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Abstract
Due to climate change and the increasing scarcity of resources, the sustainability performance
of companies is increasingly becoming the focus of science and practice. Consequently,
bicriteria energy-efficient production planning under price-dynamic electricity tariffs—e.g.,
real-time-pricing (RTP) or time-of-use (TOU)—is meanwhile well established, often fath-
oming the tradeoffs between electricity costs of production and another criterion such as
makespan. However, tradeoffs between electricity costs and electricity consumption in gen-
eral are rarely the focus of such analyses. So-called green power purchase agreements (PPAs),
which are becoming increasingly popular in the European business community as a means
of improving corporate sustainability performance, are also largely ignored. Thus, for the
first time in the scientific literature, we put this type of electricity tariff to the test by ana-
lyzing the tradeoffs between electricity costs and electricity consumption in a lot-sizing and
scheduling context. Here, we additionally consider a real-world redox flow battery storage
system that may be the system of the future, which is also new to the literature on lot-sizing
and scheduling. Even more: due to the complex nature of our bicriteria mixed-integer prob-
lem, we develop and present suitable heuristics. These include an energy-efficient allocation
heuristic in the case of PPA and, among others, a fix-relax-and-optimize heuristic combined
with a decomposition approach in the case of RTP and TOU. Ultimately, a scenario analysis
demonstrates the performance of these heuristics.
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1 Introduction

Today, sustainability is a strong driver forcing companies to achieve a more sustainable busi-
ness structure. For example, the world’s largest asset manager, BlackRock, has announced
its intention to invest only in climate-neutral companies by 2050 (see www.blackrock.com).
Improving the carbon footprint of their electricity consumption is a key lever for indus-
trial companies seeking to become more sustainable; see, for example, Dong et al. (2016)
or Yenipazarli and Vakharia (2017). However, current events—i.e. the war in Ukraine and
related political decisions—pose major challenges for utilities and energy consumers, as
energy prices and volatility have increased significantly. So-called renewable or green power
purchase agreements (PPAs), which are seen as a tool to improve corporate sustainability
performance, may also be affected by this price and volatility explosion because of the risk
transfers they contain. The use of such green PPAs as electricity price tariffs has recently been
increasingly discussed in politics and business in Europe, especially due to the amendedEuro-
pean Commission guidelines on state aid for climate, environmental protection and energy
published in 2022. According to these guidelines, aid in the form of reduction of electricity
levies for energy-itensive companies may be granted, if, for example, “at least 50% of their
electricity consumption [is] from carbon-free sources, out of which either at least 10% will
be covered by a forward instrument such as a power purchase agreement [or . . . ]”; EU-COM
(2022, p. 76). For example, Google is currently one of the largest corporate buyers of green
electricity provided by PPAs in Europe; cf. WBCSD (2016). Up till now, PPAs have been an
instrument that has received insufficient attention in the literature of energy-efficient produc-
tion planning (EEPP). Usually, price-dynamic electricity tariffs such as Real-Time-Pricing
(RTP) or Time-Of-Use (TOU) are considered and tradeoffs between electricity costs and
some other economic related criterion, e.g. makespan, are examined in a respective produc-
tion planning approach, e.g. lot-sizing and/or scheduling; cf. Wang et al. (2022), Chen et
al. (2020), Schulz et al. (2019) or Wichmann et al. (2019a). Additionally, according to the
“Energy Efficiency First” principle of the EU (cf. EU-COM 2022), companies shall strive to
reduce their electricity consumption. However, tradeoffs between electricity costs and elec-
tricity consumption have only been scarcely studied in the respective EEPP literature, and
this is especially true with the additional consideration of a battery storage system (BSS). In
this context, the main research questions of this study are:

• How do RTP, TOU and PPA affect production planning?
• Does it always make sense—regardless of the price tariffs—to use a battery storage

system in production planning?
• Does a battery storage system exacerbate ormitigate the potential conflict between energy

costs and energy consumption?

Aiming at answering these questions, we are investigating a single-stage parallel machine lot-
sizing and scheduling problem in the presence of an onsite BSS studying tradeoffs between
electricity costs and electricity consumption under different electricity pricing schemes, i.e.
RTP, TOU and PPA. A real BSS for industrial applications is considered, that is, a redox flow
BSS, which is expected to be a BSS of the future; cf. BMBF (2022). Such a BSS has not yet
been taken into account in the respective EEPP literature.

The remainder of the article is organized as follows: Sect. 2 is devoted to a description
of RTP, TOU and PPAs as well as a literature overview of EEPP. The problem description,
especially the description of a redox flow BSS, and model formulation are part of Sects. 3
and 4. Section5 presents selected results of the scenario analysis we conducted. Section6
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Fig. 1 Real-time-pricing (RTP)

Fig. 2 Time-of-use (TOU)

is devoted to heuristic developments in order to cope with complex instances of our model.
Section7 concludes this work.

2 Energy-efficient production planning considering a battery storage
system

2.1 Price-dynamic electricity tariffs and PPAs

Real-Time-Pricing (RTP) and Time-Of-Use (TOU) are well known electricity tariffs that
companies can use as levers to reduce production-related electricity costs, for example; cf.
Baboli et al. (2011) and Albadi and El-Saadany (2008). See Duarte et al. (2020), Keller et al.
(2015) or Shrouf and Miragliotta (2015) for more details on these schemes. RTP and TOU
can be understood as follows (cf. Eid et al. 2016):

• RTP
An hourly rate that depends on the day-ahead electricity price, i.e., the electricity price
fluctuates hourly. See Fig. 1 for a corresponding example.

• TOU
Fixed electricity prices for different blocks of time within a specified period, e.g. a high
electricity price at peak times (8–20h) and a low electricity price at off-peak times (22–0h
and 0–9h) as visualized in Fig. 2.

