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Abstract
With the severe outbreak of the novel coronavirus (COVID-19), researchers are motivated to
develop efficient methods to face related issues. The present study aims to design a resilient
health system to offer medical services to COVID-19 patients and prevent further disease
outbreaks by social distancing, resiliency, cost, and commuting distance as decisive factors.
It incorporated three novel resiliency measures (i.e., health facility criticality, patient dissat-
isfaction level, and dispersion of suspicious people) to promote the designed health network
against potential infectious disease threats. Also, it introduced a novel hybrid uncertainty
programming to resolve a mixed degree of the inherent uncertainty in the multi-objective
problem, and it adopted an interactive fuzzy approach to address it. The actual data obtained
from a case study in Tehran province in Iran proved the strong performance of the pre-
sented model. The findings show that the optimum use of medical centers’ potential and
the corresponding decisions result in a more resilient health system and cost reduction. A
further outbreak of the COVID-19 pandemic is also prevented by shortening the commuting
distance for patients and avoiding the increasing congestion in the medical centers. Also,
the managerial insights show that establishing and evenly distributing camps and quarantine
stations within the community and designing an efficient network for patients with differ-
ent symptoms result in the optimum use of the potential capacity of medical centers and a
decrease in the rate of bed shortage in the hospitals. Another insight drawn is that an efficient
allocation of the suspect and definite cases to the nearest screening and care centers makes it
possible to prevent the disease carriers from commuting within the community and increase
the coronavirus transmission rate.
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1 Introduction

Rapid progression, a worldwide epidemic, and chronic disorders make infectious diseases
different from other diseases. An outbreak of the disease leads to unforeseen consequences.
On the other hand, irreparable damages come to health care, social, and economic systems
with no effective control of the disease (Zhu et al., 2020). As a result of the differences in the
symptoms of the disease and its rate of spread, the healthcare systems face serious challenges
at the management level (Ivanov, 2020a). The first coronavirus (COVID-19/SARS-COV-
2) case observed in Wuhan, China, in December 2019, has reached epidemic proportions
worldwide and is of great concern to public health (Liu et al., 2020). According to the latest
World Health Organization (WHO) report, about 230 countries, and more than 684,900,000
people have been infected by COVID-19, from which about 6.8 million people have died by
late April 2023. The United States, with more than 106 million infected cases and around
1,150,000 dead, has the highest number of infected people with COVID-19 worldwide.
The number of infected people and the mortality rate in Iran are 7,592,255 and 145,391,
respectively. It is worth mentioning that information resource is the official statistics till late
April 2023, and the number of infected people is steadily increasing (WHO, 2023).

Coronavirus is a new infectious disease, and its symptoms vary from person to person,
among which fever, fatigue, and dry cough are the most common (Huang et al., 2019).
Infected peoplemay also exhibit a runny nose or nasal congestion, sore throat, or diarrhea. The
symptoms appear with moderate severity and may worsen gradually. Some infected people
may have no symptoms, which makes them unaware of being virus carriers. About 17% of
the infected people with COVID-19 have short breath. Elders suffering from an underlying
disease, such as diabetes or hypertension, are at a greater risk (Rothan & Byrareddy, 2020).
Thus, infected people need to take special medical services based on the type and severity of
symptoms and their underlying disease.

Infected people with severe symptoms of the underlying disease need to receive special
medical services usually offered in specialized hospitals. On the other hand, due to the limited
capacity of specialized hospitals, infected people having severe symptomswith no underlying
disease should undergo medical treatment in general hospitals. Meanwhile, infected people
with mild symptoms need medical treatment but are in no emergency (Cao et al., 2020). A
proper decision on the medical treatment of such infected people is to set up camps used as a
place for settling improved infected people who lack the necessary qualifications for staying
home.

Social distance is one of the most significant factors in controlling the spread of infectious
diseases (Govindan et al., 2020).As health providers have rightly pointed out, contact between
infected people and healthy people is one of the main transmission routes of such infectious
diseases as coronavirus, which increases the rate of spread (Aloi et al., 2020). On the other
hand, infected people need to receive medical services in medical centers, which necessitates
their commute in society. Accordingly, the healthcare systems face the challenge of (a)
providing the infected people with medical services in such a way that the patients’ commute
in society reduces and (b) establishing medical centers for the infected people with mild
symptoms, the improved cases, and the uninformed carriers or the infected people with a
variety of symptoms.

Limited healthcare facilities, daily increase in cases, and patients in an emergency (such as
cancer, diabetes, and heart disease) place the medical centers under added pressure during the
outbreak of pandemic diseases such asCOVID-19 (Samani&Hosseini-Motlagh, 2021).Also,
the issue of preventing infectious disease transmission from infected people to healthy people
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is of great importance in healthcare systems. In these circumstances, adaptation between the
health system and increasing demand becomes a vital necessity, which is interpreted as
resilience. Thus, the health system network must have a proper design to deal with risky
situations and carry out efficient operations for these situations. It also must be capable of
easily or quickly recovering from sudden disruptions (Djalante et al., 2020). This potential
is the reason behind the importance of resiliency in healthcare systems facing infectious
diseases. In general, the resiliency of a system is regarded as its ability to overcome particular
difficulties and become strengthened and more resourceful in the face of adversity (Holling,
1973). To have a resilient healthcare system during the outbreak of COVID-19 disease, the
architectural style of themedical center’s network needs tominimize bed shortage, population
density, and as a result, the rate of spread.

With the essential motivation for addressing the problem the Ministry of Health and
Medical Education (MHME) of Iran faces, this study presents a mixed-integer linear pro-
gramming (MILP) model to design a resilient health system for improving medical services
to the infected people with COVID-19. The proposed model has the potential capability to
make the appropriate decision regarding the number and location of health providers, such
as screening centers, camps, or quarantine stations, the distribution of infected people in
different kinds of medical centers and camps, the distribution of improved infected people
in quarantine stations, and the distribution of infected people in each of the medical centers.
Thus, it seeks to decrease the spread rate of the virus, considering the lowest rate ofmovement
of infected people in the community.

In this network, suspected COVID-19 cases undergo a test, and then they are admitted to
the medical centers based on the symptoms type and severity when their test result is positive.
Their condition is assessed at three levels: camps, specialized hospitals, and general hospitals.
Patient transfer between the levels is possible when the symptoms of patients admitted to the
lower-level medical centers mayworsen later, and they need to takemore specializedmedical
services. Finally, improved populations are transferred to the available quarantine stations
for the recovery plan. This study aims to analyze the conditions under which the transfer
of infected people with coronavirus all over the network is at the lowest cost, distance, and
de-resiliency so that the rate of spread decreases. To this end, the suspected cases are referred
to the nearest screening center and then assigned to medical centers based on the shortest
distance and resiliency measures.

Therefore, all in all, identifying the infected people, providing completemedical treatment
services for them, and maintaining the social distance between them and healthy people are
the most important known factors in preventing the outbreak of such diseases as COVID-
19. This study addresses the following research questions with the essential motivation of
designing an efficient and resilient health system to implement the above policies.

• Which factors have a significant role in establishing a resilient health service network for
infected people with COVID-19?

• What is the effective strategy for decreasing the possibility of virus transmission to healthy
people when infected people commute in society?

• How many screening centers, camps, and quarantine stations must be set up, and what are
the best places for these facilities to provide complete medical treatment services for the
sufferers?

• How do different types of infected people in the health services network transfer between
camps, general hospitals, and specialized hospitals?

• How do the improved cases from all three levels (i.e., specialized hospitals, general hos-
pitals, and camps) transfer to quarantine stations after completing medical treatment?

123



906 Annals of Operations Research (2023) 328:903–975

It is worth noting that many researchers have conducted studies on the spread of coron-
avirus in recentmonths to investigate this global phenomenon from various aspects. Although
designing and managing a transit system for coronavirus-infected people and establishing a
medical treatment procedure for them is of great importance, to our knowledge, no focused
paper has been done on the subject so far. This study adopts Operations Research (OR)
techniques and mathematical formulation to design and improve a management and tran-
sit system for the infected people of such infectious diseases as coronavirus; the identified
research gaps and four substantial contributions of the current study, in this regard, are as
follows:

First, modeling and optimization techniques develop a powerful tool for the design of
an efficient network. On the other hand, the availability of an efficient service network in
the event of global crises, such as the coronavirus outbreak, is the most necessary measure
that needs to be taken by health systems. However, no previous research has exploited the
considerable potential of OR techniques for designing a network to provide infected people
with diseases with healthcare services. Thus, the study employs OR techniques to enhance
the quality of health services so that the spread of such viruses as COVID-19 decreases.

Second, accurately identifying coronavirus-infected people is a significant issue in pre-
venting its spread. Therefore, the study creates a new treatment network design where people
with suspected COVID-19 symptoms undergo a screening test to be admitted to the medical
centers when their test result is positive.

Third, the instability of prevalence in different periods and the stochastic number of
patients with different disease severity increase the complexity of service management for
infected people with COVID-19. However, with increasing complexity, any unpredictable
event such as staff error and equipment failure (e.g., detection kit equipment) causes a mis-
diagnosis, more prevalence, and a significant mortality rate. Consequently, it necessitates
considering the resiliency factor in establishing a health service network to be flexible in the
face of any unexpected change. Accordingly, the present research determines three resiliency
measures to enrich the designed network against potential threats.

Fourth, since the sufferers of infectious diseases experience various symptoms, they
require medical care at different levels. It is one of the significant issues that must be con-
sidered in designing an efficient treatment network. Therefore, this study identifies symptom
types and severity to provide infected people with effective treatment.

Fifth, the transit system for the infected people must largely avoid contact with healthy
people. Thus, a mathematical model considering the lowest level of patients’ movement in
society is the fifth contribution of the study.

The rest of the study is structured as follows. Section 2 reviews studies on using OR
applications in designing a health system for infectious diseases. Section 3 states the problem
and develops a mathematical model. Section 4 describes the evaluation procedure: a novel
hybrid uncertainty programming method to cope with mixed uncertainty and an interactive
fuzzy approach to address the multi-objective problem. Section 5 provides a real case study
from Tehran city of Iran. Sections 6 and 7 present the computational results, sensitivity
analyses, and management findings. At last, Sect. 8 concludes the study and develops future
recommendations.
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2 Related literature

The study of applications of quantitative techniques in health service networks has drawn
more interest in recent years since the outbreak of the COVID-19 virus. A review paper
by Ivanov and Dolgui (2021) indicated that the existing OR techniques could effectively
overcome the lasting effects at five pandemic stages of COVID-19 (i.e., Anticipation, Early
Detection, Containment, Control and Mitigation, and Elimination). Another review paper
on decision-making strategies for the COVID-19 pandemic is provided by Moosavi et al.
(2022), which conducted that resiliency and sustainability had relatively great attention in
popular keywords of scholars. Overall, the main focus of the current section is to review
the literature on the applications of OR in the design of medical service networks during
the epidemic. Therefore, the related literature can be divided into two main categories: 2.1.
Applications of OR in epidemic outbreaks and 2.2. Applications of OR in health service
network design. Eventually, research gaps in the literature are presented in Sect. 2.3 to
display the distinguishing characteristics of the present study.

2.1 Applications of OR in epidemic outbreaks of disease

OR, as a common standard of system thinking, appears to have gained increasing popular-
ity among healthcare-related sectors. The established reputation of powerful techniques in
addressing health issues makes it significant to conduct further research on their potential
applications in infectious diseases. The following paragraphs briefly explain the few studies
on adopting OR techniques in the outbreak of contagious diseases. Then, efforts are made to
propose new ideas and bridge the knowledge gaps.

Johanis (2007) analyzed a pandemic response plan at the international airport of Toronto
Pearson in 2002–2003 when the airline industry experienced the catastrophic effects of a
SARS epidemic at a global level. Rachaniotis et al. (2012) presented a mathematical model
according to the schedule developed for fighting the flu epidemic. The amount of the needed
effort and time for control was considered an increasing function of the starting time for an
effort to suppress. They used the model for the widespread vaccination against A(H1N1)v
influenza in the Attica region, Greece, as a case study. Büyüktahtakın et al. (2018) developed
a decision-support frameworkwhen the Ebola outbreak had severely affected global logistics.
The framework facilitated the estimation of epidemic proportions and the effects on supply
chains by offering a choice of logistics policy measures during and after the disaster.

Considering the influential role of truck drivers in the outbreak of infectious diseases
such as HIV in sub-Saharan Africa, a non-governmental organization, namely the North
Star Alliance, constructed a network of health facilities along the longest truck routes in
sub-Saharan Africa. Accordingly, de Vries et al. (2020) addressed the problem of the extra
facilities’ location and the type of health services. The goals of their study included an increase
in admission rate per facility and the improvement of the efficiency of health services delivery.
Amulti-objective optimizing approach was adopted by Sun et al. (2014) to allocate resources
during an influenza pandemic efficiently. It brought commuting distance to hospitals and non-
ICU resources into focus, considering the total bed capacity of hospitals as a constraint. Also,
there are a limited number of studies (such asHackl andDubernet (2019); Currie et al. (2020))
on the disturbances of simulation and transportation caused by epidemic outbreaks.

Following the global coronavirus outbreak, a growing body of published literature on the
subject is to apply quantitative methods such as operations research in addressing the issue
of epidemic proportions and the effects from various aspects. Ivanov (2020a) checked the
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profile of uncertainty types to analyze the impact of COVID-19 on supply chain networks
at a global level. Long- and short-term effects were predicted and simulated through logic
software applications. Govindan et al. (2020) adopted a fuzzy inference system to develop a
practical method of decision support for minimizing the disturbances of the healthcare supply
chain caused by the outbreak of the COVID-19 epidemic with help to demand management.
According to the report of WHO on COVID-19, they assessed the efficiency of their method.

Yu et al. (2020) presented a multi-period multi-objective model supporting the design
idea for a reverse logistics network to efficiently handle the medical waste produced from an
infectious disease outbreak such as coronavirus. Their proposed model used a way to identify
the most convenient location of temporary facilities and transportation policy to effectively
manage the medical waste that exponentially increases in a brief period. El-Baz and Ruel
(2021) examined the effect of risk management in diminishing the disruptive influences of
the COVID-19 pandemic on supply chain resilience. Choi (2020) investigated the impact of
coronavirus outbreaks on thebehavioral pattern of both consumers and service providers in the
service operation system ofHongKongwithin an analytical framework. He has also proposed
a "bring-service-near-young-home" strategy for handling disasters such as the coronavirus
outbreak based on the commercial model of mobile service operations.

Ivanov (2020b) introduced viability as an underlying concept at three levels of agility,
resiliency, and sustainability in supply chains to propose a model enabling companies to
shape their decisions on the revival of their supply chains after long-term global problems
such as the pandemic COVID -19. Yang and Wang (2020) found numerous transmission
routes in the spread dynamics of coronavirus, with particular emphasis on the role of a
natural reservoir in the disease outbreak. The numerical data showed that coronavirus would
remain an endemic disease, necessitating long-term intervention programs to prevent its
spread. Ivanov and Dolgui (2020) offered a new insight into the resistance of the supply
chain to critical disturbances on a scale of viability. They gained a conceptual understanding
of a new decision-making model for intertwined supply network (ISN) viability to assess the
viability by a dynamic game-theoretic model of a biological system resemblance the ISN.

Due to the virus’s novelty, prediction of the COVID-19 pandemic growth is essential to
enable governments to put new measures to slow down the spread of the virus. Therefore,
Khalilpourazari et al. (2021) suggested a gradient-based Grey wolf optimizer (GGWO) for
predicting the COVID-19 pandemic in the US. To avoid getting trapped in local optima,
they also used the Gaussian walk and L´evy flight to improve the capabilities to explore and
exploit in their proposed method. Their results predicted an upcoming peak in the number
of infected and ICU-admitted cases in healthcare systems to help policymakers and avoid
equipment shortages. Khalilpourazari and Hashemi-Doulabi (2021) proposed an efficient
reinforcement learning-based algorithm to simulate the COVID-19 pandemic in France. As
output, they derived the values of significant parameters, such as reproduction rate, that would
help healthcare professionals plan for future measures limiting community transmission. In
another study, Khalilpourazari and Hashemi-Doulabi (2021) developed a stochastic fractal
search algorithm combinedwith amathematicalmodel to predict the number of symptomatic,
asymptomatic, life-threatening, recovered, and death cases of COVID-19, in Canada. Their
results showed that asymptomatic cases were the main factor in the transmission of the
virus in society. They also concluded that as the frequency of diagnostic tests increased,
the likelihood of detecting asymptomatic people increased, and preventing from spreading
the virus occurred. Most recently, Khalilpourazari and Hashemi-Doulabi (2022) proposed
a novel hybrid reinforcement learning-based algorithm to predict the COVID-19 outbreak
based on the most recent data from Quebec, Canada. Also, they combined their proposed
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algorithm with the most recent mathematical model for COVID-19 pandemic prediction to
accurately show the future trend of the pandemic with a logical mean square error.

In the latest review papers, Queiroz et al. (2020) offered a framework for supervising
operations and monitoring supply chain performance during the outbreak of the COVID-19
pandemic from the aspects of sustainability, lasting effects, recovery, preparedness, digitaliza-
tion, and adaptation. Chowdhury et al. (2021) examined available studies on the COVID-19
epidemic disease in supply chain fields, which have issued before September 28, 2020.
Their examination disclosed the lack of studies with an experimental design and a theoret-
ical ground in light of the COVID-19 pandemic. Also, their review revealed that most of
them have concentrated on supply chains for essential products with a great demand level
and healthcare goods, regardless of items with a lower demand level and SMEs. Sotoudeh-
Anvari (2022) revealed the increasing popularity of the multiple criteria decision-making
(MCDM) techniques in constructing a model of the COVID-19 pandemic problems due to
its multi-dimensional nature and socioeconomic intricacy of the healthcare systems. They
also disclosed that most recently conducted investigations integrated different fuzzy sets with
MCDM approaches to cope with the issue of ambiguity and uncertainty during data analysis.

