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Abstract
In the context of local analytic hierarchy process-group decision making (AHP-GDM), this
paper presents a theoretical framework and a semi-automatic procedure for reducing incom-
patibility between the actors involved in the decision making process and the collective
position. The row geometric mean is employed as the prioritisation procedure and the geo-
metric compatibility index (GCOMPI) as the incompatibility measure; individual pairwise
comparisonmatrices are considered as the input of the reduction process, whilst the collective
vector is the output. The reduction is attained by slightly modifying, in relative terms, the
judgements of the collective pairwise comparison matrix, irrespective of the method used
to obtain it, that further improve the GCOMPI. The resulting judgements of the collective
matrix and the associated collective priorities are close to the initial collective values. The
procedure does notmodify the judgements of the initial individualmatrices and this simplifies
the process of reaching consensus. A simulation analysis is utilised to study the performance
of the algorithm along with an illustrative numerical example. The analysis proves that the
proposed algorithm is easy to implement and efficient, it provides mathematically closed
results and significantly reduces the GCOMPI associated with the precise consistency con-
sensus matrix which is one of the AHP-GDM tools. The framework allows the procedure to
be adapted to specific interests.
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1 Introduction

The analytic hierarchy process (AHP) (Saaty, 1977, 1980) is one of the most widely used
multicriteria techniques (Ho and Ma, 2018; Kułakowski, 2020). Among other reasons, this
is due to (Aguarón et al., 2021): (i) its potential for addressing multiactor decisions; (ii) its
capacity for measuring the actors’ consistency when eliciting their preferences; and, (iii)
its ability to combine tangible and intangible aspects in formal models. The two methods
traditionally employed in local (one criterion) AHP-group decision making (AHP-GDM)
contexts (Saaty, 1989; Ramanathan & Ganesh, 1994; Forman & Peniwati, 1998) are the
aggregation of individual judgements (AIJ) and the aggregation of individual priorities (AIP).
They both use a weighted geometric mean as a synthesis method. As is well known, anymean
measure is representative of the collective behaviour if the data does not present a high degree
of variability (Saaty&Vargas, 2007). It is therefore necessary tomeasure the compatibility or
proximity between the initial individual positions and the collective position; an acceptable
level of incompatibility must also be guaranteed.

Assuming a local AHP-GDM context, where the Row Geometric Mean (RGM) is used
for obtaining the local priorities and the geometric compatibility index (GCOMPI) (Escobar
et al., 2015; Aguarón et al., 2019) is used for evaluating the incompatibility of the individual
positions with regards to the collective position, the paper presents the seminal ideas of
the theoretical framework and the semi-automatic procedure proposed by the authors for
reducing the incompatibility of the collective matrix (regardless of how it was obtained).
This reduction is achieved by slightly modifying, in relative terms, the judgements of the
collective matrix that further improve the GCOMPI.

The proposed framework considers relative modifications, instead of absolute, because
they better reflect the perceived relevance of changes. When considering small changes, both
the judgements and the derived collective priority vector will be close to the initial values,
as recommended by Saaty (2003). This framework also provides closed (optimal) results in
terms of the judgements that most rapidly reduce incompatibility and the range of values
over which the reduction occurs. The expression of the GCOMPI employed in this paper for
evaluating incompatibility takes the individual pairwise comparison matrices (PCMs) as the
input and the priority vector associated to the collective PCM as the output. Depending on
the available information (input and output), other variants of the GCOMPI can be seen in
Aguarón et al. (2022), a work that is an extension of this present study and that, following the
same theoretical framework, develops and demonstrates analogous results to those presented
here, but for the other variants.

The proposed procedure does not modify the judgements of the initial individual matrices,
so the continuous intervention by decisionmakers is not required to corroborate changesmade
to the judgements in the individual matrices. The paper also includes a simulation study and
new mathematical tools that evidence the excellent performance of the algorithm. Finally, it
should be noted that the procedure can be adapted to different situations, and therefore has
enormous cognitive potential (Moreno-Jiménez & Vargas, 2018).

The paper is structured as follows: Sect. 2 outlines the background of AHP-GDM and the
measurement of compatibility; Sect. 3 sets out the theoretical results necessary for the pro-
posal; Sect. 4 describes the procedure for revising judgements and reducing incompatibility,
presents a study of its performance, and it also highlights its most outstanding characteristics;
Sect. 5 illustrates the procedure by means of a numerical example and justify its potential by
comparing its results with those of the Precise Consistency Consensus Matrix (PCCM); and,
Sect. 6 highlights the most important conclusions of the study.
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2 Background

2.1 AHP in a local group decisionmaking context

AHP methodology consists of three phases (Saaty, 1980): (a) modelling; (b) valuation; and,
(c) prioritisation and synthesis. The two methods most commonly employed for obtaining
the local priorities are the Eigenvector (EGV) and the Row Geometric Mean (RGM). This
paper uses the RGM due to its psychological, mathematical and statistical properties and
relationships (Aguarón et al., 2020, 2021).

Considering a PCM of order n as a squared matrix A = (
ai j

)
n×n with ai j a ji = 1 and

ai j > 0, i, j = 1, . . . , n, the priority vector using the RGM (except for the normalization
factor) is given by:

wi =
⎛

⎝
n∏

j=1

ai j

⎞

⎠

1/n

(1)

AHP allows measurement of the degree of internal coherence of the decision maker
when incorporating their preferences (valuation) through the judgements elicitation process.
This internal coherence is known as consistency and guarantees the quality or validity of
the priority vector derived from the PCM. For the RGM, Crawford and Williams (1985)
advanced an unbiased estimator of the variance of log-errors as a measure of inconsistency.
Aguarón and Moreno-Jiménez (2003) referred to this measure as the Geometric Consistency
Index (GCI) and established thresholds for the GCI.

AHP stands out for its potential to address multi-actor decisions. Where a number of
actors evaluate a set of alternatives according to multiple conflicting criteria (tangible and
intangible), Escobar andMoreno-Jiménez (2007) distinguish three situations: (i) GroupDeci-
sion Making (GDM); (ii) Negotiated Decision Making (NDM); and, (iii) Systemic Decision
Making (SDM). In GDM, individuals work together in pursuit of a common goal under the
principle of consensus.

In the local AHP-GDM context considered in this work (Altuzarra et al., 2019), consensus
refers to the acceptance of the procedure followed to aggregate the individual positions
into a collective position (collective matrix of final group priority vector). If the decision
makers agree, at the beginning of the Consensus Reaching Process (CRP), on how to obtain
the collective position and no intervention is made during the process (AHP-GDM), it is
understood that there is an implicit acceptance of the result. If the decision makers directly
and continuously participate in obtaining the collective position (AHP-NDM), it is understood
that there is an explicit acceptance of that position.

