a period-two cycle.

We furthermore find that our nonlinear duopoly model is able to produce complex dynam-
ics, involving, amongst others, multiple scenarios with coexisting attractors. Interestingly,
these coexisting attractors may be associated with distinctively different market outcomes.
For certain parameter constellations, for instance, the following two attractors coexist. One
attractor implies that the supply of both firms evolves asynchronously, resulting in a rela-
tively stable behavior of the firms’ total supply and, ultimately, in rather calm price dynamics.
The other attractor implies that the supply of both firms evolves synchronously, resulting in
a relatively unstable behavior of the firms’ total supply and, ultimately, in rather turbulent
price dynamics. Observing the behavior of our nonlinear duopoly model from the outside,
one may arrive at wrong policy conclusions.When the firms’ supply evolves asynchronously,
they alternately dominate the market, a situation that may appear as fierce competition. In
contrast, the synchronous evolution of the firms’ production decisions may be confused with
collusion.However, bothmarket outcomes are emergent phenomena of our nonlinear duopoly
model; they result from different sets of initial conditions.

We continue as follows. In Sect. 2, we comment on related literature. In Sect. 3, we
recall the classical linear duopoly model with naïve expectations. In Sect. 4, we present our
nonlinear duopoly model. In Sect. 5, we conclude our paper. Appendices A and B contain
proofs of our main analytical results.

1 Puu and Sushko (2002), Kopel (2009) andBischi et al. (2010) provide excellent surveys of dynamics duopoly
models.
2 Duffy (2006), Hommes (2011) and Bao et al. (2021) review related experimental evidence with respect to
finance and macroeconomics. Indeed, such behavior is widespread.
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2 Literature review

Our modeling approach is inspired by the seminal papers by Brock and Hommes (1997,
1998). In their cobweb (asset pricing) model, a farmer (speculator) switches between hetero-
geneous forecasting models according to an evolutionary fitness measure. In our nonlinear
duopoly model, a firm aggregates the predictions of competing forecasting models using
weights that reflect their forecasting performance. Such an approach was also taken in the
famous exchange rate model by Frankel and Froot (1986, 1990) in which a portfolio manager
pools the predictions of different forecasting models. One of the first models to explore the
possibility of switching between different expectation formation rules in a Cournotian setting
is that by Droste et al. (2002). They study a route to complex dynamics that may emerge
when a simple expectation rule competes with a sophisticated but costly expectation rule,
using a replicator dynamics approach with mutational noise. Anufriev et al. (2013) consider
a Bertrand oligopoly model in which firms switch between least squares learning and gra-
dient leaning for determining the price. Switching between such learning rules may induce
endogenous dynamics. Kopel et al. (2014) adopt a similar mechanism for analyzing a sce-
nario in which firms switch between a socially concerned and a profit-maximizing behavior.
Cerboni Baiardi et al. (2015) build an evolutionary exponential replicator oligopoly model,
focusing on the coexistence of strong and weak attractors. Similar switching principles are
used in Bischi et al. (2015), Anufriev and Kopányi (2018), Lamantia and Radi (2018) and
Bischi and Lamantia (2022).

Of course, endogenous duopoly dynamicsmay also emerge via other channels. Theocharis
(1960), Puu (2008) and Hommes et al. (2018) show that the equilibrium of the classical
linear duopoly model with naïve expectations becomes unstable in the presence of three
or more firms. Moreover, Huang (2008) demonstrates that there are situations in which an
improvement of the accuracy of information (e.g. a reduction in information lags) may be
detrimental to the stability of an equilibrium. However, Huang (2003) proves that oligopoly
firms which display simple supply strategies because of limited information may achieve
higher relative profits than their competitors. By replacing the hypothesis of linearity of the
demand function with a microfounded nonlinear (isoelastic) demand schedule, Puu (1991)
shows that the steady state of the classical linear duopoly model with naïve expectations
may become unstable, leading to persistent periodic and chaotic fluctuations. Bischi and
Naimzada (2000) endow firms with a gradient learning rule that does not require the full
knowledge of the demand and profit functions, but only a local one. According to this rule,
firms are able to estimate, by market experiments, the slope of the profit function at the point
corresponding to the current values of the strategic variables, and move towards the direction
of the profitmaximum at a speed regulated by a behavioral parameter. Another learning rule is
the so-called Local Monopolistic Approximation (LMA), first proposed by Tuinstra (2004),
to model a dynamic oligopoly where demand is not known by firms but estimated through
market experiments. Bischi et al. (2007) show that the dynamics generated through LMA
behavior may converge to a Nash equilibrium, also in cases where the classic best-response
dynamics does not converge to it.

3 The classical linear duopoly model with naïve expectations

The goal of our paper is to show that the heuristic expectation formation and learning behavior
of boundedly rational firms may give rise to complex duopoly dynamics. As a workhorse, we
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use the classical linear duopoly model in which firms have naïve expectations. In the remain-
der of this section, we first recall this model and then discuss some of its main properties.
Our exposition follows Gandolfo (2009) and Kopel (2009).

Let us turn to the details of thismodel.Market equilibrium implies that consumers’ demand
equals the firms’ total supply in each time step, i.e.