Ehsani et al. (2023) presented a new humanitarian location-allocation-inventory model
concentrating on controlling an outbreak of the COVID-19 pandemic by IoT-based tech-
nology in the reaction stage of catastrophes. IoT-based technology-enabled systems in their
investigation made corporates relating to health and first aid capable of monitoring patients
remotely, detecting, supervising, and disinfecting the suspected individuals, and transporting
relief materials. The model presented by this study had two phases. The first phase consisted
of describing infected individuals, quickly moving patients to transient hospitals and hous-
ing individuals in evacuation hubs. The next one was to locate distribution hubs and evenly
transfer relief materials to evacuation hubs and temporary hospitals, considering the mini-
mization objective of shortage. They used the LP-metric approach to solve the model whose
validity was confirmed in a real-world case study in Salas-e-Babajani, Kermanshah, Iran.
Their findings indicated that using an IoT-based technology-enabled system in evacuation
hubs and involved zones decreased the number of infected individuals and the shortage of
relief materials. Goodarzian et al. (2021a) constructed a multi-objective multi-echelon multi-
period multi-product linear mixed-integer programming model for novel flow, production,
location, allocation, stock holding, and distribution problems to create a unique resilient-
sustainable healthcare network for the COVID-19 epidemic disease under uncertainty. They
utilized a simulation strategy to assess the significance of the existing demand for pharma-
ceutical products and stochastic chance constraint programming to deal with parameters with
inherent uncertainty. They also suggested meta-heuristic Genetic Algorithm (GA), Multiple
Objective Teaching–learning-based optimization (TLBO), and Particle Swarm Optimization
(PSO) techniques to achieve Pareto solutions. They conducted a real-world case study in the
US to confirm the validity of their model, which could be helpful for hospitals, distributors,
drugstores, medical suppliers, and the Health Ministry. To warrant cost and time consider-
ations for transportation, Li et al. (2023) regarded a network of hub-and-spoke multimodal
transportation for crisis relief programs in the event of facing unplanned COVID-19 epidemic
disease. As the first step, they constructed a mixed integer nonlinear programming (MINLP)
model according to multimodal transportation and crisis relief of multiple types. Their pre-
sented model had two objectives of transportation time and cost minimization. Moreover,
they redesigned Grey Wolf Optimizer (GWO) algorithm to resolve the NP-hardness of the
considered problem.

Kargar et al. (2020) developed a linear programming model with three objective functions
to minimize the amount of waste, the hazard of infectious waste, and the total cost in medical
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centers. Also, they presented a variety of function relations to measure the amount of pro-
duced waste in terms of COVID-19 parameters in Iran. Mosallanezhad et al. (2023) designed
a supply chain network for COVID-19 Pandemic Wastes (CPWs) employing devices for
optimization modeling. Furthermore, they developed an IoT platform to allow the presented
model for real-time data retrieval from IoT tools as inputs for the model. Also, they incorpo-
rated sustainability factors into their model enabled by IoT-based technology, assuming its
triplet pillars as objective functions. To confirm the validity of their model, they conducted a
case study in Puebla city and several experiments using integrated metaheuristic algorithms
to solve it. Mondal and Roy (2021) regarded multi-period multi-objective planning for an
open-close loop sustainable supply chain with multiple products to support supply among
hospitals and manufacturing centers during the COVID-19 epidemic disease. To construct
a less infectious logistics network, they developed the problems of transport and routing of
pick-up-delivery vehicles in two phases considering carry-out distribution. They presented a
decision-making process with multiple attributes to define the preferences of involved zones
based on entropy weights. Furthermore, they employed an uncertain mixed environment by
specifying random-uncertain parameters in the presented model and used the augmented
weighted Tchebycheff technique for problem-solving.

Babaee-Tirkolaee et al. (2022a) proposed a novel socio-economic bi-objective model to
design a multi-echelon blood supply chain network (BSCN) during a pandemic such as
COVID-19. They assumed uncertainty in parameters, such as demand, capacity, and blood
disposal rates, and utilized interactive possibilistic programming to treat the problem opti-
mally. To validate the developed methodology, they analyzed a real case study of a blood
supply chain in Tehran, Iran, along with sensitivity analyses of the main parameters. Gilani
and Sahebi (2022) presented a mathematical model for a dual-channel sustainable COVID-
19 vaccine supply considering the economic, environmental, and social factors. They have
also utilized a polyhedral uncertainty set to propose a robust data-driven model to cope
with uncertainty in the unfair distribution of vaccines in the world. They implemented their
proposed model in a real case in Iran, and their model output reported the construction of
two domestic vaccine production centers and five foreign distributors strategically. Hosseini-
Motlagh et al. (2021) designed a supply network to allocate various COVID-19 test kits
to the suspected people to minimize the total network cost and decrease false results of
COVID-19 tests. They proposed a multi-stage stochastic programming (MSSP) method with
a combined scenario tree to copewith the uncertain parameters (such as potential demands for
various test kits and the rate of prevalence of COVID-19) in a dynamic condition. Eventually,
they used a real case in Iran to confirm the validity of their proposed methods. Goodarzian
et al. (2021b) presented a multi-objective sustainable integrated model related to the med-
ical supply chain network, considering the distribution of COVID-19 medicines to patients
and medicine delivery and production periods according to the perishability of some of
them. They suggested three hybrid meta-heuristic algorithms to solve the proposed model.
Also, they investigated the dynamicity of the COVID-19 outbreak to estimate the num-
ber of required medicines using the simulation approach. Babaee-Tirkolaee et al. (2022b)
developed a novel multi-objective model to design a sustainable multi-period multi-echelon
multi-product mask closed-loop supply chain network during the COVID-19 outbreak. In
their proposed model, they addressed the locational, supply, production, distribution, col-
lection, quarantine, recycling, reuse, and disposal decisions to minimize the total cost, total
pollution, and total human risks simultaneously. Also, they implemented Multi-Objective
Grey Wolf Optimization (MOGWO) algorithm and Non-Dominated Sorting Genetic Algo-
rithm II (NSGA-II) to solve the proposed model and find Pareto optimal solutions.
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Liu et al. (2023) concentrated on locating the testing installations, such as test kits, to meet
varying demands induced by epidemic diseases. They presented an optimization framework
with two stages to determine the location of establishments and adapt potential over emer-
gencies of a large size. Using a developed online convex optimization-based Lagrangian
relaxation approach to solving the sample-average-approximation (SAA) method, prespec-
ified fill-rate prerequisites were met by initial prepositioning techniques in the first stage.
Then they adapted the potential to meet varying demands dynamically in the second stage.
Furthermore, they accomplished an extensive case study on the hazard of the COVID-19
pandemic to assess their presented technique. Shiri et al. (2023) constructed a linear two-
stage mixed-integer model with multiple objectives for a healthcare network at home over
pandemic diseases, e.g., COVID-19. In the first stage, the productive healthcare centers were
opened to perform scheduling and routing subject to social accountability and efficacy. They
considered multiple objectives, including total cost and level of inefficiency minimization
and social factors maximization. They integrated the presented optimization model and the
augmented data envelopment analysis (DEA) approach to determine the efficiency level.
Besides, they designed the TH method as an interactive technique to solve the presented
multiple-objective model and a powerful fuzzy strategy to address social aspects, cost, and
time of service as parameters with inherent uncertainty. Ultimately, they carried out a real-
world case study in Kermanshah, Iran.

Using a two-stage stochastic mixed integer program, Zhang et al. (2023) proposed strate-
gies with multiple mitigations in medical facilities to guarantee supply without interruption
for hospitals and substantial rescues over pandemic diseases. They planned to generate an
emergency reaction application integrating preparedness activity (contract provider choos-
ing, reserve site, and stock level) with actions post-event (assigning medical items through
different ways). Furthermore, they designed a branch-and-Benders-cut technique for their
problem, outperforming considerably in the time of solution compared with other classical
ones. As the final step, they employed data on the COVID-19 epidemic disease in Wuhan,
China, to confirm the validity of the presented technique. Ardakani et al. (2023) constructed
a location-allocation model with multiple objectives to boost healthcare systems resilience
using alternative sources, such as trainee nurses and field and backup hospitals, aiming for
system costminimization and ratemaximization of satisfaction among patients of COVID-19
andmedical employees. They also developed a powerful method to encounter the uncertainty
of data. To explore the usability of their model, they conducted a case study with an analysis
of sensitivity in the real world. Their findings indicated that the number decrease in existing
nurses increased the system costs and decreased the satisfaction rate of nurses and patients.
Also, medical employees and field and backup hospitals upgraded the system’s resilience.
Ash et al. (2022) developed a robust multi-objective multi-period framework for distribu-
tion optimization to boost the supply chains’ resiliency of personal protective equipment
(PPE) against disturbances induced by pandemic diseases, inspired by challenges facing a
healthcare supplier in a province of Canada over the COVID-19 epidemic disease. Specify-
ing demand, cost, and supply as undetermined parameters, they produced effective solutions
along a trade-off between maximizing service rank and minimizing cost by the ε-constraint
strategy. Their investigation emphasized the significance of supervision and preliminary alert
systems in enabling decision-makers in the supply chain to initiate probable programs such
as closing contracts, strengthening logistical potentials, and taking advantage of emergency
supplies.

Çetinkaya et al. (2023) presented a process with five stages for solving the problem of
selecting mass vaccination locations. As the first step, they specified the criteria for location
choosing and provided a map of the gathered spatial information utilizing the software of
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Geographical Information System (GIS). Then, using the entropy weightingmethod (EWM),
they determined the proximate significance grades of criteria and ranked the possible mass
vaccination locations using the multiple attribute utility theory (MAUT) methods. Finally,
they utilized the GIS’s network analyst device to analyze the ranked alternative places based
on the population undercover. Furthermore, they accomplished a case study inGaziantepCity,
Turkey, which was the 9th most populated and had an above-average number of COVID-19
patients. To resolve the inherent uncertainty in both problem sides of vaccine distribution,
i.e., demand and supply, Dastgoshade et al. (2022) presented a new two-stage stochastic
programming model with two objectives by the sample-average-approximation (SAA) tech-
nique. Also, they designed a lexicographic goal programming method where social fairness
was a preferred objective. They supplied proof of the advantages of including social fairness
in a decision-making process based on a model, employing data about COVID-19 in two
significant provinces of Iran. Goodarzian et al. (2022) developed a novel responsive-green-
cold vaccine supply chain network over the COVID-19 epidemic disease, based on which
they created a renewed multiple objective multi-echelon multi-period mathematical model
for the problems of location, allocation, and distribution simultaneously. They also applied
Internet-of-Things (IoT) for the COVID-19 pandemic in their model to improve accuracy,
pace, and fairness in injecting the vaccine with available preferences. They solved their
model using LP-metric, Variable Neighborhood Search (VNS), and GrayWolf Optimization
(GWO) algorithms and confirmed its efficacy by conducting a real-world case study in Iran.
Their findings demonstrated that compared to other mentioned algorithms, MGO delivered
a higher level of quality and outperformed. Pointing to academies as one of the most con-
gested metropolitan areas, Kamran et al. (2023) designed a novel stochastic multi-product
multi-period multi-objective simulation optimization model for the COVID-19 vaccine’s
manufacturing, distribution, location, allocation, and stock management decisions. Their
presented supply chain network comprised four echelons of suppliers, clinics, vaccination
hubs, and students volunteering for vaccine injection. They also created a system with a
dynamic design of the spread of the COVID-19 pandemic in academies to assess demand for
the vaccine through simulation, where demand as a specified stochastic parameter entered
the model. Accordingly, their model’s objectives were to minimize costs associated with the
supply chain, maximize the desirableness of vaccine injection among the students, and maxi-
mize fairness in vaccine distribution. They solved their model using the Whale Optimization
Algorithm (WOA) and Variable Neighborhood Search (VNS) algorithms. They also con-
firmed its validity by conducting a real-world case study of the COVID-19 epidemic disease
span in Tehran, Iran.

In a review of the literature on the potential application of OR in the outbreak of epidemic
diseases, a considerable proportion of the research has worked on OR techniques to analyze
social and economic conditions created by the outbreak of infectious diseases in the business
sector. OR methods have the potential capability for the design of an efficient treatment
network. However, no research has covered the issue of spreading diseases. To fill the gap,
this study seeks to apply OR techniques in designing a network of specialist medical services
for infected people with the COVID-19 virus.

2.2 Applications of OR in health service network design

This sub-section reviews the published articles on OR applications in the medical service
network. Location-allocation models, as an example of ORmodels, have an increased role in
the success of health service networks since they are capable of identifying the crucial factors
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of a healthcare network, including the number of healthcare facilities to be constructed, the
allocated portion of patient zones to the facilities, themost convenient location of the facilities,
and patterns of interaction among health service providers at the lowest cost or highest
profit (Rais & Viana, 2011). Thus, the models have been widely utilized in health service
networks such as organ transplant services (Zahiri et al., 2014a, 2014b), emergency medical
service designs (Andersson et al., 2020; Baharmand et al., 2019; Beraldi & Bruni, 2009;
Haeri et al., 2020a; Mohamadi & Yaghoubi, 2017), preventive healthcare facility network
designs (Ershadi & Shemirani, 2021; Haeri et al., 2022; Zhang et al., 2009), home healthcare
supply chain network design (Fathollahi-Fard et al., 2018, 2019; Khodaparasti et al., 2018),
pharmaceutical supply chain network design (Akbarpour et al., 2020; Mousazadeh et al.,
2015), and blood supply chain network design (Haeri et al., 2020b; Haghjoo et al., 2020;
Samani & Hosseini-Motlagh, 2019; Samani et al., 2019, 2020; Yaghoubi et al., 2020; Zahiri
et al., 2015).

In a review paper, Ahmadi-Javid et al. (2017) categorized research studies on the issue
of location in healthcare networks based on case study inclusion, solution method, approach
to the mathematical model, fundamental discrete location problem, constraints, decision
variables, objective function, particular input/setting, multi-period setting, and uncertainty.
Zarrinpoor et al. (2018) tailored a robust-scenario-based stochastic programming approach
to develop a two-level reliable hierarchical location-allocation model with service referral
by handling the design problem of the health service network in the real world. Also, they
adopted the enhanced accelerating Benders decomposition methods to solve the proposed
model in large-scale sizes. Mousazadeh et al. (2018a) addressed the redesign problem of
a multi-period three-level health service network to establish a viable, stable, and efficient
network in the real world. A robust mixed possibilistic-flexible programming approach and
the augmented ε-constraint method were also used to cope with the uncertainty of model
parameters and to show the Pareto front.

Shishebori and Babadi (2015) introduced a robust optimization technique with optimal
performance for the design problem of a reliable location network in the medical service
center that conducted a simultaneous assessment of investment budget limits, system disrup-
tions, and uncertain parameters. A bi-objective model for a hierarchical three-level health
service network designwas presented byMousazadeh et al. (2018b) in another research study
to decrease the total cost of construction and shorten the total weighted distance from patient
zones to health facilities.

Denoyel et al. (2017) developed an optimization model for payers as a combination of
ReferencePricing and aTieredNetwork to solve a difference of opinion over payment policies
for the healthcare sector in quantitative research. The objective function was the specification
of health service providers exempt from Reference Pricing that their patients incur no out-
of-pocket costs. Their model made a trade-off between cost reduction for the payer and the
quality of the provider’s health services.Wang et al. (2019) used a dynamic model to design a
reverse logistics network for urban medical waste at two-stage. They determined the quantity
of medical waste by the prediction model of Grey n the first stage to minimize environmental
impacts and operating costs by a multi-objective model in the second stage.

Iloglu and Albert (2018) represented a novel type of the P-median problem to simulate
the interdependence of infrastructural facilities and health service providers, in which all
emergency personnel offered the essential services and the recovery center repaired severe
damage to the infrastructure network. The objective function was to minimize the weighted
cumulative effect of a time lag between emergency personnel service calls. They used the
Lagrangian relaxation algorithm to solve the model by sub-gradient optimization.
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Acar and Kaya (2019) presented a two-stage stochastic programming model to design an
efficient healthcare service in facing disasters. They investigated proper logistics models for
catastrophes inmobile hospitals to use them for an expected earthquake in Istanbul. Nasrabadi
et al. (2020) constructed a model of the public healthcare sector’s problem in the real world
by a combination of short- and long-term uncertainties. They developed an efficient solution
method for identifying the location of healthcare facilities, determining the capacities of
healthcare facilities, and allocating service units to healthcare facilities. Also, more recently,
Hashemi-Doulabi and Khalilpourazari (2022) proposed a state-variable model to formulate
the two-stage stochastic operating roomplanning problemconsidering an exponential number
of scenarios. Their objective function was to minimize the sum of the fixed opening cost of
operating rooms and the expected overtime costs. The main advantage of their proposed
model was that it had a pseudo-polynomial number of variables and constraints significantly
fewer than that of other stochastic models presented in the literature. They improved the
strength of their proposed model by developing several valid inequalities. Their output stated
that the proposed model could find optimal solutions for instances with 50 surgeries and
1.55E+40 scenarios.

With this respect to the above points, many studies have examined the issue of health
network design from various aspects. Given that there has been no research on givingmedical
services to infected people with contagious diseases so far. Thus, the present study develops
a mathematical model to design a network for providing infected people with infectious
viruses such as COVID-19 with medical services.