LetA =
{
A(k) =

(
a(k)
i j

)

n×n
, k = 1, . . . , d

}
be a family of PCMs provided, respectively,

by d decision makers with weights αk

(∑d
k=1 αk = 1

)
, and w(k), k = 1, . . . , d , the priority

vectors derived from these matrices using a prioritisation method. The two methods tradi-
tionally used in AHP-GDM are the AIP and the AIJ (Aguarón et al., 2019). With AIP, once
the individual priorities are obtained, the priority vector for the group is calculated as the
normalised (distributive mode) weighted geometric mean of the individual priority vectors,
component by component:
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w
G|P
i =

d∏

k=1

(
w

(k)
i

)αk
i = 1, . . . , n (2)

With AIJ, a collective matrix AG =
(
aGi j

)

n×n
is constructed first, where each entry is

obtained as aGi j = ∏d
k=1

(
a(k)
i j

)αk
. Then, the priority vector wG|J is calculated following a

prioritisation method. When the priorities are obtained by means of RGM, both AIJ and AIP
provide (Barzilai & Golany, 1994; Escobar et al., 2004) the same collective priority vector
(wG|P

i = w
G|J
i ), where

w
G|J
i =

⎛

⎝
n∏

j=1

aGi j

⎞

⎠

1/n

i = 1, . . . , n (3)

2.2 Compatibility in AHP-GDM

Irrespective of the method employed to obtain the collective matrix (voting, consensus on the
judgements, aggregation, AIJ, AIP, etc.), this matrix cannot be representative of the group
position if the individual positions are not homogeneous or their incompatibility is high (Saaty
& Vargas, 2007; Scala et al., 2016). It is then necessary to evaluate the compatibility (an
objective distance measure) or the agreement (a subjective acceptance that requires personal

intervention) between the individual positions, A(k) =
(
a(k)
i j

)
or w(k) =

(
w

(k)
1 , . . . , w

(k)
n

)
,

k = 1, . . . , d , and the collective position, wG = (
wG
1 , . . . , wG

n

)
. If the group’s internal

coherence (compatibility or agreement) in choosing its collective position is not reached, the
suitability of the aggregation followed is not guaranteed. In this case, the different homo-
geneous positions of the actors must be identified in order to initiate posterior negotiation
processes to achieve final decisions that are as representative as possible (Altuzarra et al.,
2019). In addition, from a cognitive perspective (Moreno-Jiménez & Vargas, 2018), the
arguments that justify the different positions must be provided.

It is therefore necessary to establish (define and characterise) compatibility measures,
procedures for their improvement and thresholds that allow validation of the use of collective
priorities that represent the individual priorities. Garuti (2020) defines compatibility as the
sharing of similar value systems. Compatibility is generally calculated without the personal
intervention of the individuals with the exception of the emission of the initial judgements of
the PCMs. The published literature (Lipovetsky, 2020; Escobar et al., 2015) describes ordinal
and cardinal tools for the assessment of compatibility. Ordinal tools (e.g. ordinal correlation
coefficients) work with rankings of the alternatives, but some authors (Garuti, 2012) do not
recommend their use in the context of AHP (weighted spaces). Cardinal tools include the
S-compatibility (Saaty, 1996), the G-compatibility (Garuti, 2007), the coefficient of multiple
determination R2 that is commonly used in regression analysis (Lipovetsky, 2009); and, the
Geometric Compatibility Index (GCOMPI).

Dong et al. (2010), Escobar et al. (2015) and Aguarón et al. (2016) advanced initial
proposals of the GCOMPI for the evaluation of the compatibility of individual positions with
respect of the collective position. As can be seen in Sect. 3, the expression considered for the
GCOMPI in a local context (one criterion) combines the individual PCMs and the collective
priority vector. The choice of this expression of the GCOMPI is justified by the fact that it
measures the compatibility between the input of the decision makers (individual PCMs) and
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the output of the group (collective priority vector) used to rank the alternatives and make
decisions.

Different approaches have been followed for studying the improvement of incompatibility.
They differ with regards to the modification considered for the judgements (in absolute or
relative terms), or with regards to the degree of the participation of the actors (automatic,
semi-automatic, personal).Most of the procedures in the literature for reducing inconsistency
(Dadkhah & Zahedi, 1993) and incompatibility (Dong et al., 2010; Grošelj et al., 2015)
include modifications in absolute terms. However, the perception of the importance an actor
gives to a change that can lead to consensus positions, that is to say, the acceptability or
unacceptability of a modification, is better captured in relative, rather than absolute, terms.
In absolute terms, the changes in judgements from 2 to 3 and from 8 to 9 are the same, but
the perception of their importance is not; in the first case, the relative change is 50%, in the
second, it is just 12.5%.

Modifications in relative terms are in line with the suggestions of Kahneman and Tversky
(1979): “the preferences, associated with the same physical magnitude, are relative rather
than absolute, depending on the situation of gain or loss, and also on the point of departure”
and Grzybowski (2016): “small errors (in terms of absolute values) may significantly change
the final rankings if they are big in relation to the true value”. In addition, when working in
relative terms, the absolute values of the modifications allowed by each decision maker for
each judgement, alternative or criterion (bounded confidences) do not have to be provided.
These two arguments: (i) suitability to perceive the importance of changes and (ii) lower
transaction costs, validate the use of relative changes.

The maximum relative variation allowed for the modification of any judgement is given
by the parameter known as permissibility (Aguarón et al., 2021). It considers the attitudes or
flexibility of the actors in consensus reaching. This allows them to adapt their initial positions
(individual or collective), facilitating the establishment of consensus paths for reaching amore
satisfactory final agreement (Altuzarra et al., 2010).

Regarding the degree of actors’ participation, automatic procedures are not appropriate
in GDM unless they are used to simulate and explore scenarios. CRPs require the personal
intervention of the actors, either at the beginning of the process, by setting its degree of
flexibility, or throughout, in an interactive manner. The procedure put forward in this current
work is semi-automatic; the actors provide at the beginning of the CRP their initial PCMs and
establish the permissibility level. However, the procedure can be easily adapted to allow a
more personal intervention of the actors in the agreement or consensus searching (interactive
procedure).

3 Theoretical results

This section presents the theoretical results (see Appendix A for proofs) that are necessary
to develop the procedure to reduce the incompatibility (Sect. 4). In what follows, all the
matrices (PCMs) and the priority vectors are of order n, and wG will refer to the priority
vector obtained either applying AIJ or AIP to the matrices of a family A when using the
RGM as the prioritisation method (wG = wG|J = wG|P ).
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Definition 1 Let A = (
ai j

)
be a PCM and u = (ui ) be a priority vector. The Geometric

Compatibility Index between A and u is defined as

GCOMPI(A, u) = 1

(n − 1)(n − 2)

∑

i, j

log2 ai j u j/ui (4)

Definition 2 Let A = {
A(k)

}
be a family of PCMs and u = (ui ) be a priority vector. The

Geometric Compatibility Index between family A and u is defined as

GCOMPI (A, u) =
d∑

k=1

αkGCOMPI(A(k), u)

= 1

(n − 1)(n − 2)

d∑

k=1

⎛

⎝αk

∑

i, j

log2 a(k)
i j u j/ui

⎞

⎠ (5)

Remark 1 If A is a PCM and w is its priority vector obtained with the RGM method:

min
u

GCOMPI(A, u) = GCOMPI(A, w) = GC I (A) (6)

where GCI is the Geometric Consistency Index (Aguarón & Moreno-Jiménez, 2003).

Remark 2 If A = {
A(k)

}
is a family of PCMs, it holds that

min
u

GCOMPI(A, u) = GCOMPI(A, wG) (7)

Remark 3 Let w = (w1, . . . , wn) be a priority vector. It is obvious that

min
A

GCOMPI(A, w) = GCOMPI(W , w) = 0 (8)

where W = (
wi j

) = (
wi/w j

)
.

Theorem 1 Let A = (
ai j

)
and P = (

pi j
)
be two PCMs and w = (wi ) and v = (vi ) be

the corresponding priority vectors associated to A and P obtained with the RGM method. It
holds that

∂GCOMPI(A, v)

∂ prs
= 4

(n − 1)(n − 2)

1

prs
log

vr/vs

wr/ws
(9)

Theorem 2 Let A = {
A(k)

}
be a family of PCMs, P = (

pi j
)
be a collective PCM and

v = (vi ) be the corresponding priority vector associated to P obtained with the RGM
method. It holds that

∂GCOMPI(A, v)

∂ prs
= 4

(n − 1)(n − 2)

1

prs
log

vr/vs

wG
r /wG

s
(10)

From the above result, it is obvious that, when v = wG , all partial derivatives cancel
out. This situation corresponds to a critical point and it is easy to see that it is a minimum,
consistent with Remark 2. Therefore, any PCM whose priority vector obtained by the RGM
method coincides with wG will provide the minimum value of the GCOMPI.

