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Abstract
To disentangle the sources of bank inefficiency, this paper presents an extended two-stage
network multi-directional efficiency analysis (NMEA) approach by taking the internal struc-
ture of the banking system into account. The proposed two-stage NMEA approach extends
the conventional “black-box” MEA approach, providing a unique efficiency decomposition
and identifying which variables drive the inefficiency for banking systems with a two-stage
network structure. An empirical application of Chinese listed banks from 2016 to 2020 dur-
ing the 13th Five-year Plan reveals that the overall inefficiency of sample banks is primarily
sourced from the deposit-generating subsystem. Additionally, different types of banks dis-
play differentiated evolution modes over different dimensions, confirming the importance of
applying the proposed two-stage NMEA approach.

Keywords Banking · Data envelopment analysis · Multi-directional efficiency analysis ·
Two-stage · Non-performing loans

1 Introduction

The banking industry is an essential part of the financial system, which has been played
an irreplaceable role in supporting the development of economic growth (An et al., 2015;
Caprio et al., 2007). Over the past four decades, China has achieved tremendous growth in
gross domestic product (GDP). This is partly due to the development of financial systems
including the banking industry. However, since China jointed the World Trade Organization
(WTO) in 2001, the elevated level of competition level has made it necessary for bank
managers to analyze and assess the internal aspects of bank operations, especially given
the current landscape of intense competition. This emphasizes the urgency of improving
bank performance from both policy and operational perspectives (Yu et al., 2019). First, as
illustrated by various empirical studies, the superior performance is important to promote
competitive advantage (Asmild & Matthews, 2012). As such, bank managers have to resort
to portfolio management practices which potentially contribute to superior performance.
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Second, poor performance might directly lead to bankruptcy and sometimes suffer from
serious consequences such as economic crisis. Therefore, it is both necessary and urgent to
conduct an accurate and appropriate estimation of bank’s performance so that further actions
may be taken to improve bank performance and can be implemented methodically.

However, evaluating bank performance presents a notable challenge, in that one must be
able to disentangle the contributions of different sources of bank inefficiency. First, those
aggregated measures that used for characterizing bank performance could produce distorted
results. For example, if two factors have a positive and a negative impact respectively on
bank performance, then their net effect could be either positive, negative or neutral. As such,
a “one size fits all” approach is likely to lead to misleading results when the contributions
of these factors are not appropriately disentangled. Second, conventional wisdom relying
on aggregated measures can overlook the fact that the negative (positive) effect of some
factors can be offset by the positive (negative) effects of some other factors. Therefore, one
may implement misguided policy initiatives such that the factors that do not need to be
improved are improved, while those that need to be improved are not improved. To illustrate,
consider a two-stage network production system as shown in Fig. 1. If one implements the
performance improvement initiative based solely on the results of conventional “black-box”
data envelopment analysis (DEA) models, then resources may be incorrectly allocated for
those “inefficient” decision making units (DMUs) identified by those “black-box” DEA
models. For example, one may conduct resource reallocation practices for the whole system,
even though it is efficient from the perspective of one sub-stage (e.g., either stage one or stage
two). Analogously, for those DMUs whose efficiency in stage one (two) has large room for
improvement, one might neglect the importance of reallocating resources for these DMUs, as
their overall efficienciesmay not exhibit as poor as their corresponding efficiencies associated
with subsystems.

In this paper, we propose a two-stage network multi-directional efficiency analysis
(NMEA) approach to estimate bank performance. The novel approach extends the standard
“black-box”MEA to identify specific sources of inefficiency by taking into account the inner
structure of DMUs (banks). In view of the complexity of actual bank operations highlighted
by a number of studies (Avkiran, 2009), the proposed two-stage NMEA approach has the
advantage of identifying variable-specific inefficiencies within a two-stage banking system,
enabling insights into the sources of bank (in)efficiency. In a recent work, Boubaker et al.
(2020a) develop a fuzzy multi-objective two-stage DEA model to analyze the performance
of banks affiliated with single- and multi-bank holding companies, and then conduct a series
of empirical studies to investigate the role of bank affiliation in bank efficiency. However,
the measure of bank efficiency used therein is still an aggregate term, which fails to capture
the dimension-specific inefficiency identified by the proposed two-stage NMEA approach.

In general, the contribution of the paper can be summarized as follows: First, it contributes
to the existing literature by introducing a new two-stage NMEA approach. Compared with
conventional single-stage MEA formulation, the proposed approach can identify specific
sources of inefficiency by opening the “black-box” of efficiency analysis. Importantly, such
a two-stage framework relies on a set of endogenously determined directional vectors, which
avoid possible inconsistent estimates arisen from arbitrary directions. Moreover, it differs
significantly frommany existing networkDEA studies (Kao&Liu, 2019; Shi et al., 2021) that
may suffer from non-unique decomposition results. In this respect, one can always guarantee
unique efficiency decomposition given predetermined stage weights. Interestingly, it also
enables to select benchmarks for variable optimization that are proportional to potential
improvements associated with each discretionary variable separately (Kapelko & Lansink,
2017), which generally ensures the characteristic of technological monotonicity (Bogetoft
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& Hougaard, 1999) and provides the decision maker with a useful technique to access to the
diagnostic information that might beyond management’s reach (Avkiran, 2009).

Second, it is also potentially contributed to the literature on DEA in finance. Boubaker et
al. (2018, 2020b) and Boubaker et al. (2021) adopt DEA to examine firm’s investment and
productive efficiencies, and then conduct regression analysis to examine the determinants of
these efficiency scores that used to proxy for firm performance. Similarly, Vidal-García et
al. (2018) apply DEA to explore the efficiency of mutual funds, and then utilize parametric
techniques to explore the relation between expenses and risk-adjusted performance after
controlling various control variables. However, these studies pertain to conventional single-
stage evaluation process that follows directly from the “black-box” paradigm. By contrast,
the present study aims to disentangle the sources of bank inefficiency. In this respect, the
proposed technique will be useful for future studies that intend to examine the determinants
of dimension-specific bank efficiency, which is of great importance to have more insights
into relations between bank efficiency and those key variables of interest.