3 Research gaps

Many researchers have conducted studies on applying OR techniques to spread infectious
viruses and design health networks for infected people with the viruses. However, there is
no research on developing a mathematical model for designing a proper network of medical
services for infected peoplewith viruses.Given that the outbreak of infectious diseases creates
critical conditions for their sufferers, establishing an efficient network of medical services
to the infected people is the most challenging work of vital importance that must be carried
out to prevent the spread of the virus in the community as much as possible. Accordingly,
the present study aims to bridge the specified gaps. The novelty value of the study can be
demonstrated from various aspects as follows:

• Presenting a network model of medical services to the infected people with coronavirus;
• Allocating the medical centers to the infected people with this respect to the severity of
symptoms;

• Developing new indicators of resiliency in the network and using them as optimizing tools
for addressing the spread of coronavirus;

• Considering the potential of existing centers in the city (such as crisis management sheds,
Red Crescent Centers, student dormitories, and sports halls) to provide fast and convenient
service to COVID-19 patients;

• Introducing a new hybrid uncertainty programming approach to eliminating the mixed and
inaccurate parameters;

• Considering the effect of social distance in preventing the spread of coronavirus;
• Using the proposed model for the real-world case study of the COVID-19 epidemic in
Iran.
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4 Problem description andmathematical programming formulation

In this section, a resilient health service network is designed to provide the sufferers of
COVID-19 with medical services in a more convenient and specialized way to enjoy the
availability of healthcare facilities, which consists of suspected people zone, screening cen-
ters, medical service providers (such as camp stations (CSs), general hospitals (GHs), and
specialized hospitals (SHs)), and quarantine stations. As illustrated in Fig. 1, first, the sus-
pected people come to screening centers from different residential areas. Then, the necessary
viral tests, including swab and or polymerase chain reaction (PCR) testing, will be done to
identify the level of infection. Based on the results of screening tests, people with positive
test results are identified as patients (definitively affected). Afterward, the affected people
are introduced to different medical centers for treatment. Considering the underlying disease
and the severity of symptoms, each sufferer will take a different kind of medical treatment.
Thus, in the network under investigation, three types of medical service providers, including
camps, general hospitals, and specialized hospitals, are considered at the third level. At this
level, the unilateral transfer of infected people from a medical center to a more advanced
one is also feasible. In other words, this consideration makes it possible to transfer infected
people who have come to the camps into general hospitals or between general and special-
ized hospitals as their symptoms worsen and the emergency arises. Eventually, the improved
infected cases are transferred into quarantine stations for around a few days since they may
be carriers of the virus, and a long distance away from society needs to be maintained after
discharge. It is worth mentioning that in Fig. 1, patients’ direct and unilateral transshipment
flows are indicated by continuous and dashed lines, respectively.

Since the number of COVID-19 patients exceeds the capacity of medical centers, the
lack of medical necessities (e.g., space, beds, and staff) and social distancing put the health
system infrastructure under considerable pressure, which has unpleasant consequences for
patients’ health. In these circumstances, the adaptation level of the health system to the
rising referral rate with no disruption in the supply chain of medical services will show
the resiliency of the health network and its importance. Multiple indicators of resiliency
are considered instruments for design optimization in Sect. 3.2 to improve the network’s

Fig. 1 An overview of the proposed health service network design for patients with COVID-19
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reliability. Therefore, to reduce risks and enhance the resiliency of the investigated health
network structure, the following indicators of resiliency are taken into account:

• Health facility criticality (congestion criteria) given that the commuting of sufferers in
society increases the probability of virus spread, the congestion criterion calculates the
total quantity of inflows and outflows in the health facility. Higher health facility congestion
tends to create a less resilient network. Hence, health facility criticality is applied to assess
the health service network resiliency. A health facility (including screening centers, camp
stations, and quarantine stations) becomes critical as the summation of inflows and outflows
of COVID-19 virus carriers in that facility exceeds a determined threshold.

• Patient dissatisfaction level (shortage criteria) timely decision about hospitalization and
quarantine is one of the most crucial strategies for effective treatment and preventing the
further outbreak of COVID-19 disease. The limited capacity of medical centers makes
it impossible to provide all patients with medical services, especially at peak times. It
puts COVID-19 patients’ lives at risk, leads to some delays in the treatment of emergency
patients, increases the rate of spread caused by commuting in society, and disrupts the
health system. Thus, the dissatisfaction criterion shows non-admission to medical centers,
which is caused by their limited potential. On the other hand, it is an indicating factor of
deficiencies in the centers. The higher the number of non-admissions, the more inefficient
the healthcare system.

• Dispersion of suspicious people (de-concentration criteria)during the outbreak ofCOVID-
19 disease, the more accurate identification of infected cases requires that the suspected
patients take a test in screening centers introduced by the healthcare sector. Although all the
centers offer the same services, some have a higher referral rate leading to an imbalance in
the network. Therefore, the even distribution of the suspected patients among the centers
is a good solution for using all the infrastructures and preventing the spread. The de-
concentration criterion states that the visit-capacity ratio of a screening center should
reach a uniform size and not be overcrowded. More precisely, the number of visits to each
center must be the same as a predetermined constant ratio plus a tolerance.

According to the above explanations, the presented model tends to determine the optimal
number and location of screening centers, camps, and quarantine stations, as well as the
allocated portion of each medical center to the infected people with COVID-19, efficient
assignment of patient zones to screening centers, and their transfer from screening centers to
camps or different kinds of hospitals, and efficient allocation of improved cases to quarantine
stations to reduce the commuting time of infected people in the society and subsequently the
rate of virus spread, to make a tradeoff relationship between the network resiliency, mileage
of sufferers, and network costs.

4.1 Assumptions

The fundamental assumptions below are used in the suggested model.

• According to symptoms severity and underlying disease, coronavirus patients must receive
various medical services (Helmy et al., 2020). Thus, this study divides infected people into
three categories: mild symptoms and severe ones with and without underlying disease.

• Since making a treatment plan for each patient is impossible, infected people are grouped
in several patient zones based on residential areas for the planning process.

• The central point of each patient zone is regarded as an indicator for calculating commuting
distance.
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• Since theCOVID-19pandemic causes considerable fluctuationswith unpredictable effects,
the number of infected cases per period and scenario is an uncertain parameter.

• Little time and the need for medium-term planning make it impossible to construct new
hospital buildings during the COVID-19 outbreak. Thus, several existing general and
specialized hospitals offer medical services to the sufferers. However, several camps are
established to serve outpatients due to the limited capacity of existing hospitals.

• Screening centers, medical centers, and quarantine stations contain limited test kits and
beds. Thus, they own a limited capacity, a small part of which is assigned to COVID-19
patients.

• Since hospitalized patients’ conditions may become acute over time, and there may be
a need for more advanced medical services, unilateral transfer between medical centers
(camps and hospitals) is allowed.

• Since the improved patients need to stay away from the community for a period to prevent
the transmission of the virus, they must be in quarantine stations for a specified time
regardless of their symptom severity.

4.2 Mathematical model

Asmentioned before, the model is aimed at minimizing the de-resiliency of the health service
network, travel distance of all sufferers, and total network costs subject to the most intelligent
decision on the number and location of health providers such as camps or quarantine stations,
the distribution of infected people in the different kinds of medical centers and camps, the
distribution of improved patients in quarantine stations, and the distribution of infected people
in each of the medical centers. The structure of the model is demonstrated in the following
equations, and its notations are provided in Appendix A. Also, the structural properties of
the coming model are provided in Appendix B.

4.2.1 First objective function (resiliency measure)

Min obj1 �
∑

g

ϑ × yg +
∑

j

ϑ ′ × y′CS
j +

∑

q

ϑ ′′ × y′′
q

+
∑

t

∑

s

⎛

⎝peGH ×
∑

j

utsGH
j + peSH ×

∑

j

utsSHj + peCS

×
∑

j

utsCS
j + pe′ ×

∑

q

u′ts
q

⎞

⎠ +
∑

g

∑

t

∑

s

(
θ × ε−ts

g + θ ′ × ε+tsg

)
(1)

The resiliency of a health service network is demonstrated by calculating the penalty
coefficient for each of the mentioned resiliency measures. The above objective function is
served tominimize the de-resiliency of the network in terms of the indicators. In this objective
function, the first to third terms calculate the fines for critical screening centers, camp stations,
and quarantine stations. Also, the fourth term calculates the penalty for shortages in medical
centers and quarantine stations. Finally, the last one shows the penalty for negative and
positive deviation from the congestion threshold value in screening centers.
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4.2.2 Second objective function (distance measure)

Min obj2 �
∑

t

⎛

⎝
∑

i

∑

g

ztsig × dig +
∑

g

∑

j

z′tsg j × d ′
g j +

∑

j

∑

j ′
z′′tsj j ′ × d ′′

j j ′ +
∑

j

∑

q

z′′′tsjq × d ′′′
jq

⎞

⎠

(2)

The second aim is to minimize and limit the total distance of all suspected and infected
people in society, as shown in Eq. (2). The first and second terms of this objective function
express the distance between suspected people zones and screening centers and the distance
between screening centers and medical centers (such as camp stations, general hospitals, and
specializedhospitals), respectively.Also, the third and fourth terms show thedistance between
medical centers and the one between medical centers and quarantine stations, respectively.

4.2.3 Third objective function (cost measure)

Min obj3 �
∑

g

fg × xg +
∑

j

f ′
j × x ′CS

j +
∑

q

f ′′
q × x ′′

q +
∑

i

∑

g

∑

t

∑

s

otsg × btsig

+
∑

j

∑

t

∑

s

o′tsGH
j × ltsGH

j + o′tsSH
j × ltsSHj + o′tsCS

j ×ltsCS
j

)
+

∑

q

∑

t

∑

s

o′′ts
q × l ′tsq

(3)

Equation (3) minimizes the total accumulative cost for establishing screening centers,
camps, andquarantine stations, plus operational costs in the screening centers,medical centers
(general hospitals, specialized hospitals, camp stations), and quarantine stations, respectively.

4.2.4 Capacity constraints

∑

i

btsig ≤ xg × cg ∀g, t, s (4)

Equation (4) is a capacity constraint that limits incoming flows to screening centers from
people zones in each period t if the screening center is located.

� tsGH
j ≤ nGH

j ∀ j(general hospital), t, s (5)

� tsSH
j ≤ nSHj ∀ j(speciali zed hospital), t, s (6)

Equations (5) and (6) show that the allocated beds for infected cases of COVID-19 in each
general and specialized hospital in each period could not exceed the maximum number of
beds in each kind of hospital, respectively.

ltsGH
j − � tsGH

j � utsGH
j ∀ j(general hospital), t, s (7)

ltsSHj − � tsSH
j � utsSHj ∀ j(speciali zed hospital), t, s (8)

ltsCS
j − x ′

j × c′CS
j � utsCS

j ∀ j(camp station), t, s (9)

l ′′tsq − x ′′
q × c′′

q � u′ts
q ∀q, t, s (10)

Equations (7)–(10) shows the demand satisfaction in general hospitals, specialized hospi-
tals, camps, and quarantine stations, respectively, by considering the lack of empty beds that
may occur in them.
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4.2.5 Allocation constraints

∑

g

ztsig � 1 ∀i, t, s (11)

btsig ≤ etsi ai × ztsig ∀i, g, t, s (12)

Equation (11) guarantees the assignment of each patient zone to one screening center in
each period. Equation (12) assures that the suspended people can be referred from a people
zone to the screening center if the people zone is allocated to the screening center.

∑

j

z′tstoCS
g j � 1 ∀g, t, s (13)

r tstoCS
g j ≤ �s

t

(
∑

i

etsi ai

)
× z′tstoCS

g j ∀g, j(camp station), t, s (14)

∑

j

z′tstoGH
gj � 1 ∀gt, s (15)

r tsto GH
gj ≤ �s

t

(
∑

i

etsi ai

)
× z′tsto GH

gj ∀g, j(general hospital), t, s (16)

∑

j

z′tsto SH
gj � 1 ∀g, t, s (17)

r tsto SH
gj ≤ �s

t

(
∑

i

etsi ai

)
× z′tsto SH

gj ∀g, j(speciali zed hospital), t, s (18)

Equations (13), (15), and (17) guarantee the assignment of each screening center to one
camp station, general, and specialized hospital in each period, respectively. Equations (14),
(16), and (18) assure that the infected people can be referred from a screening center to one
camp station, general and specialized hospital, if the screening center is allocated to them,
respectively.

∑

j ′
z′′ts f romGHtoSH
j j ′ � 1, ∀ j(general hospital), t, s (19)

w
ts f rom GH to SH
j j ′ ≤ ωs

t �
s
t

(
∑

i

etsi ai

)

× z′′ts f rom GH to SH
j j ′ ∀ j(general hospital), j ′(speciali zed hospital), t, s (20)

∑

j ′
z′′ts f rom CS to GH
j j ′ � 1 ∀ j(camp station), t, s (21)

w
ts f rom CS to GH
j j ′ ≤ ω′s

t �s
t

(
∑

i

etsi ai

)

× z′′ts f rom CS to GH
j j ′ ∀ j(camp station), j ′(general hospital), t, s (22)

Equations (19) and (21) guarantee that each general hospital and each camp station should
be assigned to one specialized hospital and one general hospital, respectively. Equations (20)
and (22) assure that the infected people can be referred from a general hospital to a specialized
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one or from a camp station to a general hospital if the general hospital is allocated to a
specialized hospital or the camp station is allocated to a general hospital, respectively.

∑

q

z′′′tsjq � 1 ∀ j, t, s (23)

vtsjq ≤ τ st �s
t

(
∑

i

etsi ai

)
× z′′′tsjq ∀ j, q, t, s (24)

Equation (23) guarantees that each medical center (general hospital, specialized hospital,
and camp station) should be assigned to one quarantine station in each period. Equation (24)
assures that the improved patients can be referred from a medical center (general hospital,
specialized hospital, and camp station) to a quarantine station if previously it is allocated to
a quarantine station.

4.2.6 Non-criticality constraints

⎛

⎝ψg −
⎛

⎝
∑

b

btsig +
∑

j

r tsg j

⎞

⎠

⎞

⎠(
1 − yg

) ≥ ι
((
1 − yg

)) ∀g, t, s (25)

(26)

⎛

⎝ψ ′CS
j −

⎛

⎝
∑

g

r tsg j +
∑

j ′
wts

j ′ j +
∑

q

vtsjq

⎞

⎠

⎞

⎠
(
1 − y′CS

j

)

≥ ι
((

1 − y′CS
j

))
∀ j (camp station) , t, s

⎛

⎝ψ ′′
q −

∑

j

vtsjq

⎞

⎠
(
1 − y′′

q

)
≥ ι

((
1 − y′′

q

))
∀q, t, s (27)

Equations (25)–(27) respectively guarantee that the screening centers, camps, and quar-
antine stations be non-critical. These centers become critical if the number of total inflows
and outflows in them exceeds a threshold. The above equations are calculated based on Eqs.
(28)–(30), respectively.

yg � 1 if
∑

b

btsig +
∑

j

r tsg j ≥ ψg ∀g, t, s (28)

y′CS
j � 1 if

∑

g

r tsg j +
∑

j ′′
wts

j ′ j +
∑

q

vtsjq ≥ ψ ′CS
j ∀ j(camp station), t, s (29)

y′′
q � 1 if

∑

j

vtsjq ≥ ψ ′′
q ∀q, t, s (30)

4.2.7 Suspicious people dispersion constraint

∑
i b

ts
ig

Cg
� � + ε−ts

g − ε+tsg ∀g, t, s (31)
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Equation (31) calculated the tolerance of the congestion ratio from a predetermined con-
stant for each screening center. It states that the number of visits/capacities of the screening
center ratio should reach a uniform size not to be overcrowded. The number of visits to each
center must be the same as a predetermined constant ratio plus a tolerance. The higher the
tolerance, the worse the ratio.

4.2.8 Balance constraints

lt−1,sGH
j +

∑

g

r tsg j +
∑

j ′
w

ts f rom CSs
j ′ j −

∑

q

v
t−1,s
jq −

∑

j ′
wts to SHs

j j ′ −
(
ρsGH
t × lt−1,sGH

j

)

� ltsGH
j ∀ j(general hospital), t, s (32)

lt−1,sSH
j +

∑

g

r tsg j +
∑

j ′
w

ts f rom GH
j ′ j −

∑

q

v
t−1,s
jq −

(
ρsSH
t × lt−1,sSH

j

)

� ltsSHk ∀ j(speciali zed hospital), t, s (33)

lt−1,sCS
j +

∑

g

r tsg j −
∑

q

v
t−1,s
jq −

∑

j ′
wts to GHs

j j ′ −
(
ρsCS
t × lt−1,sCS

j

)

� ltscCS
j ∀ j(camp station), t, s (34)

l ′t−1,s
q +

∑

j

vtsjq −
(
πt × l ′t−1,s

q

)
� l ′tsq ∀q, t, s (35)

Equation (32) states an inflow and outflow conservation constraint (flow balance equation)
for a general hospital. This constraint indicated the total number of hospitalized infected cases
in this hospital is equal to the total number of hospitalized infected ones in the last period,
plus the total amount of infected people with crucial symptoms and no underlying disease
that transferred from the screening center in the current period, plus the number of infected
peoplewith worsening symptoms transferred from camp stations to the general hospital in the
current period,minus the amount of improved and died infected people in the previous period,
and also transferred infected people to a specialized hospital in the current period. Similarly,
the flow balance for the specialized hospital, camp, and quarantine station is represented in
Eqs. (33)–(35), respectively.