If the judgement prs is modified with p′
rs as its new value, trs = p′

rs/prs denotes the

relative variation of this judgement, P ′ =
(
p′
i j

)
is the modified PCM and v′ = (

v′
i

)
the

associated priority vector obtained with the RGM. The modified values of the GCOMPI are
given by the following theorems.
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Theorem 3 In the same conditions of Theorem 1, it holds that

GCOMPI(A, v′) = GCOMPI(A, v) + 4

(n − 1)(n − 2)
log trs

(
log trs
n

+ log
vr/vs

wr/ws

)

(11)

Theorem 4 In the same conditions of Theorem 2, it holds that

GCOMPI(A, v′) = GCOMPI(A, v) + 4

(n − 1)(n − 2)
log trs

(
log trs
n

+ log
vr/vs

wG
r /wG

s

)

(12)

The following corollaries provide the partial derivatives of the GCOMPI with respect to
the relative variation of a judgement (trs). When small variations are considered, the value
of trs moves around 1, so the values of the derivatives at that point are also presented.

Corollary 1 In the same conditions of Theorem 1, it is easy to prove that

∂GCOMPI(A, v)

∂trs
= 4

(n − 1)(n − 2)

1

trs

(
2 log trs

n
+ log

vr/vs

wr/ws

)
(13)

∂GCOMPI(A, v)

∂trs

∣∣∣∣
trs=1

= 4

(n − 1)(n − 2)
log

vr/vs

wr/ws
(14)

It follows that the judgement prs that most decreases the GCOMPI is the judgement for
which there is a greater relative difference between ratios vr/vs andwr/ws . This seems quite
logical; if vr/vs > wr/ws it is necessary to decrease prs , and increase it otherwise.

Corollary 2 In the same conditions of Theorem 2, it is easy to prove that

∂GCOMPI(A, v)

∂trs
= 4

(n − 1)(n − 2)

1

trs

(
2 log trs

n
+ log

vr/vs

wG
r /wG

s

)
(15)

∂GCOMPI(A, v)

∂trs

∣∣∣∣
trs=1

= 4

(n − 1)(n − 2)
log

vr/vs

wG
r /wG

s
(16)

In the case of a family of matrices, the judgement prs that most decreases the GCOMPI
is also the one for which there is a greater relative difference between the ratios vr/vs and
wG
r /wG

s .

Corollary 3 In the same conditions of Theorem 1, the relative variation of judgement prs that
produces the greatest decrease of GCOMPI(A, v) is

t∗rs = p′
rs/prs =

(
wr/ws

vr/vs

)n/2

(17)

and the variation of the GCOMPI(A, v) is

−n

(n − 1)(n − 2)
log2

wr/ws

vr/vs
(18)

Corollary 4 In the same conditions of Theorem 2, the relative variation of judgement prs that
produces the greatest decrease of GCOMPI(A, v) is

t∗rs = p′
rs/prs =

(
wG
r /wG

s

vr/vs

)n/2

(19)
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and the variation of the GCOMPI(A, v) is

−n

(n − 1)(n − 2)
log2

wG
r /wG

s

vr/vs
(20)

From the above corollaries, it follows that the the judgement identified in (14) or (16) is that
which most rapidly decreases the value of the GCOMPI; it is also the one that allows the
greatest reduction in absolute terms.

Remark 4 In contrast to absolute variations, (9) and (10), the gradient associated with the
variation in relative terms of the judgement prs does not depend on prs ; it is given exclu-
sively in terms of the log quadratic discrepancies between the ratios of the elements of the
priority vector associated with the collective matrix (P) and that obtained for the family A
(log2 wG

r /wG
s

vr /vs
). This expression will be used to select the judgements that must be considered

for reducing the GCOMPI.

4 Procedure

The results from the previous section give the judgement of the collective matrix that will
most rapidly reduce incompatibility and determine its optimal relative variation. The iterative
modifications of the judgements of the collective matrix (P) bring it closer to a matrix (P ′)
with the same priority vector (v′) as the AIJ matrix (wG ), both vectors obtained with the
RGMmethod. Note that this last vector is the one that minimises the weighted log-quadratic
deviation between the individual matrices and a priority vector (see Remark 2).

The value that provides the maximum possible reduction of inconsistency could be far
from the initial value in the collectivematrix (Khatwani andKar, 2017). Limiting the intensity
of themodifications is a logic criterion to guarantee the validity of the improvement procedure
(Saaty, 2003). A parameter of permissibility (Aguarón et al., 2021), ρ, is employed to avoid
major modifications of the judgements of the collective matrix in the process of reducing
incompatibility. This parameter is incorporated by multiplying the judgements by the factor
1 ± ρ and indicates the maximum relative variation permitted for the modifications of any
judgement, and is established by the decision makers or by the facilitator (if there is one).

4.1 The AEM-COM algorithm

Using theRGMas the prioritisationmethod and theGCOMPI as the incompatibilitymeasure,
this section describes a semi-automatic procedure for improving (reducing) the incompati-
bility between the actors involved in the decision making process and the collective position
(matrix) obtained by any method. The procedure considers variations in judgements in rel-
ative terms, limited by the permissibility. Expression (16) is used to select the judgement
that will be considered for each of the iterations. Expression (19) provides the limit of the
variation for this judgment. A modification beyond this value will produce an increase in the
GCOMPI.

In order to apply this semi-automatic procedure, it is necessary to provide the weights of
the decision makers (αk), their individual pairwise comparison matrices (A(k)), the collective
matrix (P) and the parameter of permissibility (ρ). Regarding the collective matrix, the
decision makers agree on P using an existing AHP-GDM methodology. This initial matrix
is assumed to have an acceptable level of inconsistency which ensures the validity of the
collective priority vector that is derived from it.
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The AEM-COM (Aguarón, Escobar, Moreno-COMpatibility) algorithm:

Algorithm for improving the GCOMPI in terms of relative changes
Inputs: A = {A(k)} a family of pairwise comparison matrices, αk their respective
weights with

∑d
k=1 αk = 1, P a collective matrix and ρ the permissibility allowed

in relative terms for the modification of judgements of P .
Outputs: The updated matrix (P ′), its priority vector v′ and the GCOMPI(A, v′).

Step 0. Using RGM, obtain the priority vector v for the matrix P and the priority
vector wG for the matrices of family A.
Let J = {(r , s),with r < s}.

Step 1. Evaluate qrs = vr /vs
wG
r /wG

s
and log qrs for all (r , s) ∈ J .

Step 2. Choose the pair (r ′, s′) ∈ J for which log qr ′s′ has the largest absolute
value.

Step 3. If pr ′s′ > 1 then let (r , s) = (r ′, s′). Otherwise, let (r , s) = (s′, r ′).
Step 4. Modify prs considering the following value of the relative variation trs that

will depend on the sign of log qrs . Let t∗rs = q−n/2
rs .

a. If log qrs < 0, use trs = min
{
1 + ρ, t∗rs

}

b. If log qrs > 0, use trs = max
{

1
1+ρ

, t∗rs
}

Update matrix P with new values p′
rs = prs trs and p′

sr = 1/p′
rs .