Finally, we also contribute to the empirical study on identifying the sources of inefficiency
of Chinese commercial banks during 13th Five-Year Plan. Specifically, the following results
can be concluded. Firstly, there is relatively large room for improvement of Chinese banks
in terms of the system efficiency, and the majority of banks are inefficient at least for one
year during 13th Five-Year Plan. Secondly, there are significant differences between efficien-
cies of each bank type across different dimensions, which further confirms the necessity of
employing the proposed two-stage NMEA approach. Last but not least, sensitivity analysis
results indicate the robustness of the proposed approach. Interestingly, compared with prior
studies (Wang et al., 2014; Boubaker et al., 2020a), the present study determines variable-
specific efficiencies of each discretionary variable separately. This directly facilitates us to
identify the sources of inefficiency in a two-stage banking system, which can also provide
alternative banks with an efficient way to explore paths to improve their efficiencies.

The reminder of the paper can be summarized as follows: In Sect. 2, we present the related
literature associated with the present paper. Then, we will introduce the development of the
proposed two-stageNMEAapproach in Sect. 3. The application of our approach in evaluating
the (in)efficiency of Chinese commercial banks during 2016–2020 is presented in Sect. 4.
The last section summarizes our findings and suggests several directions for further research.

2 Related literature

Since it is first introduced by Charnes et al. (1978), DEA has become one of the most popular
approaches to assess the efficiency of financial institutions. Sherman and Gold (1985) is the
first to employ DEA to evaluate bank performance. Subsequently, a number of DEA-based
studies have been applied to assess the performance of banks from different perspectives.
Specifically, the extant DEA-based studies on bank performance can be roughly classified
into two classes. The first class tends to evaluate bank efficiency at the branch level. For
example, Das et al. (2009) evaluate the labor-use efficiency of individual branches of a
large public sector bank by using the DEA approach. Yang (2009) apply the DEA approach
to explore the performance of 758 branches of a Canadian bank. Eskelinen et al. (2014)
utilize a DEA-based value efficiency analysis approach to examine the sales performance
of bank branches of a Finnish bank. LaPlante and Paradi (2015) apply the DEA approach
to assess the growth potential of individual branches within one of Canada’s top five banks.
Aggelopoulos & Georgopoulos (2017) apply a bootstrap input-oriented profit DEA model
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to evaluate efficiency change of bank branches of a Greek systemic bank. Paradi and Zhu
(2013) provide an excellent survey focusing on the use of DEA in branch analysis.

The second class focuses on evaluating bank performance at an institutional level. Specifi-
cally, onemay find thatmost of the existingDEA-based banking studies typically fall into this
class partly due to differences in data availability (LaPlante & Paradi, 2015). Early attempts
in this class try to regard the banking system as a “black-box”, which does not consider the
internal structure of banking operations (Liu et al., 2020; Yu et al., 2016). For example, Epure
et al. (2011) explore the productivity and efficiency of Spanish private and savings banks by
using DEA-basedMalmquist productivity indices and the Luenberger productivity indicator.
Juo et al. (2012) develop a non-oriented slacks-based measure (SBM) model to investigate
changes in the operating profit of the banking sector; specifically, they also decompose the
activity effect into a product mix efficient, a resource mix effect and a scale effect. Yang
(2014) develop an enhanced DEA model to evaluate the efficiency of commercial banks.
Specifically, their model enables to decompose the technical efficiency into operating effi-
ciency and risk management efficiency. Given possible technological heterogeneity of bank
operation, Fu et al. (2016) develop the associated risk-based measures of the meta Nerlo-
vian profit efficiency to investigate the bank performance. Moreover, they also decompose
the meta profit efficiency into technology and allocative efficiencies. Kevork et al. (2017)
develop a Malmquist productivity index to examine the productivity levels of 28 European
countries by adopting the probabilistic characterization of directional distance functions.
Toloo and Mensah (2019) propose a robust DEA model to evaluate the performance of 250
European banks. Their model can efficiently reduce the computational burden arising from
nonnegative variables. Recently, Zhu et al. (2020) innovatively evaluate the performance
of Chinese commercial banks by using an alternative way of ranking banks based on the
expected marginal impact on structural efficiency.

The prior studies have made significant contributions to understanding bank efficiency
from various perspectives. However, as noted previously, these studies generally inherit the
conventional DEA paradigm which regards the banking system as a “black box” without
considering the operational procedures taking place inside banks (Kourtzidis et al., 2021).
To the best of our knowledge, Wang et al. (1997) and Seiford and Zhu (1999) were the most
earliest studies that evaluate bank performance by taking the internal structure of bank oper-
ations into account (Kourtzidis et al., 2021). Avkiran (2009) utilize a non-oriented network
slacks-based measure (SBM) to evaluate the domestic commercial banks in the United Arab
Emirates. Specifically, the sub-DMUs of the production process is composed of three profit
centres. An et al. (2015) develop an alternative two-stage DEA approach to evaluate the
slacks-based efficiency of Chinese commercial banks; specifically, their model simultane-
ously considers the increase of desirable outputs and the decrease of undesirable outputs.
Liu et al. (2015) estimate the efficiencies of Chinese listed banks by using a novel two-stage
DEA model with undesirable intermediate variables. Zha et al. (2016) develop a dynamic
two-stage SBMmodel to assess the efficiencies of Chinese banks. Yu et al. (2019) develop an
inverse-like two-stage DEA model to evaluate operational efficiencies and potential income
gains by taking the credit risk into account. Zhao et al. (2021) develop twoSBM-basedmodels
to evaluate the efficiencies of Chinese banks under the natural disposability and managerial
disposability strategies, respectively. Specifically, their findings confirm the existence of dis-
parities in inefficiencies between these two strategies. Recently, Li et al. (2021) introduce a
new two-stage DEA approach to evaluate the performance of Chinese listed banks over the
period from 2014 to 2018; specifically, they consider deposits as a flexible measure to investi-
gate the possibility of identifying a potential Pareto-improvement for individual banks. Other

123



Annals of Operations Research (2023) 326:369–410 373

similar studies can be found in Fukuyama and Matousek (2017), Liu et al. (2020), among
others.

