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Abstract
We consider a queueing system which opens at a given point in time and serves a finite
number of users according to the last-come first-served discipline with preemptive-resume
(LCFS-PR). Each user must decide individually when to join the queue.We allow for general
classes of user preferences and service time distributions and show existence and uniqueness
of a symmetric Nash equilibrium. Furthermore, we show that no continuous asymmetric
equilibrium exists, if the population consists of only two users, or if arrival strategies satisfy
a mild regularity condition. For an illustrative example, we implement a numerical procedure
for computing the symmetric equilibrium strategy based on our constructive existence proof
for the symmetric equilibrium. We then compare its social efficiency to that obtained if users
are instead served on a first-come first-served (FCFS) basis.
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1 Introduction

In a variety of situations in which multiple users demand a service that is made accessible
at a certain time, the initial demand for service often exceeds the capacity to provide it.
Examples of such situations include customers returning a product for upgrade or refund,
users accessing a website at the release of an online service or the start of a sale, or individuals
conducting financial transactions when a bank or stock market opens. To cope with excess
demand, the provision of service to users is often managed with a queueing system. The way
a queue is managed affects the behaviour of users and, consequently, the waiting time that
users face, and inefficient queueing leads to both frustration for the unlucky user and costs to
society. Therefore, the study of how strategic users behave when faced with specific queueing
systems and of the implied social welfare loss is important for the design and evaluation of
queueing systems.

This paper considers a queueing system with a single server that opens at a given point
in time. A finite number of users choose independently when to arrive at the system. Users
prefer to complete service early rather than later, and they dislike waiting in the queue.
The service time requirements of users are identically and independently distributed. The
order in which waiting users are served is determined by the Last-Come-First-Served service
discipline with preemptive resume (LCFS-PR). The LCFS-PR discipline admits any newly
arrived user into service immediately, possibly preempting the service progress of another
user. The preempted user on the other hand joins the queue where later arrivals are prioritized
over earlier arrivals. When a preempted user re-enters service, her service is resumed from
the point of interruption.

Whereas the most frequently used (and studied) discipline is the First-Come First-Served
(FCFS) discipline, papers studying equilibrium and efficiency properties of alternative dis-
ciplines such as the Last-Come First-Served (LCFS) and LCFS with preemptive resume
(LCFS-PR) show that these in some settings provide superior outcomes. In Hassin (1985)
and Platz and Østerdal (2017) different environments are studied in which LCFS(-PR) disci-
plines are shown to be socially optimal for general classes of user preferences and service time
distributions. However, in a situationwith a finite number of strategic users and LCFS-PR, the
question of existence (and uniqueness) of equilibria and of whether LCFS-PR generally out-
performs FCFS have remained open. In this paper, we answer the first question affirmatively
(with some qualifications) and the last question negatively.

The strategic choices of arrivals to queues have been studied for almost half a century
(see e.g. Hassin (2016) and Haviv and Ravner (2021) for extensive surveys). The problem
was first approached by considering a fluid model for congestion dynamics that studied the
equilibrium arrival behavior of a continuum of users (Vickrey, 1969). In this model, each
user must choose his/her arrival time to a continuously open bottleneck, and each user has
a preferred time for passing the bottleneck and will incur a cost from being early or late.
Similar fluid models have been studied further and extended in various directions, e.g. to
treat heterogeneous users (Arnott et al., 1989), elastic user demand (Arnott et al., 1993), and
hypercongestion (Verhoef, 2003).

The study of strategic arrivals in queueing systems where the server has a limited service
period (i.e. the server admits an opening and/or closing time) was first formulated by Glazer
and Hassin (1983). They consider a Poisson-distributed number of identical users with expo-
nential service requirements that arrive at a server with a known opening and closing time and
wish to minimize their own waiting time (Glazer & Hassin, 1983). This work showed that in
a symmetric equilibrium under FCFS, the users arrive according to a continuous distribution
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function that extends over a finite interval before and after the opening time. Several variations
of this model have since been considered, e.g., to treat bulk service (Glazer & Hassin, 1987),
no arrivals prior to opening (Hassin & Kleiner, 2011; Haviv & Oz, 2018) and discrete arrival
times and deterministic service times (Rapoport et al., 2004; Seale et al., 2005; Stein et al.,
2007). Whereas the aforementioned studies assume that users only want to minimize their
wait in the queue, another body of literature studies environments where users also care about
being served at an early time. This type of preference has been modelled as a tardiness cost
that increases the later the user is admitted into service. The equilibrium behavior induced by
such user preferences has been studied for several variants of assumptions. Specifically, the
symmetric equilibrium has been studied for a Poisson-distributed number of identical users
with exponential service time requirements and multilinear costs of waiting and tardiness in
time, and it has been studied in settings both with and without early arrivals, as have the fluid
analogues of these models (Jain et al., 2011; Haviv, 2013; Sherzer & Kerner, 2017). Ravner
(2014) studies a model where the customers incur not only congestion (waiting) costs but
also penalties for their index of arrival. A complete analysis of the existence and uniqueness
of the equilibrium for a general population size with multilinear waiting and tardiness costs
and exponential service times showed that there always exists an equilibrium, and that it is
in fact symmetric (Juneja & Shimkin, 2013). The existence and uniqueness of a symmetric
equilibrium was established for more general classes of utility functions and service time
distributions by (Breinbjerg, 2017).

The above-mentioned studies all consider queueing environments that employ the FCFS
service discipline.1 Though the FCFS discipline is intuitively fair and reasonable to most
people, it is as mentioned not necessarily the most socially efficient way of settling a queue
(Hassin, 1985). In both theoretical analysis (e.g., Glazer andHassin (1983), Breinbjerg (2017)
and others mentioned above) and in empirical experiments (e.g., Rapoport et al. (2004), Seale
et al. (2005)), it has been found that under FCFS, users tend to show up (too) early, which
may lead to excess waiting time. Therefore, employing a service discipline that induces users
to spread out their arrivals in order to avoid arriving at the same time or just before other
users, may improve on overall efficiency. In particular, in queueing environments where the
server opens at a given point in time, and a continuum of users choose their arrival time in
a setting where they incur costs from queueing and being served late, the FCFS discipline
provides the lowest level of social efficiency among all work-conserving disciplines, whereas
the LCFS discipline provides the highest (Platz & Østerdal, 2017).2 Furthermore, empirical
support for the greater social efficiency of LCFS compared to FCFS has been established in
an experimental setting for a queueing environment with a very small (three-user) population
size, where each user chooses arrival time from a finite set of time slots (Breinbjerg et al.,
2016).