In contrast to these “classical” pricing schemes, so-called green power purchase agreements
(PPAs) have recently attracted increasing attention. A green PPA is a renewable electricity
delivery contract between an electricity seller and a buyer over a pre-agreed contractual
period, e.g. 3 years; cf. DENA (2019). For industrial companies as buyers—i.e., a corporate
PPA—green PPAs offer the opportunity, among other things, to improve the carbon footprint
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Fig. 3 Conceptualization of a VPPA

Fig. 4 Operationalization of a VPPA

of electricity consumption, and thus improve sustainability performance; cf. PwC (2018) and
DENA (2019).

There are various types and forms of PPAs in Europe DENA (2019). However, we will
solely focus on virtual PPAs (VPPAs) including a Contract for Difference (CfD) as hedging
instrument as described in the following (cf. BEIS 2022; DENA 2019):

• VPPA including a CfD
A fixed electricity price per kWh is agreed between the contracting parties for a defined
amount of green electricity, i.e. between a wind farm operator and an industrial buyer.
The green electricity is not delivered physically to the buyer. Instead, the producer sells,
and the buyer procures, its electricity on the wholesale market. With a CfD, the two PPA
partners agree to make compensation payments if the prices they achieve on the market
differ from the fixed price negotiated in the PPA, see Figs. 3 and 4.

2.2 Literature review

In this section, the related work for this article will be briefly discussed. For a detailed
overview, cf. Bänsch et al. (2021) or Weitzel and Glock (2017).

In the research area of energy-efficient production planning (EEPP), electricity consump-
tion and electricity costs are common themes and tradeoffs between one of these two criteria
and an economic criterion such as makespan are studied in a certain production setting (e.g.
flowshop etc.); cf. e.g. Mansouri et al. (2016) or Ding et al. (2016). Hereby, electricity con-
sumption or electricity costs are typically leveraged by the variation of machine states (e.g.
“idle”, “off”, etc.) and/or different production speed levels and/or parallel machines with
different electricity consumption levels; cf. Giglio et al. (2017), Liu et al. (2017), Rager et al.
(2015), Fang and Lin (2013) and Ji et al. (2013). In order to analyze electricity cost reduction
potentials, dynamic electricity price tariffs are considered. Most often, a TOU tariff is used as
the basis for the studies, more rarely RTP; cf. Schulz et al. (2019). As examples, the articles
of Wichmann et al. (2019a), Ho et al. (2022), Dellnitz (2020) and Ding et al. (2021) can be
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named. However, none of the above articles considered an additional battery storage system
(BSS), which nevertheless plays an important role for this article. Relevant articles are named
in the following.

Wichmann et al. (2019b) studied a lot-sizing and scheduling approach considering a BSS.
They showed the benefits of aBSS in terms of potential cost savings. Time-dependent electric-
ity prices, electricity purchase and sale, and deterministic onsite renewable energy generation
are also considered, but without further technical specifications of the BSS other than the
capacity. Mikhaylidhi et al. (2015) also neglected technical aspects of the BSS other than
capacity in their study. They studied a production planning problem under TOU considering a
BSS without the possibility of onsite renewable electricity generation. The authors in Khalaf
and Wang (2018) proposed a flow shop scheduling problem for minimizing electricity costs
under RTP. Onsite renewable electricity supply and energy storage are considered, which
were shown to have a significant impact on cost reduction. They modelled a BSS considering
maximum charge and discharge rates and constant charge and discharge efficiencies. A more
realistic model formulation for a BSS without the possibility of onsite electricity generation
can be found inWeitzel and Glock (2019). Beside charge and discharge efficency rates, these
authors also considered self discharging and battery aging and thus battery wear. Among
other things, tradeoffs between total weighted completion time and electricity costs were
studied taking variable electricity prices into account.

There are further articles worth mentioning considering battery storages, either with or
without the possibilty of onsite renewable energy generation, cf. Scholz and Meisel (2022),
Dong and Ye (2022), Duarte et al. (2020), Wu et al. (2018), Zhang et al. (2018), Golpîra
et al. (2018), Liu (2016) and Moon and Park (2014). However, Bänsch et al. (2021) point
out that especially bicriteria optimization for parallel machine environments considering
an energy storage system have been insufficiently studied in literature, in particular in the
context of lot-sizing and scheduling [see also Meng et al. (2020) or Maecker and Shen
(2020) for details on parallel machine problems]. Furthermore, the technical specifications
of a BSS are often neglected, e.g. the self-discharge of a battery is ignored or a constant
factor for discharging efficiency is assumed, if at all. In practice, however, a proportional
relationship between the discharge rate and the efficiency of a battery storage is not typical,
i.e. the higher the discharge rate, the less stored energy can be used. Moreover, articles that
consider electricity consumption and electricity costs simultaneously and analyze tradeoffs
between them are rare and neither of the articles mentioned considered PPAs explicitly.
Consequently, motivated by the literature, we intend to close this gap by studying tradeoffs
between electricity consumption and electricity costs in a parallelmachine environment under
RTP, TOU and PPA. Additionally, a real BSS for industrial applications is also taken into
account, that is a redox flow system which none of the mentioned articles considered.

3 Problem definition

3.1 General problem setting

We set out to study a bicriteria single-stage parallel machine lot-sizing and scheduling
problem minimizing total electricity costs (TEC) and total power consumption (TPC) simul-
taneously. A setting overview can be found in Fig. 5. However, the following assumptions
are made:

• The planning horizon consists of 5 days (Mon-Fri) and is decomposed into 120 intervals
(1h each).
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Fig. 5 Setting overview

• Different electricity price tariffs are considered:

– RTP: The hourly day-ahead prices of EPEX SPOT in Germany are used, which are
valid from Nov. 22–26 of 2021 (41st CW, see www.smard.de).

– TOU:Twoprice blocks (peak and off-peak) are considered. The peak price is in effect
from 9 a.m. to 9 p.m., inclusive, and the off-peak price otherwise. For simplification,
the average values of the corresponding day-ahead prices were taken [cf. Albadi and
El-Saadany (2008) for justification].

– PPA: The price for the 41st CW of 2021 for a 5-year PPA for wind offshore energy
is taken as fixed reference price (see www.energybrainpool.com).