Dt � St . (1)

Moreover, consumers’ demand depends negatively on the current market price

Dt � a − Pt
b

, (2)

where a and b are positive parameters. The firms’ total supply consists of the supply of firms
A and B

St � q A
t + qB

t . (3)

Obviously, the market price adheres to

Pt � a − b(q A
t + qB

t ). (4)

We assume that parameters a and b are such that prices and quantities are positive, both
at the steady state and out of equilibrium.3

Let us next derive the supply of firm A. Firm A maximizes its expected profits. Since firm
A has a linear cost function with constant marginal costs c > 0, its expected profits result in

E A
t

[
π A
t

]
� E A

t

[
Ptq

A
t − cq A

t

]
�

(
a − b

(
q A
t + E A

t

[
qB
t

]))
q A
t − cq A

t . (5)

From the corresponding first-order condition, we can compute that the optimal supply of
firm A is equal to

q A
t � 3

2
α − 1

2
E A
t [q

B
t ], (6)

where, for ease of exposition, α � a−c
3b > 0 reflects an aggregate parameter. Importantly,

the supply of firm A depends negatively on the expected supply of firm B. For simplicity,
we assume that firms A and B have identical cost functions. The supply of firm B, resulting
from analogous considerations, follows as

qB
t � 3

2
α − 1

2
EB
t [q

A
t ] (7)

and depends negatively on the expected supply of firm A.
Apparently, a crucial question in this strand of literature is how a duopoly firm predicts

the behavior of its opponent. In the classical linear duopoly model with naïve expectations,
we simply have that

E A
t

[
qB
t

]
� qB

t−1 (8)

and

EB
t

[
q A
t

]
� q A

t−1, (9)

3 For models that explicitly take such constraints into account, see Tramontana et al., (2010, 2011) and Gori
and Sodini (2017). We also assume that firms are aware of the true demand function. For models that deviate
from this assumption, see Bischi and Naimzada (2000), Tuinstra (2004) and Bischi et al. (2007).
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respectively. Accordingly, firms A and B then predict that their opponent will not adjust its
supply decision.

Combining (6) to (9) then reveals that

q A
t � 3

2
α − 1

2
qB
t−1 (10)

and

qB
t � 3

2
α − 1

2
q A
t−1, (11)

reflecting the firms’ best-response functions.
In Appendix A, we prove the following proposition (an overbar denotes steady-state

quantities).

Proposition 1 The dynamics of the classical linear duopoly model with naïve expectations
is driven by a two-dimensional linear map. Its unique steady state SSL � (q A, qB ) � (α, α)
is globally stable.

With respect to the steady state of the classical linear duopoly model with naïve expec-
tations, Proposition 1 reveals that the production quantities of firms A and B are given by
q A � qB � α � a−c

3b , commonly referred to as Cournot-Nash equilibrium. Consequently,
the total steady-state supply of firms A and B results in the steady-state price P � a+2c

3 such

that steady-state profits realized by firms A and B amount to π A � π B � bα2 � (a−c)
9b

2
. At

the steady state, neither firmAnor firmBmakes a prediction error, i.e. their naïve expectations
are correct.

Figure 1 provides an example of the best-response dynamics of the classical linear duopoly
model with naïve expectations. The blue and pink lines mark the best-response functions of
firms A and B, respectively. Starting in the out-of-equilibrium point (q A

0 ,q
B
0 ), the figure

illustrates for a few best-response iterations how the duopoly market converges towards the
Cournot-Nash equilibrium point (α,α). Note that the production quantities of both firms
display a zigzag path for this set of initial conditions until they have reached the equilibrium
point (α,α). Since firms’ total production is either high or low along the adjustment route,
the price path reflects a zigzag pattern, too.

There are two main reasons why we use the classical linear duopoly model with naïve
expectations as a benchmark model. First, its setup is well known, relatively simple, and easy
to extend. Second, its dynamics is globally stable. Hence, all deviations from its well-known
behavior that we observe in the following are due to our model extensions, i.e. the firms’
heuristic expectation formation and learning behavior, as introduced in the next section.

4 A nonlinear duopoly model

As in the previous section, we assume that the supply of firms A and B is given by (6) and
(7), respectively. In this section, however, we modify their expectation formation behavior.
Moreover,wepresent ourmain analytical results and simulate the out-of-equilibriumbehavior
of our nonlinear duopoly model.
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Fig. 1 Best-response dynamics within the classical linear duopoly model with naïve expectations. The blue and
pink lines mark the best-response functions of firms A and B, respectively. Starting in the out-of-equilibrium
point (q A

0 , qB0 ), the figure illustrates for a few time steps how the duopoly market converges towards the
Cournot-Nash equilibrium point (α, α)

4.1 Firm’s expectation formation and learning behavior

Let us turn to the key part of our nonlinear duopoly model, namely the question of how
firms predict the behavior of their opponent and how they learn from their mistakes. Let us
start with firm A. In general, firm A may employ several competing forecasting models to
predict firm B’s supply decision. Given our objective and to simplify matters, it is sufficient
for us to consider two different forecasting models. In the first step, firm A predicts that
firm B will either increase or decrease its supply. In the second step, firm A aggregates these
predictions by assigning weights to them. The weights firm A uses to pool the predictions of
its two forecasting models evolve over time, subject to an evolutionary performance measure
based on prediction accuracies. In this sense, firm A displays a boundedly rational learning
behavior. Firm B’s expectation formation and learning behavior evolves along similar lines.
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Let us formalize the firms’ expectation formation and learning behavior. We express firm
A’s expectation about the supply of firm B as

E A
t

[
qB
t

]
� W A,G

t M A,G
t +W A,R

t M A,R
t , (12)

where MA,G
t and MA,R

t are firm A’s predictions using the growth and reduction forecasting
models, andW A,G

t andW A,R
t � 1−W A,G

t are the weights it assigns to these two techniques.
Firm A’s forecasting models predict that firm B will either increase or decrease its supply

by a constant factor, represented by expectation parameter 0 < d < 1. Accordingly, firm A’s
growth forecasting model is formalized as