In this paper, we consider a queueing environment where a finite number of users with
identical preferences choosewhen to arrive at a single-server facility that opens at a commonly
known point in time and serves users on a LCFS-PR basis. We allow for general classes of
user preferences and service time distributions.We do not allow users to leave the queue once
they have arrived, and the system is open until all users have been served. Our main findings
are the following: First, we provide a few results on the properties of equilibria in general.
Second, we develop a constructive procedure that establishes the existence of a symmetric

1 Haviv and Oz (2018) consider also other disciplines including LCFS-PR and random order with preemption.
2 For the fluid model, it has been show for varying degrees of random sorting, ranging from FCFS to a
completely random service order, that the choice of service discipline does not play a role for the properties
of social efficiency if the server is always open, (de Palma & Fosgerau, 2013).
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mixed Nash equilibrium for any finite number of users. Third, we show that this is the unique
symmetric equilibrium.3 Furthermore, we show that no (continuous) asymmetric equilibrium
exists, if the population is of size two, or if arrival strategies have at most a finite number of
inflection points. Using a numerical method based on the constructive procedure from the
existence proof, we provide an example of a symmetric equilibrium as an illustration. We
calculate the social efficiency of the resulting symmetric equilibrium and compare it to the
social efficiency when users are served on a first-come first-served basis. The example shows
that social efficiency under LCFS-PR may actually be lower than under FCFS when there
are only a few users, in contrast to the case of a continuum of users mentioned above.

The paper is organized as follows: Section 2 formalizes the queueing environment and
model assumptions. Section 3 defines the relevant notion of an equilibrium, presents the
equilibrium properties of the queueingmodel, and in Sect. 3.3, provides the proof of existence
and uniqueness of a symmetric equilibrium. In Sect. 3.4, we provide insights on the (non)-
existence of asymmetric equilibria. Section 4 presents a numerical method to compute the
symmetric equilibrium and in an example compares the resulting social efficiency with that
obtained in a corresponding queueing system that employs the FCFS service discipline. We
conclude the paper in Sect. 5 with a brief summary and future research directions. Proofs that
require technical notation for the stochastic queueing dynamics are relegated to theAppendix.

2 Model

The queueing model of this paper resembles that analyzed in Breinbjerg (2017) under the
FIFO discipline. A finite user population N = {1, ..., n}, with n ≥ 2, must obtain service by
a single-server facility. The facility opens for service at time 0 and does not close until all
users have been served. The facility serves one user at a time according to a work-conserving
LCFS-PR regime. If several users arrive simultaneously, a fair lottery will determine the
order of service among them. We assume that a user cannot queue up at the facility before
opening time, and we assume that a user cannot leave the queue once arrived. Note that even
if early arrivals were allowed, a rational user would never arrive before opening time under a
LCFS-PR service discipline, since later arriving users will be prioritized once service starts.
Therefore, the equilibrium strategy derived in the present paper would be the same if early
arrivals were allowed. Nevertheless, we stick to the assumption arrivals before opening time
are not allowed, since it matters for the FIFO discipline that we are comparing with in the
example in Sect. 4.
Strategy of arrival Suppose that each user i ∈ N independently arrives according to a
cumulative distribution function Fi that assigns to each point in time t the probability that i
has arrived by time t . We refer to Fi as a (mixed) strategy. Since users cannot show up before
opening time we require Fi (t) = 0 for t < 0. Moreover we will assume for expositional
simplicity that Fi is piecewise absolutely continuous. Let S(Fi ) denote the support of Fi .
Thus, if Fi has no jumps, S(Fi ) is the smallest closed set such that

∫
S(Fi )

dFi (t) = 1. The
collection of strategies of all users is given by the arrival profile F = {Fi }i∈N . The notation
F−i will be used to denote the collection of strategies for all users except user i .

3 When interpreting a symmetric mixed strategy equilibrium, we do not necessarily expect users in real
life queueing settings to fully randomize accordingly. Instead, the mixed strategy may be interpreted as a
user’s expectation about the arrival decisions of others. Empirical support for this interpretation is found in
Rapoport et al. (2004) and Stein et al. (2007), who find that overall behaviour in a considered queueing game
is represented well by the mixed equilibrium strategy, while it does not reflect individual behaviour.
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Time of departure Given an arrival profile F , we consider the probabilities associated with
the time at which a given user has completed her service and departs the system. Assume
that the (non-negative) amount of time s required for the facility to complete the service of
each user is independently and identically distributed according to an absolutely continuous
cumulative distribution function S with S(s) = 0 for s ≤ 0 and its associated probability
density function has finite moments.

Let Di denote the ex-ante cumulative departure time distribution for user i induced by
S and the LCFS-PR discipline, such that Di (d | t,F−i ) is the probability that user i has
departed the system by time d ∈ R, given that she arrived at time t , and the n − 1 other
users arrive according to F−i . Note that limd→∞ Di (d | t,F−i ) = 1 for all t since the
user population is finite, the service time distribution S has finite moments, and LCFS-PR is
work-conserving. Note also that Di (d | t,F−i ) = 0 for all d ≤ t .
Utility function. We assume that all users have identical preferences and that each user
prefers early service to later service and dislikes spending time in the queue. To capture such
preferences, let V (t, d) be a real-valued function representing the utility of a user who arrives
at time t and departs from the system at time d ≥ t after waiting in the queue and receiving
service for a total of d − t time units. We assume that V is continuous, bounded from above,
strictly increasing in t , strictly decreasing in d , and for any c > 0 that V (t, t + c) is strictly
decreasing in t , with limt→∞ V (t, t + c) = −∞.

We assume that every user aims tomaximize her expected utility with respect to the timing
of arrival. For a given collection of strategies F−i , letUi denote the expected utility of user i
who arrives at time t or according to Fi , when the n − 1 other users arrive according to F−i ,
i.e.

Ui (t,F−i ) =
∫ ∞

t
V (t, d)dDi (d | t,F−i ) (1)

Here
∫
is the Lebesgue integral over the cumulative departure time distribution D. If Fi has

no jumps, the expected utility of arriving according to strategy Fi is given by

Ûi (Fi ,F−i ) =
∫ ∞

0
Ui (t,F−i )dFi . (2)

If Fi contains jumps, expected utility is defined by extending (2) in the straightforward way,
i.e. where the utility at a jump is weighted with the associated point probability.4

A LCFS-PR queueing game is thus represented by a tuple G = 〈 n, V , S 〉.

3 Equilibrium analysis

In this section, we start by defining the notion of an equilibrium and establish some general
properties of equilibrium arrival profiles in Sect. 3.1. In Section 3.2, we present our main
results in Theorem 1. The theorem establishes the existence and uniqueness of a symmetric
Nash equilibrium as well as two general properties of such an equilibrium, for any finite
number n of users. The proof of Theorem 1 is presented in Sect. 3.3. Subsequently in Section
3.4, we show that no asymmetric equilibrium exists if we impose certain regularity conditions
on the arrival strategies of individuals or if n = 2.

4 For simplicity of exposition, and in the view of Lemma 2 below from which it follows that an equilibrium
strategy is everywhere absolutely continuous, we do not write up the extended expression here.
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3.1 General properties of equilibrium arrival profiles

To study the strategic arrivals of users in a queueing game G, we adopt the standard Nash
equilibrium concept and say that the arrival profile F = {F1, . . . , Fn} constitutes an equilib-
rium, if it holds that no individual user can obtain higher expected utility (2) by changing her
arrival strategy unilaterally. Since the expected utility for player i of arriving at time t must
be the same for every t which adds to the increment of Fi ,5 we may alternatively characterize
an equilibrium as follows:

Definition 1 The arrival profile F = {F1, . . . , Fn} constitutes an equilibrium if for each
i ∈ N , s ≥ 0, and t for which F(t) > F(w) for all w < t , that Ui (t,F−i ) ≥ Ui (s,F−i ).

We start by establishing a result that links the cumulative departure time distribution D
and expected utility U .