In general, most of the aforementioned studies tend to apply the network-like DEAmodels
to evaluate the overall and stage efficiencies of various banking entities. However, many of
these studies assess and decompose efficiencies based on their current observed production
mixes [see e.g., (Fukuyama&Matousek, 2017; Zhao et al., 2021)].While this practice is easy
to implement, it is subjective, making the final estimates susceptible to the subjective choice
of directional vectors.Moreover, from a policy perspective, instead of focusing on production
mixes occurred in the past, it seems reasonable to design future development planning from
identifying endogenous directions based on real banking operations. To mitigate the arbi-
trariness arising from the selection of alternative directional vectors, Bogetoft and Hougaard
(1999) and Asmild et al. (2003) develop and operationalize the MEA to provide an alter-
native efficiency estimation approach based on the potential improvement. The advantages
of MEA can be summarized in several aspects: (1) it is not restricted to radial contractions
of inputs or radial expansions of outputs; instead, the efficiency is identified by specifying
input reduction and output expansion benchmarks in proportional to the improvement poten-
tials of each discretionary variable (Asmild & Matthews, 2012; Kapelko & Lansink, 2017;
Wang et al., 2015); (2) it can identify efficiency improvement potentials of each discretionary
variable separately, and the efficiency level and efficiency pattern can be identified for each
DMU simultaneously (Asmild & Matthews, 2012; Wang et al., 2015); and (3) compared
with other measures such as the SBM, the MEA approach also ensures the characteristic of
technological monotonicity (Bogetoft & Hougaard, 1999; Kapelko & Lansink, 2017).

Several authors have conducted efficiency estimation based on the MEA approach. From
an application perspective, Asmild and Matthews (2012) utilize the MEA approach to detect
differences in efficiency patterns across different types of banks. Their empirical tests validate
the ability of MEA in identifying differences both in levels and in patterns of inefficiencies
between two types of banks. Wang et al. (2015) employ the MEA approach to evaluate the
environmental efficiency of industrial sectors of Chinese major cities, and find that differ-
ent cities should have different pollutant reduction priorities. Zhu et al. (2019) apply their
improved MEA approach to assess regional energy efficiencies of China during the period of
2005–2016. Their empirical application finds that the spatial distribution of energy efficiency
in China is unbalance and generally decreases from east to west, and that the comprehensive
MEA efficiency of most provinces varies in adjacent state types. From a methodological
perspective, Asmild and Pastor (2010) develop the associated slack-free MEA and Range
Directional Model (RDM) to account for any types of technical inefficiency, and show that
their novel estimates are units invariant and translation invariant. Asmild et al. (2016b) build a
statisticalmodel for distinguishing the inefficiency contributions between different subgroups
based on the MEA approach. Kapelko and Lansink (2016a) extend the MEA approach to
conduct variable-specific analysis of productivity change, and demonstrate that the conven-
tional DEA-basedMalmquist indexmight overlook important differences in variable-specific
performance of farms. Kapelko & Lansink (2017) extend the MEA approach to account for
dynamics of firms’ production decisions, and introduce a dynamic multi-directional ineffi-
ciency analysis approach to identify variable input- and investment-specific inefficiency.

However, to our knowledge, there is no research aims to examine the variable-specific
(in)efficiency by taking the internal structure of the production system into account. This
may fail to provide sufficient information for managers to identify specific sources of inef-
ficiency embedded in various variables. Importantly, compared with those practices with
arbitrary direction vectors (Fukuyama & Matousek, 2017; Zhao et al., 2021), the proposed
two-stage NMEA approach formally provides the decision maker with alternative and well-

123



374 Annals of Operations Research (2023) 326:369–410

Fig. 1 Two-stage process of bank operations

defined efficiency estimates for a two-stage production system. This can also help to identify
which variable the inefficiency is located on, potentially providing regulators with significant
insights on the sources of the (in)efficiency of DMUs.

3 Methodology

3.1 Two-stage bank operational process

Without loss of generality, assume that there are n DMUs (individual banks) in the banking
system, represented by DMUj ( j = 1, . . . , n). In practice, the actual production process
of the banking system is complicated. Differing from some existing studies that consider
the banking system as a “black-box”, following Boussemart et al. (2019), we regard the
operational process of each bank as a two-stage process, which is illustrated in Fig. 1.