MA,G
t � (1 + d)qB

t−1, (13)

while its reduction forecasting model is captured by

MA,R
t � (1 − d)qB

t−1. (14)

Experimental evidence for the growth and reduction forecasting models can be found in
Assenza et al. (2015). Note that firm A’s final prediction is given by (12). In general, there
are three different scenarios. For W A,G

t � W A,R
t � 0.5, firm A predicts that firm B will

not alter its supply decision. As we will see, this holds at the unique steady state of our
nonlinear duopoly model. Out of equilibrium, we have that firm A predicts that firm B will
either increase or decrease its supply decision. This depends on whether W A,G

t is larger or
smaller than W A,R

t .4

The fitness of the two forecasting models depends on current and past squared prediction
errors. The fitness of firm A’s growth and reduction forecasting models is defined as

F A,G
t � eF A,G

t−1 − (1 − e)(qB
t−1 − MA,G

t−1 )
2

(15)

and

F A,R
t � eF A,R

t−1 − (1 − e)(qB
t−1 − MA,R

t−1 )
2
, (16)

respectively. Firm A’s memory parameter is restricted to 0 < e < 1.5

The weight firm A assigns to the growth and reduction forecasting models is due to

W A,G
t � exp[ f F A,G

t ]

exp
[
f F A,G

t

]
+ exp[ f F A,R

t ]
(17)

and

W A,R
t � exp[ f F A,R

t ]

exp
[
f F A,G

t

]
+ exp[ f F A,R

t ]
, (18)

4 Wedonot argue that our setup is superior to setups that rely onmore traditional heuristics such as extrapolative
or regressive rules. We regard our setup as a reasonable alternative setup that may improve our understanding
of the functioning of duopoly markets. However, we would like to point out that (13) and (14) do not rely on
knowledge about firm B’s long-run strategy, as would be typical for regressive rules. Moreover, (13) and (14)
only rest on the previous supply decision of firm B. In contrast, extrapolative rules rely at least on the last two
supply decisions of firm B, which blows up the dimension of the underlying dynamical system.
5 Evolutionary models that also use squared prediction errors as a fitness indicator include Lines and West-
erhoff (2010) and Schmitt and Westerhoff (2019). Alternatively, one may use past realized profits as a fitness
criterion, such as in Brock and Hommes (1997, 1998).
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respectively. The intensity of choice parameter f > 0 indicates how sensitively firm A
reacts to differences in the fitness of its forecasting models. Two aspects of (17) and (18) are
relevant to understanding firm A’s learning behavior. First, the weight firm A assigns to a
forecasting model increases in line with the forecasting model’s fitness. Second, the weight
firm A assigns to the forecasting model that yields the higher fitness increases in line with
parameter f . In this respect, there are two extreme parameter constellations. For f → 0,
firm A weights both predictions of its forecasting model with 50 percent. For f → ∞, firm
A only uses the forecasting model with the higher fitness.6

Symmetrically, we obtain the following set of equations for firm B. We express firm B’s
expectation about the supply of firm A as

EB
t

[
q A
t

]
� WB,G

t MB,G
t +WB,R

t MB,R
t , (19)

firm B’s growth forecasting model as

MB,G
t � (1 + d)q A

t−1, (20)

firm B’s reduction forecasting model as

MB,R
t � (1 − d)q A

t−1, (21)

the fitness of firm B’s growth forecasting model as

FB,G
t � eF B,G

t−1 − (1 − e)(q A
t−1 − MB,G

t−1 )
2
, (22)

the fitness of firm B’s reduction forecasting model as

FB,R
t � eF B,R

t−1 − (1 − e)(q A
t−1 − MB,R

t−1 )
2
, (23)

and the weights firm B assigns to its growth and reduction forecasting models as

WB,G
t � exp[ f F B,G

t ]

exp
[
f F B,G

t

]
+ exp[ f F B,R

t ]
, (24)

and

WB,R
t � exp[ f F B,R

t ]

exp
[
f F B,G

t

]
+ exp[ f F B,R

t ]
, (25)

respectively. Since the expectations of firms A and B become naïve when f → 0, our
nonlinear duopoly model nests the classical linear duopoly model with naïve expectations as
a special case. The same is true when d → 0.

We are particularly interested in how the firms’ heuristic expectation formation and learn-
ing behavior affects the dynamics of our nonlinear duopoly model. The classical linear
duopoly model with naïve expectations yields a globally stable steady state, i.e. permanent
duopoly dynamics emerge in this setup only in the presence of exogenous shocks. In the
following, we demonstrate that our nonlinear duopoly model may endogenously produce
complex dynamics.

6 See Hommes (2013), Franke and Westerhoff (2017) and Hommes (2021) for an in-depth discussion of this
boundedly rational learning approach.
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4.2 Analytical results

The following proposition, proven in Appendix B, summarizes our main analytical results.

Proposition 2 The dynamics of our nonlinear duopoly model is driven by an eight-
dimensional nonlinear map. This map possesses a unique steady state, given by

SSN �
(
q A, F

A,G
, F

A,R
, x B , qB , F

B,G
, F

B,R
, x A

)
� (

α,−d2α2,−d2α2, α, α, −
d2α2, −d2α2, α

)
. Steady state SSN is locally stable if and only if stability condition

d < dFlip
cri t � 1

2α

√
(1+e)

(1−e) f holds. A violation of this stability condition is associated with
the emergence of a Flip bifurcation and the birth of a period-two cycle.