Lemma 1 Consider a queueing game G, let t ∈ R and letF−i and F̃−i be two distinct arrival
profiles. If Di (d | t,F−i ) ≥ Di (d | t, F̃−i ) for all d ∈ R, then Ui (t,F−i ) ≥ Ui (t, F̃−i ).
Furthermore, if strict inequality holds for some d, then Ui (t,F−i ) > Ui (t, F̃−i ).

The lemma follows immediately from first order dominance once we note that the utility
function V is monotonically decreasing in the departure time.

Next, we present two general properties that apply to any equilibrium. The first result
addresses the continuity of the equilibrium strategies.

Lemma 2 Consider a queueing game G, and let F be an equilibrium arrival profile for G.
Then for every Fi ∈ F and t > 0, we have Fi (t) = lims↑t Fi (s).

Proof Suppose for some t > 0 and some i ∈ N , that Fi has a point of upwards discontinuity,
i.e. Fi (t) > lims↑t Fi (s). Then, by the continuity of V , no other players will arrive at or
immediately before t in equilibrium. That is, there exists an ε > 0 such that none of the other
players arrive in the interval [t − ε, t]. Since V (t − ε, t − ε + c) > V (t, t + c) for any c > 0,
we have Ui (t − ε,F−i ) > Ui (t,F−i ), i.e. i can increase her expected utility by arriving
at t − ε instead of t . This, however, contradicts that F is an equilibrium profile and proves
that no equilibrium strategy can have a point of upwards discontinuity for t > 0. Therefore,
Fi (t) = lims↑t Fi (s) for all t > 0 and all Fi ∈ F . 
�
Since Fi is right-continuous by definition, it follows from Lemma 2 that any equilibrium
strategy Fi is absolutely continuous at all t �= 0. Thus, if F is an equilibrium arrival profile,
then no strategy in this profile contains jumps except for possibly at t = 0. In particular, if
no strategy in the equilibrium profile has a jump in t = 0, by continuity of V , the expected
utility for player i of arriving at time t must be the same for every t in the support of Fi .

The next result establishes that in equilibrium, the users arrive at the queueing system
within some bounded interval of time.

Lemma 3 Consider a queueing game G, and let F be an equilibrium arrival profile for G.
Then S(Fi ) is a compact set for all Fi ∈ F .

Proof By definition we have Fi (t) = 0 for t < 0. Thus, the support S(Fi ) of Fi is bounded
from below at 0. Moreover, S(Fi ) is also bounded from above. To see this, assume on the

5 If strategies are absolutely continuous, this holds for all t in the support of Fi . See the comment after Lemma
2.
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contrary that inf{t |Fi (t) = 1} = ∞ for some Fi ∈ F . Now, since Di (d|t,F−i ) = 0 for
all d < t and for all c > 0 we have limt→∞ V (t, t + c) = −∞, it follows that if F
represents an equilibrium, then Ui (t,F−i ) = −∞ for all t ∈ S(Fi ). This, however, leads to
a contradiction: Since the user population is finite, the service time distribution S has finite
moments, and the LCFS-PRdiscipline iswork-conserving,wemust haveUi (0,F−i ) > −∞,
a contradiction. The support S(Fi ) is therefore bounded. Since S(Fi ) is closed by definition,
it follows immediately from the Heine–Borel theorem that S(Fi ) is compact. 
�

3.2 Symmetric equilibrium

Wenowconsider a situation inwhichF is a collection of strategies such that Fi = Fj = F for
all Fi , Fj ∈ F . Themain results are summarized in the theorem below inwhich existence and
uniqueness of an equilibrium are established, and some general properties of the symmetric
equilibrium strategy in a queueing game G are presented.

Theorem 1 For any queueing gameG, there exists one andonly one strategy F that constitutes
a symmetric equilibrium. Moreover, the following properties hold for F:

(i) F(t) is continuous at all t ∈ R and has F(0) = 0.
(ii) The support S(F) of F is a closed interval [0, b], for some b > 0.

Intuitively speaking, Theorem 1 says that in equilibrium, the users will arrive according
to a continuous and strictly increasing distribution function that extends over a finite interval
of time starting at the opening time.

3.3 Proof of Theorem 1

This section is devoted to the proof of Theorem 1 which proceeds through several lemmas.
We start by noting that, provided that a symmetric equilibrium F exists, F cannot jump
at 0 since otherwise a user arriving at 0 would be better off by arriving immediately after
0. The remaining element of Part (i) follows from Lemma 2. The next result addresses the
monotonicity of an equilibrium strategy.

Lemma 4 Consider a queueing game G, and let F be an equilibrium strategy for G. Then
S(F) is a connected set.

Proof Since F is an equilibrium strategy, it follows from Lemma 3 that F has a bounded
support S(F)with supremum 0 < b < ∞, and it follows from Lemma 2 that F is continuous
and, as argued above, F(0) = 0.Moreover, since F has no jumps in a symmetric equilibrium,
the expected utility of a user i gets the same expected utility from any t in the support of F .
This observation is used in some of proofs that follow.

Now, suppose that S(F) is not a connected set, implying that S(F) can be covered by
the union of two disjoint nonempty open subsets. This implies that there exists an interval
0 ≤ t1 < t2 ≤ b, with t1, t2 ∈ S(F) such that F(t1) = F(t2). However this leads to a
contradiction of the equilibrium definition sinceUi (t1, F) > Ui (t2, F). To see this, note that
any user who arrives at time t1 will start service instantaneously according to the LCFS-PR
service discipline. Since no other users arrive in the time interval [t1, t2], and V is strictly
decreasing in departure time, it follows thatUi (t1, F) > Ui (t2, F). Hence, a strategy F with
a support S(F) that is not a connected set cannot be an equilibrium strategy. 
�
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Provided that an equilibrium F exists, Part (ii) of Theorem 1 now follows immediately from
Lemmas 3 and 4. We next address the existence of an equilibrium strategy for an arbitrary
queueing game G.

Lemma 5 For any queueing game G, there exists a strategy F that constitutes a symmetric
equilibrium.

Proof We constructively prove this claim by defining a family of cumulative distribution
functions {Xb}0<b<∞, where Xb(s) = 1 for all s ≥ b. We then show that there exists a
member of the family {Xb} such that the arrival profile F = {Xb, . . . , Xb} is a symmetric
equilibrium. We will abuse notation and let Ui (t, Xb) denote the expected utility of arriving
at time t , when everyone else arrives according to Xb, i.e., when F−i = {Xb, . . . , Xb}.
Specifically, we will show that there is a b such that: Ui (t, Xb) = Ui (s, Xb) for all s, t ∈
[0, b], and Ui (b, Xb) ≥ Ui (q, Xb) for all q ≥ b. Note that any Xb satisfying this criterion
will also satisfy the criteria of the equilibrium definition (Definition 1).

From the point of view of user i , we are going to think of b as the earliest point in time,
where the n−1 other users have already arrived at the systemwith certainty. Therefore, if the
other n − 1 users arrive according to the strategy Xb, then the remaining user i can arrive at
time b and start service instantaneously without being preempted, thus obtaining an expected
utility of Ui (b, Xb).