• The single-stage parallel machine environment consists of several machines with non-
identical electricity coefficients.

• Different machine states and discrete production speed levels that allow for integer out-
put in a period are taken into account. For the machine states, it holds: off [kW ] <

standby [kW ] < ramp up [kW ] < production [kW ]. Corresponding coefficients are
randomly generated.

• The change in electricity consumptionwith variation of the production speed is calculated
using the conversion formula in Schulz et al. (2020).

• A machine state or the selected production speed level cannot change within a time
interval.

• All jobs are available at the beginning of the planning horizon and have to be fulfilled at
the end of the week (identical due dates).

• For simplicity, backlog, warehousing and set-up effort are neglected.
• Each machine can process at most one job at a time.
• Preemption and lot-splitting is possible.
• Anonsite redox flowBSS is considered, which is operated in parallel with the grid supply.

See Sect. 3.2 for details on the BSS.

3.2 Redox flow BSS and relatedmodel-theoretic aspects

Redox flow BSS are expected to play an important role in the energy grids of the future. This
is because of several advantages, e.g., power and storage capacity are separately scalable,
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Fig. 6 Discharge intensity rate ykt and its model-theoretic operationalization

capability of deep discharge, very long lifetime (10 to 20 years), theoretically unlimited cycle
stability, high operational reliability, good energy efficiency (60 to over 75 percent), only low
self-discharge; cf. BMBF (2022).

However, the redox flow BSS considered is available on the market mainly for industrial
applications and its technical specifications can be found at https://pdf.archiexpo.de/pdf/
gildemeister/cellcube/108571-246574.html. Here, a BSS consisting of several modules with
a capacity of 400 kWh each and a charge and discharge power of up to 200 kW each. Due
to the scalability of redox flow BSS, more than one module can be purchased to increase
capacity as well as charging or discharging power, e.g., 2 modules for a maximal storage
capacity of 800 kWh, etc. Furthermore, the efficiency of a charging and discharging cycle is
≈ 70%, the BSS is suitable for 100% deep discharge, and the self-discharge is ≈ 200 W in
standbymode. It is important to note that, as the literature review showed,maximal charge and
discharge power as well as self-discharge cannot be neglected. Neglecting the self-discharge,
for example, may lead to situations in which the maximal amount of energy is stored for
a long time before being discharged. This might not be an optimal policy when cosidering
self-discharge. Furthermore, in the literature a constant discharge power coefficient is usually
assumed; cf., e.g., Weitzel and Glock (2017). However, as the technical data show, the higher
the discharge rate, the more inefficient the BSS get, see Fig. 6.

The piecewise linear curve in the lefthandside of Fig. 6—consisting of the line segments
I,. . . ,IV— reflects this technical property. In this Fig. 6, 0 ≤ ykt ≤ 1 describes the discharge
intensity rate of the storage module (BS) k in period t . In order to operationalize such
a monotonous increasing and convex curve, we extend these four line segments to four
different straight lines (L I , . . . , L IV ) and represent those as constraints in our model (refer
to righthandside of Fig. 6). Consequently, the reduction [in kWh] of stored capacity in BS k
at intensity rate ykt is just obtained by calculating max{L I (ykt ), . . . , L IV (ykt )}.

4 Model setup

4.1 Formulation of MINLP

Table 1 contains the symbolics used in our nonlinear mixed-integer optimization problem
(MINLP) given by equations (1)–(19). The nonlinearity occurs due to equations (14) and
(15). However, linearization aspects will be discussed in the next subsection.
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min TEC =
T∑

t=1
celect ·

(

sbuyt +
K∑

k=1
sbuy_BSkt

)

(1)

min TPC =
T∑

t=1

(

sbuyt +
K∑

k=1
sbuy_BSkt

)

(2)

s.t.
N∑

ν=1

T∑

t=1

M∑

m=1
a prod
ν j · x jmtν = d j ∀ j ∈ J (3)

I∑

i=0
δstateimt = 1 ∀ m ∈ M, t ∈ T (4)

δ̂
state_I
mtν −

J∑

j=1
x jmtν = 0 ∀ t ∈ T , m ∈ M, ν ∈ N (5)

δstateImt −
N∑

ν=1
δ̂
state_I
mtν = 0 ∀ t ∈ T , m ∈ M (6)

δstateimt + δstatehm,t+1 ≤ 1 + γ tran
ih ∀ i, h∈I, m∈M, t∈T \ {T } (7)

M∑

m=1

(
N∑

ν=1
âelec_Iνm · δ̂

state_I
mtν +

I−1∑

i=0
aelecim · δstateimt

)

= s̃t ∀ t ∈ T (8)

K∑

k=1
ηmax · ykt + sbuyt = s̃t ∀ t ∈ T (9)

ml · ykt + bl ≤ αkt ∀ l ∈ L, k ∈ K, t ∈ T (10)

BScapkt + ηe f f · sbuy_BSkt − αkt − ηsel f = BSdummy
k,t+1 ∀ t ∈ T \ {T }, k ∈ K (11)

sbuy_BSkt ≤ ηmax ∀ t ∈ T , k ∈ K (12)

αkt ≤ BScapkt ∀ t ∈ T , k ∈ K (13)

αkt · sbuy_BSkt = 0 ∀ t ∈ T , k ∈ K (14)

max{0, BSdummy
kt } = BScapkt ∀ k ∈ K, t ∈ T (15)

BScapk1 = 0; δstate0m1 + δstate1m1 = 1 ∀ k ∈ K, m ∈ M (16)

x jmtν, δstateimt , δ̂
state_I
mtν ∈ {0, 1} ∀t∈T , j∈J , i∈I,m∈M,ν∈N (17)

sbuyt , sbuy_BSkt , s̃t , αkt , BScapkt ≥ 0 ∀ t ∈ T , k ∈ K (18)

BSdummy
kt ∈ [−ηsel f , κmax

] ; ykt ∈ [0, 1] ∀ k ∈ K, t ∈ T (19)

In MINLP, we simultaneously minimize total electricity costs TEC and total electric-
ity consumption TPC, see (1) and (2). Here, the electricity to be purchased in period t is
decomposed into the electricity purchased without charging the BSS, sbuyt , and the elec-

tricity purchased for charging the K modules of the BSS,
K∑

k=1
sbuy_BSkt . Aggregation over all

periods results in the TPC and additional consideration of the electricity cost rate celect results
in the TEC.