4.2.9 Logical constraints

∑

g

btsig ≤ ai × etsi ∀i, t, s (36)

Equation (36) implies that the total number of suspected people referred to screening
centers in each zone and period should be less than the maximum population of that zone.

∑

i

btsig × �s
t × βs

t ≥
∑

j

r tsGH
gj ∀g, t, s (37)

∑

i

btig × �s
t × γ s

t ≥
∑

j

r tsSHgj ∀g, t, s (38)

∑

i

btig × �s
t × αs

t ≥
∑

j

r tsCS
g j ∀g, t, s (39)
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Equations (37)–(39) calculated the number of suspected people whose test is positive
and are classified into one of the categories of infected people with mild symptoms, serious
symptoms, and severe symptoms along with the underlying disease that should be transferred
from screening centers to one of the medical centers of general, specialized hospital or camp
station, respectively.

ωs
t × ltsGH

j ≥
∑

j ′
wts to SH

j j ′ ∀ j(general hospital), t, s (40)

ω′s
t × ltsCS

j ≥
∑

j ′
wts to GH

j j ′ ∀ j(camp station), t, s (41)

Equations (40) and (41) calculated the number of infected people whose condition was
worse and transferred from a general to a specialized hospital or camp station to the general
hospital in each period, and scenario, respectively.

τ sGH
t × ltsGH

j ≥
∑

q

vtsjq ∀ j(general hospital), t, s (42)

τ sSHt × ltsSHj ≥
∑

q

vtsjq ∀ j(speciali zed hospital), t, s (43)

τ sCS
t × ltCS

j ≥
∑

q

vtsjq ∀ j(camp station), t, s (44)

Equations (42)–(44) calculated the number of improved infected people that transferred
from the general hospital, specialized hospital, and camp station to quarantine station in each
period and scenario, respectively.

ltsGH
j ≥ � tsGH

j ∀ j(general hospital), t, s (45)

ltsSHj ≥ � tsSH
j ∀ j(speciali zed hospital), t, s (46)

ltsCS
j ≥ x ′

j × c′
j ∀ j(camp station), t, s (47)

l ′tsq ≥ x ′′
q × c′′

q ∀q, t, s (48)

Equations (45)–(48) display a higher number of people seeking hospitalization in medical
centers (hospitals, camp stations, and quarantine stations) than their capacities. The number
of beds assigned to patients with coronavirus is lower than the need for hospitalization in all
medical centers, and a more likely possibility that the patients are affected by a shortage of
beds.

4.2.10 Domain of the decision variables constraints

xg, x
′
j , x

′′
q , yg, y

′
j , y

′′
q ∈ {0, 1} ∀g, j(camp station), q

ztsig, z
′ts
g j , z

′′ts
j j ′ , z

′′′ts
jq ∈ {0, 1} ∀i, g, j, q, t, s

(49)

btsig, r
ts
g j , w

ts
j j ′ , v

ts
jq , l

ts
j , l ′tsq ≥ 0 ∀i, g, j, q, t, s (50)

Equations (49) and (50) place the binary and non-negativity constraints upon the decision
variables, respectively.
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4.3 Model linearization

In the above model, constraints (25)–(27) are nonlinear and can be linearized by a binary
variable k and by replacing it with the multiplication of integer x and binary ε variables
(k � ε × x). Accordingly, the value of variable k is equal to that of the positive variable as
the value of the binary variable is equal to 1; otherwise, it is 0. The three terms used for
converting it to the linear form are the following:

k ≤ x (51)

k ≤ r × ε (52)

k ≥ x − r(1 − ε) (53)

k ≥ 0 (54)

5 Solutionmethodology

In the proposed model, several parameters, such as the number of suspected people and oper-
ating and installation costs, are considered scenario-based and fuzzy imprecise parameters,
respectively. This study provides a novel hybrid method of robust stochastic and possibilistic
programming (RSPP) to solve the presented mathematical model with mixed uncertainty.
Then, it addresses the proposed multi-objective mathematical model by an efficient solution
approach called TH (Torabi-Hassini) (Torabi & Hassini, 2008).

5.1 Robust stochastic-possibilistic programming (RSPP)

Uncertainties are highly significant in network design and are caused by various reasons such
as unavailable or inaccurate data, environmental factors, and the erroneous estimate of non-
measurable parameters. A low degree of uncertainty can significantly affect the performance
of networks. Therefore, a proper technique must be applied to resolve them and avoid their
effects on supply chains. Considering the available data sets, uncertainties can be divided into
three categories: random, epistemic, and inherent. Robust optimization, fuzzy programming,
and stochastic programming of unique features, as the three main approaches for resolving
any uncertainty available in mathematical programming, are employed based on the context
and structure of the problem, the incompleteness level of model parameters, and the type of
uncertainty. After analyzing the uncertainty type, the most appropriate approach(es) is(are)
adopted to resolve it. Random ones are caused by adequate historical information for input
parameters with the patterns of future situations. When randomness is the essential source of
uncertainty in input data, it can be resolved by stochastic programming techniques. Superficial
knowledge produces non-accurate parameters causing epistemic ones, which are specified
by experts’ viewpoints. Fuzzy mathematical programming techniques can appropriately deal
with both epistemic uncertainties in data and flexibility in goals and elasticity in constraints
and are adopted to resolve them (Mousazadeh et al., 2014). Inherent uncertainties caused by
unavailable data are the reason for specifying only the interval of input parameters.

Historical data are insufficient for modeling uncertain parameters as random data. It
necessitates estimating uncertain data reasonably with the reliance on the viewpoints of
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the decision-makers in real-life situations. Thus, each non-accurate data set can be repre-
sented by a trapezoidal or triangular fuzzy numbers probability distribution. A possibilistic
programming (PP) approach is employed to achieve a solution tomathematical programming
models with possibilistic data (Mousazadeh et al., 2018a), among which Chance constrained
programming (CCP) ismost popular and guarantees an optimal confidence level (α) for possi-
bilistic constraints, includingnon-accurate parameters.Necessity (Nec), Possibility (Pos), and
credibility (Cr) are three commonly used fuzzy measures in possibilistic chance-constrained
formulations. As a significant advantage, they assign a degree of occurrence to any fuzzy
event in the interval [0, 1] with varying optimistic-pessimistic attitudes. Nec and Pos mea-
sures represent decision-makers extremely pessimistic and optimistic attitudes, respectively.
The Cr measure represents an uncertain event occurrence with a degree of certainty. Xu and
Zhou (2013) introduced the Me as a novel fuzzy measure, which is more flexible than Cr and
proper for the decision-making process in real-world fuzzy situations. In this approach, the
decision-maker can choose any point of extreme attitude by a convex combination of pes-
simistic and optimistic extremes. For this reason, this study uses the Me measure to convert
possibilistic chance constraints into crisp ones in the formulation.

Accordingly, the RSPP method is employed to resolve the randomness and epistemic
uncertainties since hybrid uncertainties exist in the presented model, including two groups
of scenario- and fuzzy-based parameters. It integrates three Me measure-based approaches
to specifying the fuzzy (Possibilistic Programming) and scenario (Stochastic Programming)
based parameters and to make the adjustments in the conservatism level of the output data
(Robust Optimization) in terms of the uncertainty in parameters. Accordingly, a brief expla-
nation of possibilistic chance-constrained programming (PCCP) and the Basic Stochastic-
Possibilistic Programming (BSPP) approaches with an emphasis on the Me measure is pro-
vided in Appendix C.

As discussed inAppendix C, the BPCCPmodel showed insensitivity to any deviation from
the RHS of chance constraints (feasibility robustness) and the optimal value of the objective
function (optimality robustness). Thus, the RSPP approach was proposed by Dehghan et al.
(2018) to improve the robust performance of models in the simultaneous randomness and
epistemic uncertainty of parameters in terms of Me measure. It is implemented according to
the definition below.

MinE[z] + η(zmax − zmin) + ω
∑

s

ps |E[z] − E[zs]|

+ δ1
∑

s

ps

[
(αs − λ)d1s + (1 − αs)d2s

1 − λ
− d1s

]

Subject to

Axs ≤ (αs − λ)d1s + (1 − αs)d2s
1 − λ

Bxs ≥ b

Exs ≤ Ny

Fxs ≤ gs

y ∈ [0, 1], x ≥ 0 (55)
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In the objective function, the first term refers to the same estimated value (z) as the BSPP
model. The optimality robustness under fuzzy parameters is described in the second term and
is controlled by a reduction in the maximum (zmax ) andminimum (zmin) possible values. The
second term denotes a fuzzy-based deviation (possibilistic deviation) from the optimal value,
and it has been shown by Eqs. (56) and (57). Also, η indicates the weighted importance of the
possibilistic deviation. It reduces the maximum deviation from the minimum one. (Pishvaee
et al. (2012a), Farokh et al. (2018)).

zmax � f4y +
∑

s

psc4s ys (56)

zmin � f1y +
∑

s

psc1s ys (57)

The third term also denotes a scenario-based deviation (stochastic deviation) from the
optimal value. It shows the deviation of the estimated value (E[z]) from the estimated value
of each scenario (E[zs]), and it has been expressed by Eq. (58). The third term denotes the
difference in optimality robustness between fuzzy and scenario parameters. Also,ω indicates
the weighted importance of the stochastic deviation.

E[z] �
[
1 − λ

2
( f1 + f2) +

λ

2
( f3 + f4)

]
y +

[
1 − λ

2
(c1s + c2s) +

λ

2
(c3s + c4s)

]
xs (58)

Additionally, the fourth term serves as an indicating factor of the feasibility robustness in
which δ1 determines the penalty rate. The third term of Eq. (59) has an absolute value that
can become linear by the approach developed by Yu (2000), who considered the additional
variable θs within a constraint.

MinE[z] + η(zmax − zmin) + ω
∑

s

ps{(E[z] − E[zs]) + 2θs} + δ1
∑

s

ps

×
[

(αs − λ)d1s + (1 − αs)d2s
1 − λ

− d1s

]

Subject to

Axs ≤ (αs − λ)d1s + (1 − αs)d2s
1 − λ

Bxs ≥ b

Exs ≤ Ny

Fxs ≤ gs

y ∈ [0, 1], x ≥ 0 (59)

In the following, we provide details of the RSPPmodel for the considered problem regard-
ing the updated model after dealing with uncertainty.
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Minobj1 �
∑

g
ϑ × yg +

∑

j

ϑ ′ × y′CS
j +

∑

q
ϑ ′′ × y′′

q 0 +
∑

t

∑

s

×
⎛

⎝peGH ×
∑

j

utsGH
j + peSH ×

∑

j

utsSHj + peCS ×
∑

j

utsCS
j + pe′ ×

∑

q
u′ts
q

⎞

⎠

+
∑

g

∑

t

∑

s

(
θ × ε−ts

g + θ ′ × ε+tsg

)
(60)

Minobj2 �
∑

t

⎛

⎝
∑

i

∑

g
ztsig × dig +

∑

g

∑

j

z′tsg j × d ′
g j +

∑

j

∑

j ′
z′′tsj j ′ × d ′′

j j ′ +
∑

j

∑

q
z′′′tsjq × d ′′′

jq

⎞

⎠

(61)

Minobj3 � Min
∑

g

[[
1 − λ

2

(
f 1g + f 2g

)
+

λ

2

(
f 3g + f 4g

)]
xg

]

+
∑

j

[[
1 − λ

2

(
f ′1
j + f ′2

j

)
+

λ

2

(
f ′3
j + f ′4

j

)]
x ′CS
j

]

+
∑

q

[[
1 − λ

2

(
f ′′1
q + f ′′2

q

)
+

λ

2

(
f ′′3
q + f ′′4

q

)]
x ′′
q

]

+
∑

i

∑

j

∑

t

∑

s

ps

[[
1 − λ

2

(
ots1g + ots2g

)
+

λ

2

(
ots3g + ots4g

)]
btsig

]

+
∑

j

∑

t

∑

s

ps

[[[
1 − λ

2

(
o′tsGH1
j + o′tsGH2

j

)
+

λ

2

(
o′tsGH3
j + o′tsGH4

j

)]
ltsGH
j

]

+

[[
1 − λ

2

(
o′tsSH1
j + o′tsSH2

j

)
+

λ

2

(
o′tsSH3
j + o′tsSH4

j

)]
ltsSHj

]

+

[[
1 − λ

2

(
o′tsCS1
j + o′tsCS2

j

)
+

λ

2

(
o′tsCS3
j + o′tsCS4

j

)]
ltsCS
j

]]

+
∑

q

∑

t

∑

s

ps

[[
1 − λ

2

(
o′′ts1
q + o′′ts2

q

)
+

λ

2

(
o′′ts3
q + o′′ts4

q

)]
lts′q

]

+ η

⎛

⎝

⎡

⎣
∑

g

f 4g xg +
∑

j

f
′4
j x ′CS

j +
∑

q

f ′′4
q x ′′

q +
∑

i

∑

j

∑

t

∑

s

ps
(
ots4g btsig

)

+
∑

j

∑

t

∑

s

ps
((

o′tsGH4
j l tsGH

j

)
+

(
o′tsSH4
j l tsSHj

)
+

(
o′tsCS4
j l tsCS

j

))

+
∑

q

∑

t

∑

s

ps
(
o′′ts4
q l ′tsq

)]

−
⎡

⎣
∑

g

f 1g xg +
∑

j

f ′1
j x

′CS
j +

∑

q

f ′′1
q x ′′

q

∑

i

∑

j

∑

t

∑

s

ps
(
ots1g btsig

)

+
∑

j

∑

t

∑

s

ps
((

o′tsGH1
j l tsGH

j

)
+

(
o′tsSH1
j l tsSHj

)
+

(
o′tsCS1
j l tsCS

j

))

+
∑

q

∑

t

∑

s

o′′ts1
q l ′tsq

])
+ δ1

∑

s

ps

[
ai

(αs − λ)ets1i + (1 − αs)ets2i
1 − λ

− ai e
ts
1i

]
(62)
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S.t:
∑

i

btsig ≤ xg × cg ∀g, t, s (63)

� tsGH
j ≤ nGH

j ∀ j(general hospital), t, s (64)

� tsSH
j ≤ nSHj ∀ j(speciali zed hospital), t, s (65)

ltsGH
j − � tsGH

j � utsGH
j ∀ j(general hospital), t, s (66)

ltsSHj − � tsSH
j � utsSHj ∀ j(speciali zed hospital), t, s (67)

ltsCS
j − x ′

j × c′CS
j � utsCS

j ∀ j(camp station), t, s (68)

l ′′tsq − x ′′
q × c′′

q � u′ts
q ∀q, t, s (69)

∑

g

ztsig � 1 ∀i, t, s (70)

btsig ≤ etsi ai × ztsig, ∀i, g, ts, (71)

∑

j

z′ts to CS
g j � 1 ∀g, t, s (72)

r ts to CS
g j ≤ �s

t

(
∑

i

etsi ai

)
× z′ts to CS

g j ∀g, j(camp station), t, s (73)

∑

j

z′tsto GH
gj � 1, ∀g, t, s (74)

r ts to GH
gj ≤ �s

t

(
∑

i

etsi ai

)
× z′ts to GH

gj ∀g, j(general hospital), t, s (75)

∑

j

z′tsto SH
gj � 1 ∀g, t, s (76)

r ts to SH
gj ≤ �s

t

(
∑

i

etsi ai

)
× z′tsto SH

gj ∀g, j(speciali zed hospital), t, s (77)

∑

j ′
z′′ts f rom GH to SH
j j ′ � 1 ∀ j(general hospital), t, s (78)

w
ts f rom GH to SH
j j ′ ≤ ωs

t �
s
t

(
∑

i

etsi ai

)

× z′′ts f rom GH to SH
j j ′ ∀ j(general hospital), j ′(speciali zed hospital), t, s (79)

∑

j ′
z′′ts f rom CS to GH
j j ′ � 1 ∀ j(camp station), t, s (80)

w
ts f rom CS to GH
j j ′ ≤ ω′s

t �s
t

(
∑

i

etsi ai

)

× z′′ts f rom CS to GH
j j ′ , ∀ j(camp station), j ′(general hospital), t, s (81)
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∑

q

z′′′tsjq � 1 ∀ j, t, s (82)

vtsjq ≤ τ st �s
t

(
∑

i

etsi ai

)
× z′′′tsjq ∀ j, q, t, s (83)

⎛

⎝ψg −
⎛

⎝
∑

b

btsig +
∑

j

r tsg j

⎞

⎠

⎞

⎠(
1 − yg

) ≥ ι
((
1 − yg

)) ∀g, t, s (84)

(85)

⎛

⎝ψ ′CS
j −

⎛

⎝
∑

g

r tsg j +
∑

j ′
wts

j ′ j +
∑

q

vtsjq

⎞

⎠

⎞

⎠
(
1 − y′CS

j

)

≥ ι
((

1 − y′CS
j

))
∀ j (camp station) , t, s

⎛

⎝ψ ′′
q −

∑

j

vtsjq

⎞

⎠
(
1 − y′′

q

)
≥ ι

((
1 − y′′

q

))
∀q, t, s (86)

∑
i b

ts
ig

Cg
� � + ε−ts

g − ε+tsg ∀g, t, s (87)

(88)

lt−1,sGH
j +

∑

g

r tsg j +
∑

j ′
w

ts f rom CSs
j ′ j −

∑

q

v
t−1,s
jq −

∑

j ′
wts to SHs

j j ′

−
(
ρsGH
t × lt−1,sGH

j

)
� ltsGH

j ∀ j (general hospital) , t, s

(89)

lt−1,sSH
j +

∑

g

r tsg j +
∑

j ′
w

ts f rom H
j ′ j −

∑

q

v
t−1,s
jq − (ρsSH

t × lt−1,sSH
j )