Proposition 2 deserves a few comments. Firm A’s and B’s steady-state supply, given by

q A � qB � α � a−c
3b , their steady-state profits, given by π A � π B � bα2 � (a−c)

9b
2
, and

the steady-state price, given by P � a+2c
3 , only depend on fundamental parameters a, b and

c. Moreover, they are equal to those we encountered at the Cournot-Nash equilibrium of the
classical linear duopoly model with naïve expectations. Why is this the case? Note that our
nonlinear duopoly model ensures that neither firm A nor firm B makes any prediction errors
at the steady state, i.e. both firms correctly predict the behavior of their opponent when the
dynamics is at rest.7 The same is true when firms A and B form naïve expectations. At the
steady state, naïve expectations entail no prediction errors.

Solving stability condition d < dFlip
cri t � 1

α

√
(1+e)

(1−e) f for memory parameter e reveals that

the local stability of steady state SSN necessitates that e > eFlipcri t � 1− 2
1+4α2d2 f

.With respect

to intensity of choice parameter f , we obtain the stability condition f < f Flipcri t � (1+e)
4α2d2(1−e)

.
Accordingly, the local stability of steady state SSN depends on all six model parameters.
With respect to the fundamental parameters, we can conclude that an increase in parameter
a is detrimental to market stability, while an increase in parameters b and c is beneficial for
market stability. With respect to the behavioral parameters, we can conclude that an increase
in expectation parameter d and intensity of choice parameter f may compromise market
stability, while an increase in memory parameter e fosters market stability.8

4.3 Numerical results

Let us now study the out-of-equilibrium behavior of our nonlinear duopoly model. Our
simulations rely on the following base parameter setting. For the fundamental parameters,
capturing key demand and supply characteristics of the duopoly market, we assume that
a � 25, b � 2 and c � 1, implying that the aggregate parameter α is equal to 4. For the
behavioral parameters, capturing the firms’ expectation formation and learning behavior, we
assume that d � 0.02, e � 0.9 and f � 475. While we keep the fundamental parameters
fixed, the behavioral parameterswill also serve as bifurcation parameters.Using our analytical
insights, we can compute that the steady-state supplies of firms A and B amount to q A �
7 This is an important observation. While the growth and the reduction forecasting models deliver incorrect
predictions, their pooled predictions are correct at the steady state. Since the firms’ expectations should be
correct at the steady state, we regard this as a desirable outcome.
8 Given the dimension of map N , it is remarkable that we can precisely clarify the role played by each model
parameter for the coordinates and local stability properties of steady state SSN . Such clear-cut analytical
insights may justify one or the other simplifying assumption we made in setting up our nonlinear duopoly
model, in particular the symmetric firm specification on which we focus mainly.
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qB � 4. Moreover, the firms’ total steady-state supply results in a steady-state price given
by P � 9. The steady-state profits realized by firms A and B are equal to π A � π B � 32.
Once again, we remark that neither firm makes any prediction errors at the steady state,
i.e. they correctly predict their opponent’s supply decisions. Furthermore, Proposition 2
reveals that the steady state of our nonlinear duopoly model becomes unstable due to a Flip
bifurcationwhen behavioral parameters d , e and f are about to violate the stability conditions
d < dFlip

cri t � 0.025, e > eFlipcri t � 0.848 and f < f Flipcri t � 742.2, respectively. As we will
see in the sequel, our nonlinear duopoly model then gives rise to a period-two cycle and,
as these behavioral parameters change further, to endogenous dynamics that may involve
coexisting attractors. In the following, we use bifurcation diagrams and time series plots to
illustrate the functioning of our nonlinear duopoly model.

Figures 2, 3, 4 present bifurcation diagrams in which we depict the price, the supply of
firm A, the supply of firm B and the firms’ total supply versus expectation parameter d ,
using different sets of initial conditions. We chose the initial conditions with the goal of best
visualizing the appearance and disappearance of coexisting attractors. Given the dimension
of map N , this is a nontrivial task. Note that all bifurcation diagrams have in common that
the dynamics of our nonlinear duopoly model converges towards its steady state SSN for
d < dFlip

cri t � 0.025. As to be expected, we furthermore observe a Flip bifurcation and the

birth of a locally stable period-two cycle at dFlip
cri t � 0.025. Note that d � 0.025 means that

the firms’ growth and reduction forecasting models predict that their opponent will increase
or decrease its supply by 2.5 percent in the next period. Since the firms’ eventual predictions
are averages of the predictions of their two forecasting models, such a value for expectation
parameter d seems to us not to be extreme. Figures 2, 3, 4 indicate that we may observe
coexisting attractors for higher values of expectation parameter d . Initial conditions then
determine the fate of the duopoly market. In general, we can also infer from Figs. 2, 3, 4 that
an increase in expectation parameter d amplifies the amplitude of the dynamics, even if the
coexistence of several attractors may create exceptions to this rule.

Comparing Figs. 2, 3, 4 at around d � 0.04 indicates that a period-two cycle, visible in
Fig. 2, coexists with a cyclical attractor, visible in Figs. 3 and 4.9 Let us explore this scenario
in more detail. The panels in Fig. 5 report the price, the supply of firm A, the supply of firm
B and the firms’ total supply in the time domain for our base parameter setting, except that
d � 0.04. The solid (dashed) horizontal lines mark the steady-state (average) values of the
quantities depicted. Clearly, the left and right panels of Fig. 5 only differ with respect to their
initial conditions. Interestingly, the period-two cycle presented in the left panels of Fig. 5
goes hand in hand with relatively strong price volatility. The main reason for this is that the
supplies of firms A and B evolve synchronously, i.e. the supply of both firms is either high or
low. In contrast, the cyclical dynamics depicted in the right panels of Fig. 5 is associated with
relatively low price volatility. While the supplies of firms A and B again display a relatively
high amplitude, comparable to the one observed for the case of the period-two cycle, their
supplies behave asynchronously. When the supply of firm A is high (low), the supply of firm
B is low (high). In fact, the bottom right panel of Fig. 5 reveals that the firms’ total supply is