In the first stage, banks use m inputs X j = (
x1 j , . . . , xmj

)
to produce D intermediate

products Z j = (
z1 j , . . . , zDj

)
. Specifically, in order to differentiate between controllable

and uncontrollable factors, we partition the input vector into a fixed (semi-fixed) and variable

part. That is, X j =
(
X f

j ,X
v
j

)
with X f

j ∈ R
m1+ and Xv

j ∈ R
m2+ such thatm1 +m2 = m. In the

second stage, banks utilize the intermediate products to produce s desirable outputs Y j =(
y1 j , . . . , ys j

)
and L undesirable outputs B j = (

b1 j , . . . , bL j
)
. The production technology

corresponding to the first stage can be represented as follows:

T 1 =
{
(X,Z) ∈ R

m+ × R
D+ : X can produce Z

}
(1)

Similarly, the production technology corresponding to the second stage can be character-
ized as follows:

T 2 =
{
(Z,Y,B) ∈ R

D+ × R
s+ × R

L+ : Z can produce (Y,B)
}

(2)

Following conventional assumptions such as strong disposability of inputs and desirable
outputs, null-joint, and convexity [see, e.g., (Boussemart et al., 2019)], the production possi-
bility set of technologies T 1 and T 2 under the assumption of variable returns to scale (VRS)
can be defined as:

T 1 =
⎧
⎨

⎩
(X,Z) ∈ R

m+ × R
D+ :

n∑

j=1

λ jXj ≤ X,

n∑

j=1

λ jZ j ≥ Z,

n∑

j=1

λ j = 1.

⎫
⎬

⎭
(3)

and

T 2 =
{

(Z,Y,B) ∈ R
D+ × R

s+ × R
L+ : ∑n

j=1 γ jZ j ≤ Z,∑n
j=1 γ jY j ≥ Y,

∑n
j=1 γ jB j = B,

∑n
j=1 γ j = 1.

}
(4)
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where λ = (λ1, . . . , λn) and γ = (γ1, . . . , γn) are two vectors of intensity variables asso-
ciated with T1 and T2, respectively (Boussemart et al., 2019). To link the above two stages,
the existing studies may regard the overall production technology as the intersection of two
sub-technologies, i.e., T = T1 ∩ T2 (Boussemart et al., 2019). However, it is worth noting
that the intermediate products are generally common elements, as part of technology T1 and
technology T2. To avoid possible wastes caused by the situation that the amount of target
intermediate products acting as the outputs of the first stage can be greater than that acting
as the inputs of the second stage, i.e.,

∑n
j=1 λ jZ j >

∑n
j=1 γ jZ j , following Kao (2017),

we require that the quantity of all intermediate products “produced” by T1 must be equal to
that “consumed” by T2, that is

∑n
j=1 λ jZ j = ∑n

j=1 γ jZ j . This is also known as the “fixed-
link” situation emphasized in Tone and Tsutsui (2009). Given above, our banking production
possibility set can be formulated as follows:

T =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(X,Z,Y,B) ∈ R
m+ × R

D+ × R
s+ × R

L+ : ∑n
j=1 λ jX j ≤ X,

∑n
j=1 λ jZ j ≥ Z,

∑n
j=1 γ jY j ≥ Y,

∑n
j=1 γ jZ j ≤ Z,

∑n
j=1 γ jB j = B,

∑n
j=1 λ jZ j = ∑n

j=1 γ jZ j ,
∑n

j=1 λ j = 1,
∑n

j=1 γ j = 1, λ j , γ j ≥ 0, j = 1, . . . , n.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(5)

Note that if we delete constraints
∑n

j=1 λ j = 1 and
∑n

j=1 λ j = 1 from technology T ,
then constant returns to scale (CRS) is assumed for this empirical non-parametric produc-
tion technology. In other words, our following analysis can be easily extended to deal with
problems exhibiting CRS. Table 1 provides notations used in the present study.

3.2 Estimation of bank performance with a two-stagemulti-directional efficiency
analysis approach

Based on technology T , one may estimate the performance of each bank through assess-
ing the distance from observed position of each bank to its corresponding efficient frontier
constructed from T (Boussemart et al., 2019). This can be done by using the well-konwn
directional distance function models [see, e.g., (Chambers et al., 1996)]. Specifically, the
MEA model and the Range Directional Model (RDM) are two famous directional distance
function models that appear in the literature (Asmild & Pastor, 2010). The RDM model was
developed in Portela and Thanassoulis (2010), which is inspired by, whichwas inspired by the
well known directional distance model of Chambers et al. (1996). The MEA model was first
suggested by Bogetoft and Hougaard (1999) and subsequently operationalised by Asmild et
al. (2003).

Compared with RDM, the reason for choosing MEA is explained as follows: firstly, MEA
selects a specific ideal point such that input reductions or output expansions are proportional
to potential improvements for each unit and each variable separately (Asmild & Matthews,
2012), while RDM considers the same ideal point for all DMUs. Secondly, MEA can be
employed under any returns to scale assumption while RDM specifically assumes that VRS
assumption is required, as a CRS assumption might be inconsistent with the existence of
negative data (Portela & Thanassoulis, 2010). And thirdly, MEA generally uses the DMU-
specific directional vectors and can measure variable-specific efficiencies against various
ideal points that are proportional to potential improvements, which is especially important
for some specific industries such as the agricultural sector in which its input markets are
regulated via the support policies (Baležentis & De Witte, 2015). Moreover, compared with
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Table 1 Notations used in the present study

Data

n Number of DMUs

m1,m2 Number of variable inputs and fixed inputs, respectively

D Number of intermediate measures

L Number of undesirable outputs

s Number of desirable outputs

i1 = {1, . . . ,m1} indexes for variable inputs

i2 = {1, . . . ,m2} indexes for fixed inputs

l = {1, . . . , D} indexes for intermediate measures

t = {1, . . . , L} indexes for undesirable outputs

r = {1, . . . , s} indexes for desirable outputs

xv
i1 j

Quantity of the i1th variable input consumed by DMU j

x f
i2 j

Quantity of the i2th fixed input consumed by DMU j

zl j Quantity of the lth intermediate measure produced by
DMU j

bt j Quantity of the t th undesirable output produced by
DMU j

yr j Quantity of the r th desirable output produced by DMU j

w1,w2 Stage weights corresponding to stage one and stage two,
respectively

ε An infinite small constant

Decision variables

λ j Intensity variable corresponding to the first stage

γ j Intensity variable corresponding to the second stage

β1 The efficiency score associated with stage one

β2 The efficiency score associated with stage two

di1k The ideal point for the i1th variable input of DMU k

φrk The ideal point for the r th desirable output of DMU k

ψtk The ideal point for the t th undesirable input of DMU k

those measures emphasized in Kapelko and Lansink (2017), the MEA also maintains the
property of technological monotonicity (Bogetoft & Hougaard, 1999).