� ltsSHk ∀ j (speciali zed hospital) , t, s

(90)

lt−1,sCS
j +

∑

g

r tsg j −
∑

q

v
t−1,s
jq −

∑

j ′
wts to GHs

j j ′ −
(
ρsCS
t × lt−1,sCS

j

)

� ltscCS
j ∀ j (camp station) , t, s

l ′t−1,s
q +

∑

j

vtsjq −
(
πt × l ′t−1,s

q

)
� l ′tsq ∀q, t, s (91)

∑

g

btsig ≤ ai
(αs − λ)ets1i + (1 − αs)ets2i

1 − λ
∀i, t, s (92)

∑

i

btsig × �s
t × βs

t ≥
∑

j

r tsGH
gj ∀g, t, s (93)

∑

i

btig × �s
t × γ s

t ≥
∑

j

r tsSHgj ∀g, t, s (94)

∑

i

btig × �s
t × αs

t ≥
∑

j

r ts CS
g j ∀g, t, s (95)

ωs
t × ltsGH

j ≥
∑

j ′
wts to SH

j j ′ ∀ j(general hospital), t, s (96)
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ω′s
t × lts CS

j ≥
∑

j ′
wts to GH

j j ′ ∀ j(camp station), t, s (97)

τ sGH
t × ltsGH

j ≥
∑

q

vtsjq ∀ j(general hospital), t, s (98)

τ sSHt × ltsSHj ≥
∑

q

vtsjq ∀ j(speciali zed hospital), t, s (99)

τ sCS
t × ltCS

j ≥
∑

q

vtsjq ∀ j(camp station), t, s (100)

ltsGH
j ≥ � tsGH

j ∀ j(general hospital), t, s (101)

ltsSHj ≥ � tsSH
j ∀ j(speciali zed hospital), t, s (102)

ltsCS
j ≥ x ′

j × c′
j ∀ j(camp station), t, s (103)

l ′tsq ≥ x ′′
q × c′′

q ∀q, t, s (104)

xg, x
′
j , x

′′
q , yg, y

′
j , y

′′
q ∈ {0, 1} ∀g, j(camp station), q (105)

ztsig, z
′ts
g j , z

′′ts
j j ′ , z

′′′ts
jq ∈ {0, 1} ∀i, g, j, q, t, s (106)

5.2 Interactive fuzzy programming solution (TH) approach

Several methods have been applied to solve the multi-objective models in the research litera-
ture (To review the multi-objective models presented in the literature, interested readers can
refer to the following papers: (Alinezhad et al., 2022; Tirkolaee et al., 2020a, 2020b, 2022b,
2023)), among which the fuzzy programming approaches (Lai & Hwang, 1993; Li et al.,
2006; Selim & Ozkarahan, 2008; Werners, 1988; Zimmermann, 1978) have an increasing
use with the capability of determining the satisfaction level of each objective function in
an explicit statement as the main advantage that enables decision-makers to make the final
decision by finding the most effective solution based on the satisfaction level and relative
importance of each objective function. This study uses TH as an interactive single-phase
method proposed by Torabi and Hassini (2008). It achieves an efficient solution, especially
in the multi-objective mixed integer linear models. The proposed approach involves the fol-
lowing steps:

Step 1 Positive and negative ideal solutions (P I S and N I S) are provided for
each objective function. In this regard, those solutions with α-positive values of
(zα−Pis

1 ,xα−Pis
1 ),(zα−Pis

2 ,xα−Pis
2 ), and (zα−Pis

3 ,xα−Pis
3 ) are reached by solving the crisp

multi-objective programming model separately for each objective function. Then, the α-
negative solutions are achieved as follows:

zα−Nis
1 � Max

{
Z1

(
xα−Pis
2

)
, Z1

(
xα−Pis
3

)}
, (107)

zα−Nis
2 � Max

{
Z2

(
xα−Pis
1

)
, Z2

(
xα−Pis
3

)}
, (108)

zα−Nis
3 � Max

{
Z3

(
xα−Pis
1

)
, Z3

(
xα−Pis
2

)}
, (109)
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Step 2 A linear membership function is specified for each objective function as follows:

μ1(x) �

⎧
⎪⎪⎨

⎪⎪⎩

1 i f z1 ≤ zα−Pis
1

zα−Nis
1 −z1

zα−Nis
1 −zα−Pis

1
i f zα−Pis

1 ≤ z1 ≤ zα−Pis
1

0 i f z1 ≥ zα−Pis
1

(110)

μ2(x) ��

⎧
⎪⎪⎨

⎪⎪⎩

1 i f z2 ≤ zα−Pis
2

zα−Nis
2 −z2

zα−Nis
2 −zα−Pis

2
i f zα−Pis

2 ≤ z2 ≤ zα−Pis
2

0 i f z2 ≥ zα−Pis
2

(111)

μ3(x) ��

⎧
⎪⎪⎨

⎪⎪⎩

1 i f z3 ≤ zα−Pis
3

zα−Nis
3 −z3

zα−Nis
3 −zα−Pis

3
i f zα−Pis

3 ≤ z3 ≤ zα−Pis
3

0 i f z3 ≥ zα−Pis
3

(112)

where μh(x) indicates the satisfaction level of objective function h for the given solution
vector x.

Step 3 The TH aggregation function below is chosen to convert the multi-objective model
into the single-objective one.

max λ(x) � γ λ0 + (1 − γ )
∑

h

θhμh(x)

Subject to

λ0 ≤ μh(x)

∀h � 1, 2, 3 (113)

x ∈ F(x) (114)

λ0 and λ ∈ [0, 1] (115)

where F(x) represents the constraint of the equivalent crisp model as the feasible area, and
the importance of objective function h and the coefficient of compensation are indicated by
θh and γ , respectively.

Step 4 Solve the resulting single-objective RSPP model using the TH approach.

6 Case study

Due to the increasing trend in the number of patients with COVID-19, reports from Tehran
city indicate that medical centers lack the capacity and medical services for non-coronary
patients in need of treatment have been cut and that there is no necessary infrastructure to
provide new cases with medication. According to the Ministry of Health in Iran, Tehran
hospitals have the potential to accommodate only a quarter of patients with COVID-19. On
the other hand, its high population density has caused main difficulties in controlling the
disease. It has created a completely red state in Tehran. The lack of a system for patient
referral and prioritization in the Iranian health system is one of the underlying problems in
the prevention and treatment phases. It disrupts the active monitoring of the population to
identify patients with definite diagnoses quickly for efficient medical services.

According to information published by theMinistry of Health of Iran, in September 2020,
over 80% of outpatients needed hospitalization. On the other hand, the ratio of hospitalized
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people to definite cases has been one to three. Meanwhile, 500 daily definitive cases have
been detected in Tehran, which has the highest number of victims in Iran. Thus, the Corona
National Headquarters is trying to design a medical service network by establishing new
medical centers such as camps and quarantine stations, isolating and allocating patients
with different symptoms to medical centers, the optimum use of hospitals’ capacity, and the
uniform distribution among medical centers. Thus, in a successful collaboration with Iranian
experts of the national healthcare network inMHME, a health service system for the infected
cases of COVID-19 is designed to demonstrate the effectiveness of the proposed model and
improve the current health network in Tehran by more efficiently designed. It is worth noting
that the reliable reports from the expert panel of Tehran UniversityMedical Science (TUMS),
local surveys, Corona National Headquarters, and the municipality of Tehran are considered
the essential data sources for the presented method.

As a case study, Tehran is located in the center portion of Iran, in which the population
density is very high. This city, as the capital of Iran, has a population of 8,693,706. As shown
in Fig. 2, it has been divided into 22 residential areas with different areas as patient zones. The
study aims to design an efficient and resilient health service system for the infected people
with COVID-19 in Tehran to reduce the rate of spread. As mentioned before, the population
density is assumed in the central part of each patient zone. Table 1 shows the estimated
population density and the geographical position for each patient zone, based on which the
number of admissions to the camps, general and specialized hospitals, and quarantine stations
are determined.

The specifications of general and specialized hospitals located in different Districts of
Tehran city are presented in Tables 2 and 3. Also, Fig. 3. represents the geographic dispersion
of them, respectively. It isworth noting that all the general and specialized hospitals are subject
to availability.

Concerning the experts of the University of Medical Sciences and the National Corona
Headquarters viewpoint, several health centers in Tehran have been considered candidate

Fig. 2 Geographical dispersion of 22 municipal districts of Tehran (segmentation of the patient zones)
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Table 1 The characteristics of each district of Tehran

Patient zone (i) Population (Lat, Long) Patient zone (i) Population (Lat, Long)

District 1 487,508 (35.80250,
51.45972)

District 12 240,720 (35.68000,
51.42639)

District 2 701,303 (35.75750,
51.36222)

District 13 276,027 (35.70778,
51.51417)

District 3 330,649 (35.75444,
51.44806)

District 14 484,333 (35.67444,
51.47028)

District 4 919,001 (35.74194,
51.49194)

District 15 638,740 (35.63083,
51.47361)

District 5 856,565 (35.74889,
51.30028)

District 16 278,803 (35.63944,
51.40917)

District 6 251,384 (35.73722,
51.40583)

District 17 348,589 (35.65389,
51.36306)

District 7 312,194 (35.72194,
51.44611)

District 18 391,368 (35.65167,
51.29278)

District 8 425,197 (35.72444,
51.49833)

District 19 244,350 (35.62056,
51.36694)

District 9 174,239 (35.68361,
51.31722)

District 20 340,861 (35.59028,
51.44083)

District 10 327,115 (35.68361,
51.36667)

District 21 162,681 (35.69056,
51.25778)

District 11 288,884 (35.67944,
51.39583)

District 22 128,958 (35.74722,
51.20417)

Table 2 Characteristics of the general hospitals in Districts of Tehran

ID
(h)

General
hospital

No.
of
beds

(Lat, Long) ID
(h)

General
hospital

No.
of
beds

(Lat, Long)

1 Shohadaye
Tajrish

432 (35.80649,
51.43268)

9 Shariat
Razavi

100 (35.67591, 51.32872)

2 Shahid
Chamran

287 (35.79320,
51.48740)

10 Azadi 120 (35, 69,694,
51.35773)

3 Atieh 310 (35. 76,557,
51.36195)

11 Shahid
fahmideh

64 (35.66838, 51.38333)

4 Shahid
Modar-
res

279 (35. 78,758,
51.37294)

12 Sina 477 (35,68,622, 51.
41,266)

5 Alghadir 50 (35.74668,
51.50071)

13 Shahid
Lavasani

261 (35.72171, 51.60249)

6 Sarem 100 (35. 71,482,
51.31107)

14 Ayatollah
Kashani

200 (35.63972, 51.42077)

7 Firoozgar 554 (35.7097751.41136) 15 Firooz-Abadi 209 (35.5945451.43743)

8 Imam
Hossein

681 (35.70852,
51.38122)

16 Shahid Fayaz
Bakhsh

495 (35.67520, 51.26643)
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Table 3 Characteristics of the specialized hospitals in Districts of Tehran

ID
(k)

Specialized
hospital

No. of
beds

(Lat, Long) ID
(k)

Specialized
hospital

No. of
beds

(Lat, Long)

1 Masih Daneshvari 333 (35.81590,
51.49719)

7 Imam
Khomeini

1000 (35.70854,
51.38162)

2 Milad 1000 (35.74578,
51.38185)

8 Lolagar 109 (35.69465,
51.37335)

3 Baqiyatallah 642 (35.75614,
51.39541)

9 Madaen 145 (35.69925,
51.40408)

4 Khatam-Al-Anbia 480 (35.76916,
51.40847)

10 Amir Alam 230 (35.69983,
51.42642)

5 Labbafinezhad 236 (35.76774,
51.46328)

11 Ziaeian 155 (35.65779,
51.35937)

6 Payambaran 250 (3,573,466,
51.32825)

12 Yaftabad 132 (35.64376,
51.31167)

Fig. 3 Geographic dispersion of hospitals in Districts of Tehran

locations for selecting screening centers based on geographical position and population den-
sity as a primary selection criterion. The geographic coordinates of candidate locations for
screening centers are presented in Table 4. Also, in cooperation and consultation with the
Municipality of Tehran, some candidate locations, including crisis management sheds, red
Crescent Centers, student dormitories, and sports halls, were determined for the construction
of the camps and quarantine stations. Tables 5 and 6 represent the geographic coordinates
of each candidate location for camps and quarantine stations, respectively, based on the
field experts’ opinions. In addition, Fig. 4. illustrates the candidate locations for establishing
screening centers, camps, and quarantine stations.
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Table 4 Characteristics of the candidate locations for screening centers in Districts of Tehran

ID Alternative (Lat, Long) ID Alternative (Lat, Long)

1 Taleghani
Comprehensive
Health Center

(35.82399,
51.42950)

8 Valfajr
Comprehensive
Health Center

(35.74922,
51.58986)

2 Saadat Abad
Community Health
Center

(35.79221,
51.38435)

9 Farmanfarmaian
Clinic

(35.69425,
51.38471)

3 Subaru Health
Center

(35.76882,
51.39099)

10 Imam Reza Clinic (35.74685,
51.33207)

4 Kan Comprehensive
Health Center

(35.76474,
51.28226)

11 Shahid Vahedi Health
Center

(35.63524,
51.40004)

5 Fazel Health Center (35.71360,
51.39822)

12 Abuzar Health Center (35. 65,824,
51.36106)

6 Zahra Homayoun
Health Center

(35.70843,
51.43863)

13 Shahid Nik Nezhad
Health Center

(35.59016,
51.44504)

7 Dokmechi
Comprehensive
Health Center

(35.73427,
51.47431)

14 Tehransar
Community health
center

(35.69231,
51.24716)

Table 5 Characteristics of the candidate locations for camp stations in Districts of Tehran

ID Alternative (Lat, Long) ID Alternative (Lat, Long)

1 Dormitory of
Shahid Beheshti
University

(35.73573,
51.43979)

7 Red Crescent Center 8 (35.71607,
51.49254)

2 Dormitory of
Sharif
University

(35.71700,
51.37200)

8 Fath crisis management
shed

(35.67629,
51.33053)

3 Dormitory of
University of
Science &
Technology

(35.72454,
51.41591)

9 Mahdieh Tehran (35.66839,
51.40021)

4 Al-Mahdi crisis
management
shed

(45.74833,
51.46860)

10 Red Crescent Center 12 (35.71933,
51.40504)

5 Dormitory of
Tehran
University

(35.73038,
51.39254)

11 Vesal crisis
management shed

(35.63703,
51.43142)

6 Dormitory of
Amirkabir
University

(35. 71,246,
51.38946)

12 Red Crescent Center 17 (35.65225,
51.29327)
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Table 6 Characteristics of the candidate locations for quarantine stations in Districts of Tehran

ID Alternative (Lat, Long) ID Alternative (Lat, Long)

1 Velenjak Sports
Complex

(35.80023,
51.41285)

8 Yadegare Imam
Sports Complex

(35.69809,
51.35851)

2 Shohadaye Tarasht
Sports Complex

(35.70500,
51.34662)

9 Nasr Sports Complex (35.69640,
51.44014)

3 Ararat Sports Complex (35.76859,
51.40209)

10 Shohadaye Afsariyeh
Sports Complex

(35.64989,
51.49288)

4 Tolu Sports Complex (35.75450,
51.30551)

11 Mehre Khavaran
Sports Complex

(35.65649,
51.46560)

5 Jahan Ara Sports
Complex

(35.74329,
51.41214)

12 Ghaem Sports
Complex

(35.64613,
51.33304)

6 Saei Sports Complex (35.70788,
51.44391)

13 Shahid Kazemi
Sports Complex

(35.62517,
51.35901)

7 Shahr Sports Complex (35.73343,
51.52943)

14 Martyrs Diver Sports
Complex

(35.68891,
51.23667)

Fig. 4 Geographic dispersion of candidate locations for screening centers, camps, and quarantine stations

Also, the equation below can be utilized to calculate the distance between two points.

Distance(i, j)

� 6371.1 × arccos

[
sin(L ATi ) × sin

(
L ATj

)
+ cos(L ATi ) × cos

(
L ATj

)

× cos
(
LONG j − LONGi

)
]

(116)
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Fig. 5 The opened screening centers, camp stations, and quarantine stations

7 Implementation and evaluation

The performance and applicability of the proposed model for improving the quality of ser-
vice to infected people with COVID-19, the prevention of virus spread, and the effect of
various variables on the results are investigated. The formulated model in Sect. 3.2 has been
implemented by GAMS 24.1.2 using CPLEX 12.6 solver, and the tests run on an Intel R core
(TM) i7 CPU and 4.00 GB RAM. Also, all computational results with no gap are worth men-
tioning. Thus, the related computational results, sensitivity analysis, and managerial findings
are reported in Sects. 6.1, 6.2 and 6.3, respectively.