We construct the cumulative distribution function Xb as the limit of a convergent and
recursive sequence of cumulative distribution functions, {Xb,h | 0 < b < ∞}h∈N, indexed
by the non-negative integer h, to be defined in what follows.

For a given 0 < b < ∞ and h ∈ N, let Xb,h : [0,∞) → [0, 1] be a function where
Xb,h(s) = 1 for all s ≥ b. In order to define the recursive sequence {Xb,h | 0 < b < ∞}h∈N,
we start by introducing some notation.

As before, Ui (t, X) denotes the expected utility for user i of arriving at time t , when
everyone else arrives according to a cdf X . Now, for time t and x ∈ [0, X(t)], we let
Ũi (t, X , x) denote user i’s expected utility of arriving at t , when the arrival strategy of each
of the other n − 1 users follows X except that: their probability of having arrived before t
is X(t) − x , their probability of arriving exactly at t is x , and when arriving at t they will
be prioritized before i .6 Since we consider only symmetric equilibria, we will for ease of
exposition simply denote Ui by U (and Ũi by Ũ ) in the remainder of this proof.

Next, we define the starting function Xb,0 such that we ensure thatU (t, Xb,0) ≥ U (b, Xb)

for all t < b. To achieve this, let I be the cdf defined by I (t) = 1 if t ≥ 0 and I (t) = 0
otherwise.Wewill then consider Ũ (t, I , x) i.e. the expected utility of arriving at time t , when
the n − 1 other users have arrived before user i with probability 1 − x , and they arrive at t
and be prioritized before i with probability x . Note that Ũ (t, I , x) is strictly decreasing in
x . In particular, the higher the probability of other users arriving at t and being prioritized
before i , the longer user i is expected to wait in line before service completion.

By varying the probability of the n − 1 other users arriving at time t and being prioritized
before i , we can determine the maximal jump, x , such that the expected utility, Ũ (t, I , x),
is as least as great as the expected utility, U (b, Xb), of arriving at time b and being serviced
immediately. We denote this maximal x by xtb,0 and thus define it as:

xtb,0 = max
{
x ∈ [0, 1] | Ũ (t, 1, x) ≥ U (b, Xb)

}
. (3)

6 Note that this corresponds to a situation in which user i arrives at t , and an expected share x of the n − 1
other users arrive immediately after t , and all users are serviced on a LCFS-PR basis.
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Fig. 1 Example of Xb,0: The constant b is an arbitrary fixed point in time for which Xb,0(t) = 1 for all t ≥ b.
Xb,0 is continuous and strictly increasing over the time interval [0, b]

Note that, since the expected utility is strictly decreasing in d , the utility of arriving at
0 ≤ t < b and being serviced immediately with certainty, is always greater than U (b, Xb).
Thus, since x = 0 corresponds to the situation where a given user arriving at t is serviced
immediately upon arrival, we must have xtb,0 ≥ 0 for all 0 ≤ t ≤ b.

Next, by defining the maximal size of this jump for each t , we can construct the function
Xb,0 such that at every point in time 0 < t < b, the cdf value is given by 1 − xtb,0. Thus,
we define the starting cdf Xb,0 of the sequence of recursive functions Xb,0, Xb,1, Xb,2, . . .

as follows:

Xb,0(t) =
{
1 − xtb,0 for t ∈ [0, b)
1 for t ≥ b.

(4)

Figure 1graphically illustrates an example of Xb,0.
Now, since Ũ (t, I , x) ≥ U (b, Xb), it must also hold that U (t, Xb,0) ≥ U (b, Xb). To

see this, note that for a given user i , it must be that in the former situation, the probability
of another user arriving immediately after i is xtb,0, whereas in the latter case when the
others arrive according to Xb,0, the probability of another user arriving immediately after i
is lower, and the arrival strategy will be spread over a larger interval of time. Therefore, the
probability of departing the system at any given time is as least as great under Xb,0, and it
follows from Lemma 1 that U (t, Xb,0) ≥ Ũ (t, I , x). By construction, it therefore follows
that U (t, Xb,0) ≥ U (b, Xb).

Note that if we let A0(b) denote the latest point in time t > 0 such that Xb,0(t) = 0,
if such a t exists, and otherwise let A0(b) = 0, then since the utility function V is strictly
decreasing in departure time, it follows by construction that Xb,0 is strictly increasing over
the time interval [A0(b), b] and non-decreasing over the interval [0, b].

Next, we move on to characterize the recursive statement of Xb,h for each h > 0 in a
similar fashion. First, suppose that Xb,h−1 has been defined for h > 0. Consider a point in
time t , 0 ≤ t < b, and let Ũ (t, Xb,h−1, x) be the expected utility of a user that arrives at t ,
when the probability of each of the n−1 other users having already arrived is Xb,h−1(t)− x ,
and the probability of each of the other users arriving exactly at time t and being prioritized
for service over i is x .

We denote by xtb,h (where xtb,h ≤ Xb,h−1(t)) the maximal probability of each of the
n − 1 other users arriving at time t (the maximal jump at t), when the expected utility
Ũ (t, Xb,h−1, x) for user i of arriving at t must be at least as high as the expected utility from
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Fig. 2 Example of a recursive sequence Xb,0, Xb,1, . . . : As the number of iterations h increases, the hth
recursively stated term Xb,h converges towards the limit Xb . Note that Xb is continuous and strictly increasing
over [A(b), b], where A(b) = 0 in this particular case

arriving at time b and being serviced immediately. The maximal jump is thus defined as:

xtb,h = max
{
x ∈ [0, Xb,h−1(t)] | Ũ (t, Xb,h−1, x) ≥ U (b, Xb)

}
(5)

We define Xb,h(t) as follows:

Xb,h(t) =
{
Xb,h−1(t) − xtb,h for t ∈ [0, b)
1 for t ≥ b.

(6)

As in the previous section, this construction ensures thatU (t, Xb,h) ≥ Ũ (t, Xb,h−1, x) ≥
U (b, Xb). Note also that if we let Ah(b) denote the latest point in time t > 0 where Xb,h(t) =
0, if such a t exists and otherwise, let Ah(b) = 0, then Xb,h is, by construction, strictly
increasing over the time interval [Ah(b), b].

The recursive process yields the sequence Xb,0, Xb,1, Xb,2, . . . which is bounded and
monotonically decreasing with Xb,0(t) ≥ Xb,1(t) ≥ . . . over h ∈ N and for all
t ∈ R. It thus follows by the monotone convergence theorem that the sequence is con-
vergent. Let Xb(t) = limh→∞ Xb,h(t) denote the limit of the sequence at each t , and let
A(b) = limh→∞ Ah(b). Figure 2graphically illustrates an example of a recursive sequence
Xb,0, Xb,1, . . . that converges towards the limit Xb.

So far b has been fixed.We now define a family of functions {Xb}0<b<∞ such that for each
b, Xb is the limit of the convergent and recursive sequence {Xb,h | 0 < b < ∞}h∈N. For each
member of {Xb}, we examine whether it represents an equilibrium strategy. First, we note
that Xb is by construction a cumulative distribution function for any 0 < b < ∞. Second,
note that since Xb must satisfy the criteria that Ui (t, Xb) ≥ Ui (s, Xb) for all s, t ∈ [0, b],
we must have U (0, Xb) = U (A(b), Xb). However, this only holds for values of b such that
Xb(0) = 0 and A(b) = 0. The former follows from Lemma 2. To see the latter, note that if
A(b) > 0, then Xb(t) = 0 for t ∈ [0, A(b)]. Then, since no other users arrive in the interval
from 0 to A(b), a given user can arrive at t = 0 and be serviced immediately without risk of
being preempted before time A(b). Therefore, U (0, Xb) > U (A(b), Xb).