In the first step of two-stage NMEA, one needs to find the associated ideal points of each
discretionary variable. Specifically, the following linear program can be used to identify the
unit-specific ideal points for each variable input for the evaluated DMU k:

d∗
i1k = min di1k

s.t .
n∑

j=1

λ j x
v
i1 j ≤ di1k,

n∑

j=1

λ j x
v
i1 ≤ xv

(−i1)k,−i1 = 1, . . . , i1 − 1, i1 + 1, . . . ,m1,
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n∑

j=1

λ j x
f
i2

≤ x f
i2k

, i2 = 1, . . . ,m2,

n∑

j=1

λ j zl j ≥ zlk, l = 1, . . . , D,

n∑

j=1

λ j = 1,

n∑

j=1

γ j yr j ≥ yrk, r = 1, . . . , s,

n∑

j=1

γ j bt j ≤ btk, t = 1, . . . , L,

n∑

j=1

γ j zl j ≤ zlk, l = 1, . . . , D,

n∑

j=1

λ j zl j =
n∑

j=1

γ j zl j , l = 1, . . . , D,

n∑

j=1

γ j = 1, l = 1, . . . , D,

λ j , γ j ≥ 0, j = 1, . . . , n. (6)

where xv−i1
denotes the (−i1)th variable input inwhich the i1th input is excluded. Similarly, the

unit-specific idea points for each desirable output and undesirable output can be determined
by solving the following linear programs (7) and (8), respectively.

φ∗
rk = max φrk

s.t .
n∑

j=1

λ j x
v
i1 ≤ xv

i1k, i1 = 1, . . . ,m1,

n∑

j=1

λ j x
f
i2

≤ x f
i2k

, i2 = 1, . . . ,m2,

n∑

j=1

λ j zl j ≥ zlk, l = 1, . . . , D,

n∑

j=1

λ j = 1,

n∑

j=1

γ j yr j ≥ φrk,

n∑

j=1

γ j yr j ≥ y(−r)k,−r = 1, . . . , r − 1, r + 1, . . . , s,
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n∑

j=1

γ j bt j ≤ btk, t = 1, . . . , L,

n∑

j=1

γ j zl j ≤ zlk, l = 1, . . . , D,

n∑

j=1

λ j zl j =
n∑

j=1

γ j zl j , l = 1, . . . , D,

n∑

j=1

γ j = 1,

λ j , γ j ≥ 0, j = 1, . . . , n. (7)

and

ψ∗
tk = min ψtk

s.t .
n∑

j=1

λ j x
v
i1 ≤ xv

i1k, i1 = 1, . . . ,m1,

n∑

j=1

λ j x
f
i2

≤ x f
i2k

, i2 = 1, . . . ,m2,

n∑

j=1

λ j zl j ≥ zlk, l = 1, . . . , D,

n∑

j=1

λ j = 1,

n∑

j=1

γ j yr j ≥ yrk, r = 1, . . . , s,

n∑

j=1

γ j bt j ≤ ψtk,

n∑

j=1

γ j bt j ≤ b(−t)k,−t = 1, . . . , t − 1, t + 1, . . . , L,

n∑

j=1

γ j zl j ≤ zlk, l = 1, . . . , D,

n∑

j=1

λ j zl j =
n∑

j=1

γ j zl j , l = 1, . . . , D,

n∑

j=1

γ j = 1,

λ j , γ j ≥ 0, j = 1, . . . , n. (8)
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In model (7), y(−r)k represents the (−r)th desirable output that the r th output is excluded.
In model (8), b(−t)k represents the (−t)th undesirable output in which the t th desirable out-
put is excluded. All the above models are assumed under the VRS, which can be easily
extended to solve problems under the CRS by deleting the associated normalization con-
straints

∑n
j=1 λ j = 1 and

∑n
j=1 γ j = 1.

Note that, according to Färe and Grosskopf (2003, 2004), the treatment of undesirable
outputs should comply with standard axioms of the production theory. In this respect, it
seems that those constraints associated with undesirable outputs in models (6)–(8) should
be equalities. However, it is important to emphasize that models (6)–(8) are only used for
identifying unit-specific ideal points for each disposable measure. As such, if one assigns an
equal sign to the undesirable output constraints, implying that the amount of the associated
undesirable outputs should remain unchanged. This is nevertheless inconsistentwith practical
abatement activities such as introducing advanced disposing technologies. In fact, the effect
of imposing equality to the undesirable output constraints in models (6)–(8) will be that it
narrows the feasible region as tighter constraints are imposed. However, this practice may not
comply with the definition of ideal points as mentioned previously. By contrast, the current
study, which imposes relaxed constraints on the undesirable outputs, generally complies with
the core idea of the original MEA approach. That is, those ideal points are determined under
the most favorable scenario for each disposable measure. Importantly, as mentioned, these
ideal points are only used for specifying the directions for improvement. In the following
model (9), the undesirable output constraints are formulated in equalities, which is consistent
with the practice of Färe and Grosskopf (2003; 2004).