7.1 Computational results

Real data sets from districts of Tehran city are used to solve the proposed model, in which the
suggested locations for establishing screening centers, camp stations, and quarantine stations
are depicted in Fig. 4. As stated before, according to Fig. 4, around the districts of Tehran
city, 16 general hospitals, and 12 specialized hospitals have been selected to serve infected
people with COVID-19. Due to the limited space, some fundamental input data of the case
study are listed in Appendix D. It is worth noting that the value of some parameters, such
as capacity, percentage of patients with different symptoms, mortality rate, etc., has been
determined by a panel of experts and direct referral to the medical centers. Additionally, the
DMs define the same as the relative weight of objective functions. This study has considered
six periods and three scenarios (mild outbreak, moderate outbreak, and a severe outbreak of
the virus).
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Fig. 6 Assignment of suspected people zones to screening centers for all periods and the first scenario

As seen from Fig. 5, the optimal solution assigns screening centers to all the potential
locations except locations No. 3 and 4. Also, three camp stations (Al-Mahdi crisis manage-
ment shed, Mahdieh Tehran, and Red Crescent Center 17) are assigned to Districts 5, 11,
and 17. Also, four quarantine stations (Shohadaye Tarasht Sports Complex, Jahan Ara Sports
Complex, Shohadaye Afsariyeh Sports Complex, and Ghaem Sports Complex) are assigned
to Districts 2, 5, 14, and 18.
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Moreover, the assignment of suspected people zones to screening centers for all periods
and the first scenario are depicted in Fig. 6. As shown in the following figure, in total
periods, the lowest number of referrals to opened screening centers occurred in Districts 2
(Saadat Abad Community Health Center), 7 (Zahra Homayoun Health Center), 8 (Dokmechi
Comprehensive Health Center), and 20 (Shahid NikNezhadHealth Center). Also, the highest
number of referrals to opened screening centers occurred in Districts 6 (Fazel Health Center)
and 21 (Tehransar Community health center).

Also, the assignment of screening centers tomedical centers (general hospitals, specialized
hospitals, and camp stations) for all periods and the first scenario is shown in Fig. 7. As it turns
out in this figure, the most referrals from screening centers to medical centers are done in
Firoozgar general hospital, Madaen specialist hospital, and camp station 4 (Al-Mahdi crisis
management shed), and camp station 9 (Mahdieh Tehran). It is worth noting that under the
first scenario, no referrals occurs to Shahid Chamran, Atieh, Alghadir, and Shariat Razavi
general hospitals, as well as Milad and ImamKhomeini specialized hospitals. Also, there are
fewer referrals to Camp 12 (Red Crescent Center 17) than to other camp stations.

The assignment of camp stations to general hospitals and general hospitals to special-
ized hospitals and the assignment of camp stations and general and specialized hospitals to
quarantine stations are shown in Figs. 8 and 9, respectively. Figure 8 indicates that general
hospitals, such as Shahid Chamran, Alghadir, and Shahid Lavasani, and general hospitals,
such as Atieh and Shahid Modarres, have been allocated to the Masih Daneshvari and Milad
specialized hospitals, respectively.Also, the general hospitals of Firoozgar andSina have been
assigned to the Madaen specialized hospital, and the general hospitals of Azadi and Shahid

Fig. 7 Assignment of screening centers to medical centers for all periods and the first scenarios
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Fig. 8 Assignment of medical centers to each other

Fahmideh have been allocated to the Lolagar specialized hospital. In addition, the general
hospitals of Shariat Razavi and Shahid Fayaz Bakhsh have been assigned to the Yaftabad
specialized hospital, and Ayatollah Kashani and Firooz-Abadi general hospitals have been
allocated to the Amir Alam specialized hospital. Finally, the general hospitals of Shohadaye
Tajrish, Sarem, and Imam Hossein are assigned to the Khatam-Al-Anbia, Payambaran, and
Imam Khomeini specialized hospitals, respectively. It is worth noting that no general hospi-
tal has been allocated to the specialized hospitals Baqiyatallah, Labbafinezhad, and Ziaeian.
Also, opened camps, including Camp No. 4 (Al-Mahdi crisis management shed), Camp No.
9 (Mahdieh Tehran), and Camp No. 12 (Red Crescent Center 17), have been allocated to
the Shahid Chamran, Sina, and Shahid Fayaz Bakhsh general hospitals, respectively. Also,
according to Fig. 9, most medical centers are assigned to quarantine station No. 5 (Jahan
Ara Sports Complex), located in the most central part. As a result, the allocation process has
occurred to the nearest centers as much as possible.

Figures 10 and 11 present the number of allocated beds for infected people with COVID-
19 in general and specialized hospitals under different periods and scenarios, respectively.
As shown in the figures, the number of patients admitted to the general is more than the
specialized in the first, third, and fifth periods, with a decreased incidence. While the number
of patients admitted to specialized hospitals experiences a marked increase in the periods
with a peak incidence (i.e., in the second, fourth, and sixth periods). The number of patients
admitted to general and specialized hospitals rises with the increasing severity of the disease
under scenarios 1 to 3.
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Fig. 9 Assignment of medical centers to quarantine stations

Fig. 10 The allocated beds for infected people with COVID-19 in the general hospitals
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Fig. 11 The allocated beds for infected people with COVID-19 in the specialized hospitals

Also, the shortage level of beds under different periods and scenarios in medical centers
is shown in Table 7. Thus, this table indicates that a few medical centers have been affected
by bed shortages during all periods and scenarios. is worth mentioning that Alghadir and
Shariat Razavi hospitals have the highest rate of bed shortage among the general hospitals
in the third period and under Scenario 3. In comparison, other general hospitals have rarely
suffered from bed shortages. On the other hand, Lolagar Hospital has the highest rate of
bed shortage among the specialized hospitals. Also, the Al-Mahdi crisis management shed
is facing a high rate of bed shortage among the camp stations. It is worth noting that with
the increase in the prevalence rate in the second, fourth, and fifth scenarios, general and
specialized hospitals are facing more shortages.

Finally, the values of negative and positive deviations from the predetermined conges-
tion ratio of screening centers under different periods and scenarios are listed in Tables 8
and 9, respectively. These tables reflect that the referral rate to screening centers deviates
slightly from the threshold value of 0.2. Also, the suspected cases evenly distribute within
the screening stations, and the input flow is quite balanced. These suspected cases show
an even distribution among the screening centers, and the referral rate to each center never
exceeds the threshold value. Thus, the proposed model avoids the increasing congestion in
the centers efficiently allocating patients to screening centers and the optimum use of the
centers’ potential.

7.2 Sensitivity analysis

The sensitivity of the significant variables is analyzed in the proposed model to study their
effect on the model.

7.2.1 Analyzing the impacts of camp stations capacity on unilateral transfer rate
to the general hospital

This sub-section has examined the relationship between the capacity of the established camps
and the unilateral transfer rate between these centers and general hospitals. As shown in
Fig. 12, an increase and a decrease in the capacity of camps make a decrease and a signif-
icant increase in the referral rate from them to general hospitals, respectively. It shows that
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Table 8 The value of negative
deviation from the predetermined
congestion ratio in the opened
screening centers

Selected screening
centers

Sixth period

First
scenario

Second
scenario

Third
scenario

Fazel Health Center – 0.024 0.024

establishing temporary camps with more capacity in the event of crises such as the COVID-
19 pandemic affects the transmission rate of disease and the transfer rate between medical
centers. It is worth noting that an increase in capacity makes no decrease from a given limit
to zero in the reduction slope of transfer rate to general hospitals since some infected people
with the worsened condition need to receive more advanced services in each period.

7.2.2 Analyzing the relationship between the critical penalty coefficient
and the number of critical screening centers

The effect of the critical penalty coefficient on the number of critical screening centers
is examined in Fig. 13. As the penalty coefficient increases concerning the threshold of
each screening center, the number of critical screening centers gradually reduces, and the
total number of opened screening centers increases. With the lowest level of the penalty
coefficient, seven screening centers have been opened, six of which are critical. Then, with
an increase in penalty coefficient, critical screening centers gradually reduce in number, and
more centers are opened, which leads to the activation of all 14 potential screening centers. It
shows that the optimal threshold and penalty coefficient are significant factors for screening
centers to which health decision-makers should devote serious attention by balancing the
costs of activating centers and becoming critical.

7.2.3 The performance of the objective functions in various situations

The performance sensitivity of objective functions is analyzed in the sub-section. Table 10
gives an analysis of the values of de-resiliency (Z1), distance (Z2), and total network cost (Z3)
as objective functions under different statuses. As can be seen from the table, status 4 with
total network cost as the only objective function, represents the best value of Z3 and the worst
values of Z1 and Z2. The best value of Z2 and the worst values of Z1 (2.98643E+10) and
Z3 (1.56254E+10) are represented by status 3 with distance as only the objective function.
Status 2 with de-resiliency as the only objective function, reflects the best value of the Z1

compared to the other values. It can be concluded that the simultaneous use of Z1, Z2, and
Z3 as the objective functions (status 1) generates better results than the other statuses.

Figure 14 shows the best places for screening centers, camps, and quarantine stations and
their efficient allocations under different statuses. It has a message that a tradeoff between
values of the above objective functions (i.e., de-resiliency, distance, and total network cost)
enables decision-makers (DMs) to decide on the best candidate for screening centers, camps,
and quarantine stations. Given the cost considerations, for example, status 4 satisfies the
selection criterion for the best candidate for medical centers and camps. Thus, the importance
of objectives can be weighted based on the decision-makers’ priorities. It is worth noting that
the values of the total cost, shortage, and distance have shown in the following statuses.
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Fig. 12 The relationship between the capacity of the camp stations and the unilateral transfer rate

Fig. 13 The effect of the critical penalty coefficient on the number of opened and critical screening centers

Table 10 Values of objective functions in various situations

Status Measures Objective function values

De-resiliency Distance Cost z1 z2 z3

1 ✔ ✔ ✔ 6.696801E+9 364,431.134 2.07878E+10

2 ✔ 5.447429E+8 1,420,661.546 3.59298E+10

3 ✔ 3.5959E+12 299,814.050 3.75543E+11

4 ✔ 1.43028E+11 1,155,411.876 1.10332E+10

7.2.4 Analyzing the effect of resiliency measures on the cost and de-resiliency

In this sub-section, we intend to discuss the importance and impact of resiliency measures
on objective functions. Specifying the best indicators of resiliency to improve the network’s
reliability in unforeseen situations based on the total network cost is under attention while
establishing the health service network in an outbreak of the infectious disease. In this
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Fig. 14 The best locations for Screening centers, camps, and quarantine stations and their allocations under
different statuses

regard, in this section, the effect of different resiliency measures on the cost and de-resiliency
objective functions is evaluated, separately. Generally, considering the effect of resiliency
measures, the values of de-resiliency and cost objective functions are 4.936511E+9 and
4.07836E+10, respectively. However, according to Fig. 15, the neglect of the congestion cri-

Fig. 15 Total costs and de-resiliency with and without considering node critically measure
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Fig. 16 Total costs and de-resiliency with and without considering dissatisfaction measure

terion effect offers values of 8.033397E+9 and 3.86150E+10 for these objective functions,
respectively.

As shown in Fig. 16, the neglect of dissatisfaction criterion effect creates a worsening
situation in which the values of de-resiliency and cost measures are equal to 5.744491E+9
and 5.43568E+9, respectively; however, a decrease is observed in the value of the distance
objective function. In other words, neglect of the dissatisfaction criterion places the de-
resiliency objective function in a worsening situation, increases the total cost, and decreases
the entire distance between themedical centers of a networkwith new centers and allocations.

Also, Fig. 17 shows that neglect of the dispersion criterion effect makes a decrease of
3.4442E+8 and an increase of 1.902415E+9 in the values of cost and de-resiliency, respec-
tively, and that the neglect of the de-concentration produces the values of 3.73394E+10 and
7.506074E+9 for cost and de-resiliency objective functions, respectively.

Table 11 compares the importance and effect of different resiliencymeasures. It shows that
dissatisfaction is the most significant measure, neglect of which increases the de-resiliency
and cost objective functions by 178% and 33%, respectively, since the network is seeking
to shorten the distance by reallocation. However, dispersion is the least significant measure
that causes a lower increase than other measures in the objective functions of de-resiliency
and cost, respectively.

Fig. 17 Total costs and de-resiliency with and without considering dispersion measure
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Table 11 Comparison between
resiliency measures Resiliency measure Cost changes (%) De-resiliency changes

(%)

Congestion − 5 + 62

Dissatisfaction + 33 + 178

Dispersion − 8 + 5

7.2.5 Analyzing the effects of � and�

Compared to the original multi-objective model, the TH model achieves an optimal solution
over which no solution has priority. The optimal solution is developed by changing the
values of parameters γ (i.e., compensation coefficient) and θ (i.e., the importance of objective
functions) based on DM’s preference for each objective function until arriving at the final
preferred solution. Accordingly, an analysis of model sensitivity to various values of γ (Table
12) and θ (Fig. 18) is conducted. Table 12 shows the effect of compensation coefficient on

Table 12 The performance of the model subject to different �

No. � θ1,θ2,θ3 First
objective
function

×
(
109

)

Second
objective
function

Third
objective
function

×
(
1010

)

μ1(x) μ2(x) μ3(x)

1 0 θ1 �
0.33

θ2 �
0.33

θ3 �
0.33

3.498775 377,151.524 3.50681 μ1(x) �
0.999

μ2(x) �
0.901

μ3(x) �
0.934

2 0.1 3.233817 361,285.756 3.72710 μ1(x) �
0.999

μ2(x) �
0.911

μ3(x) �
0.928

3 0.2 3.992335 366,341.261 4.07492 μ1(x) �
0.999

μ2(x) �
0.915

μ3(x) �
0.919

4 0.3 3.431883 364,689.874 4.07257 μ1(x) �
0.999

μ2(x) �
0.918

μ3(x) �
0.919

5 0.4 5.537069 369,945.656 4.40687 μ1(x) �
0.999

μ2(x) �
0.910

μ3(x) �
0.910

6 0.5 6.696801 364,431.134 4.07878 μ1(x) �
0.998

μ2(x) �
0.917

μ3(x) �
0.919

7 0.6 7.334423 369,059.673 3.73003 μ1(x) �
0.998

μ2(x) �
0.911

μ3(x) �
0.928

8 0.7 6.736518 363,801.252 4.07576 μ1(x) �
0.998

μ2(x) �
0.919

μ3(x) �
0.919

9 0.8 7.850931 363,878.943 4.07856 μ1(x) �
0.998

μ2(x) �
0.919

μ3(x) �
0.919

10 0.9 7.672816 365,072.434 4.07696 μ1(x) �
0.998

μ2(x) �
0.919

μ3(x) �
0.919

11 1 43.556800 377,777.877 5.64904 μ1(x) �
0.876

μ2(x) �
0.901

μ3(x) �
0.876
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Fig. 18 Values of objective functions subject to different θ

the terms of the THmodel

(
max λ(x) � γ λ0 + (1 − γ )

∑
h

θhμh(x)

)
considering θ � 0.33,

while γ is in the range of 0 to 1. The first term seeks a balance between the membership
function values of objective functions and increases them as much as possible. The second
term brings the weights of objective functions into focus and sorts out them in order of
priority. As DM prefers to produce acceptable solutions with a balance between objective
functions and their membership function values, more weight is placed on the first term (i.e.,
the increased value of γ). As DM prefers to produce acceptable solutions with the great
importance of objective functions, a decrease is made in the value of γ so that the second
term becomes more important.

Figure 18 shows the effect of θ1, θ2, and θ3 on the terms of the TH model(
max λ(x) � γ λ0 + (1 − γ )

∑
h

θhμh(x)

)
, considering γ � 0.5. Based on the assumption

made in previous sections, the network is designed by three objective functions of the same
value and importance. It is not satisfied in the real world, and one of them is more signif-
icant from the experts’ point of view. The probability of moving towards a better solution
for the objective function of greater importance exists to resolve this issue. For this purpose,
different cases are considered based on the significance of objective functions in which θh is
in the range of 0.1 to 0.9. Since the third objective function has been a high priority for the
experts in Case 5, it has been assigned more weight (θ3 � 0.7) than other functions. Also,
since experts have given the de-resiliency objective function a higher priority than others in
Case 10, it carries more weight (θ1 � 0.7).
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8 Managerial findings

This section offers some insights to give healthcare managers a clear understanding of the
proposed model that is advantageous for controlling the spread of contagious diseases, such
as coronavirus. Important managerial insights from the results of the proposed model are as
follows.

First, including different resiliencymeasures in the proposedmodel and specifying the best
one based on cost considerations must be devoted to further attention, as the significant issues
in designing the health service network for the infected people with COVID-19. It makes the
network more reliable towards any unexpected design change with the aim of improvement
in health centers. Besides, the results obtained from the present study show that a trade-off
between resiliency, cost, and distance as objective functions is an important point. It enables
decision-makers to design the network concerning their preferences. Moreover, the limited
capacity of current medical centers for providing COVID-19 patients and other patients with
adequate services makes it necessary to establish and evenly distribute camps and quarantine
stations within the community and design an efficient network for patients with different
symptoms. It results in the optimum use of the potential capacity of medical centers and
the low rate of bed shortage in hospitals. Also, the construction of temporary treatment
centers (camp stations) with ample potential eliminates the need for transferring patients
with mild symptoms to general hospitals due to the limited capacity, preventing the further
outbreak of the disease. Given the importance of keeping social distance and avoiding the
increasing congestion in medical centers, the proposed model can balance admittance to and
discharge from the medical centers. Also, healthcare decision-makers have determined the
optimal threshold and penalty coefficient for screening centers, activating sufficient screening
centers with as much possible resilience to criticality. Finally, another insight drawn is that an
efficient allocation of the suspect and definite cases to the nearest screening and care centers
makes it possible to prevent the disease carriers from commuting within the community and
increasing the transmission rate of coronavirus.

9 Conclusions

The key finding of the study, practical implications, the limitations of the research, and future
research avenues are provided in this section.