9 Two technical comments are in order. First, all the cyclical attractors that we discuss in our paper were
detected numerically, with the exception of the steady state. While it is clear that our nonlinear duopoly model
may give rise to scenarios with at least four coexisting attractors, we cannot rule out the existence of further
attractors. Second, it is difficult to judge the true nature of some of the cyclical attractors we will encounter
in the following. They may stand for high-period cycles, quasiperiodic motion or chaotic dynamics. For a
single time series, one may seek to identify their true nature by estimating the corresponding largest Lyapunov
exponent or by exploring their attractors in phase space. However, since small changes in parameter d may
render these results, we abstain from discussing this technical aspect in more detail.
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Fig. 2 First set of bifurcation diagrams for parameter d. The panels show the price, the supply of firm A,
the supply of firm B and the firms’ total supply for increasing values of parameter d. The other parameters
correspond to our base parameter setting. Figures 2, 3, 4 only differ with respect to their initial conditions
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Fig. 3 Second set of bifurcation diagrams for parameter d. The panels show the price, the supply of firm A,
the supply of firm B and the firms’ total supply for increasing values of parameter d. The other parameters
correspond to our base parameter setting. Figures 2, 3, 4 only differ with respect to their initial conditions
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Fig. 4 Third set of bifurcation diagrams for parameter d. The panels show the price, the supply of firm A or
firm B, the supply of firm B or firm A and the firms’ total supply for increasing values of parameter d. The
other parameters correspond to our base parameter setting. Figures 2, 3, 4 only differ with respect to their
initial conditions
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Fig. 5 First set of time series diagrams for parameter d. The panels show the price, the supply of firm A, the
supply of firmB and the firms’ total supply in the time domain. The simulations are based on our base parameter
setting, except that d � 0.04. The left and right panels only differ with respect to their initial conditions. The
solid (dashed) horizontal lines mark the steady-state (average) values of the quantities depicted
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relatively stable, which explains why price volatility is low. A comparison of the solid and
dashed lines in Fig. 5 reveals that, in the case of the period-two cycle, the average price is
lower than the steady-state price, while it is the other way around for the cyclical attractor. At
the cyclical attractor, firms’ average profits amount to 32.01, comparable to their steady-state
profits π A � π B � 32. At the period-two cycle, however, firms’ average profits drop to
31.87. Overall, we have here the first example where our nonlinear duopoly model yields
distinctively different market outcomes for the same parameter setting.

Continuing by increasing the value of expectation parameter d further, we can see from
Fig. 2 that the period-two cycle undergoes a Neimark-Sacker bifurcation at a value of about
d ∼� 0.057, creating two closed invariant curves around the two points of the cycle, which in
turn becomes unstable. As can further be observed, the amplitude of these cycles increases
in line with parameter d . Scrutinizing Figs. 2, 3, 4 at d � 0.07 reveals that our nonlinear
duopoly model now gives rise to three coexisting attractors. We study these scenarios in the
time domain in Fig. 6, generated using our base parameter setting, except that d � 0.07. In
the left panels of Fig. 6, we see relatively stable price dynamics due to asynchronous supply
decisions of firms A and B. This scenario corresponds to the right-hand scenario depicted in
Fig. 5. In the middle panels of Fig. 6, price volatility is much higher. This is a result of the
synchronous supply behavior of firmsAandB. In contrast to the left-hand scenario depicted in
Fig. 5, however, the dynamics is not due to a period-two cycle, but a cyclical attractor, located
around the two points of the aforementioned period-two cycle. In the right-hand panels of
Fig. 6, we observe price dynamics that alternates between calm and turbulent periods. Price
volatility is high when the firms’ supply decisions evolve synchronously and low when they
evolve asynchronously. In the latter case, the supplies of firms A and B, and consequently
their total supply, are clearly higher than their steady-state quantities. As a result, prices are
then lower than their steady-state value. This also holds on average.With respect to the firms’
profitability, we can conclude that the dynamics depicted in the left panels of Fig. 6 yield
average profits that, at 32.04, are quite comparable to those they achieve at the steady state.
However, this does not hold for the dynamics depicted in the middle and right panels of
Fig. 6, which are associated with average profits of 31.61 and 31.46, respectively.

The bifurcation diagrams reported in Fig. 4 further reveal that an additional period-two
cycle suddenly appears at around d ∼� 0.085, probably via a saddle-node bifurcation. Since
the depicted simulations hold for firmAor firmB, there are in fact two new period-two cycles.
Figure 7 presents the dynamics of our nonlinear duopolymodel for our base parameter setting,
except that d � 0.12. Now we are confronted with four coexisting attractors. The left panels
of Fig. 7 show one of the two new-born period-two cycles. Note that the depicted period-two
cycle is associated with relatively high price volatility. The firms’ supplies now evolve not
only synchronously—we can also observe the supply of one firm fluctuatingmodestly around
a high level, while that of the other firm fluctuates more strongly around a low level. Total
supply fluctuates significantly, as do prices. Moreover, the average quantities produced by
the firms differ considerably from their steady-state values, as can be seen from the solid and
dashed lines in Fig. 7. As a result, the average profits of firm A, at 33.08, are considerable
higher than the average profits of firm B, namely 29.24 (of course, for other initial conditions
this may be the other way around).