Update J = J \ (r ′, s′).
Step 5. Using RGM, obtain the priority vector v′ for the matrix P ′. Calculate the

GCOMPI(A, v′). If J is not empty, repeat steps 1 to 4 with v = v′. Other-
wise, stop and provide P ′, v′ and GCOMPI(A, v′).

If log qrs < 0 (Step 4a), it is necessary to increase prs (trs ≥ 1) in order to reduce the
GCOMPI. In this case, the maximum relative increase delimited by the permissibility and
the range of improvement is trs = min

{
1 + ρ, t∗rs

}
. If log qrs > 0 (Step 4b), the value of prs

should be reduced (trs ≤ 1). In this situation, permissibility is incorporated as 1
1+ρ

to keep
the property of reciprocity.

If working with judgements between 1/9 and 9, as is usual in the context of AHP (Saaty,
1980), the new values p′

rs in Step 4 are limited to the continuous interval [1/9,9]. In what
follows, only judgements that fall within this range are considered.

4.2 Performance of the algorithm

It can be verified that, whenever there are judgements that meet the required conditions, the
algorithm, by construction, takes n(n − 1)/2 iterations and reduces the initial GCOMPI.
Obviously, small values of permissibility will produce small modifications in the GCOMPI.

A simulation studywas undertaken to determine the efficiency of the algorithm bymeasur-
ing the improvement reached for the GCOMPI in different situations. Efficiency is defined
as the reduction achieved with respect to the maximum possible reduction, indicating the
improvement in GCOMPI:

Efficiency (AEM-COM) = GCOMPI0 − GCOMPI f
GCOMPI0 − GCOMPImin

(21)
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where GCOMPI0 refers to the initial GCOMPI = GCOMPI(A, v), GCOMPI f refers to the
final GCOMPI = GCOMPI(A, v′) and GCOMPImin refers to the minimum GCOMPI =
GCOMPI(A, wG).

For the simulation, families of matrices were generated: the first step was to randomly
generate a priority vector, u. The vector was randomly perturbed, giving different priority
vectors for each decision maker, u(k). The vectors are not too far away from u, but they
are sufficiently different from each other for different rankings to exist. From these priority

vectors, the corresponding consistent matricesU (k) =
(
u(k)
i /u(k)

j

)
are obtained; these matri-

ces are randomly perturbed (using a lognormal distribution) and then corrected so that the
priority vector of A(k) is u(k). The AEM-COM algorithm is applied to the matrices which all
have same weights. Note that, without loss of generality, the PCCM (Escobar et al., 2015;
Aguarón et al., 2016) is used as the collective matrix. The behaviour of our procedure can
therefore be compared with that of the PCCM methodology employed for AHP-GDM.

As previously explained, 10,000 families ofmatrices were generated for each combination
of d (3 to 6) and n (3 to 9). The proposed algorithm was applied to each of them for different
permissibility values. The efficiencyof the algorithmwas calculated for each situation.Table 1
shows the average efficiency for 3 decision makers (d = 3) and different values of n and ρ. It
can be observed that the greater the permissibility, the greater the average efficiency, for any
size of thematrix (n). Permissibility of 5%,which is clearly acceptable, is sufficient to achieve
an average efficiency improvement of more than 40% for any given n. For permissibility
levels greater than 20%, the average efficiency is higher than 91.8%. In the particular case
considered in the numerical example presented in Sect. 5 (n = 5 and ρ = 15%), average
efficiency is 83.9%.

Table 2 shows the percentage of times that different levels of efficiency are reached for
d = 3 and n = 5, depending on the value of ρ. It can be seen that an efficiency of 10%
(adequate in most cases) is achieved for any value of permissibility considered in this table.
It can also be observed that a level of efficiency of 60% is achieved 95.8% of the time when
ρ = 15%. With the same permissibility, efficiency of 50% was possible 99.6% of the time.
For ρ = 50%, the collective matrix resulting from the AEM-COM algorithm has a priority
vector that almost coincides with thewG . In general, the greater the permissibility, the greater
is the likelihood of achieving a given efficiency.

Similar results to those presented in Tables 1 and 2 were obtained for the other values of d
and n (they have not been included for reasons of space). The results of the simulation study
also show that the average differences between the initial and final priorities do not exceed
10% for all combinations of d , n and ρ values.

Table 1 Average efficiency (%)
of the algorithm for different
values of n and ρ (d = 3)

n ρ

5% 10% 15% 20% 25% 30% 40% 50%

3 61.5 84.7 93.8 97.3 98.7 99.2 99.4 99.5

4 46.4 71.9 85.5 92.6 96.2 98.0 99.4 99.8

5 43.2 69.2 83.9 91.8 95.8 97.9 99.4 99.8

6 43.9 70.5 85.3 93.0 96.7 98.4 99.6 99.9

7 45.3 72.5 87.1 94.2 97.4 98.9 99.8 99.9

8 47.0 74.8 88.9 95.3 98.0 99.1 99.8 100.0

9 48.8 76.8 90.4 96.2 98.5 99.4 99.9 100.0
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Table 2 Percentage of times different levels of efficiency are reached for different values of ρ (d = 3 y n = 5)

Efficiency ρ

5% 10% 15% 20% 25% 30% 40% 50%

10% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

20% 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0

30% 82.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

40% 49.9 98.6 100.0 100.0 100.0 100.0 100.0 100.0

50% 25.7 88.3 99.6 100.0 100.0 100.0 100.0 100.0

60% 13.1 67.4 95.8 99.7 100.0 100.0 100.0 100.0

70% 6.8 45.6 83.3 97.2 99.7 100.0 100.0 100.0

80% 3.2 26.4 62.5 87.4 96.9 99.3 100.0 100.0

90% 1.3 13.6 39.4 66.4 85.1 94.5 99.5 100.0

95% 0.8 8.6 26.9 51.0 72.1 86.1 97.6 99.7

The computational complexity of the algorithmwas o(n3)where n is the size of thematrix.
Given the values of n that are usually considered in AHP (from 3 to 9), it is clear that the
algorithm is quite efficient. The algorithm has been applied to 1,000 different problems with
9 decision makers (d = 9) and 9 alternatives (n = 9), obtaining a total execution time of
0.88 s, using an Intel i3 computer.

In short, the new procedure (AEM-COM) for improving the incompatibility measured by
theGCOMPI considers relative changes in the judgements of the collectivematrix (individual
matrices are not modified). It is computationally efficient, easy to implement and can be
adapted to fit specific interests; furthermore, it provides closed results and bounds relative
changes to guarantee slight modifications in the collective matrix and its priority vector, as
recommended by Saaty (2003).