10 Summary of this paper

Given that COVID-19 is a novel type of disease with a severe outbreak around the world and
a high risk of transmission, there is no specific policy on getting it under control. However,
maintenance of social distance, early diagnosis of disease, and extra attention to patients with
acute underlying disease are limiting factors in an outbreak of disease and its fatality rate.
Designing an effective strategy for managing the problem can help control the spread of dis-
ease. Thus, it necessitates developing a resilient health service network to supervise medical
services provision to infected people with COVID-19. This study proposes a multi-objective
mathematical model to minimize the de-resiliency, distance, and total cost. It determines
the number and location of screening centers, camps, and quarantine stations, the allocated
portion of each medical center to the infected people with COVID-19, the efficient allocation
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of patient zones to screening centers, and from screening centers to camps or different kinds
of hospitals, and the efficient assignment of improved infected people to quarantine stations
to reduce the commuting time of infected people in the society and subsequently the rate of
virus spread. A hybrid robust stochastic-possibilistic programming approach is adopted to
resolve inherent stochastic and epistemic uncertainty regarding input parameters. The model
seems compatible with the defining characteristics of the COVID-19 pandemic.

The real data derived from districts of Tehran is used to make the case studymore practical
and applicable.An analysis of the proposedmodel is conducted based on different parameters,
and some findings offer insightful observations to management systems. The results state that
the simultaneous use of resiliency, distance, and cost as objective functions and the trade-off
between them can facilitate the work process in the health service network for the infected
peoplewithCOVID-19. Thus,DMshave required a balance between three objective functions
considering personal preferences to decrease the risk of virus transmission in the community.
Also, the managerial insights show that establishing camps and quarantine stations within
the community results in the optimum use of the potential capacity of medical centers and
the low rate of shortage in the hospitals.

10.1 Limitations

This study, however, is subject to several limitations; no consideration is given to infras-
tructural requirements for the laboratory equipment of screening tests such as PCR, how to
identify the suspected patients in the screening centers, the best decision on the location of
screening centers, camps, and quarantine stations through themulti-attribute decisionmaking
approaches (based on criteria such as ample open space, efficient ventilation system, avail-
ability, spatial proximity to pharmacies and hospitals in each patient zone), and the lack of
hospitals facilities sharing (especially ventilators) in times of the increased incidence. They
are some limitations in addressing the research, which could be promoted.

10.2 Future remarks

Toour knowledge, designing a health service network for the infected peoplewith coronavirus
is pioneering work. Thus, there is a belief that the proposed model can bring considerable
advantages. The following suggestions are offered for future research. The proposed model
can be highly developed by considering other resiliency factors. Ambiguous parameters can
be addressed by other uncertainty methods with a more qualitative degree, e.g., Multivariate
Adaptive Regression Spline (MARS), Gray Systems, etc. Since an outbreak of the disease
necessitates disposing of the infectious medical waste (IMW) of an increasing level, the
proposed model can be extended to a sustainable health network by a group of environmental
and social factors. The dangers caused by going suspected elders and vulnerable people to
medical centers at the outbreak peakmake it possible to develop themodel by providing home
health care such as identification of suspects, nursing services delivery to sufferers, and drug
administration. As an essential point, other researchers can first use SIDARTHE or SIR
methods to accurately predict the values of pandemic parameters to increase the capability of
their model. And finally, the development of decomposition algorithms or metaheuristics can
be used as a guide in problems of larger size for which commercial solvers have no solution
at a reasonable processing time.

123



Annals of Operations Research (2023) 328:903–975 953

Appendix A: Notations of the proposedmodel

The sets, parameters, and decision variables below are applied to formulate the mathematical
model.

Sets and indices

I Suspected people zones (i � 1, 2, . . . , I ).

G Screening centers (g � 1, 2, . . . ,G).

J Medical centers (CSs, GHs, and SHs) ( j � 1, 2, . . . , J ).

Q Quarantine stations (q � 1, 2, . . . , Q).

T Periods (t � 1, 2, . . . , T ).

S Scenarios (s � 1, 2, . . . , S).

Parameters

Demand parameters
ai The population of the people zone i

etsi The percentage of the suspected people in zone i in period t under scenario s

Capacity parameters
Cg The capacity of potential screening center at node g.

C
′
j The capacity of the potential camp station at node j.

C
′′
q The capacity of potential quarantine station at node q.

n j Maximum number of beds in the medical centers (general hospitals or specialized hos-
pitals) j

Distance parameters

dig Distance between patient zone i and screening center is located in node g

d
′
g j Distance between screening center is located in node g and medical centers j

d ′′
j j ′ Distance between medical centers j and medical centers j ′

d ′′′
jq Distance between medical centers j and quarantine station q

Cost parameters
Fixed cost parameters

fg Fixed installation cost to established screening center in node g

f
′
j Fixed installation cost to an established temporary medical center (camp station) in node

j

f
′′
q Fixed installation cost to established quarantine station in node q

Operation cost parameters

otsg Operating cost of the screening center g in period t under scenario s
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o′ts
j Operating cost of the medical centers (camp station, general and specialized hospital)

in period t under scenario s

o′ts
q Operating cost of the quarantine station q in period t under scenario s

Penalty cost parameters

pe The penalty coefficient cost of shortage in medical centers (camp stations, general hos-
pitals, specialized hospitals)

pe
′

The penalty coefficient cost of shortage in quarantine stations

COVID-19 disease parameters

�s
t The average percentage of suspected people with positive screening test results in period

t under scenario s.

αs
t Percentage of infected people with mild symptoms in period t under scenario s.

βs
t Percentage of infected people with severe symptoms and no underlying disease in period

t under scenario s.

γ s
t Percentage of infected people with severe symptoms and underlying disease in period t

under scenario s.

ωs
t Percentage of infected people with worsening symptoms admitted to general hospitals

in period t under scenario s.

ω′s
t Percentage of infected people with worsening symptoms admitted to camp stations in

periodt under scenario s.

πt The complete recovery rate of infected people admitted to quarantine stations in period
t.

ρs
t The mortality rate in medical centers in period t under scenario s.

τ st The improved rate in medical centers in period t under scenario s.

Resiliency parameters

ϑ The penalty for critical screening centers.

ϑ ′ The penalty for critical temporary medical centers (camp stations).

ϑ ′′ The penalty for critical quarantine stations.

� The predetermined constant ratio of congestion (visits/capacity) in screening centers.

θ The penalty of negative deviation from the predetermined constant ratio of congestion in
the screening centers.

θ ′ The penalty of positive deviation from the predetermined constant ratio of congestion in
the screening centers.

ψg The threshold value of total inflows and outflows in screening center g.

ψ ′CS
j The threshold value of total inflows and outflows in temporary medical center (camp

station) j.

ψ
′′
q The threshold value of total inflows and outflows in quarantine station q.

Other parameters

ps Probability of the occurrence of scenario s

ι A very small number.

M A very large number.
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Decision variables

Location variables

xg It is equal to 1, if a potential screening center is located at node g, 0 otherwise.

x ′CS
j It is equal to 1, if a temporary medical center (camp station) is located at node j, 0

otherwise.

x ′′
q It is equal to 1, if a quarantine station is located at node q, 0 otherwise.

Allocation variables

ztsig It is equal to 1 if patient zone i is allocated to screening center located in node g in period
t under scenario s

z′tsg j It is equal to 1 if the screening center is located in node g allocated to medical center
(general hospital, specialized hospital, and camp station) j in period t under scenario s

z′′tsj j ′ It is equal to 1 if medical center (camp station, or general hospital) j is allocated to the
more advanced medical center (general hospital, or specialized hospital) j ′ in period t
under scenario s

z′′′tsjq It is equal to 1 if medical center j is allocated to quarantine station q in period t under
scenario s

Flow variables

btsig The number of suspicious people in zone i that refer to screening center g in period t
under scenario s

r tsg j The number of infected peoplewith different conditions that transferred from the screen-
ing center is located in node g to medical center j in period t under scenario s

wts
j j ′ The number of infected people with worsening symptoms admitted to medical center

j, transferred to the more advanced medical center j ′ in period t under scenario s

vtsjq The number of improved infected people that transferred from general hospital h to
quarantine station q in period t under scenario s

Shortage variables

utsh Shortage level of beds in medical center (general hospital, specialized hospital, and
camp station) j in period t under scenario s

u′ts
q Shortage level of beds in quarantine station q in period t under scenario s

Resiliency variables

yg It is equal to 1 if a potential screening center is located at node g be critical, 0 otherwise.

y′CS
j It is equal to 1 if a medical center (camp station) is located at node j be critical, 0

otherwise.

y
′′
q It is equal to 1 if a quarantine station is located at node q be critical, 0 otherwise.

ε−ts
g The amount of negative deviation from the predetermined constant visits/capacity of

screening center ratio in the screening center g under scenario s.

ε+tsg The amount of positive deviation from the predetermined constant visits/capacity of
screening center ratio in the screening center g under scenario s.
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Capacity variables

� ts
j Number of beds in medical center (general or specialized hospital) j that allocated to

infected people with COVID-19 in period t under scenario s.

State variables

ltsh The number of infected people admitted to general hospital h in period t under scenario
s

l ′tsq The number of improved infected people in quarantine station q in period t under
scenario s

Appendix B: Structural properties of the proposedmodel

In this study, a mixed-integer linear programming model is developed to design a network
of health services for people with coronavirus at the time of the outbreak of COVID-
19 disease. The proposed network comprises suspicious people, screening centers, health
centers (camp stations, general hospitals, and specialized hospitals), and quarantine sta-
tions. The first objective function aims to minimize the de-resiliency of the health service
network during the outbreak of COVID-19 disease by calculating the penalty coefficient
for each of the resiliency measures comprises of congestion criteria for screening centers
(
∑
g

ϑ × yg), camp stations (
∑
j

ϑ ′ × y′ camp station
j ), and quarantine stations (

∑
q

ϑ ′′ × y
′′
q ),

shortage criteria for general hospitals (
∑
t

∑
s

∑
j
pegeneral hospi tal × uts general hospi talj ),

specialized hospitals (
∑
t

∑
s

∑
j
pespeciali zed hospital × uts speciali zed hospital

j ), camp stations

(
∑
t

∑
s

∑
j
pecamp station × uts camp station

j ), and quarantine stations (pe′ × ∑
q
u′ts
q ), and

de-concentration criteria for screening centers (
∑
g

∑
t

∑
s

(
θ × ε−ts

g + θ ′ × ε+tsg

)
). Also, the

second objective function aims to minimize the total distance of all suspected and infected
people in society comprises of the distance of assigning suspicious people to screening
centers (

∑
t

∑
i

∑
g
ztsig × dig), distance of assigning infected people with different symp-

toms from screening centers to medical centers(such as camp stations, general hospitals,
and specialized hospitals) (

∑
t

∑
g

∑
j
z′tsg j × d ′

g j ), distance of assigning infected people with

worsening symptoms from a medical center (camp stations or general hospitals) to more
advanced medical centers (general hospitals or specialized hospitals) (

∑
t

∑
j

∑
j ′
z′′tsj j ′ × d ′′

j j ′),

distance of improved infected people from medical centers (such as camp stations, general
hospitals, and specialized hospitals) to quarantine stations (

∑
t

∑
j

∑
q
z′′′tsjq × d ′′′

jq ). Eventu-

ally, the third objective function aims to minimize the costs of the network comprised
of the cost of opening screening centers (

∑
g
xg × fg), cost of opening camp stations

(
∑
j
x ′ camp station
j × f ′

j ), cost of opening quarantine stations (
∑
q
x ′′
q × f ′′

q ), cost of pro-

vided test kits in screening centers (
∑
i

∑
g

∑
t

∑
s
otsg × btsig), cost of operating in camp
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stations (
∑
j

∑
t

∑
s
o′ts camp station
j × lts camp station

j ), cost of operating in general hospitals

(
∑
j

∑
t

∑
s
o′ts general hospi tal
j × lts general hospi talj ), cost of operating in specialized hospitals

(
∑
j

∑
t

∑
s
o′ts speciali zed hospital
j × lts speciali zed hospital

j ), and cost of operating in quarantine

stations (
∑
q

∑
t

∑
s
o′′ts
q × l ′tsq ).

In the presentedmodel, we considered different screening centers in the determined area to
get the necessary tests from people with suspicious symptoms from different zones. Because
the equipment is limited, such as test kits, selected screening centers have limited capacity to
provide services to people with suspicious symptoms. Therefore, the total number of suspects
referring to each screening center from different areas should not exceed the maximum
capacity of that center, which is shown by constraint (4). Also, existing medical centers
such as general and specialized hospitals have a limited number of beds for hospitalization.
On the other hand, in this research, we assume that only part of the capacity (number of
beds) of each general and specialized hospital should be allocated to coronavirus patients.
Therefore, the number of cases assigned to patients with COVID-19 should be less than the
maximum capacity (total number of beds) of each general and specialized hospital, which
are shown by constraints (5) and (6), respectively. During the outbreak of pandemic diseases
such as COVID-19, the number of people infected with the virus who need medical care
should increase daily. However, medical centers and quarantine stations dedicated to patients
and recovered people have limited capacity, and those referred to these centers may face a
shortage of empty beds for hospitalization. However, the lack of hospitalization of patients in
medical centers leads to an increase in the prevalence of the virus in the community and the
inefficiency of the health system. Therefore, constraints (7)–(10), calculate the shortage of
empty beds in medical centers (camp stations, general hospitals, and specialized hospitals)
and quarantine stations, respectively.

Asmentionedbefore, in the designednetwork, several centers should be established among
the candidate points as screening centers, camps, and quarantine stations. In addition, it is
assumed that each center, in each period, should be allocated to only one other center, which
is called a single allocation. These limitations are shown in the constraints (11), (13), (15),
(17), (19), (21), and (23). On the other hand, the flow of suspects and patients will refer to
these centers if these centers are established. Therefore, these restrictions have been stated
by constraints (12), (14), (16), (18), (20), (22), and (24).

Since the centers that are built as temporary screening centers, camps, and quarantine
centers (such as municipal health care centers, crisis management sheds, red crescent centers,
university dormitories, and sports centers) are very limited in terms of infrastructure and
capacity compared to existing centers such as hospitals, increasing the number of referrals
is more likely to cause congestion and the prevalence of the disease in these centers is also
increasing and eventually they are considered as critical centers. Therefore, a threshold is
defined for the number of referrals for each center, and if that value is exceeded, that center
becomes critical, which these facts and their calculation are shown by constraints (25) and
(28) for screening centers, constraints (26) and (29) for camp stations, and constraints (27)
and (30) for quarantine stations, respectively.

In addition to the above criteria, since in all screening centers, only the testing process is
performed from suspects and the same service is provided, for various reasons, the number
of referrals to a specific center may be very high and at the same time do not refer to another
selected center, which will also increase the prevalence in busy laboratory centers. Therefore,
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it is better to plan in such a way that the number of referrals to different centers has the same
and uniform distribution. Therefore, a fixed value is considered for the number of referrals
to each screening center and the amount of positive and negative deviations from that value
is calculated, which is shown by constraint (31) for each screening center.

In general, the number of patients admitted to medical centers in each period is calculated
by the sum of the total number of patients admitted to the previous period, plus newly
identified patients and the number of patients transferred from other medical centers at the
beginning of the current period,minus the number of patientswho died, the number of patients
transferred to other medical centers as well as the number of recovered patients referred to
quarantine centers at the end of the previous period, which are expressed by constraints
(32)–(34) for general hospitals, specialized hospitals, and camp stations, respectively. Also,
the number of recovered people accommodated in quarantine stations in each period is
calculated by the total number of people recovering in the previous period, plus the number of
newly improved patients at the beginning of the current period, minus the number of released
recovering patients at the end of the previous period, which is mentioned in constraint (35).

The number of suspect people referred to screening centers in each period is calculated
as a percentage of the population in each zone, is calculated by constraint (36). Also, the
number of patients referred to general hospitals, specialized hospitals, and camp stations, are
calculated as a percentage of the number of suspected people with positive coronavirus tests
at screening centers, which are shown by constraints (37)–(39), respectively.

In medical centers such as camp stations and general hospitals, some hospitalized patients
may be in poor condition and need to receive services from more advanced medical centers
in each period. Hence, the number of people transferred from general hospitals to specialized
hospitals, as well as from camp stations to general hospitals, are calculated by constraints
(40) and (41), respectively.

According to the WHO reports, since the cured people with coronavirus may continue
to carry the virus for a while, it is best to stay out of the community after completing the
treatment. Therefore, improved patients are referred from medical centers to quarantine
stations in the designed network. For this purpose, the number of patients referred from
general hospitals, specialist hospitals, and camp stations to quarantine stations is calculated
by constraints (42)–(44), respectively.

During the outbreak of diseases such as coronavirus, the number of referrals to medi-
cal centers certainly increases significantly, and, as a result, the demand for hospitalization
usually exceeds the capacity of medical centers facing a shortage of empty beds, related
equations for general hospitals, specialist hospitals, camp stations, and quarantine stations
are shown in the constraints (45)–(48), respectively.

Appendix C: Preliminaries of the RSPPmethod

a. Possibilistic chance-constrained programming (PCCP)

PCCP is considered one of the most popular Possibilistic Programming methods for speci-
fying epistemic parameters. It is subject to the condition that a determined confidence level
(α) achieved by each chance constraint (Pishvaee et al. (2012b)). Two basic fuzzy possibil-
ity (Pos) and necessity (Nec) measures were introduced by Dubois and Prade (1987) to
satisfy the condition in PCCP models. Pos and Nec measures have extremely optimistic
and pessimistic views on chance constraints, respectively. Liu and Liu (2002) introduced the
credibility (Cr) measure as the average of Pos and Nec measures to moderate the extreme
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views. Me measure has been recently suggested by Xu and Zhou (2013). As an extended
version of the Cr measure, it is an indicator of the weighted average of Pos and Nec mea-
sures. To define Me measure (the relation below), an optimistic–pessimistic parameter (i.e.,
λ (0 ≤ λ ≤ 1)) is specified as the weight of Pos measure.