We make the following observations:

(i) For b sufficiently close to 0, Xb(0) > 0, implying A(b) = 0.
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Fig. 3 Example of {Xb}0<b<∞: All members of {Xb} for which b �= b∗ yields Xb(0) > 0 or A(b) > 0.
Only the member of {Xb} for which b = b∗ represents an equilibrium strategy as X∗

b(0) = 0 and A(b∗) = 0

(ii) For b sufficiently close to ∞, A(b) > 0, and Xb(t) = 0 for t ∈ [0, A(b)].

(iii) Xb(0) and A(b) are continuous at all b and are monotonically decreasing and
monotonically increasing, respectively.

Combining (i), (ii) and (iii), there must exist b = b∗ such that Xb∗(0) = 0 with A(b∗) = 0.
Finally, we observe that it follows from the construction that Xb∗ has no jumps and it is limited
in how fast it can change, i.e. it is Lipschitz continuous and thus absolutely continuous. It
therefore follows that Xb∗ represents an equilibrium strategy for a symmetric equilibrium.
Figure 3graphically illustrates an example of such Xb∗ 
�
We next address the uniqueness of an equilibrium strategy.

Lemma 6 For any queueing game G, there exists at most one strategy F that constitutes a
symmetric equilibrium.

Proof We prove this by contradiction. Let F and F̃ be two distinct symmetric equilibrium
strategies such that F �= F̃ . Let b = min{t | F(t) = 1} and b̃ = min{t | F̃(t) = 1}. It
then follows from Theorem 1 that both are strictly increasing with supports [0, b] and [0, b̃],
respectively. We distinguish between three cases:

b < b̃: It immediately follows thatU (t, F) > U (t, F̃) for all t ∈ [0, b]. Let s = max{t |
F(t) = F̃(t), 0 ≤ t < b} be the latest point in time at which the two strategies intersect.
Note that s exists and is uniquely determined since F and F̃ are continuous, F(0) = F̃(0),
and b < b̃. It then follows that the expected share of users arriving from time s up until
time b is strictly larger under F than under F̃ . Therefore, D(d | s, F) ≤ D(d | s, F̃)

for all d with strict inequality at some d , implying that U (s, F) < U (s, F̃) by Lemma
1. This contradicts the assumption that F provides higher expected utility than F̃ and
proves that F and F̃ cannot both be equilibrium strategies.
b > b̃: The case is symmetric to that of b < b̃ and thus omitted.
b = b̃: In this case, it immediately follows that U (t, F) = U (t, F̃) = U (b, F)

for all t ∈ [0, b]. Let F be the symmetric equilibrium strategy constructed from the
procedure in Lemma 5 and recall that F(0) = F̃(0) = 0. Then by construction, F
first-order stochastically dominates F̃ in the sense that F(t) ≥ F̃(t) for all t ∈ [0, b]
with strict inequality at some t . To see this recall that F(t) = limh→∞ Xb,h(t) for
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the recursive sequence Xb,0, Xb,1, . . . Xb,h with Xb,0(t) ≥ Xb,1(t) ≥, Xb,2(t), . . . .
From the definition of Xb,0, it immediately follows that F̃(t) ≤ Xb,0(t) for every
t ∈ [0, b], since otherwise, U (t, F̃) > U (b, F̃). Next, to show that F̃(t) ≤ Xb,1(t),
assume on the contrary that Xb,0(s) > F̃(s) > Xb,1(s) for some s ∈]0, b[. Let
Ũ (s, Xb,0, Xb,0 − Xb,1) denote the expected utility of arriving at s, when the proba-
bility of another user having already arrived is Xb,1(s), and the probability for each of
the other n−1 users of arriving immediately after s is Xb,0(s)− Xb,1(s). Then it follows
from the procedure that Ũ (s, Xb,0, Xb,0 − Xb,1)) ≥ U (b, F) = U (b, F̃). However,
since F̃(s) > Xb,1(s), and Xb,0(t) > F̃(t) for all t ∈ [0, b], it follows that under F̃ ,
fewer users will arrive after s, and they willl arrive at a slower rate than under F . There-
fore, U (s, F̃) > Ũ (s, Xb,0, Xb,0 − Xb,1) ≥ U (b, F̃), which contradicts that F̃ is an
equilibrium strategy. Thus, F̃(t) ≤ Xb,1(t) for all t ∈ [0, b]. Recursively applying this
argument for each element in the sequence, we arrive at the desired result. It now follows
that D(d | 0, F) ≤ D(d | 0, F̃) for all d with strict inequality at some d , implying
U (0, F) < U (0, F̃). This contradicts that U (t, F) = U (t, F̃) for all t ∈ [0, b].

To conclude, there cannot exist two distinct strategies F and F̃ with F �= F̃ that both
constitute a symmetric equilibrium. 
�
Lemmas 5 and 6 complete the proof of Theorem 1.

3.4 Asymmetric equilibria

Let F be an equilibrium arrival profile. Then we say that F is an asymmetric equilibrium,
if there exists Fi , Fj ∈ F such that Fi �= Fj . In this section, we show that no continuous
asymmetric equilibrium exists, if n = 2, or if arrival strategies cannot have an infinite number
of inflection points.

Theorem 2 Let G = 〈n, V , S〉 be a queueing game. If n = 2, then no continuous asymmetric
equilibrium exists.

Proof To prove the theorem by contradiction, assume that F is an asymmetric equilibrium
for some queueing game G with N = {1, 2} and where F1 and F2 are continuous. It follows
from the equilibrium definition and continuity that Ui (s,F−i ) = Ui (t,F−i ) for all s, t ∈
S(Fi ) and i ∈ {1, 2}. Next, we show that S(F1) = S(F2). To arrive at a contradiction,
let b = max{b1, b2} and assume that there exists an s ∈]0, b[ and an ε > 0 such that
a) [s, s + ε] ⊂ S(F1), [s, s + ε] ⊂ [0, b] \ S(F2), or b) [s, s + ε] ⊂ [0, b] \ S(F1),
[s, s + ε] ⊂ S(F2).

Consider case a). Since there is no risk of user 2 arriving in the time interval [s, s + ε]
it follows that D1(d | s, F2) ≥ D1(d | s + ε, F2) for all d with strict inequality at some
d , which then (due to Lemma 1) implies that U1(s, F2) > U1(s + ε, F2). This contradicts
that F1 is an equilibrium strategy. A symmetric argument applies to case b). Therefore, we
must have b1 = b2 = b and S(F1) = S(F2) = [0, b], which in turn implies U1(t, F2) =
U2(t, F1) = U1(b, F2), for all t ∈ [0, b].