With those unit-specific ideal points determined by models (6)–(8), the overall two-stage
NMEA score can be determined by the following model:

D(x, z, y, b;w1, w2, ε) =max w1β1 + w2β2 (9)

s.t .
n∑

j=1

λ j x
v
i1 ≤ xv

i1k − β1
(
ε + xv

i1k − d∗
i1k

)
, i1 = 1, . . . ,m1, (9.1)

n∑

j=1

λ j x
f
i2

≤ x f
i2k

, i2 = 1, . . . ,m2, (9.2)

n∑

j=1

λ j zl j ≥ zlk, l = 1, . . . , D, (9.3)

n∑

j=1

λ j = 1, (9.4)

n∑

j=1

γ j yr j ≥ yrk + β2
(
ε + φ∗

rk − yrk
)
, r = 1, . . . , s, (9.5)

n∑

j=1

γ j bt j = btk − β2
(
ε + btk − ψ∗

tk

)
, t = 1, . . . , L, (9.6)
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n∑

j=1

γ j zl j ≤ zlk, l = 1, . . . , D, (9.7)

n∑

j=1

λ j zl j =
n∑

j=1

γ j zl j , l = 1, . . . , D, (9.8)

n∑

j=1

γ j = 1, (9.9)

λ j , γ j ≥ 0, j = 1, . . . , n. (9.10)

where w1 and w2 are weights attached to stage 1 and stage 2, respectively. Specifically,
w1 + w2 = 1 always holds. Constraint (9.1) seeks to simultaneous radial improvements in

variable inputs along the direction
(
ε + xv

1k − d∗
1k, . . . , ε + xv

m1k
− d∗

m1k

)
. Constraint (9.2)

is the fixed input constraint, which is analogous to the practice of Syrjänen (2004) andAsmild
and Matthews (2012). Constraints (9.3), (9.7), and (9.8) build the linkage of the intermediate
measures associated with two subsystems. Constraint (9.4) leads to the assumption of VRS
for stage one, while constraint (9.9) relates to the assumption of VRS for stage two. As
mentioned previously, one can obtain the associated CRS version when these two constraints
are omitted. Constraints (9.5) and (9.6) seek to simultaneous increase in desirable outputs
and decrease in undesirable outputs given directions

(
ε + φ∗

1k − y1k, . . . , ε + φ∗
sk − ysk

)
and(

ε + b1k − ψ∗
1k, . . . , ε + bLk − ψ∗

Lk

)
, respectively.

Given model (9), several comments are worth investigating. First, the ideal point of each
discretionary variable can be their current observed levels. Taking variable input i1 as an
example, xv

i1k
can actually be equal to d∗

i1k
. Under this circumstance, model (9) might be

unbounded as the improvement direction xv
i1k

− d∗
i1k

= 0. In fact, this might occur in almost
all MEA formulations. To avoid such a case, we thus introduce an infinite small number
ε associated with each discretionary variable. As can be seen in model (9), if there is one
measure such that the ideal point of this measure is just its current observed value, then the
decision variable associated with this measure in model (9) should be equal to zero. For
example, if xv

i1k
− d∗

i1k
= 0, then β1 = 0 must hold. In this circumstance, one may concern

that how the incorporation of ε affects which variable the inefficiency is located on for a
concerned system. To illustrate it, we need to distinguish between two possible cases. In the
first case, if there exists at least one measure (variable input or desirable/undesirable output)
such that its ideal point is just its current observed value, then the incorporation of ε into
other associated measures does not affect the optimal value associated with this measure.
For example, if there exists at least one variable input such that its ideal point d∗

i1k
is just its

current observed value xv
i1k

, then β1 = 0 must hold. However, in the second case, if there is
no measure such that its current observed value equal to the ideal point, then the introduction
of parameter ε can actually have limited effects on the estimation results as long as it is small
enough. For example, as shown in the following sensitivity analysis, the estimation results
with different values of ε are highly correlated, which further imply limited impact of ε on
the estimates determined by the proposed approach. To the best of our knowledge, the present
study is the first to highlight this kind of issue and resolve it in a relatively reasonable way.
Further, we can have the following proposition:
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Proposition 1 0 ≤ D(x, z, y, b;w1, w2, ε) ≤ 1.

Proof The proof of Proposition 1 can be summarized into two parts. On the one hand, it is
easy to verify that β1 = β2 = 0 is a feasible solution to variables β1 and β2, respectively.
Consequently, D(x, z, y, b;w1, w2, ε) ≥ 0 always holds. On the other hand, we would like
to prove D(x, z, y, b;w1, w2, ε) ≤ 1 by a contradiction. Suppose that the optimal solution

to model (9) is
(
λ∗
j , γ

∗
j , β

∗
1 , β∗

2

)
. Then, if the objective value of model (9) is strictly greater

than one, implying that D(x, z, y, b;w1, w2, ε) > 1. As w1 + w2 = 1 always holds. Thus,
there is at least one of β∗

1 and β∗
2 is strictly greater than one. Without loss of generality,

suppose that β∗
1 > 1 is a feasible solution to variable β1 in model (9). Then, we can have that

xv
i1k

− β∗
1

(
ε + xv

i1k
− d∗

i1k

)
− d∗

i1k
= (

β∗
1 − 1

) (
d∗
i1k

− xv
i1k

)
− β∗

1 ε < 0. This implies that

a feasible solution with a smaller value of d
′
i1k

= xv
i1k

− β1

(
ε + xv

i1k
− d∗

i1k

)
exists. This

contradicts the fact that d∗
i1k

is the optimal objective function value of model (6). A similar
logic can be applied to the case when β∗

2 > 1. This naturally completes the proof. �	
Proposition 2 The overall system is efficient if and only if two sub-systems are efficient
simultaneously.

Proof The proof of Proposition 2 is straightforward. �	
Proposition 3 The optimal solutions of model (9) corresponding to variables β1 and β2 are
unique.