Me{A} � Nec{A} + λ(Pos{A} − Nec{A}) � λPos{A} + (1 − λ)Nec{A} (C.1)

Consider a trapezoidal fuzzy variable ξ̃ � (r1, r2, r3, r4), r1 ≤ r2 ≤ r3 ≤ r4 whose
membership function is as Eq. (C.2):

μ3(x) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−r1
r2−r1

r1 ≤ x ≤ r2
1 r2 ≤ x ≤ r3
rx−x
r4−r3

r3 ≤ x ≤ r4
0 Otherwise

(C.2)

The fuzzy measures of the events ξ̃ ≤ x and ξ̃ ≥ x are presented as Eqs. (C.3) and (C.4)
(Xu and Zhou 2013).

Me
{
ξ̃ ≤ x

}
�

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 x ≤ r1
λ x−r1
r2−r1

r1 ≤ x ≤ r2
λ r2 ≤ x ≤ r3
λ + (1 − λ) x−r1

r2−r1
r3 ≤ x ≤ r4

1 x ≥ r4

(C.3)

Me
{
ξ̃ ≥ x

}
�

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 x ≤ r1
λ + (1 − λ) x−r1

r2−r1
r1 ≤ x ≤ r2

λ r2 ≤ x ≤ r3
λ x−r1
r2−r1

r3 ≤ x ≤ r4
0 x ≥ r4

(C.4)

Eq. (C.5) shows the expected value of the fuzzy variable ξ̃ based on theMe measure (Xu
and Zhou 2013).

EMe[ξ ] �
+∞∫

0

Me
{
ξ̃ ≥ x

}
dx +

0∫

−∞
Me

{
ξ̃ ≤ x

}
dx � 1 − 2λ

2
(r1 − r2) +

λ

2
(r3 + r4)

(C.5)

b. Basic PCCP (BPCCP) model

For simplicity, the compact version of the model is developed, where x , and y represent
continuous and binary decision variables, respectively. A, B, N , E , F, and b indicate coef-
ficient matrices, and parameters of the model are represented by f , c, d, and g. The vectors
c and d are equivalent to operating cost and the level of demand (number of the suspected
people), respectively, that specify the scenario and fuzzy-based parameters. Also, the vectors
f and g determine the only fuzzy-based and scenario-based parameters, which are associated
with installation cost and the rate of suspected people with the positive screening test result,
respectively.

min Z � f̃ y + c̃s xs

s.t.
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Axs ≤ d̃s

Bxs ≥ b

Exs ≤ Ny

Fxs ≤ gs

y ∈ [0, 1], x ≥ 0 (C.6)

According to Pishvaee et al. (2012b) and Xu and Zhu (2013), the definition of the Basic
Stochastic- Possibilistic Programming (BSPP) model is proposed below.

min[Z ] � E [̃ f ]y + E
[
c̃s

]
xs

Subjectto

Me
{
Axs ≤ d̃s

}
≥ αs

Bxs ≥ b

Exs ≤ Ny

Fxs ≤ gs

y ∈ [0, 1], x ≥ 0 (C.7)

The Upper Approximation Model (U AM) and the Lower Approximation Model (L AM)
have been proposed by Xu and Zhou (2013) as two approximation models that are defined
as follows:

U AM

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min[Z ] � E [̃ f ]y + E
[
c̃s

]
xs

Subject to

Pos
{
Axs ≤ d̃s

}
≥ αs

Bxs ≥ b
Exs ≤ Ny
Fxs ≤ gs
y ∈ [0, 1], x ≥ 0

&L AM

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min[Z ] � E [̃ f ]y + E
[
c̃s

]
xs

Subject to

Nec
{
Axs ≤ d̃s

}
≥ αs

Bxs ≥ b
Exs ≤ Ny
Fxs ≤ gs
y ∈ [0, 1], x ≥ 0

(C.8)

As shown inEq. (C.8), themodel proposed byXuandZhu (2013) goes through a two-phase
solution process to solve U AM and L AM problems (So that, firstly, U AM problem must
be solved and then L AM is solved). Also, it can be proven in the same way as the credibility
measure that if ξ̃ is a trapezoidal fuzzy number and two confidence levels α ≥ 0.5, then:
(Refer to Dehghan et al. (2018) to see the proof.)

Me{ξ ≥ x} ≥ α ↔ x ≤ (α − λ)r1 + (1 − α)r2
1 − λ

Me{ξ ≤ x} ≥ α ↔ x ≥ (α − λ)r4 + (1 − α)r3
1 − λ

(C.9)

Eq. (C.7) specifies the hybrid uncertain parameters of objective function and constraints
in the presented model whose, crisp equivalent is defined as follows:

MinE[z] �
[
1 − λ

2
( f1 + f2) +

λ

2
( f3 + f4)

]
y +

∑

s

ps

[
1 − λ

2
( f1 + f2) +

λ

2
( f3 + f4)

]
xs

Subject to

Axs ≤ (αs − λ)d1s + (1 − αs)d2s
1 − λ
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Bxs ≥ b

Exs ≤ Ny

Fxs ≤ gs

y ∈ [0, 1], x ≥ 0 (C.10)

where αs indicates the minimum confidence level of chance constraints in every scenario,
which is determined by DMs (αs > 0.5).

Appendix D: Supplementary data

In this appendix, we provide supplementary data from the case study for the proposed model.
It is worth noting that the value of some parameters, such as the population of each distinct,
distances, and the maximum capacity of general and specialized hospitals, are reported in the
main body of the paper. Also, it is notable that fixed installation costs, fixed operating costs,
and the rate of suspected people are uncertain, and we used the fuzzy approach to capture this
uncertainty. The varying quality of these parameters in the long term necessitates considering
them in solving the problem. To convert the definitive data to the trapezoidal fuzzy numbers
as (r1, r2, r3, r4), the experts have suggested (r1, r3) values for these parameters, and (r2, r4)
are computed as an increase of 10% in the values of (r1, r3). Rial (i.e., Iran’s currency) is
used as the monetary value.

The average percentage of the suspected people in each district of Tehran is provided in
Table 13. Based on theCoronaNational Headquarters in Tehran, District 4 has the highest rate
of coronavirus outbreaks in this city. Also, Districts 2, 5, and 14 have the highest incidence
rates after District 4. Meanwhile, Districts 21 and 22 also have the lowest infection rates.
Therefore, according to the above reports, the average percentage of the suspected people in
each distinct of Tehran is as follows:

Also, in collaboration with the Tehran Municipality, the Ministry of Science, and the
Ministry of Health, the capacity of potential centers for screening centers, camp stations, and
quarantine stations has been estimated, as shown in Tables 14, 15 and 16, respectively.

In addition, according to the Ministry of Health, physicians, and medical professionals,
the fixed costs of providing infrastructure, equipment, and requirements related to the estab-
lishment of screening centers, camp stations, and quarantine stations have been determined
and reported in Tables 17, 18 and 19, respectively.

Table 13 The average percentage of the suspected people in distinct i (ei )

i

1 2 3 4 5 6 7 8 9 10 11

40% 50% 40% 60% 50% 40% 40% 50% 30% 30% 30%

i

12 13 14 15 16 17 18 19 20 21 22

40% 30% 50% 40% 30% 30% 40% 30% 30% 20% 20%
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Table 14 The capacity of the potential screening center at node g
(
cg

)

g

1 2 3 4 5 6 7

100 85 80 85 90 105 112

g

8 9 10 11 12 13 14

98 120 100 95 110 125 105

Table 15 The capacity of the potential camp station at nodej
(
c′Cs
j

)

jCS

1 2 3 4 5 6

55 50 65 45 60 40

jcs

7 8 9 10 11 12

45 50 60 45 55 65

Table 16 The capacity of potential quarantine station at node q
(
c′′q

)

q

1 2 3 4 5 6 7

50 70 65 60 55 50 60

q

8 9 10 11 12 13 14

55 52 60 45 65 50 68

According to the IranianMinistry of Health andMedical Education, in Tehran, on average,
45% of people who had a coronavirus test such as PCR have a positive result. Therefore, in
consultation with theMinistry of Health consultants, tolerance of this number as a percentage
of people who have tested positive for coronavirus under different periods and scenarios is
presented in Table 20.
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Table 18 Fixed installation cost to the potential camp station in node j
(
f ′Cs
j

)
[Million Rial]

jCS

1 2 3 4 5 6

70,000,000 80,000,000 70,000,000 250,000,000 110,000,000 60,000,000

jcs

7 8 9 10 11 12

270,000,000 350,000,000 240,000,000 280,000,000 250,000,000 270,000,000

Table 19 Fixed installation cost to the potential quarantine station in node q
(
f ′′
q

)
[Million Rial]

q

1 2 3 4 5 6 7

50,000,000 60,000,000 55,000,000 48,000,000 35,000,000 42,000,000 43,000,000

q

8 9 10 11 12 13 14

45,000,000 54,000,000 46,000,000 53,000,000 39,000,000 53,000,000 45,000,000

Table 20 Percentage of suspected people with positive screening test results in period t under scenario s (�s
t )

S T

First period (%) Second
period (%)

Third
period (%)

Fourth
period (%)

Fifth
period (%)

Sixth
period
(%)

First scenario 30 40 35 45 48 50

Second
scenario

40 50 45 55 52 60

Third
scenario

50 60 55 65 62 65

Based on the collected information from the historical data in National Corona Head-
quarters in Tehran, the average percentage of infected people with mild symptoms, infected
people with severe symptoms and no underlying disease, and infected people with severe
symptoms and underlying disease have been estimated under mild, moderate, and severe
outbreaks of coronavirus in Tehran. Then, according to the experts and consultants in the
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Table 21 Percentage of infected people with mild symptoms in period t under scenario s (αst )

S T

First period (%) Second
period (%)

Third
period (%)

Fourth
period (%)

Fifth
period (%)

Sixth
period
(%)

First scenario 50 42 45 39 42 35

Second
scenario

48 39 42 36 40 33

Third
scenario

45 36 40 33 38 30

Table 22 Percentage of infected people with severe symptoms and no underlying disease in period t under
scenario s (βs

t )

S T

First period (%) Second
period (%)

Third
period (%)

Fourth
period (%)

Fifth
period (%)

Sixth
period
(%)

First scenario 35 42 38 43 40 45

Second
scenario

36 43 40 44 41 45

Third
scenario

38 44 41 44 42 45

treatment field, the values of these parameters have been developed for the intended periods
and scenarios, which are provided in Tables 21, 22 and 23, respectively.

The values suggested by medical professionals and consultants presented in Tables 24 and
25 have been used to determine the percentage of transfer rate between medical centers (i.e.,
from camp stations to public hospitals or from public hospitals to specialized hospitals).

Based on the collected information from the historical data in National Corona Headquar-
ters in Tehran, the average mortality rate of infected people with mild symptoms, infected
people with severe symptoms and no underlying disease, and infected people with severe
symptoms and underlying disease have been estimated under mild, moderate, and severe out-
breaks of coronavirus in Tehran. Then, according to the experts and consultants in the field
of treatment, the values of mortality rate in different medical centers have been suggested for
the camp stations, general hospitals, and specialized hospitals under periods and scenarios,
which are provided in Tables 26, 27 and 28, respectively.

Also, based on the collected information from the historical data in National Corona
Headquarters in Tehran, the average improved rate of infected people with mild symptoms,
infected people with severe symptoms and no underlying disease, and infected people with
severe symptoms and underlying disease have been estimated under mild, moderate and
severe outbreaks of coronavirus in Tehran. Then, according to the experts and consultants
in the field of treatment, the values of improved rates in different medical centers have been
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Table 23 Percentage of infected peoplewith severe symptoms and underlying disease in period t under scenario
s (γ s

t )

S T

First period (%) Second
period (%)

Third
period (%)

Fourth
period (%)

Fifth
period (%)

Sixth
period
(%)

First scenario 15 16 17 18 18 20

Second
scenario

16 18 18 20 19 22

Third
scenario

17 20 19 22 20 25

Table 24 Percentage of infected people with worsening symptoms admitted to general hospitals in period
t under scenario s (ωs

t )

S T

First period (%) Second
period (%)

Third
period (%)

Fourth
period (%)

Fifth
period (%)

Sixth
period
(%)

First scenario 25 26 27 28 28 30

Second
scenario

26 28 28 30 29 32

Third
scenario

27 30 29 32 30 35

Table 25 Percentage of infected people with worsening symptoms admitted to camp stations in periodt under

scenario s (ω′s
t )

S T

First period (%) Second
period (%)

Third
period (%)

Fourth
period (%)

Fifth
period (%)

Sixth
period
(%)

First scenario 25 26 27 28 28 30

Second
scenario

26 28 28 30 29 32

Third
scenario

27 30 29 32 30 35
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Table 26 The mortality rate in camp stations in period t under scenario s (ρs camp station
t )

S T

First period (%) Second
period (%)

Third
period (%)

Fourth
period (%)

Fifth
period (%)

Sixth
period
(%)

First scenario 1 2 1/5 3 2 4

Second
scenario

1/5 2/5 2 3/5 2/5 4/5

Third
scenario

2 3 2/5 4 3 5

Table 27 The mortality rate in general hospitals in period t under scenario s (ρs general hospitalt )

S T

First period (%) Second
period (%)

Third
period (%)

Fourth
period (%)

Fifth
period (%)

Sixth
period
(%)

First scenario 5 8 6 9 7 11

Second
scenario

6 9 7 10 8 13

Third
scenario

7 10 8 11 9 15

Table 28 The mortality rate in specialized hospitals in period t under scenario s (τ s speciali zed hospital
t )

S T

First period (%) Second
period (%)

Third
period (%)

Fourth
period (%)

Fifth
period (%)

Sixth
period
(%)

First scenario 30 40 35 45 40 50

Second
scenario

35 45 40 50 45 55

Third
scenario

40 50 45 55 50 60

suggested for the camp stations, general hospitals, and specialized hospitals under periods
and scenarios, which are provided in Tables 29, 30 and 31, respectively.

Also, based on the opinion of infectious disease specialists, the values of the complete
recovery rate of infected people admitted to quarantine stations in different periods are esti-
mated as shown in Table 32.
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Table 29 The improved rate in camp stations in period t under scenario s (τ s camp station
t )

S T

First period (%) Second
period (%)

Third
period (%)

Fourth
period (%)

Fifth
period (%)

Sixth
period
(%)

First scenario 99 98 97 96 95 94

Second
scenario

98 97 96 95 94 92

Third
scenario

96 95 94 93 92 91

Table 30 The improved rate in general hospitals in period t under scenario s (τ s general hospital
t )

S T

First period (%) Second
period (%)

Third
period (%)

Fourth
period (%)

Fifth
period (%)

Sixth
period
(%)

First scenario 90 89 88 87 86 85

Second
scenario

88 87 86 85 84 83

Third
scenario

86 85 84 83 82 81

Table 31 The improved rate in specialized hospitals in period t under scenario s (τ s speciali zedhospitalt )

S T

First period (%) Second
period (%)

Third
period (%)

Fourth
period (%)

Fifth
period (%)

Sixth
period
(%)

First scenario 60 59 58 57 56 55

Second
scenario

58 57 56 55 54 53

Third
scenario

56 55 54 53 52 51

Table 32 The complete recovery rate of infected people admitted to quarantine stations in period t (πt )

T

First period Second period Third period Fourth period Fifth period Sixth period

70% 60% 65% 55% 60% 50%
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According to consultants from theMinistry of Health and the National CoronaMidwifery
Headquarters in Iran, the critical threshold values for potential locations of screening centers,
camp stations, and quarantine stations are set as shown in Tables 33, 34 and 35, respectively.

Finally, the values of other parameters such as the penalty for critical screening centers
(ϑ), camp stations (ϑ), and quarantine stations (ϑ ′′), the predetermined constant ratio of
congestion in screening centers (�), the penalty for negative and positive deviation from the

Table 33 The threshold value of total inflows and outflows in screening center g
(
ψg

)

g

1 2 3 4 5 6 7

80 78 75 80 90 105 110

g

8 9 10 11 12 13 14

90 110 95 95 100 105 90

Table 34 The threshold value of total inflows and outflows in camp station j
(
ψ ′Cs
j

)

jCS

1 2 3 4 5 6

40 40 45 45 45 35

jcs

7 8 9 10 11 12

38 40 60 40 45 65

Table 35 The threshold value of total inflows and outflows in quarantine station q
(
ψ ′′
q

)

q

1 2 3 4 5 6 7

45 68 50 45 55 40% 55

q

8 9 10 11 12 13 14

50 48 50 40 65 35 66
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Table 36 The value of the other
parameters Parameter Value Parameter Value

ϑ 500,000,000 $ θ ′ 1,000,000 $

ϑ ′ 200,000,000 $ peCS 50,000,000 $

ϑ ′′ 100,000,000 $ peGH 1,000,000,000$

� 0.2 peSH 2,000,000,000 $

θ 1,000,000 $ pe
′

50,000,000$

predetermined constant ratio of congestion in screening centers (θ, θ ′, and the penalty coef-
ficient cost of shortage in medical centers (camp stations (peCS), general hospitals (peGH ),
and specialized hospitals (peSH )) and quarantine stations(pe

′
) are suggested based on the

opinion of experts and consultants of the Ministry of Health in Iran, as shown in Table 36.
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