5 Numerical example

The procedure is illustrated with an example from the published literature (Moreno-Jiménez
et al., 2009; Escobar et al., 2015; Aguarón et al., 2016; Turón et al., 2019). The problem has
n = 5 alternatives and d = 3 decision makers with weights α1 = 5/11; α2 = 4/11; and
α3 = 2/11. The individual pairwise comparison matrices are:

A(1) =

⎛

⎜
⎜⎜
⎜
⎝

1 3 5 8 6
1 3 5 4

1 3 2
1 1/3

1

⎞

⎟
⎟⎟
⎟
⎠

, A(2) =

⎛

⎜
⎜⎜
⎜
⎝

1 3 7 9 5
1 3 7 1

1 5 1/5
1 1/5

1

⎞

⎟
⎟⎟
⎟
⎠

, A(3) =

⎛

⎜
⎜⎜
⎜
⎝

1 5 7 7 5
1 1 5 1

1 5 1/3
1 1/5

1

⎞

⎟
⎟⎟
⎟
⎠
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Table 3 Priorities, consistency
and compatibility for the
individual and collective
positions

w1 w2 w3 w4 w5 GCI GCOMPI

A(1) 0.513 0.251 0.115 0.042 0.079 0.143 0.430

A(2) 0.520 0.195 0.072 0.030 0.182 0.303 0.564

A(3) 0.560 0.135 0.101 0.035 0.168 0.298 0.708

AI J 0.533 0.208 0.096 0.037 0.125 0.122 0.464

P 0.467 0.255 0.095 0.044 0.139 0.023 0.529

The first of the following collective matrices was obtained using AIJ, the second corre-
sponds to the PCCMwhich was determined by means of the procedure described in Escobar
et al. (2015) and Aguarón et al. (2016):

AI J =

⎛

⎜
⎜
⎜
⎜
⎝

1 3.292 6.007 8.150 5.432
1 2.457 5.651 1.878

1 3.964 1/1.600
1 1/3.964

1

⎞

⎟
⎟
⎟
⎟
⎠

, PCCM =

⎛

⎜
⎜
⎜
⎜
⎝

1 2.049 5.510 9.000 3.165
1 3.000 6.082 1.739

1 2.709 1/1.467
1 1/2.845

1

⎞

⎟
⎟
⎟
⎟
⎠

In general, the collective matrix P can be obtained by any of the procedures allowed for
AHP-GDM. In this case, the proposed algorithm (AEM-COM) is applied to improve the
incompatibility of the second of the two previous matrices (P = PCCM). This collective
matrix ensures that the judgements are within the consistency stability intervals for all the
actors (Aguarón et al., 2003).

Table 3 details the priorities (obtained with the RGM method) of the three individual
and the two collective matrices. It also shows the consistency (GCI) and the compatibility
(GCOMPI) indicators for all the matrices. The GCOMPI values in the first 3 rows measure
the incompatibility between the individual matrices and the priority vector (v) associated to
the collective matrix P . The GCOMPI values in the last 2 rows measure the incompatibility
between the family A and vectors wG and v, respectively.

As can be seen in Table 3, the GCOMPI value for the collective matrix P is 0.529.
The application of the AEM-COM algorithm aims to reduce this value, knowing that the
minimum value that can be reached with this indicator for family A is GCOMPI(A, wG) =
0.464 (Remark 2).

In this illustrative example, it is assumed that the decision makers (or the facilitator)
have established a permissibility value ρ = 15% (they would accept the modification of
some judgements of the collective matrix up to 15% of their initial values), and that the
judgements are limited to the continuous interval [1/9, 9].

From the priority vectors associated to the P matrix (v) and to the AI J matrix (wG ),

the ratio matrix Q = (qi j ) =
(

vi /v j

wG
i /wG

j

)
and the associated matrix log Q that contains the

natural logarithms of the qi j are obtained to determine the order of entry of the judgements
in the algorithm:

Q =

⎛

⎜⎜⎜⎜
⎝

1.000 0.716 0.888 0.735 0.787
1.397 1.000 1.241 1.026 1.099
1.126 0.806 1.000 0.827 0.886
1.361 0.974 1.209 1.000 1.071
1.271 0.910 1.129 0.934 1.000

⎞

⎟⎟⎟⎟
⎠

,
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log Q =

⎛

⎜
⎜⎜
⎜
⎝

−0.334 −0.119 −0.308 −0.240
+0.216 +0.026 +0.094

−0.189 −0.121
+0.068

⎞

⎟
⎟⎟
⎟
⎠

The maximum value, in absolute terms, corresponds to the judgement (r ′, s′) = (1, 2).
As p12 = 2.049 > 1, this judgement is directly considered, and not its inverse, i.e, (r , s) =
(1, 2). This is the judgement that would most rapidly decrease the value of the GCOMPI.

Since log q12 = −0.334 < 0, the judgement must be increased. The optimal relative
variation is determined by t∗12 = q−n/2

12 = 2.307. This would mean an increase of 130.7%,
greater than a permissibility level of 15%, so the relative variation of the judgement will be
determined by the permissibility:

t12 = min
{
1 + ρ, t∗12

} = min {1.15, 2.307} = 1.15

The new value of the judgement is p′
12 = 1.15× p12 = 2.356 (then, p′

21 = 1/2.356), and the
associated incompatibility measure of matrix P ′ for the first iteration is GCOMPI′ = 0.5146.

Table 4 summarises the iterations of the procedure. In the second iteration, the selected
judgement (1, 4) is not modified because its new value would be outside the range [1/9, 9].
In this example, the modifications of the judgements in the rest of the iterations (except the
last one) have been determined by the permissibility (15%) and not by the value that provides
the maximum possible reduction of inconsistency (t∗rs); the average relative change of the
judgements is 11.26%.

After considering all the judgements (10 iterations) the final pairwise comparison matrix,
P ′, its associated priority vector, v′, and the corresponding values of the GC I and the
GCOMPI are:

P ′ =

⎛

⎜
⎜
⎜⎜
⎝

1.000 2.356 6.336 9.000 3.640
0.424 1.000 2.609 6.110 1.512
0.158 0.383 1.000 3.115 0.784
0.111 0.164 0.321 1.000 0.306
0.275 0.661 1.275 3.272 1.000

⎞

⎟
⎟
⎟⎟
⎠

v′ = (0.496, 0.229, 0.098, 0.041, 0.136) GC I (P ′) = 0.0423 GCOMPI(A, v′) = 0.4814

As the algorithm advances it is possible to measure the improvements achieved for the
GCOMPI and to obtain measurements of the proximity between the initial and final priority
vectors, v and v′ (see Table 5). Efficiency, defined in expression (21), can be adapted to reflect
how the GCOMPI improves at each iteration:

Efficiencyi = GCOMPI0 − GCOMPIi
GCOMPI0 − GCOMPImin

where GCOMPIi refers to the GCOMPI at iteration i .
The maximum differences in relative terms and the value of the G-compatibility index

(Garuti, 2007; Garuti & Salomon, 2012) are calculated to measure the distances between the
priority vectors. The vectors are said to be highly compatible when the value of the latter
indicator is above 0.90.

Max. Rel. Dif.(x, x ′) = max
i

∣∣∣∣
x ′
i − xi
xi

∣∣∣∣ ∗ 100 G(x, y) =
n∑

i=1

min (xi , yi )

max (xi , yi )

xi + yi
2
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Table 5 Evolution of the GCOMPI efficiency and measures of proximity between priority vectors (ρ = 15%)

Iteration GCOMPI Efficiency (%) Max Rel Dif (%) G

0 0.5289

1 0.5146 22.0 3.4 0.980

2 0.5146 22.0 3.4 0.980

3 0.5060 35.2 4.3 0.963

4 0.4985 46.8 4.4 0.962

5 0.4924 56.2 6.7 0.952

6 0.4881 62.8 7.7 0.944

7 0.4863 65.6 8.0 0.947

8 0.4832 70.3 7.9 0.940

9 0.4814 73.1 10.2 0.938

10 0.4814 73.1 10.1 0.938

Table 5 shows that the application of the proposed procedure significantly reduces incom-
patibility, resulting in an efficiency rate of 73.1% (percentage of the maximum possible
reduction) with slightmodifications of the collective priorities (Max. Rel. Dif. (v, v′) = 10.1%
and G(v, v′) = 0.938). This demonstrates that the new approach has significantly improved
the incompatibility of the decision makers regarding the collective position obtained with the
PCCM methodology. If, instead of completing all the iterations of the algorithm, a specific
reduction in GCOMPI had been set, e.g. 60%, the algorithm would have been finished on
the 6th iteration, when the target had been reached (with Max. Rel. Dif. (v, v′) = 7.7% and
G(v, v′) = 0.944). With regards to the relative changes of the collective priority vectors, the
maximum differences during the process remain below 10.2%. The G values indicate that for
all the iterations, the initial and the updated priority vectors are highly compatible (G > 0.9).
In particular, the G value between the initial and the final priority vectors isG(v, v′) = 0.938.
In terms of the compatibility of the collective vectors (v and v′) with wG , the procedure has
made it possible to move from a compatible vector v – G(v,wG) = 0.874 ≥ 0.85 – to a
highly compatible vector v′ – G(v′, wG) = 0.929 ≥ 0.9: v′ is highly compatible with v and
wG .