Proof Without loss of generality, suppose that
(
λ∗
j , γ

∗
j , β

∗
1 , β∗

2

)
is an optimal solution to

model (9). Then, we proceed to prove Proposition 3 by a contradiction. That is, β∗
1 and β∗

2

are not unique. In other words, we can find a different optimal solution
(
λ∗′
j , γ ∗′

j , β∗′
1 , β∗′

2

)
to

model (9) such that w1β
∗
1 + w2β

∗
2 = w1β

∗′
1 + w2β

∗′
2 and equalities β∗

1 = β∗′
1 and β∗

2 = β∗′
2

cannot be satisfied simultaneously. To guarantee these conditions, it is not hard to have that
one and only one of the inequalities β∗′

1 > β∗
1 and β∗′

2 > β∗
2 must hold. Without loss of

generality, suppose that β∗′
1 > β∗

1 always holds. As w1β
∗
1 + w2β

∗
2 = w1β

∗′
1 + w2β

∗′
2 , we

have that β∗′
2 < β∗

2 . Then, it is not hard to find that
(
λ∗′
j , γ ∗

j , β
∗′
1 , β∗

2

)
is also a feasible

solution to model (9). However, the objective function value of this solution is equal to
w1β

∗′
1 + w2β

∗
2 , which is greater than w1β

∗
1 + w2β

∗
2 . In other words, there exists a feasible

solution to model (9) such that its objective function value is greater than w1β
∗
1 + w2β

∗
2 ,

which is an obvious contradiction that w1β
∗
1 + w2β

∗
2 is the optimal function value of model

(9). Therefore, β∗
1 and β∗

2 must be unique. This naturally completes the proof. �	
Proposition 3 is important as it indicates that our proposed model (9) generally guarantees

a unique efficiency decomposition. Interestingly, the reason why β1 and β2 are unique in
model (9) lies in the fact that model (9) can be solved in two independent linear programs,
which can be accomplished by separating the constraints associated with stage one and stage
two, respectively. Moreover, this holds directly depending on the “fixed-link” constraint,
i.e.,

∑n
j=1 λ j zl j = ∑n

j=1 γ j zl j . Otherwise, the interaction effect between β1 and β2 might
lead to possible multiple solutions. That is, constraints (9.3) and (9.7)-(9.8) together with
the objective function of model (9) directly lead to the above interesting conclusion that the
proposed two-stage NMEA approach is equivalent to two linear programs that can be solved
independently. Compared with those two-phase approaches that employed in conventional
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multiplicative network DEA formulations, the proposed approach provides a simple but
efficient technique for simultaneously identifying the potential of contracting inputs and
expanding outputs in a two-stage production system uniquely.

For a given DMUk under examination, denote its optimal solution to model (9) as(
λk∗j , γ k∗

j , βk∗
1 , βk∗

2

)
, then the overall efficiency for DMUk can be determined by its optimal

objective function value of model (9), i.e., Ek = w1β
k∗
1 + w2β

k∗
2 , where βk∗

1 and βk∗
2 can be

interpreted as stage efficiencies corresponding to stage one and stage two, respectively.
Finally, the vector of variable-specific multi-directional efficiency scores for DMU k can

be formulated as follows:

Ex
i1k =

xv
i1k

− βk∗
1

(
ε + xv

i1k
− d∗

i1k

)

xv
i1k

(10)

Ey
rk = yrk

yrk + βk∗
2

(
ε + φ∗

rk − yrk
) (11)

Eb
tk = btk − βk∗

2

(
ε + btk − ψ∗

tk

)

btk
(12)

4 Empirical illustration

In this section, we illustrate and validate the proposed approach by applying it to Chinese
banking industry.

4.1 Data and variables

Weutilize a dataset ofChinese public listed banks available from theWindFinancialDatabase
(WIND). This database has been employed by a variety of studies, including Poon and
Chan (2008), Shan and Zhu (2013), Wang et al. (2020), and Xu et al. (2013), and provides
comprehensive and structed financial data for listed Chinese firms. The Shanghai Stock
Exchange and the Shenzhen Stock Exchange are two major exchanges in mainland China.1

The WIND database contains all public listed financial and non-financial firms associated
with these two exchanges.

According to China Security Regulatory Commission (CSRC) Industry Classification
standard,we collected 43 banks that belong to theMonetary Financial Services industry.After
removing those missing data, we finally employ 41 banks. As illustrated by various studies,
there are institutional and operational differences across different types of Chinese banks.
To gain more insights into these differences, following Zhao et al. (2021), we categorized
these banks into four groups: 5 stated owned banks, 11 joint-stock commercial banks, 15
city commercial banks, and 10 rural commercial banks. The information of these banks are
provided in Table 2.

We utilize annual consolidated financial data from 2016 to 2020, which covers the whole
period in the 13th Five-Year Plan. The selection of this sample period is justified by two
factors: firstly, the 13thFive-Year Plan is one ofChina’smost recentmid- and long-term socio-
economic development plans, making it pertinent to grasp the evolution of bank performance

1 Due to data availability, and following the practices of Shan and Zhu (2013), we exclude the Hong Kong
Stock Exchange, Taiwan Stock Exchange, and recently established Beijing Stock Exchange.
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Table 2 Classification of banks by ownership

Types Banks

State-owned commercial
banks (SOB)

AgriculturalBankofChina (ABC),BankofCommunications (BCM), Indus-
trial and Commercial Bank of China (ICBC), China Construction Bank
(CCB), and Bank of China (BOC)

Joint-stock commercial banks
(JS-CB)

Ping An Bank (PAB), Shanghai Pudong Development Bank (SPDB), Hua
Xia Bank (HXB), China Minsheng Bank (CMSB), China Merchants Bank
Corporation (CMBC), Industrial Bank (IB), Postal Savings Bank of China
(PSBC), Qilu Bank (QLB), China Everbright Bank (CEB), China Zheshang
Bank (CZSB), and China Citic Bank (CNCB)

City commercial banks (C-
CB)