The equality constraints in (3) ensure the exact coverage of demand d j with respect to
each order j . Equations (4) ensure that a machine has exactly one machine state i in each
period t . Equations (5) in combination with (6) are coupled and control the production state
I (here, I = 3) and the selection of a speed level. More precisely, equations (5) ensure that
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δ̂
state_I
mtν equals 1 if any x jmtν is equal to 1. If so, that machine m has to be in production
state at speed level ν. The Eq. (6) state that if a machine m is in the production state I in
period t , δImt = 1, then exactly one speed level ν must be selected. In order to control
the state transitions of a machine, we use the constraints in (7). Either a machine retains a
state with h = i , or it can change it with h �= i , if feasible. Equations (8) determine the
total amount of electricity required in period t . Here, the electricity consumption for the
production state of each machine m (

∑N
ν=1 â

elec_I
νm · δ̂

state_I
mtν ) is treated separately from the

other states (
∑I−1

i=0 aelecim · δstateimt ) due to the finer-grained decomposition regarding the speed
levels. Because of the equations’ length, the required amount of electricity s̃t in period t is
decomposed in (9) into the electricity to be purchased without charging the BSS in period t ,
sbuyt , and the electricity obtained from the BSS in period t (

∑K
k=1 ηmax · ykt ).

Together with (9), Eqs. (10)–(15) control the operation of the BSS. Equations (10) are
a linearised version of akt = max{L I (ykt ), . . . , L IV (ykt )} mentioned in the prior section.
However, (10) determine the reduction of the stored capacity in module k when discharged
with a certain power intensity 0 ≤ ykt ≤ 1, see again Fig. 6. Here, e.g., ykt = 1 means that
BS k is discharged in period t at 100% of the maximum discharge rate. Equations (11)–(15)
balance the stored capacity of BS k in period t + 1. The stored capacity of BS k in period
t +1 is given by the stored capacity of BS k in the previous period t plus the charged amount
of electricity in period t (ηe f f · sbuy_BSkt ) minus the discharged amount of electricity (αkt ) in

period t and the losses due to self discharge ηsel f . Here, the purchased electricity sbuy_BSkt
for charging the BS k in period t cannot exceed the maximal amount of electricity when
charging at rate ηmax on the one hand, see (12). On the other hand, the reduction of the
stored capacity αkt due to discharging cannot exceed the amount of stored capacity in BS k
in period t , see (13). However, applying equations (14), in a period t , either a BS k is charged
or discharged, but not both at a time. Moreover, due to self-discharge, the stored capacity in
a BS may become negative. To avoid this, the dummy variables BSdummy

k,t+1 —which can take
on negative values (see (19))—are used in (11) and together with equations (15), the stored
capacity of BS k in period t is either 0 or strictly positive, but never negative.

Equations (16) are used for initialization. In period t = 1, there is no stored energy in the
BSS. With δstate0m1 + δstate1m1 = 1, each machine is either in the off state or ramps up in period
t = 1. (17)–(19) are typical binary, non-negativity and interval-value conditions.

4.2 Linearization of MINLP

MINLP is nonlinear due to (14) and (15). These equations are to be linearized in the following
such that the resulting mixed-integer problem (MIP) can be solved as such, which is always
preferred to nonlinear programming; cf. Kallrath (2021).

• Linearizations of equations: (14)
It is sufficient to replace (14) by the following constraints (20)–(22):

αkt − βkt · M ≤ 0 ∀ k ∈ K, t ∈ T (20)

sbuy_BSkt − (1 − βkt ) · M ≤ 0 ∀ k ∈ K, t ∈ T (21)

βkt ∈ {0, 1} ∀ k ∈ K, t ∈ T (22)

Here, (20)–(22) form a switching mechanism (indicator constraints) with a sufficiently
large number M > 0. Due to (13), M = κmax is sufficiently large. However, if αkt > 0
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then βkt must be 1 to satisfy (20). But then, sbuy_BSkt ≤ 0 have to apply in (21) and thus

sbuy_BSkt = 0 due to (18), and vice versa.
• Linearizations of equations: (15)

The nonlinearity arises from the max-operator. Equations (23)–(26) yield a sufficient
linearization:

BScapkt ≥ BSdummy
kt ∀ k ∈ K, t ∈ T (23)

BScapkt − β̃kt · M ≤ BSdummy
kt ∀ k ∈ K, t ∈ T (24)

BScapkt − (1 − β̃kt ) · M ≤ 0 ∀ k ∈ K, t ∈ T (25)

β̃kt ∈ {0, 1} ∀ k ∈ K, t ∈ T (26)

BScapkt must be larger than both components of themax-operator, so BScapkt must be larger

than 0 (which is the case due to (18)) and larger than BSdummy
kt , see (23). At the same

time, however, BScapkt must also be smaller than either component of the max-operator
due to the switching mechanism in (24) and (25). Thus, the larger component of the
max-operator is chosen.

In total, MIP (1)–(13), (16)–(26) is the linearized version of MINLP (1)–(19).

5 Results and discussion

Now, we compute representations of Pareto fronts for the MIP considering RTP, TOU and
PPA. The setting consists of 4 machines and 5 jobs with equal quantities for each job (≈
75%machine utilization at the highest production speed). Furthermore, different numbers of
modules for the redox flowBSS (0–2modules) are taken into account. K = 0modulesmeans
that there is no storage considered, and e.g. K = 1 module, there is a BSS with K · 400 kWh
capacity and amaximumcharge and discharge power of K ·200 kW.Representations of Pareto
fronts are obtained via GAMS using CPLEX, applying the modified weighted Tchebycheff
approach with weights 0 ≤ wT EC , wT PC ≤ 1 satisfying the convex combination wT EC +
wT PC = 1. Cf. Miettinen (1988) for details on the method.