With the initial individual PCMs, the proposed procedure (AEM-COM) has made it pos-
sible (Table 6) for the three decision makers to improve their compatibility with respect to the
final collective position (v′). All three have improved the category considered on the scale
associated with Garuti’s G index (Garuti, 2017).

Table 7 shows the results obtained by applying the procedure with different values of the
permissibility (ρ between 5% and 50%). As might be expected, it can be observed that the
greater the permissibility, the greater is the % of reduction of the GCOMPI (efficiency), but

Table 6 G-compatibility indexes
between individual and collective
priority vectors

G(w(i), v) G(w(i), v′)

w(1) 0.885 0.900

w(2) 0.837 0.873

w(3) 0.782 0.827
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Table 7 GCOMPI improvement
and measures of proximity
between priority vectors (ρ = 5%
to 50%)

ρ GCOMPI Efficiency (%) Max Rel Dif (%) G

5% 0.5084 31.5% 4.2 0.976

10% 0.4928 55.6 7.3 0.956

15% 0.4814 73.1 10.1 0.938

20% 0.4736 85.1 12.4 0.921

25% 0.4690 92.2 14.0 0.907

30% 0.4661 96.7 15.4 0.896

40% 0.4656 97.4 15.7 0.893

50% 0.4644 99.3 16.8 0.884

also the greater is the distance between the initial and final priority vectors. The improvement
in incompatibility increases rapidly when permissibility is low and slows down when per-
missibility is higher, maintaining small distances between the priority vectors. For example,
for a permissibility level of ρ = 25%, a reduction in the value of the GCOMPI of 92.2% is
achieved, with just 14% maximum difference between the priority vectors. The associated
value of the G index is 0.907, indicating high compatibility between the initial and final
priority vectors. For higher values of permissibility (25% < ρ ≤ 50%), the value of G
indicates compatibility (G > 0.85). It should also be mentioned that, for each value of ρ,
the inconsistency measure (GCI) of the resulting P ′ matrix does not exceed the threshold
allowed for ensuring the validity of the priority vectors.

If the permissibility constraint is removed (a situation not in accordancewith the proposal),
efficiencies of 71.72% and 94.66% would be achieved in the first and second iterations. The
substantial improvement of incompatibility occurs at the cost of greater maximum relative
changes in judgements (130.7%) and priorities (19.52%), which might not be accepted.

6 Conclusions and recommendations

Assuming a local AHP-GDM context and the Row Geometric Mean as the prioritisa-
tion method, this paper presents a theoretical framework and a semi-automatic procedure
(AEM-COM) for improving the representativity (incompatibility) of the collective pairwise
comparison matrix, irrespective of the method by which the collective matrix is obtained. It
should be noted that the AEM-COM procedure does not require the continuous intervention
of decision makers and does not modify the individual matrices; it only modifies the judge-
ments of the collective matrix. It is based on the consideration of relative changes and on
the slight modification of the judgements of the collective matrix that further improve the
GCOMPI. The maximum relative variation allowed for the modification of any judgement
is bounded by the parameter known as permissibility (ρ).

The input data for the procedure comprise the weights of the decision makers, their
individual pairwise comparison matrices, the collective matrix (obtained using any CRP)
and the parameter ρ. To apply the procedure for reducing incompatibility, it is necessary to
check that the initial collective matrix has an acceptable level of inconsistency. If it does
not, inconsistency should be reduced (Aguarón et al., 2021) until it reaches the threshold
necessary to guarantee the validity of the collective vector.

It may be sufficient to consider a small value of permissibility, since the empirical studies
have shown that even when using small values, significant reductions of the GCOMPI are
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achieved. If the reduction is not sufficient and further improvement is desired, an increase of
the value of ρ is suggested. Performing a sensitivity analysis of the permissibility parameter
may provide relevant information on the critical points and the decision opportunities of the
resolution process. The initial value of ρ can be determined by consensus among the decision
makers. If there is no consensus, it is recommended to take the minimum of the individual
permissibility values (ρ = min ρk) to solve the problem. In both cases an implicit acceptance
of the final result is assumed.

The analysis of the behaviour of the algorithm and the numerical example used to illustrate
the new methodology give a clear idea of its practical potential. The algorithm is computa-
tionally efficient, easy to implement, and can be adapted to allow the consideration of several
variants.

The proposed framework makes it possible to incorporate specific interests of the decision
makers as additional restrictions, as a veto or the imposition of rigid constraints. The modi-
fications of the judgements can be limited so that they do not lie outside of a specific range
(Saaty’s scale, priority or consistency stability intervals...). In addition, the algorithm can be
adapted to incorporate the personal intervention of decision makers to a greater extent, not
only at the beginning of the CRP. The interactive variant would require more time and effort.

Other stopping rules based on thresholds for efficiency, or based on distances between
collective priority vectors can be contemplated. For example, with the G-compatibility index
(Garuti, 2007), the algorithm would stop when the distance between the initial and final col-
lective positions is lower than a value fixed in advance. The combination of the information
provided by the efficiency and the Garuti Gmeasure would allow the establishment of thresh-
olds for the GCOMPI. In case there is different information available (input and/or output),
compatibility can be measured by other GCOMPI expressions (Aguarón et al., 2022).

The range of possibilities for adapting the procedure gives it enormous cognitive potential.
These variants and other possible extensions of the current work, including new measures
for compatibility and direct thresholds for the GCOMPI that would make it operative, will
be the subject of future research.
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Appendix A. Proofs of the theorems

Inwhat followsGCOMPI(x, y) is denoted asG(x, y). It will be also assumed that the priority
vectors obtained with the RGMmethod are standardized being the product of its components
equal to the unit.

Proof of Remark 2

∂G(A, v)

∂vr
= ∂

∂vr

d∑

k=1

αkG(A(k), v) =
d∑

k=1

αk
∂G(A(k), v)

∂vr

= 1

(n − 1)(n − 2)

d∑

k=1

⎛

⎝αk
∂

∂vr

n∑

i, j=1

log2
a(k)
i j v j

vi

⎞

⎠

The only terms in the inner sum that depend on vr are those that are in row r or column
s. It is obvious that log2 ai jv j/vi = log2 a jivi/v j so we only consider twice the terms
log2 ar jv j/vr :

∂G(A, v)

∂vr
= 2

(n − 1)(n − 2)

d∑

k=1

⎛

⎝αk
∂

∂vr

n∑

j=1

log2
a(k)
r j v j

vr

⎞

⎠

= −4

(n − 1)(n − 2)

1

vr

d∑

k=1

⎛

⎝αk

n∑

j=1

log
a(k)
r j v j

vr

⎞

⎠

= −4

(n − 1)(n − 2)

1

vr

n∑

j=1

(
d∑

k=1

αk

(
log a(k)

r j + log v j − log vr

))

Taking into account that
∑

k αk = 1 and that aGi j = ∏d
k=1

(
a(k)
i j

)αk
and assuming that v

has been normalised as
∏

j v j = 1, then:

∂G(A, v)

∂vr
= −4

(n − 1)(n − 2)

1

vr

n∑

j=1

(
log aGr j + log v j − log vr

)

= −4

(n − 1)(n − 2)

1

vr

⎛

⎝log
n∏

j=1

aGr j − n log vr

⎞

⎠

And

∂G(A, v)

∂vr
= 0 → vr =

⎛

⎝
n∏

j=1

aGr j

⎞

⎠

1/n

= wG|J
r = wG

r

In other words, a critical point exists when the vector v is the same as the priority vector
obtained by applying the RGMmethod to the matrix AIJ derived from the matrices of family
A.