It remains to be shown that F1 = F2. Since U1(t, F2) = U1(b, F2), for all t ∈ [0, b],
the arrival strategy F2 is also a best response to F2, implying that F ′ = {F2, F2} must be a
symmetric equilibrium strategy. However, applying the symmetric argument for F1 implies
that F ′′ = {F1, F1} is also a symmetric equilibrium, thereby contradicting Theorem 1. 
�

Next, if we allow for any finite number of users but restrict the possible set of strategies to
include only cdf which are continuous and that cannot cross each other an infinite number of
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times, then again no asymmetric equilibria exist. This means that although we cannot rule out
existence of asymmetric equilibria in general, these must involve either jump discontinuities
or more than two users and highly irregular strategy functions.

Theorem 3 Let G = 〈 n, V , S 〉 be a queueing game, and restrict the set of admissible strate-
gies to those that are continuous and piecewise concave or convexwith atmost a finite number
of inflection points. Then no asymmetric equilibrium exists.

Proof To prove the theorem by contradiction, assume that F is an asymmetric equilibrium
for some queueing game G, and assume that every Fi ∈ F has a finite number of inflection
points. As before, it follows from the equilibrium definition that Ui (s,F−i ) = Ui (t,F−i )

for all s, t ∈ S(Fi ) and all i ∈ N . Furthermore, the expected utility in equilibrium must be
the same for all users. To see this, let bi = min{t |Fi (t) = 1} for all i ∈ N and assume on
the contrary that there exists a pair of users i, j ∈ N , such thatUj (b j ,F− j ) > Ui (bi ,F−i ).
Then there exists an ε > 0 sufficiently small such that Ui (b j + ε,F−i ) > Ui (bi ,F−i ),
contradicting equilibrium.

From Lemma 3, we know that there exists an earliest point in time b = maxi bi , such that
all n users have arrived with certainty. Let Nb ⊆ N be the set of users i for whom bi = b.
Furthermore, let s < b be the earliest point in time such that all users in N \ Nb have arrived
with certainty. Next, consider two users i, j such that i ∈ Nb, j ∈ N \ Nb. Then bi = b
and b j = s. Now there exists 0 < ε < b − s such that Ui (s + ε,F−i ) > Uj (s,F− j ) =
Ui (b,F−i ), where the inequality follows since i by arriving immediately after s preempts
any user currently in service and furthermore faces a lower risk of being preempted herself,
since one user less can potentially arrive in the time interval from s to b, thereby contradicting
equilibrium. Thus, for F to be an equilibrium arrival profile, the upper bound of S(Fi ) must
be the same for all i ∈ N . That is, there exists a b such that bi = b for all i ∈ N .

It remains to be shown that Fi = Fj for all pair of users i, j ∈ N . To prove this by
contradiction, consider i, j ∈ N with Fi �= Fj , and let t be the latest point in time such
that the two strategies cross and such that there exists an s > t where the strategies differ.
Furthermore, let t̄ > t denote the earliest point in time where the two strategies cross after t .
Since Fi (0) = Fj (0) = 0, Fi (b) = Fj (b) = 1, Fi �= Fj , and each arrival strategy has only
finitely many inflection points, we know that t and t̄ exist. Then, one of the following cases
must hold:

(i) Fi (t) ≥ Fj (t) for all t ∈ [t, b], with strict inequality for t ∈]t, t̄[
(ii) Fi (t) ≤ Fj (t) for all t ∈ [t, b], with strict inequality for t ∈]t, t̄[

For case (i), we distinguish between two subcases depending on whether there exists an
s, t < s < t̄ such that s ∈ S(Fi ) ∩ S(Fj ):

(a) There exists s, t < s < t̄ such that s ∈ S(Fi ) ∩ S(Fj ). Since Fi (b) − Fi (t) ≤ Fj (b) −
Fj (t) for all t ∈ [s, b] with strict inequality at some t , it follows that Di (d | s,F−i ) ≤
Dj (d | s,F− j ) for all d > s, with strict inequality at some d . Hence Ui (s,F−i ) <

Uj (s,F− j ), and since s ∈ S(Fi )∩S(Fj ), this contradicts thatUi (t,F−i ) = Uj (t,F− j )

for all t ∈ S(Fi ) ∩ S(Fj ) and all i, j .
(b) s /∈ S(Fi ) or s /∈ S(Fj ) for all s, t < s < t̄ . Then there must exist an ε > 0 such

that t /∈ S(Fi ) for all t ∈]t̄ − ε, t̄[ whereas t̄ − ε ∈ S(Fi ). Furthermore, there exists
ε′ < ε such that [t̄ − ε′, t̄[⊂ S(Fj ). Together, this implies that there exists δ > 0
(sufficiently small) such that Uj (t̄ − ε + δ,F− j ) > Ui (t̄ − ε,F−i ). To see this note
first that by arriving at t̄ − ε + δ, user j will preempt any service progress of user i .
Second, since F−i = (F−{i, j}, Fj ) and F− j = (F−{i, j}, Fi ), users i and j will face the
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same arrival patterns of users in N \ {i, j}, but whereas j does not risk user i arriving
in the interval ]t̄ − ε, t̄[, user i faces a positive risk of j arriving before t̄ . Therefore,
Uj (t̄ −ε +δ,F− j ) > Ui (t̄ −ε,F−i ) = Uj (t̄ −ε′,F− j ), where the equality holds since
t̄ − ε ∈ S(Fi ) and t̄ − ε′ ∈ S(Fj ). This, however, contradicts that Fj is an equilibrium
strategy.

Symmetric arguments holds for case (ii), thereby proving that no asymmetric equilibrium
exists. 
�

4 Computational approach

This section develops an approach to numerically compute a symmetric equilibrium strategy
for a queueing game G under exponential service times and provides an illustrative example
(Sect. 4.1). We subsequently compute the social efficiency of the computed equilibrium
example and compare it to the social efficiency obtained in Breinbjerg (2017), where users
are served on a FCFS basis and cannot arrive before opening time (Sect. 4.2). We restrict
attention to gameswith two users and exponential service times, due to its tractable numerical
solutions for the cumulative departure time distribution. Haviv and Oz (2018) consider a
model where users have a linear waiting cost and no tardiness cost, and show that for any
game with two users and exponential service times, the resulting symmetric equilibrium of
a processor sharing discipline yields socially optimal strategies.

We start by deriving an expression for the departure time distribution D in this two-user
LCFS-PR queueing game.

Lemma 7 Consider a queueing game G in which n = 2, and S is independently, identically
and exponentially distributed. Let F be a strategy with b = min{t | F(t) = 1} < ∞, and
let Ia denote the size of a jump discontinuity of F at point a. Then the cumulative departure
time distribution D can be expressed as

D(d | t, F) =
∑

a≤t

IaG(d − t;μ) +
∫ t

0
f+(a)G(d − t;μ)da

+
∑

t<a<b

Ia (G(a − t;μ)G(d − t;μ) + (1 − G(a − t;μ))H(d − a; 2, μ))

+
∫ b

t
f+(a) (G(a − t;μ)G(d − t;μ) + (1 − G(a − t;μ))H(d − a; 2, μ)) da

for each t ≥ 0, where
G is the exponential cumulative distribution function, and H is the cumulative distribution

function of the Erlang distribution, i.e.:

G(x;μ) =
{
1 − e−μx if x ≥ 0

0 if x < 0

H(x; k, μ) =
{
1 − ∑k−1

m=0
1
m!e

−μx (μx)m if x ≥ 0

0 if x < 0,

for any x ∈ R.