5.1 Results in the context of RTP and TOU

Figures 7 and 8 show representations of Pareto fronts under RTP and TOU for the cases
without a BSS (K = 0) and with different sized BSS (K = 1, K = 2). First of all, it can
be seen that there is a conflict between electricity costs and electricity consumption when
considering RTP or TOU; thus, electricity costs should be considered an economic criterion
under price-dynamic tariffs. However, under RTP, the following cases can be distinguished:

• Case I (RTP):
In area I of Fig. 7, the three point clouds (black, K = 0; red, K = 1; blue, K = 2) overlap.
Here, the 3 settings (K = 0, 1, 2) lead to similar results for the considered criteria (TEC,
TPC). The reason for this is that a BSS is not 100% efficient, and due to the energy losses
involved, it is not TPC effective, i.e. the minimum electricity consumption for production
cannot be reduced further than in the case of K = 0.

• Case II-III (RTP):
These areas are of particular interest. It can be see that in II the red points dominate the
black points and the blue points dominate the red and black points—III can be interpreted
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Fig. 7 Baseline scenario, RTP

Fig. 8 Baseline scenario, TOU

analogously. Although there is no onsite generation and energy losses occur when a BSS
is used, the inherent flexibility potentials of the manufacturing system (e.g., production
speed levels and machine states) can be more fully exploited via a BSS. This, what we
call TEC-TPC-efficiency, leads to dominant production schedules with lower TEC and
lower (or similar) TPC compared to a setting without a BSS.

• Case IV (RTP):
The greater the capacity and the charging and discharging power of a BSS, the lower the
electricity costs that can be achieved, but at the cost of increased electricity consumption
(see, for example, the non-comparable blue dots in the northwest in Fig. 7). A BSS is
thus what we call TEC-effective.

In case of the TOU-tariff under consideration, we obtain quite similar results, but not as
pronounced as in the case of RTP. That said, in Fig. 8 we see that the point clouds overlap for
the most part (I and II), which is most probably due to the relatively small price gaps of the
respective two-block TOU-tariff. However, the largest-size BSS (K = 2) results in lowest
electricity costs, see III, but again at the cost of high electricity consumption.While flexibility
potentials such as those shown in II and III in Fig. 7 could not be used to create dominant
production schedules in the presence of a BSS, no general conclusions can be drawn from
this, as this is probably due to tariff design.

Figures9, 10, 11 and 12 show how a BSS (K = 1) operates under RTP and TOU. In order
not to overload this article, we have limited ourselves to showing the results for two different
weighting combinations, w = (wT EC , wT PC ) with w = (0.75, 0.25), w = (1, 0). Again,
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Fig. 9 RTP, w = (0.75, 0.25)

Fig. 10 RTP, w = (1, 0)

note that the modified weighted Tchebycheff approach was applied with different weighting
vectors.

From Figs. 9, 10, 11 and 12, it is clear that more weighting on TEC (in the algorithmic
computation; see again Fig. 7) leads to more use of the BSS. More precisely, for both RTP
and TOU, more power is purchased in the market to load the BSS. We can further observe
that, under TOU and a weight combination of (0.75, 0.25), the BSS is already not used
anymore due to its efficiency < 100% and the associated energy loss. However, when the
BSS is operated under both RTP and TOU, it is at times when electricity prices are relatively
low (e.g., at night under RTP and during off-peak hours under TOU). It is also worth noting
that a BSS is charged most of the time just before the start of peak periods (TOU) or high
price periods (RTP) due to its strictly positive self-discharge rate. However, in a production
environment like that described in the preceding and aBSSwith an efficiency rate of< 100%,
it follows that energy waste is desirable from an economic point of view in order to achieve
minimal TEC. However, this can be criticized from an ecological point of view.

5.2 Results in the context of PPA

Given the production planning problem at hand in the presence of a BSS and no onsite
generation, there is no tradeoff between TEC and TPC. More precisely, due to the fact that
a BSS does not have an efficency rate of 100% and there is no variability in electricity
prices, a BSS will not be utilized at all. It is of particular interest that the application of
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Fig. 11 TOU, w = (0.75, 0.25)

Fig. 12 TOU, w = (1, 0)

such an instrument proposed by the EU in a given planning problem with the two criteria
considered, TEC and TPC, leads to aminimization of both TEC and TPC.More precisely, the
instrument here implies aminimization of electricity consumption in production. This reflects
the “Energy Efficiency First” principle promoted by the EU, according to which companies
should (among other things) become more energy efficient; cf. EU-COM (2022). Hereafter,
energy efficiency as defined in Article 2, point 4, of Directive 2012/27/EU shall mean the
“ratio of output of performance, service, goods or energy, to input of energy”; EU-COM
(2012). Overall, the use of fixed-price PPAs thus implicitly contributes to this principle.

Of course, if onsite generation (e.g., fromphotovoltaic orwind power; Fig. 13) is taken into
account, then a BSS in this case would result in a reduction of TPC and TEC, see Fig. 14. For
the calculation results, deterministic onsite generation with power generation levels selected
in advance for specific hours of the day was chosen (see Fig. 13), as was done by Moon and
Park (2014) or Wichmann et al. (2019a). However, the implications drawn would not change
if a stochastic approach were used.

The results of Sect. 5 are summarized in Table 2. These also apply to the simulation
study we conducted, in which over 90 different randomly generated demand scenarios were
considered for different numbers of jobs, machines and modules of the BSS. However, to
avoid overloading the article, the respective results have been omitted.

It is time to pause a bit and reflect on the findings and conclusions. Considering dynamic
electricity prices generally implies a conflict between minimizing energy costs and energy
consumption, and this conflict can be exacerbated when operating a battery storage sys-
tem in such an environment. However, the observations of Table 2 cannot be thoughtlessly
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Fig. 13 Daily onsite generation

Fig. 14 PPA and onsite
generation

transferred to arbitrary production processes, since they naturally depend on the parameter
constellations. Still, it is important to recognize that the benefits of a battery storage system
must always be evaluated in conjunction with the company’s electricity price tariff.