The middle and right panels of Fig. 7 depict the remaining two attractors. In the middle
panels of Fig. 7, we again see an attractor at which prices are relatively stable. We already
encountered this attractor in the left panels of Fig. 6 and in the right panels of Fig. 5. For this
attractor, firms’ average profits, at 32.13, are slightly higher than their steady-state profits. In
the top-right panel of Fig. 7, we see price dynamics that alternate between calm and turbulent
periods, as in the top-right panel of Fig. 6. In contrast to the previous figures, however, the
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Fig. 6 Second set of time series diagrams for parameter d. The panels show the price, the supply of firm A,
the supply of firm B and the firms’ total supply in the time domain. The simulations are based on our base
parameter setting, except that d � 0.07. The left, middle and right panels only differ with respect to their
initial conditions. The solid (dashed) horizontal lines mark the steady-state (average) values of the quantities
depicted

amplitude of the dynamics has increased. Of course, this has an impact on the average values
of prices and the firms’ total supply, whichmay deviate evenmore strongly from their steady-
state value than before. For instance, the average price in the top-middle panel of Fig. 7 is
equal to 9.07, while it equals 8.47 in the top-right panel of Fig. 7. The firms’ average profits
for the dynamics depicted in the right panels of Fig. 7 are equal to 30.75. Once again, our
nonlinear duopoly model may give rise to distinctively different coexisting attractors.10

10 Dieci et al., (2022, 2023) develop behavioral cobweb models in which firms switch between different
production technologies. In theirmodels, the volatility of the price dynamics increaseswhen firms involuntarily
coordinate on the same production technology. In our model, the volatility of prices increases when firms
involuntarily coordinate on the same forecasting model.
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Fig. 7 Third set of time series diagrams for parameter d. The panels show the price, the supply of firm A,
the supply of firm B and the firms’ total supply in the time domain. The simulations are based on our base
parameter setting, except that d � 0.12. The left, middle and right panels only differ with respect to their initial
conditions. Since the period-two cycle depicted in the left panels exists for firm A and for firm B, there are
four coexisting attractors in total. The solid (dashed) horizontal lines mark the steady-state (average) values
of the quantities depicted

At around d ∼� 0.168, the two period-two cycles, depicted in the left panels of Fig. 7,
suddenly disappear, leaving space only for the two cyclical attractors, depicted in the middle
and right panels of Fig. 7. One final remark is in order. The bifurcation diagrams in Figs. 2,
3, 4 highlight how attractors of different kinds suddenly appear, coexist for some time, and
eventually disappear. In this respect, it is important to note that even a small change in
expectation parameter d may have drastic consequences for the dynamics of our nonlinear
duopoly model.

For completeness, let us briefly explore how the other two behavioral parameters may
affect the dynamics of our nonlinear duopoly model. The top two panels of Fig. 8 present
bifurcation diagrams in which the price and the supply of firm A is depicted for increasing
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Fig. 8 Bifurcation diagrams for parameters e and f . The top two panels show the price and the supply of firm
A for increasing values of parameter e. The bottom two panels show the price and the supply of firm A for
increasing values of parameter f . The other parameters correspond to our base parameter setting
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values of memory parameter e. In line with Proposition 2, we observe a Flip bifurcation
at eFlipcri t � 0.848. When memory parameter e is larger than eFlipcri t � 0.848, the dynamics

converges towards steady state SSN . When memory parameter e is smaller than eFlipcri t �
0.848, our nonlinear duopolymodel gives rise to a period-two cycle. Since the supply of firms
A and B is either high or low, the variations in the firms’ total production entail pronounced
price fluctuations.

The bottom two panels of Fig. 8 display bifurcation diagrams depicting the price and
the supply of firm A for increasing values of intensity of choice parameter f . As long as
f < f Flipcri t � 742.2, the dynamics of our nonlinear duopoly model converges to its steady

state SSN . At f � f Flipcri t � 742.2, we observe a Flip bifurcation and the birth of a period-
two cycle. As the intensity of choice parameter f increases further, we observe the onset of
cyclical dynamics. In contrast to the period-two cycle, the supplies of firms A and B now
evolve asynchronously. When the supply of firm A is high, then the supply of firm B is low,
and vice versa. Hence, the volatility of the firms’ total production and price is rather low.

As can be seen in the top two panels of Fig. 8, a period-two cycle may exist for e � 0.
Moreover, note that the dimension of the map of our nonlinear duopoly model decreases
from eight to four for e � 0. While it is still difficult to explain in general how our nonlinear
duopoly model functions for this parameter constellation, we are at least able to understand
the emergence of a period-two cycle. For instance, the parameter setting a � 25, b � 2,
c � 1, d � 0.06, e � 0 and f � 10 yields a locally stable period-two cycle at which the
supplies of firmsA andB are alternatingly given by (q A

1 � 3.76, qB
1 � 3.76) and (q A

2 � 4.23,
qB
2 � 4.23). In Fig. 9, we portray the best-response dynamics of our nonlinear duopolymodel

for this cycle. To be precise, the light and dark blue lines mark the best-response functions
of firm A, while the light and dark pink lines mark the same for firm B. Clearly, the different
lines represent the best-response behaviors of a firm for period t as a function of the supply
of its rival in period t − 1, assuming that the supply of its rival in period t − 2 is equal to
the solution of the period-two cycle at that moment. Figure 9 shows that, given (q A

1 , qB
1 ),

the best-response of firms A and B are (q A
2 , qB

2 ), and, given (q A
2 , qB

2 ), the best-response of
firms A and B are (q A

1 , qB
1 ). In the presence of higher-order cycles, the behavior of each firm

is characterized by more than two best-response functions, and a graphical representation
becomes tedious. Nevertheless, it is easy to imagine that, given the past behaviors of firms’
A and B, their actual best-response functions are constantly adjusting, giving rise to complex
duopoly dynamics, as illustrated above.