To verify that this point corresponds to a minimum, it is enough to note that the second
partial derivatives are:
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∂2G(A, v)

∂v2r
= 4

(n − 1)(n − 2)

1

v2r

⎡

⎣

⎛

⎝log
n∏

j=1

aGr j − n log vr

⎞

⎠ + n

⎤

⎦

With the above extreme condition, the parenthesis is cancelled and the second partial
derivatives are positive. The cross partial derivatives are zero, so the Hessian matrix is
positive-definite and the critical point corresponds to a minimum. �	

As a previous step to the proof of Theorem 1, Lemmas 1 and 2 are included.

Lemma 1 Let A = (
ai j

)
and P = (

pi j
)
with i, j = 1, . . . , n be two PCMs and v = (vi )

with i = 1, . . . , n be the priority vector associated to P obtained with the RGM method.
The derivatives of the discrepancies ei j = ai jv j/vi are given by:

∂ers
∂ prs

= −2

n

ers
prs

∂esr
∂ prs

= 2

n

esr
prs

∂er j
∂ prs

= −1

n

er j
prs

j 
= s
∂es j
∂ prs

= 1

n

es j
prs

j 
= r

∂eis
∂ prs

= −1

n

eis
prs

i 
= r
∂eir
∂ prs

= 1

n

eir
prs

i 
= s

Proof For error ers we have:

ers = ars
vs

vr
= ars

(
ps1 · · · psr · · · pss · · · psn
pr1 · · · prr · · · prs · · · prn

)1/n

= ars p
−2/n
rs

(
ps1 · · · psr · · · pss · · · psn
pr1 · · · prr · · · prs · · · prn

)1/n

And taking the derivative

∂ers
∂ prs

= −2

n
ars p

−1−2/n
rs

(
ps1 · · · psr · · · pss · · · psn
pr1 · · · prr · · · prs · · · prn

)1/n

=

= −2

n

ars
prs

p−2/n
rs

(
ps1 · · · psr · · · pss · · · psn
pr1 · · · prr · · · prs · · · prn

)1/n

= −2

n

ars
prs

vs

vr
= −2

n

ers
prs

For error esr we use the relation esr = 1/ers :

∂esr
∂ prs

= ∂esr
∂ers

∂ers
∂ prs

= −1

e2rs

(
−2

n

)
ers
prs

= 2

n

esr
prs

The term er j with j 
= r can be expressed as:

er j = ar j
v j

vr
= ar j

v j

(pr1 · · · prs · · · prn)1/n
= ar j p

−1/n
rs

v j
∏

k 
=s p
1/n
rk

And taking the derivative we have

∂er j
∂ prs

= −1

n
ar j p

−1−1/n
rs

v j
∏

k 
=s p
1/n
rk

= −1

n

ar j
prs

v j
∏

k p
1/n
rk

= −1

n

ar j
prs

v j

vr
= −1

n

er j
prs

The other derivatives can be demonstrated analogously �	
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Lemma 2 Under the same conditions as the previous lemma

n∏

j=1

er j = wn
r

vnr
(A.1)

where w is the priority vector associated to A obtained with the RGM method.

Proof Based on the definition of the errors (ei j ) and assuming that the priority vectors are
standardized so that the product is equal to the unit:

n∏

j=1

er j =
n∏

j=1

ar jv j

vr
= 1

vnr

⎛

⎝
n∏

j=1

ar j

⎞

⎠

⎛

⎝
n∏

j=1

v j

⎞

⎠ = wn
r

vnr

Proof of Theorem 1 The only terms of G(A, v), see expression (4), that depend on prs are
those that are in rows r , s or columns r , s. As ei j = ai jv j/vi , it is obvious that log2 ei j =
log2 e ji so we only consider two-time terms ers , er j with j 
= s and es j with j 
= r :

∂G(A, v)

∂ prs
= 2

(n − 1)(n − 2)

∂

∂ prs

⎛

⎝log2 ers +
∑

j 
=r ,s

log2 er j +
∑

j 
=r ,s

log2 es j

⎞

⎠

= 2

(n − 1)(n − 2)

⎡

⎣2 log ers
1

ers

(
−2

n

ers
prs

)
+ 2

∑

j 
=r ,s

log er j
1

er j

(
−1

n

er j
prs

)

+ 2
∑

j 
=r ,s

log es j
1

es j

(
1

n

es j
prs

)⎤

⎦

= 4

(n − 1)(n − 2)

1

nprs

⎡

⎣−2 log ers −
∑

j 
=r ,s

log er j +
∑

j 
=r ,s

log es j

⎤

⎦ (A.2)

Using that log ers = − log esr and log err = log ess = 0 in (A.2):

∂G(A, v)

∂ prs
= 4

(n − 1)(n − 2)

1

nprs

⎡

⎣−
n∑

j=1

log er j +
n∑

j=1

log es j

⎤

⎦

= 4

(n − 1)(n − 2)

1

nprs
log

∏n
j=1 es j∏n
j=1 er j

(A.3)

Substituting expresion (A.1) from Lemma 2 in (A.3),

∂G(A, v)

∂ prs
= 4

(n − 1)(n − 2)

1

nprs
log

wn
s /v

n
s

wn
r /vnr

= 4

(n − 1)(n − 2)

1

prs
log

vr/vs

wr/ws

�	
Proof of Theorem 2 From Definition 2, we have:

∂G(A, v)

∂ prs
= ∂

∂ prs

d∑

k=1

αkG(A(k), v)

=
d∑

k=1

αk
∂G(A(k), v)

∂ prs
= 4

(n − 1)(n − 2)

1

prs

d∑

k=1

αk log
vr/vs

w
(k)
r /w

(k)
s
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= 4

(n − 1)(n − 2)

1

prs

d∑

k=1

αk

(
log

vr

vs
− logw(k)

r + logw(k)
s

)

= 4

(n − 1)(n − 2)

1

prs

(

log
vr

vs
−

d∑

k=1

αk logw(k)
r +

d∑

k=1

αk logw(k)
s

)

= 4

(n − 1)(n − 2)

1

prs

(

log
vr

vs
− log

d∏

k=1

(
w(k)
r

)αk + log
d∏

k=1

(
w(k)
s

)αk

)

= 4

(n − 1)(n − 2)

1

prs

(
log

vr

vs
− logwG|P

r + logwG|P
s

)

= 4

(n − 1)(n − 2)

1

prs
log

vr/vs

w
G|P
r /w

G|P
s

= 4

(n − 1)(n − 2)

1

prs
log

vr/vs

wG
r /wG

s

�	
Lemma 3 Let P = (pi j ) with i, j = 1, . . . , n be a PCM. If the judgement prs (r 
= s)
changes to p′

rs , the new priority vector obtained with the RGM method is given by (except
for the normalisation factor):

v′
i = vi ∀ i 
= r , s

v′
r = vr t

1/n
rs

v′
s = vs t

−1/n
rs

where ti j = p′
i j
pi j

, i 
= j .