6 Heuristic procedures

6.1 A problem-specific heuristic approach in the context of fixed-price electricity
tariffs

When considering fixed electricity prices as in the case of the selected PPA, the complexity
of the problem at hand is reduced in comparison with price-dynamic tariffs. First, a BSS will
not be used at all if no onsite generation or reselling of stored electricity is considered. This is
due to the general storage inefficiency of a BSS. Second, there is then no tradeoff between the
two objective functions (1) and (2), i.e. minimizing electricity costs alsominimizes electricity
consumption and vice versa. Third, the machine state “standby” becomes redundant since it
is not worth switching a machine in standby mode due to a constant electricity price. These
arguments are exploited in the following heuristic procedure for finding a solution within an
acceptable time frame when dealing with large problem instances (see Table 3).

Note here that Algorithm 1 can be further expanded by including ramp up checks, for
example, if it is even worthy to ramp up a machine. However, due to the length of Algorithm
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Table 2 Summary of results

Observation 1 In the presence of variable price tariffs (RTP or TOU), a production
system with a BSS and no onsite generation is TEC-effective (if at all).
This means that lower minmum electricity costs can be achieved, but
usually at the cost of higher total electricity consumption compared to
a setting where no BSS is present. This effect intensifies with increasing
storage capacity

Observation 2 Under RTP or TOU, a production system with a BSS and no onsite
generation is not TPC-effective; thus, theminimum level of TPC cannot
be further reduced compared to an environment without a BSS

Observation 3 Evenwithout the possibility of onsite generation, an environment with a
BSS is TEC-TPC-efficient in the presence of variable price tariffs (RTP
or TOU). The result is that inherent flexibility potentials (e.g., due to
different production speeds and machine states) may be better utilized
to reduce both TEC and TPC compared to an environment without a
BSS

Observation 4 Under RTP or TOU, the more preference given to low TEC, the greater
the utilization of a BSS

Observation 5 When considering RTP or TOU and a production system with a BSS
without onsite generation, energy waste is desirable from an economic
perspective to minimize electricity costs

Observation 6 Given a fixed-price PPA as considered and without the possibility of
onsite generation, a BSS is not utilized at all and TEC and TPC coin-
cide and the bicriteria MIP (1)–(13), (16)–(26) has a global unique
solution. Thus, under a PPA, electricity costs are considered an eco-
logical criterion. In contrast, under price-dynamic tariffs, electricity
costs can be considered an economic criterion (see Observation 1)

Observation 7 With the option of onsite generation, a BSS is TEC- and TPC-effective
regardless of the chosen electricity tariff, both price-dynamic tariffs
(RTP, TOU) and fixed-price tariff (PPA)

1, this is omitted since the ramp up costs are usually negligible in contrast to the power
requirements of the production state.

A numerical example of the procedure is given in Fig. 15. In the example, two machines
(m = 1, 2) are considered with ramp up costs of 15 kWh for m = 1 and 10 kWh for m = 2.
The demand amounts to 15 quantities of job 1, 7 of job 2 and 12 of job 3, i.e. d1 = 15, d2 = 7
and d3 = 12. The electricity coefficients of the machines are provided in Table 4, which
reflects a typical curve of the electricity consumption change at variable production speed.
The time horizon is 5 periods, but t = 1 is used for the eventual ramp up of a machine.

In step 1, the orders are assigned to themachines successivelywith as few slots occupied as
possible, starting with the machine that performs best in terms of the electricity consumption
of the production state (here machine m = 1). This initial allocation is then reallocated in
step 2 on a job-by-job basis and in an energy-efficient manner, but only to the slots that
were also occupied in step 1. In step 3, a check is made to determine whether a slot on
the best remaining not fully occupied machine should be occupied by one of the jobs. This
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Table 3 Energy-efficient allocation procedure

Algorithm 1: Energy-efficient allocation procedure

Step 1: Initial naive allocation

For every job j:

• Calculate k j = �d j/amax	 with k j being the minimum number of slots needed to produce

job j , d j the demanded quantities of job j and amax the maximal output of a machine

in a period t (amax is identical for every machine).

• Allocate amax quantities to k j − 1 slots each and (d j mod amax ) quantities to 1 slot

on the free machine(s) m with the best energy coefficient(s) in production state.

• If the allocation is not possible, stop, the problem is infeasible.

Otherwise, save the schedule to the cell-matrix S = (smt )m,t with:

smt =

⎧
⎪⎨

⎪⎩

{qmt j}, qmt ∈ {amax , d j mod amax } quantities of job j have been assigned

to machine m in period t,

∅, no quantities have been assigned to machine m in period t .

Step 2: Energy-efficient reallocation

For every job j:

• Reallocate the quantities only to the slots occupied by job j :

� For each slot occupied by job j on a machine, determine the change in energy con-
sumption when the number of quantities on such a slot is increased by 1 (if possible)

Save the minmum value in incmin and the corresponding indices of Smt , where this
value is attained in m∗

inc, t
∗
inc

� For each position occupied by job j other than m∗
inc, t

∗
inc, determine the change in

energy consumption when the number of quantities is decreased by 1 (if possible)

Save the maximum value in decmax and the corresponding indices of S in m∗
dec, t

∗
dec.

� If incmin < decmax , then update Sm∗
inc,t

∗
inc

= {qm∗
inc,t

∗
inc

+ 1 j} and
Sm∗

dec,t
∗
dec

= Sm∗
dec,t

∗
dec

− 1. Otherwise, the reallocation of job j is finished.

Step 3: Exploiting free slots (lot-splitting approach)

Repeat until no further improvements can be made or there are no more free slots:

• Check if a machine has a free slot to produce and choose the corresponding machine
with the best energy coefficient (concerning the production state) among those.

• For every job j:

� Reallocate the quantities of job j taking the free slot into account.