5 Conclusions

In this paper, we develop a nonlinear duopoly model in which boundedly rational firms
employ a set of different forecasting models to predict the supply decisions of their opponent.
In particular, we focus on a setup in which the firms use a growth and a reduction forecasting
model. Moreover, we consider that the firms display a learning behavior in the sense that
they put more weight on a forecasting model that yields a higher prediction accuracy. As
it turns out, the dynamics of our nonlinear duopoly model is due to an eight-dimensional
nonlinear map. We analytically prove that our nonlinear duopoly model possesses a unique
steady state. At the steady state, the production quantities of the two firms correspond to those
that we observe at the Cournot-Nash equilibrium of the classical linear duopoly model with
naïve expectations. Our analysis further reveals that the local stability of the steady state may
only be compromised by a Flip bifurcation, an outcome that triggers endogenous dynamics
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Fig. 9 Best-response dynamics within our nonlinear duopoly model for a period-two cycle. Parameter setting
a � 25, b � 2 and c � 1, d � 0.06, e � 0 and f � 10 yields the period-two cycle (q A

1 � 3.76, qB1 � 3.76)

and (q A
2 � 4.23, qB2 � 4.23). The light and dark blue lines mark the best-response functions of firm A for

this period-two cycle; the light and dark pink lines mark the same for firm B. The figure shows that, given
(q A
1 , qB1 ), the best-response of firms A and B are (q A

2 , qB2 ), and, given (q A
2 , qB2 ), the best-response of firms A

and B are (q A
1 , qB1 )

in the form of a period-two cycle. Such dynamics may, for instance, be set in motion when
the firms’ forecasting models predict that their opponent will adjust its supply sufficiently
strongly.

Out of equilibrium,we observe that the firms’ heuristic expectation formation and learning
behaviormay lead to complex dynamics. Amongst others, our nonlinear duopolymodel gives
rise to coexisting cyclical attractors, which in turn display distinctively different price and
quantity properties. For instance, we may observe rather stable or unstable price and quantity
dynamics for the same parameter setting. Price and quantity dynamics are more volatile when
the supply of both firms evolves synchronously and less volatile when the supply of both
firms evolves asynchronously. In the former case, the firms’ total supply is relatively stable,
while it is subject to larger fluctuations in the latter case. For an outside observer who only
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observes the price and quantity dynamics of our nonlinear duopoly model, the case in which
the firms’ supply evolves synchronously may appear as an instant of collusive behavior. Such
a judgement would bewrong, since no collusive behavior is possible in our nonlinear duopoly
model. Synchronous behavior is an emergent phenomenon in our model that occurs due to
the firms’ heuristic expectation formation and learning behavior.

Overall, we are impressed by the large number of distinctively different types of dynamic
behavior that our nonlinear duopoly model can simultaneously generate. We conclude our
paper by pointing out a number of possible model extensions. First, preliminary investiga-
tions reveal that our nonlinear duopoly model may produce intriguing dynamics when the
firms differ, e.g. with respect to their fundamental or behavioral parameters. Studying an
asymmetric version of our nonlinear cobweb model may be worthwhile. Second, one may
regard our nonlinear duopoly model as a static, but repeated game. Against this backdrop, it
may be interesting to assume that firms seek to condition their action on the discounted stream
of future profits, taking into account their rival’s future behavior. Third, we assume that firms
maximize their absolute profits and that they weight the growth and reduction forecasting
models based on absolute prediction accuracies. Schaffer (1989) and Vega-Redondo (1997)
make a case for the use of relative instead of absolute performance indicators. Relatedly,
Huck et al. (1999) report experimental evidence according to which firms also display imita-
tive behavior. Incorporating these ideas may lead to even richer duopoly models. Fourth, we
opted for a rather simple functional specification of firms’ growth and reduction forecasting
models—future work may consider alternative setups. We hope that our paper stimulates
more research in this direction.
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Appendix A: Proof of Proposition 1

In the following, we derive the map that drives the dynamics of the classical linear duopoly
model with naïve expectations and show that its unique steady state is globally stable. From
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(10) and (11) it immediately follows that the dynamics of this model is due to the two-
dimensional linear map

L :�
{
q A
t � 3

2α − 1
2q

B
t−1

qB
t � 3

2α − 1
2q

A
t−1

(A1)

Straightforward computations indicate that map L has the unique steady state.

SSL � (q A, qB ) � (α, α). (A2)

Note that the total steady-state supply of firms A and B implies that the steady-state price
results in P � a+2c

3 . At the steady state, the profits realized by firms A and B amount to
π A � π B � bα2. The Jacobian matrix of map L reads as

J �
[

0 −0.5
−0.5 0

]
, (A3)

giving rise to the characteristic polynomial

P(λ) � λ2 − 0.25. (A4)

Since both eigenvalues of (A6) are equal to λ1,2 � ±0.5, we can conclude that the steady
state SSL of map L is globally stable.