The proof is postponed to Appendix A.1 as it requires additional notation to describe the
stochastic queueing processes. Specifically, we prove Lemma 7 by defining some basic
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Fig. 4 Flowchart of the numerical procedure: Each geometric shape represents an action within the method.
That is, the rounded squares are the start and ending, the trapezium is the exogenous inputs, the squares are
steps in the process, and circles are binary decisions (yes/no) based on a question. The arrows indicate the
flow from one action to another. Note that := is the assignment operator that changes the value of an existing
variable

queueing relations for our system and deriving the cumulative departure time process using
sample-path techniques. Such a sample-path approach is commonly used in the queueing
literature to describe the transient states of a queueing system. As an example, Juneja and
Shimkin (2013) use a similar sample-path approach to derive relevant queueing relations for
a corresponding queueing game where users are served on a FCFS basis.

4.1 Numerical procedure and an example

Wenowpresent a numericalmethodwhich can be used to compute the symmetric equilibrium
strategy in practice. The method is a discretized variant of the constructive proof of Lemma
5. Figure 4depicts a flowchart of the general numerical procedure. For a given set of inputs,
the method performs a search for the value b that induces a function Xb which constitutes
an equilibrium strategy. Note that the number of required iterations for the search of b to
converge is a function of the tolerance parameter ε. For any equilibrium strategy with b �= 1,
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Fig. 5 Numerically computed equilibrium strategy: An approximated symmetric equilibrium in the queueing
game G, where: n = 2; V (t, d) = −d0.5(d− t)0.8; S is identical, independently and exponentially distributed
with rate μ = 1; � = 0.1; and ε = 0.01. The function Xb,3 represents an equilibrium strategy in the sense
that it approximates the convergent limit of the recursive sequence {Xb,h}h∈N with respect to the tolerance
parameter ε

the searchmethod (which combines a linear and binary search) requiresmultiple, and possibly
many, iterations of b before convergence.

Next, we apply the numerical procedure to compute an equilibrium strategy for a popula-
tion of size two under exponential service times and for a specific utility function. Figure 5
depicts the equilibrium strategy for the utility function V (t, d) = −d0.5(d − t)0.8. The figure
illustrates a recursive sequence {Xb,h}h∈N for b = 3.8 that represents an equilibrium strat-
egy. Intuitively speaking, the symmetric equilibrium prescribes a strategy such that each user
arrives according to a continuous and strictly increasing distribution function that extends
over the interval from the opening time and up until time 3.8.

4.2 Social inefficiency

We measure the social inefficiency of the equilibrium under LCFS-PR by comparing the
aggregate expected utility in the Nash equilibrium to that of a (first-best) socially optimal
solution in which there is no waiting time or idle time. That is, similarly to Juneja and
Shimkin (2013), we consider the case where the central planner is able to schedule arrivals
based on observed service completions.7 For the considered queueing game with only two
users, the socially optimal solution is one in which one user starts service at time 0, and the
other starts service immediately after the departure of the first user with no idleness at the
server. Formally, let W denote the (random) sum of the two users’ utilities in the socially
optimal solution. Let S1 and S2 be the (random) independent, identically and exponentially
distributed service time requirements of the users. The expected value of W conditional on

7 Another plausible option is to assume that the arrival times must be prescheduled, with no feedback on
service completions. However, finding the socially optimal schedule for this problem is a hard global opti-
mization problem and can typically only be solved using heuristic or approximation algorithms. See the related
discussion by Juneja and Shimkin (2013) for their model.
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Table 1 Equilibrium utility and
social inefficiency of LCFS-PR
and FCFS

U∗ E[W] 2U∗
E[W]

LCFS-PR −2190 −2.129 2057

FCFS −1925 −2.129 1808

Approximated values for a queueing game with n = 2, V (t, d) =
−d0.5(d − t)0.8, S exponentially distributed with rate μ = 1, and
� = 0.1, ε = 0.01 under the LCFS-PR and FCFS service discipline,
respectively

S1 and S2 is then given by

E[W | S1,S2] = V (0,S1) + V (S1,S1 + S2),

where E is the expectation operator. Note that the sum of two independent and identically
exponentially distributed variables follows an Erlang distribution with shape 2. Let g(x;μ)

and h(x;μ) denote the density function at x for the exponential and Erlang distribution
with rate μ and shape 2, respectively. Then the total expected utility for the socially optimal
solution is given by

E[W] =
∫ ∞

0

∫ ∞

0
(V (0, s) + V (s, z)) g(s;μ)h(z;μ)dsdz. (7)

LetU∗ denote the expected utility for any of the users as induced by the equilibrium strategy.
Then, we may consider the ratio between the total expected utility in equilibrium and in the
socially optimal solution as a measure of the social inefficiency of the equilibrium solution:

2U∗

E[W] . (8)

Table 1reports the approximated value of this ratio in the specific queueing game considered
in Figure 5, for which n = 2, the utility function is given by V (t, d) = −d0.5(d − t)0.8, and
the service time requirement S is exponentially distributed with rate 1.

The table also reports the approximated ratio obtained in Breinbjerg (2017), where users
are facing a similar queuing system but are served on a FCFS basis. Breinbjerg (2017) finds
that the symmetric equilibrium prescribes a strategy such that both users arrive at opening
time, i.e., t = 0, with certainty. When comparing the two approximated values, we find that
the FCFS queueing discipline yields a lower efficiency loss in equilibrium compared to that
of the LCFS-PR queueing discipline. The example thus shows that for the case of two users,
social efficiency under LCFS-PR may actually be lower than under FCFS. This example
in favor of FCFS should be contrasted with, e.g., the case of many small users where the
equilibrium utility under FCFS and LCFS provide a lower and higher bound on equilibrium
social efficiency, respectively (Platz & Østerdal, 2017).

5 Conclusion

We have examined the strategic choices of a population of users that independently choose
when to arrive at a queueing system that employs the LCFS-PR service discipline, when each
user prefers earlier service and dislikes spending time in the queue. Our main contribution
consists of establishing the existence and uniqueness of a symmetric mixed Nash equilibrium
for general classes of preferences and service time distributions. Whereas the constructive
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procedure provided in the existence proof advises an approach to solve the problem that
could in principle be applied for any n, the computations quickly become cumbersome. We
provide a numerical method to compute the equilibrium in a two-user setting and present an
example.

The numerical example shows that the LCFS-PR service disciplinemay provide incentives
for arrival profiles that lead to lower social efficiency compared to the incentives provided
by the FCFS discipline. A likely explanation for this is the additional inefficiency caused
by the property of preemption. As any newly arrived user may preempt the service progress
of another user, the users must in equilibrium arrive according to a distribution function
that extends over an ‘excessively’ large interval of time, in order to mitigate the expected
disutility of being preempted after arrival. A further and more comprehensive study of the
impact of preemption on social efficiency proposes an interesting avenue for future research.
In particular, it remains an open question to determine the optimal service discipline in the
current setting. Furthermore, the differences in social efficiency induced by the FCFS and
LCFS-PR service disciplines could be studied in more detail. This could be done for various
combinations of user population sizes, service times distributions (e.g. non-exponential dis-
tributionswith decreasing hazard rate, heavy tailed, etc.) and utility functions. By establishing
existence and uniqueness of a symmetric equilibrium under general preferences and service
time requirements, we have provided a solid starting point for the search for comprehensive
methods to numerically solve the problem for varying populations sizes and specific user
preferences.