� The procedure is as follows:

– Assign one quantity on the free slot and decrease the quantities on the slot occupied

– by job j with the maximum number of quantities among all those slots by 1.

– Update S appropriately and perform the reallocation procedure in Step 2.

� Save the resulting schedule in S j with corresponding energy consumption ϕ(S j ).

• Update S := argmin
ς∈⊆

ϕ(ς), where ⊆ = {S, S1, . . . , SJ }.
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Table 3 continued

Algorithm 1: Energy-efficient allocation procedure

Step 4: Improvement strategy–Batching check (optional)

Start with k = J and reduce k succesively by 1 until k=2.

For every k-element subset of jobs, k ∈ {2, . . . , J }:
• Treat the k jobs in the k-element subset as one job and name it j new , adjust the job
names in S accordingly and save the name-adjusted schedule in S∗.
• Perform Step 2 for the job j new in S∗ and update S∗ accordingly.

• Calculate the energy consumption ϕ(S∗), ϕ(S) of the schedules S, S∗. If ϕ(S∗) < ϕ(S),
then check whether the schedule can be achieved with the initial number of jobs (before
batching). If so, set S to the resulting schedule and break. S is then the final schedule

Fig. 15 Numerical example of Algorithm 1

Table 4 Electricity coefficients used for the example given in Fig. 15

Quantities per t 6 (kWh) 5 (kWh) 4 (kWh) 3 (kWh) 2 (kWh) 1 (kWh)

m = 1 100 80 65 52 52 80

m = 2 140 112 91 72.8 72.8 112

lot-splitting approach is checked for each job, and the job that gives the best overall energy
consumption reduction (if any) is taken. If no improvement is found, the schedule remains
as it was up to that point. Step 4 is an improvement strategy for the schedule constructed
so far. Subsets with at least two elements of {job 1, job 2, job 3} are formed and the jobs
in these subsets are batched. Then it is checked whether the schedule can be improved by
such a batching strategy and whether such a schedule would be feasible with the original
job structure. It should be noted that the general assignment of the slots on the machines
remains the same as before the batching check. If this general assignment were dropped,
then such a batching check would lead to different results. E.g. in the example given in
Fig. 15, batching of jobs 1, 2, 3 and treating it as one job would yield an optimal schedule
of 6 quantities in t = 2, 3 each and 5 quantities in t = 4, 5 each on machine 1, 4 quantities
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Table 5 Computation times in seconds and optimality gaps

Scenario (cap. ut.) GAMS/CPLEX Alg. 1 Gap Alg. 1 (in %)

M = 4, J = 5 (≈ 53%) 1.01 1.05 0% (after Step 3)

M = 4, J = 5 (≈ 76%) 1.47 0.77 0% (after Step 3)

M = 4, J = 5 (≈ 99%) 10.26 0.6 0% (after Step 3)

M = 6, J = 9 (≈ 50%) 3.39 2.94 0% (after Step 3)

M = 6, J = 9 (≈ 63%) 6.67 2.78 0% (after Step 4)

M = 6, J = 9 (≈ 76%) 7.26 2.18 0% (after Step 4)

in t = 2, 3, 4 and 0 quantities in t = 5 on machine 2. But such a schedule would not be
feasible with the original job structure. However, Step 4 can be seen as optional because of
its computational costs compared to step 1–3. In the worse case, it is checked for all possible
subsets whether one of these is feasible and improves the schedule constructed so far. This
leads to

∑J
k=2

(J
k

) = ∑J
k=0

(J
k

) · 1J−k · 1k − (J + 1) = 2J − (J + 1) iterations, which is
exponential in the number J of jobs.

Table 5 depicts the results of a scenario analysis performed to show the advantages of
Algorithm 1. The energy coefficients and demanded quantities were randomly generated.
The algorithm was coded in MATLAB and compared to an exact solution via GAMS using
CPLEX. It can be seen that the algorithm leads to an optimal solution in all scenarios and sig-
nificantly reduces the computation time in all but one scenario compared to GAMS/CPLEX.

6.2 Fix-relax-and-optimize in the context of price-dynamic electricity tariffs

Under price-dynamic tariffs such as RTP or TOU, the problem under consideration is more
challenging to solve, which usually is the case when conducting scheduling and/or lot-sizing
under price-dynamic tariffs; cf. Rapine et al. (2018). However, fix-and-relax (F&R) and/or
fix-and-optimize (F&O) strategies can be applied and usually show good results in the context
of computation time and solution accuracy for such problems; cf., e.g., Copil et al. (2017) or
Masmoudi et al. (2016). F&R is a constructive heuristic, its main idea is to decompose the
global problem into smaller subproblems that are easier to solve from a computational point
of view. Three time windows can be distinguished: the Frozen Window (FW) where values
are partially or completely assigned to the decision variables; the ObservationWindow (OW)
where the original model is considered; and the Approximation Window (AW) where some
variables or constraints are relaxed; cf. Rodoplu et al. (2019). A sketchy illustration of the
F&R procedure is given in Fig. 16.

The performance of F&R is significantly influenced by the choice of the length σk of the
OW and the number of overlapping periods δk in consecutive iterations. The smaller the OW,
the easier it is to solve the subproblems, but at the cost of the number of iterations needed.
Eventually, this may even generates infeasible solutions. A similar reasoning can be used for
the overlapping time periods. If δk is chosen too small, more iterations are needed. However,
the value of δk affects the solution accuracy. A value that is too large could lead to poor
solution accuracy. Hence, defining the best size of δk and σk is important to obtain a good
performance of an F&R heuristic. More details on F&R can be found in Rodoplu et al. (2019)
and Masmoudi et al. (2016).
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Fig. 16 Exemplary illustration of an F&R procedure

In contrast to F&R, F&O is an improvement heuristic initialized with an initial solution.
Based on a given solution, some subsets of binary variables are released and reoptimized
while the other variables are fixed to their current values. This procedure is repeated by
varying the subset of variables to be released until some stopping criterion is met. If the
initial solution is feasible, then of course any newly generated solution is also feasible and
no worse than the previous solution; Copil et al. (2017). In fix-relax-and-optimize (FR&O),
the initial solution is generated via F&R.