Appendix B: Proof of Proposition 2

In the following, we derive the map that drives the dynamics of our nonlinear duopoly
model, compute its unique steady state and conduct a local stability analysis. Combining
(6)-(7) with (12)-(25) enables us to express our nonlinear duopoly model in the form of an
eight-dimensional nonlinear map, given by

N :�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q A
t � 3

2α − 1
2

(
2dqB

t−1

1+exp
[
f
(
e
(
F A,R
t−1 −F A,G

t−1

)
−(1−e)4dx Bt−1

(
qB
t−1−x Bt−1

))] + (1 − d)qB
t−1

)

x Bt � qB
t−1

F A,G
t � eF A,G

t−1 − (1 − e)
(
qB
t−1 − (1 + d)x Bt−1

)2
F A,R
t � eF A,R

t−1 − (1 − e)
(
qB
t−1 − (1 − d)x Bt−1

)2

qB
t � 3

2α − 1
2

(
2dq A

t−1

1+exp
[
f
(
e
(
FB,R
t−1 −FB,G

t−1

)
−(1−e)4dx At−1

(
q A
t−1−x At−1

))] + (1 − d)q A
t−1

)

x A
t � q A

t−1

FB,G
t � eF B,G

t−1 − (1 − e)
(
q A
t−1 − (1 + d)x A

t−1

)2
FB,R
t � eF B,R

t−1 − (1 − e)
(
q A
t−1 − (1 − d)x A

t−1

)2

,

(B1)

where x Bt � qB
t−1 and x A

t � q A
t−1 are auxiliary variables.
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Setting q A � q A
t � q A

t−1 � x A � x A
t � x A

t−1, q
B � qB

t � qB
t−1 � x B � x Bt � x Bt−1,

F
A,G� F A,G

t � F A,G
t−1 , F

A,R� F A,R
t � F A,R

t−1 , F
B,G� FB,G

t � FB,G
t−1 and F

B,R� FB,R
t �

FB,R
t−1 , we find that map N possesses the unique steady state

(B2)

SSN �
(
q A, F

A,G
, F

A,R
, x B , qB , F

B,G
, F

B,R
, x A

)

� (
α,−d2α2,−d2α2, α, α,−d2α2,−d2α2, α

)
.

At the steady state, we furthermore have that P � a+2c
3 and π A � π B � bα2.

Let us next study the local stability properties of steady state SSN . The Jacobian matrix
of map N , evaluated at the steady state SSN , reads as

J (SSN ) �
[

� �

� �

]
, (B3)

where

� �

⎛
⎜⎜⎜⎝

0 α2d
2
(1 − e) f −αde f

4
αde f
4

0 0 0 0
0 −2αd(1 + d)(1 − e) e 0
0 2αd(1 − d)(1 − e) 0 e

⎞
⎟⎟⎟⎠ (B4)

and

� �

⎛
⎜⎜⎝

− 1
2 − α2d2(1 − e) f 0 0 0

1 0 0 0
2αd(1 − e) 0 0 0

−2αd(1 − e) 0 0 0

⎞
⎟⎟⎠, (B5)

respectively. Using the Laplacian expansion on the (J − λI ) matrix, we may express the
characteristic polynomial of J (SSN ) as

P(λ) � λ2(e − λ)2
(
λ2 + ξ1λ + ξ2

)(
λ2 + η1λ + η2

)
, (B6)

where ξ1 � −( 1
2 + e + α2d2(1 − e) f

)
, ξ2 � e

2 + α2d2(1 − e) f , η1 �( 1
2 − e + α2d2(1 − e) f

)
and η2 � −( e

2 + α2d2(1 − e) f
)
.11 Now, steady state SSN is

locally stable when all eight eigenvalues of Jacobian matrix J (SSN ) are inside the unit
circle.12 In our local stability analysis, we are confronted with a situation in which two
eigenvalues are equal to zero, i.e. λ1 � λ2 � 0. Moreover, two eigenvalues are equal to
e, i.e. λ3 � λ4 � e. Since 0 < e < 1, these two eigenvalues do not harm the local sta-
bility of the steady state. Put differently, the local stability of steady state SSN hinges on
the remaining four eigenvalues, determined by two separate quadratic polynomials, namely(
λ25,6 + ξ1λ5,6 + ξ2

)
and

(
λ27,8 + η1λ7,8 + η2

)
. Let us first determine the necessary and suf-

ficient conditions assuring that λ5 and λ6 are less than one in modulus, for which we have
to check whether the stability conditions (i) 1 + ξ1 + ξ2 > 0, (ii) 1 − ξ1 + ξ2 > 0 and (iii)

11 Instead of using this tedious procedure, itmaybemore comfortable to compute the characteristic polynomial
using modern software tools such as Mathematica.
12 Puu (1997), Medio and Lines (2001) and Gandolfo (2009) review standard tools to study the behavior of
nonlinear dynamical systems.
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1 − ξ2 > 0 jointly hold. We find that stability conditions (i) and (ii) are always satisfied. In
contrast, stability condition (iii) necessitates that

4 − 2e

4
− α2d2(1 − e) f > 0. (B7)

Let us next determine the necessary and sufficient conditions assuring that λ7 and λ8 are
less than one in modulus. From the stability conditions (i) 1+η1 +η2 > 0, (ii) 1−η1 +η2 > 0
and (iii) 1 − η2 > 0 we find that stability conditions (i) and (iii) are always satisfied, while
stability condition (ii) requires that

1 + e

4
− α2d2(1 − e) f > 0. (B8)

Since 4 − 2e > 1 + e, stability condition (B8) is more binding than stability condition
(B7). Solving stability condition (B8) for parameter d , we arrive at

d <
1

α

√
(1 + e)

(1 − e) f
. (B9)

As long as stability condition (B9) holds, steady state SSL is locally stable. If stability
condition (B9) is violated, a Flip bifurcation renders steady state SSL unstable and a period-
two cycle emerges. Finally, solving (B9) for parameters e and f reveals that

e > 1 − 2

1 + 4α2d2 f
(B10)

and

f <
(1 + e)

4α2d2(1 − e)
, (B11)

respectively.
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