Finally, the LCFS-PR queueing game may be further extended in other important direc-
tions. One is the consideration of heterogeneous (multiclass) users. This has for example
been considered in a FCFS queueing environment by Guo and Hassin (2012). A second
direction is the consideration of queueing games with multiple servers. This has recently
been considered by Haviv and Ravner (2015) who examine a multi-server system with no
queue buffer, where users are interested in maximizing the probability of obtaining service.
A third direction is the consideration of a stochastic number of users.8 This would mean that
each user does not know how many players there are in the game. However, such extension
would require a comprehensive analysis beyond the scope of the present paper.
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a stochastic number of users in their models.
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A Appendix

A.1 Proof of Lemma 7

We start the proof by the following observation: A user’s waiting time when queueing under
the LCFS-PR service discipline is independent of the queue length she faces upon arrival,
since the discipline allows the user to suspend the whole queue until after she completes her
service. Thus, without loss of generality, we may say that the user arrives at an idle server. A
user’s waiting time in a LCFS-PR queue is then identical to the period of time between when
the user arrives to an empty system and when she departs, leaving behind an empty queue.
A user therefore only cares about the expected share of n − 1 users that may arrive after her
arrival and their respective service time requirements.

To capture such a situation, we start by introducing some notation. Let A denote the
(random) arrival time of one of the two users, and let {S j } j∈{1,2} be a sequence of (random)
service time requirements, such that S j is the service time of the j th user to start service.
For any user i ∈ {1, 2}, let Ri denote the (random) residual service time of user i , if i is
preempted prior to service completion. Moreover, let Di (t) denote the (random) departure
time of user i , when she arrives at time t , and the other user arrives at A. The departure time
of user i satisfies for each t ≥ 0 the following sample path relation:

Di (t) =
{
S2 + t if A ≤ t

1{S1+t≤A}(S1 + t) + 1{S1+t>A}(A + S2 + Ri ) if A > t

Intuitively, the sample path above describes the possible outcomes, depending on whether
user i is preempted or not prior to service completion. That is, in the event of [A ≤ t], user i
possibly preempts the user already residing in the queue and completes her service after S2
time units. In the event of [A > t], user i is the first to arrive at the system and is possibly
preempted prior to service completion. That is, in the event that [S1 + t ≤ A], user i departs
the system at time S1 + t before the other user arrives at A. Otherwise, if [S1 + t > A], then
user i is preempted and does not depart the system until the other user has completed service,
and i has completed her residual service requirement, i.e. she departs at time A + S2 + Ri .

Fix a strategy F , and letA ∼ F .Moreover, letS j ∼ G for any j whereG is the exponential
cumulative distribution function, such that for any x ∈ R

G(x;μ) =
{
1 − e−μx if x ≥ 0

0 if x < 0,

and g(x;μ) denotes the density of G at x . We characterize the probability of the event
[Di (t) ≤ d] conditional on A, S1 and S2, which equals zero for any d < t , and is otherwise
given by

Pr {Di (t) ≤ d | S1,S2,A} = E
[
1{Di (t)≤d} | S1,S2,A

]

= 1{A≤t}G(d − t;μ)

+ 1{A>t}
[
1{S1+t≤A}G(d − t;μ) + 1{S1+t>A}H(d − A; 2, μ)

]

for any 0 ≤ t ≤ d , where H denotes the cumulative distribution function of the Erlang
distribution defined by

H(x; k, μ) =
{
1 − ∑k−1

m=0
1
m!e

−μx (μx)m if x ≥ 0

0 if x < 0.
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Note that the memoryless property of the exponential distribution implies that the distribu-
tion of the residual service times does not depend on how long a user has been in service
prior to preemption, since the remaining time is still probabilistically the same as at her
arrival time. That means that in case she is preempted, user i’s departure time is the sum of
two independent, identically and exponentially distributed variables (or equivalently, Erlang
distributed with shape 2) with location at time A. Consequently, the conditional probability
Pr {Di (t) ≤ d | S1,S2,A} is independent of S2.

We next characterize D by marginalizing out the variables A and S1 such that

D(d | t, F) = Pr {Di (t) ≤ d}
=

∫

S(F)

∫

S(G)

Pr {Di (t) ≤ d | S1,S2,A} dG(s − t;μ)dF(a)

=
∫ b

0

∫ ∞

0
Pr {Di (t) ≤ d | S1,S2,A} g(s − t;μ)dsdF(a)

for each t ≥ 0 where all integrals are Lebesgue integrals, and the supremum of the support
S(F) is given by b. Since F might have points of discontinuity, let Ia denote the jump size
of F at the point in time a, so

Ia =
{
F(a) − lims↑a F(s) if F(a) − lims↑a F(s) > 0

0 otherwise

for any a ∈ R. Then we may express D as follows

D(d | t, F) =
∑

a≤b

Ia

∫ ∞

0
Pr {Di (t) ≤ d | S1,S2,A} g(s − t;μ)ds

+
∫ b

0

∫ ∞

0
Pr {Di (t) ≤ d | S1,S2,A} g(s − t;μ) f+(a)dsda.

We next insert the expression for Pr {Di (t) ≤ d | S1,S2,A} and divide the expression in the
two intervals of (−∞, t] and (t, b], respectively:t
D(d | t, F) =

∑

a≤t

IaG(d − t; μ) +
∫ t

0
f+(a)G(d − t; μ)da

+
∑

t<a≤b

Ia

(∫ a

0
g(s − t; μ)G(d − t; μ)ds +

∫ ∞

a
g(s − t; μ)H(d − a; 2, μ)ds

)

+
∫ b

t
f+(a)

(∫ a

0
g(s − t; μ)G(d − t; μ)ds +

∫ ∞

a
g(s − t; μ)H(d − a; 2, μ)ds

)

da.

The claim of Lemma 7 now follows immediately once we note that
∫ a
0 g(s − t;μ)ds =

G(a − t;μ) and
∫ ∞
a g(s − t;μ)ds = 1 − G(a − t;μ). �

A.2 Numerical procedure

We here present a numerical method to compute Xb for a given b. Note that V , n, μ, ε, �
and b are exogenous inputs to the procedure:

1. Let T b
� = {t ∈ {0, 1, 2, . . . } : t� < b} be a discretization of the interval [0, b) wrt. �.

2. Let Xb,h(s) = 1 for all s ≥ b and all h ∈ N

123



Annals of Operations Research (2024) 336:1551–1572 1571

3. Compute U (b, Xb,h) = ∫ ∞
b V (b, d)dD(d | b, Xb,h) according to the expression of D

in Lemma 7 (note that U (b, Xb,h) is the same for all h ∈ N).9

4. Let h = 0 and sequentially compute Xb,0(t) for each t ∈ T b
� according to equation (4).

5. Assign h := h + 1 and sequentially compute Xb,h(t) for each t ∈ T b
� according to

equation (6).
6. If Xb,h(t) − Xb,h−1(t) ≤ ε for all t ∈ T b

� , then let Xb = Xb,h and stop the procedure.
7. Else, go back to step (5) and begin the next iteration of h.
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