Beside of these heuristic strategies, decomposition approaches are sometimes applied to
tackle lot-sizing and/or scheduling problems; cf. Ho et al. (2022), Meyr and Mann (2013)
or Liang et al. (2019). Since we are also considering a BSS, decomposing the problem into
a part that concerns the BSS and a part that concerns the production processes could boost
computation time.

In the following, using the modified weighted Tchebycheff approach, we solve a series
of scalarized single-objective problems to determine a Pareto front representation for the
respective MIP under RTP and considering a BSS with one module (K = 1). In total, 6
weighting combinations are considered (w1 = 1, w2 = 0;w1 = 0.8, w2 = 0.2, etc.)
thus calculating 6 points of the Pareto front. For each weighting combination, we solve the
scalarized subproblem with an FR&O approach and with an FR&O approach mixed with a
simple decomposition strategy. The results are compared with an exact solving method via
GAMS using CPLEX. Overall, the following strategies are applied:

• F&R strategy 1:
All binary variables are fixed in FW and relaxed in AW. In OW, the original model is
considered.

• F&R strategy 2 mixed with a decomposition approach:
The MIP is decomposed in a first step, i.e. the BSS is neglected (set K = 0). For
the reduced problem, F&R is conducted by fixing and relaxing all remaining binary
variables in FW and AW. In OW, the reduced problem is considered. After F&R, the
solution variables without reference to the BSS are fixed to their current values and the
original model (with K = 1) is reoptimized.

• F&O strategy 1:
An initial solution is given by F&R strategy 1 or 2. In every iteration, a uniformdistributed
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random number rn ∈ {2, . . . , T − 2} is generated and all variables within the periods
[rn, rn + 0.1 · T ] are released. All other variables are fixed. This is repeated until no
improvement in two consecutive iterations could be found.

• F&O strategy 2:
An initial solution is given by F&R strategy 1 or 2. Subsets are formed that contain
combinations of two machines. All variables related to the machines in a subset are
released; the other variables are fixed. This is done for all subsets, using the solution
generated in the previous iteration.

In the following scenario analysis, different demand scenarios are randomly generated for
different machine settings (M = 5, M = 6). In order to find good configurations for σk and
δk in the F&R procedures, different parameter choices were tested with σ = σk and δ = δk
∀ k, i.e. the values are the same in each iteration. A selection of respective computational
results can be found in Tables 6 and 7. Since we are computing Pareto front representations
(for 6 weighting combinations), we aggregate the time needed to compute the respective
points. Regarding the solution quality, we averaged the solution gaps over every point found
by the heuristics. The solution gap (in %) for a single point is calculated using the following
formula:

Gap = 50 ·
(
T ECheuristic − T ECexact

T ECexact
+ T PCheuristic − T PCexact

T PCexact

)

(27)

with T ECexact , T PCexact the best solution found by GAMS using CPLEX within the time
limit of 3600s and T ECheuristic, T PCheuristic the solution found either by F&R or FR&O.

After several tests and considering both solution quality and CPU time, we conclude that
applying relatively large values for σ relative to the total number of periods T (≥ 0.5 · T )
and values for δ around 0.5 · σ lead to overall good performance of the heuristics. Overall,
it can be seen in Tables 6 and 7 that both the F&R strategies and the F&O strategies and
thus the four FR&O approaches lead to good solutions in terms of solution quality and CPU
compared to GAMS/CPLEX. When comparing F&R strategy 1 and 2, the second strategy
including the decomposition approach leads to better gaps and lower computation times.
Consequently, F&R 2 is to be preferred over F&R 1. With F&O strategy 1 or 2, it is shown
that the generated output solution can be further improved, but at the expense of computation
time. For example, F&R 1 with F&O 2 leads to the best solution gaps compared to the other
approaches, but with significantly higher computation times. Overall, we propose to use F&R
mixed with the decomposition approach and further improve the solution by F&O strategy
1, since it gives good results in both computation time and solution quality. However, since
F&O is very computationally time intensive and the two F&R strategies already produce
good solutions, F&O could also be omitted.

7 Conclusion

In this article, we studied a bicriteria lot-sizing and scheduling approach in a single-stage
parallel machine environment in the presence of an onsite redox flow battery storage system
(BSS). Different electricity pricing schemes were taken into account: Green Power Purchase
Agreement (PPA), Real-Time-Pricing (RTP) and Time-Of-Use (TOU). Under these schemes,
tradeoffs between electricity costs and electricity consumption are examined. In the case of
price-dynamic tariffs, it could be shown that a redox flow BSS can lead to a significant
electricity cost reduction, but mainly at the expense of high electricity consumption levels.
This effect increases as the capacity of the BSS increases. In summary, as electricity costs
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become more favored over electricity consumption, the BSS is more heavily used. Thus,
energy waste is desirable, making elctricity costs an economic criterion. However, it could
also be shown that in the presence of a BSS, flexibility potentials inherent in the production
system (differentmachine states and different production speed levels) can be better exploited
to produce dominant schedules compared to a setting without a BSS. In contrast to RTP
and TOU, under a fixed-price PPA, the BSS is not occupied at all and there is no tradeoff
between electricity costs and electricity consumption. Consequently, under a fixed-price PPA,
electricity costs can be considered an ecological criterion.

To cope with large instances of the model, we developed an energy-efficient allocation
procedure for the case of a PPA and several fix-relax-and-optimize strategies for the case of an
RTP. All heuristics show good performance in terms of computation times and solution accu-
racy. However, in the case of an RTP, Fix-and-Relax combined with a simple decomposition
strategy and solution reoptimization leads to the most promising results.

Several aspects could be useful for further research. Since green PPAs can include cer-
tificates of origin, trading of such certificates could be included in production policies.
Additionally, the use of a BSS not only to store and use electricity but also to sell elec-
tricity could lead to further profit benefits for companies, a possibility that merits further
study.
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