Proof When i 
= r , s, p′
rs is not included in the value of vi (vi = (

∏n
j=1 pi j )

1/n), and the
value vi stays the same (v′

i = vi ). The value of v′
r is obtained as

v′
r
n = pr1 . . . p′

rs . . . prn = pr1 . . . prs . . . prn
p′
rs

prs
= vnr

p′
rs

prs
= vnr trs

and that of vs , in the same way, as

v′
s
n = vns

p′
sr

psr
= vns tsr = vns t

−1
rs

�	
Lemma 4 Let A = (

ai j
)
and P = (

pi j
)
with i, j = 1, . . . , n be two PCMs and v = (vi )

with i = 1, . . . , n be the priority vector associated to P obtained with the RGM method.
If the judgement prs changes to p′

rs (r 
= s), the new error terms, e′
i j = ai jv′

j/v
′
i in the

expression of G(A, v) are:

e′
i j = ei j ∀i, j 
= r , s

e′
r j = er j t

−1/n
rs ∀ j 
= r , s e′

jr = e jr t
1/n
rs ∀ j 
= r , s

e′
s j = es j t

1/n
rs ∀ j 
= r , s e′

js = e js t
−1/n
rs ∀ j 
= r , s

e′
rs = ers t

−2/n
rs e′

sr = ers t
2/n
rs

where trs = p′
rs
prs

.
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Proof If the judgement prs is modified, with p′
rs as its new value, the only priorities cor-

responding to matrix P which are modified are vr and vs , so the only errors which will be
modified are those corresponding to any index r or s.

Let us consider the error er j with j 
= r , s. From definition of errors and the previous
lemma:

e′
r j = ar jv j

v′
r

= ar jv j

vr t
1/n
rs

= er j t
−1/n
rs

The errors are reciprocal, that is to say, e ji = 1/ei j , then e′
jr = 1/e′

r j = t1/nrs /er j = e jr t
1/n
rs

for all j 
= r , s.
Analogously, the relationships for es j and e js are proved. For ers , we have:

e′
rs = arsv′

s

v′
r

= arsvs t
−1/n
rs

vr t
1/n
rs

= arsvs
vr

t−2/n
rs = ers t

−2/n
rs

With this expression, we automatically obtain that of esr . �	

Proof of Theorem 3 The GCOMPI expression uses the aggregation of terms that depend on
errors (ers). Thus, its variation depends exclusively on the modification of the elements
located in the rows or columns r and s. Therefore, it can be written as:

�G = �rG + �sG + �rsG

where �rG indicates the variation due to the elements with any index equal to r except for
the ers , �sG indicates the variation due to the elements with any index equal to s except for
ers , and �rsG indicates the variation due to the term ers .

The addends that appear in the G expression are log2 ei j , so the term ei j and its reciprocal
e ji contribute the same amount. Therefore, it is sufficient to operate with half of the terms
and afterwards multiply the result by two.

Let us consider the term �rG. This represents the variation due to the elements, different
from ers , that are in row r or in column r . Given that the elements of the row and the column
are reciprocal, it is sufficient to operate with one of them, i.e., the row:

�rG = 2
∑

j 
=r ,s

(log2 e′
r j − log2 er j )

We will now operate only with the numerator of the G expression, leaving the denominator
to be included at the end of the proof. Developing the value of e′

r j we have:

�rG = 2
∑

j 
=r ,s

(log2
er j

t1/nrs

− log2 er j )

and operating

�rG = 2
∑

j 
=r ,s

(log
er j

t1/nrs

+ log er j )(log
er j

t1/nrs

− log er j )

= 2
∑

j 
=r ,s

(log
e2r j

t1/nrs

)(log
1

t1/nrs

) = 2 log
1

t1/nrs

∑

j 
=r ,s

log
e2r j

t1/nrs
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= −2

n
log trs

⎛

⎝2
∑

j 
=r ,s

log er j −
∑

j 
=r ,s

log t1/nrs

⎞

⎠

= −2

n
log trs

⎡

⎣2
∑

j 
=r ,s

log er j − (n − 2) log t1/nrs

⎤

⎦

= −2

n
log trs

⎡

⎣2
n∑

j=1

log er j − 2 log ers − (n − 2) log t1/nrs

⎤

⎦ (A.4)

Using Lemma 2, (A.4) can be written as as

�rG = −2

n
log trs

⎡

⎣2 log
n∏

j=1

er j − 2 log ers − (n − 2) log t1/nrs

⎤

⎦

= −2

n
log trs

[
2 log

wn
r

vnr
− 2 log ers − (n − 2) log t1/nrs

]

= 2

n
log trs

[
2 log

vnr

wn
r

+ 2 log ers + (n − 2) log t1/nrs

]

Following an analogous process to calculate �sG, we obtain:

�sG = 2

n
log trs

[
2 log

wn
s

vns
+ 2 log ers + (n − 2) log t1/nrs

]

Finally, it is necessary to calculate �rsG:

�rsG = 2
(
log2 e′

rs − log2 ers
) = 2

(
log2 ers t

−2/n
rs − log2 ers

)

= 2
(
log ers t

−2/n
rs + log ers

) (
log ers t

−2/n
rs − log ers

)
= 2

(
log e2rs t

−2/n
rs

)
log t−2/n

rs

= −4

n
log trs

(
2 log ers − 2 log t1/nrs

)

Then, the total variation of G is:

�G = �r G + �sG + �rsG

= 2

n
log trs

[
2 log

vnr

wn
r

+ 2 log ers + (n − 2) log t1/nrs + 2 log
wn
s

vns
+ 2 log ers + (n − 2) log t1/nrs

−2
(
2 log ers − 2 log t1/nrs

)]
= 2

n
log trs

(
2 log

vnr wn
s

wn
r vns

+ 2n log t1/nrs

)

= 4 log trs

(
log

vrws

wrvs
+ log t1/nrs

)
= 4 log trs

(
log

vr/vs

wr/ws
+ log trs

n

)

Finally, including the denominator, we have

�G = 4

(n − 1)(n − 2)
log trs

(
log

vr/vs

wr/ws
+ log trs

n

)

and then

G(A, v′(trs)) = G(A, v) + 4

(n − 1)(n − 2)
log trs

(
log

vr/vs

wr/ws
+ log trs

n

)

�	
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Proof of Theorem 4. Analogous to proof of Theorem 2 �	
Proof of Corollary 1. Immediate from Theorem 3 �	
Proof of Corollary 2. Immediate from Theorem 4 �	
Lemma 5 Let A = (

ai j
)
and P = (

pi j
)
with i, j = 1, . . . , n be two PCMs and w = (wi )

and v = (vi ) with i = 1, . . . , n be the corresponding priority vectors associated to A and P
obtained with the RGM method. It holds that

∂2G(A, v)

∂t2rs
= 4

(n − 1)(n − 2)

1

t2rs

[
2

n
−
(
2 log trs

n
+ log

vr/vs

wr/ws

)]
(A.5)

Proof Immediate from Corollary 1. �	
Proof of Corollary 3 From expression (13) of Corollary 1:

∂G

∂trs
= 0 ⇒ 4

(n − 1)(n − 2)

1

trs

(
2 log trs

n
+ log

vr/vs

wr/ws

)
= 0

Therefore

2 log trs
n

+ log
vr/vs

wr/ws
= 0 (A.6)

and then

t∗rs = p′
rs/prs =

(
wr/ws

vr/vs

)n/2

From (A.5) and (A.6) it is easy to check that it is a minimum.
Finally, replacing t∗rs in expression (11)

�G(A, v) = −n

(n − 1)(n − 2)
log2

wr/ws

vr/vs

�	
Proof of Corollary 4. Analogous to proof of Corollary 3. �	
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