Bank of Ningbo (BANB), Bank of Zhengzhou (BAZZ), Bank of Qing-
dao (BAQD), Bank of Suzhou (BASZ), Bank of Jiangsu (BAJS), Bank of
Hangzhou (BAHZ), Bank of Xian (BAXA), Bank of Nanjing (BANJ), Bank
of Beijing (BABJ), Bank of Xiamen (BAXM), Bank of Shanghai (BASH),
Bank of Changsha (BACS), Bank of Chengdu (BACD), Bank of Chongqing
(BACQ), and Bank of Guiyang (BAGY)

Rural commercial banks (R-
CB)

Jiangyin Rural Commercial Bank (JRCB), Zhangjiagang Rural Commer-
cial Bank (ZRCB), Qingdao Rural Commercial Bank (QRCB), Wuxi Rural
CommercialBank (WRCB),ChongqingRuralCommercialBank (CQRCB),
Changshu Rural Commercial Bank (CSRCB), Ruifeng Rural Commercial
Bank (RRCB), ShanghaiRural Commercial Bank (SRCB), ZijinRural Com-
mercial Bank (ZJRCB), and Suzhou Rural Commercial Bank (SZRCB)

over this pivotal period, which may have significant implications for policy formation and
execution. Secondly, the advent of the COVID-19 pandemic in late 2019 has further height-
ened the urgency to investigate how the unexpected pandemic affects bank performance.
By investigating this, we believe that it can bring about more insights into how banks can
potentially enhance their performance and be better-prepared for unforeseen circumstances.

Regarding the selection of indicators, one can observe a variety of measures being used
depending on the research objectives. Moreover, apart from deposits, there generally appears
to be accord concerning the major categories of indicators for evaluating the performance
of banking operations (Wang et al., 2014). With regard to the role of deposits, different
perspectives are likely to emerge according to the approach taken. For instance, the production
approach tends to consider the deposits as an output, while the intermediation approach opts
to regard the deposits as an input. To tackle this dilemma of whether to view the deposits as an
input or an output, Holod and Lewis (2011) develop a two-stage DEAmodel in which the role
of the deposits is considered as an intermediate product. Subsequently, a number of studies
have utilized this approach for appraising bank performance from different perspectives
(Boussemart et al., 2019; Holod & Lewis, 2011; Wang et al., 2014; Zhao et al., 2021).
Nevertheless, there is usually not much consensus when it comes to selecting the practical
framework that should be implemented in assessing bank performance. As reviewed by
Lozano (2016), it seems that the two-stage series framework is the most represented one.
Following prior studies, we divide the Chinese banking system into two subsystems: the
deposit-generating subsystem and the loan subsystem. For the deposit-generating stage, the
inputs of this stage are (1) assets (FX), which regard to a fixed input and refer to the total assets
of the associated bank; (2) employee (X1), which refers to the number of employees; and
(3) expense (X2), which refers to operating expenses used for bank operations. For the loan
subsystem, the outputs of this stage are as follows: (1) Bad loan (B), which is an undesirable
output and represents the problem loans for which borrowers are unable to make repayment
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Table 3 Summary statistics

Asset Employee Expense Deposi t Good loan Bad loan
(FX) (X1) (X2) (Z) (Y) (B)

2016 Mean 3744.59 60050.88 56.26 2530.14 1802.69 30.30

Std 6168.76 122458.99 88.83 4556.27 3249.07 57.52

Min 81.35 1352.00 1.43 65.26 41.46 0.73

Max 24137.27 496698.00 315.58 17825.30 12845.05 230.83

2017 Mean 3933.17 59878.44 57.50 2656.39 1980.83 31.13

Std 6491.20 120360.98 93.44 4797.61 3505.92 56.21

Min 93.77 1426.00 1.18 69.43 45.27 0.72

Max 25676.22 487307.00 358.92 18923.57 13791.79 217.51

2018 Mean 4100.95 59548.61 63.51 2809.33 2158.99 32.86

Std 6772.74 118287.48 101.27 5065.47 3722.60 56.97

Min 101.20 1454.00 1.40 74.23 50.48 0.75

Max 26702.57 473691.00 388.11 20638.38 14638.29 226.62

2019 Mean 4344.71 59820.59 69.20 2954.76 2347.34 33.90

Std 7154.50 117118.67 107.78 5236.56 3973.08 57.17

Min 102.98 1501.00 1.60 75.43 59.00 0.81

Max 28207.71 464011.00 435.25 21304.53 15477.65 225.02

2020 Mean 4675.14 60532.29 73.97 3176.92 2568.82 38.48

Std 7654.90 116354.20 113.24 5603.07 4308.07 67.87

Min 118.38 1535.00 1.66 82.93 69.12 0.91

Max 30477.04 459000.00 449.03 22727.99 16753.73 268.69

(Wang et al., 2014); and (2) Good loan (Y), which is calculated by the total loan minus the
associated bad loan.2 Bank deposit (Z) is considered as the intermediate product that can be
both the output of the deposit-generating subsystem and the input of the loan subsystem. All
data are deflated to constant price relative to 2016 using the consumer price index. Table 3
presents the summary statistics of concerned variables for original data. Specifically, except
for X1, all the other variables are in billion yuan.

4.2 Results

Before presenting the results, we need to assign the stage weights appropriately. For illus-
tration, following Zhao et al. (2021), both stages are assumed to contribute equally to the
overall efficiency, this directly leads to the treatment that weights assigned to both stages are

2 In fact, in addition to the loan process, one may also concern other potential outputs generated from the
deposits. For example, the interest income can be as an alternative output that represents the ability of banks
on generating income. However, in the balance sheet of listed banks, the interest income generally includes
deposit interest, loan interest, bond interest, arrears interest and other income. Strictly speaking, this should
take into account a more complex banking framework (e.g., the loan interest should be considered as an output
of good loan). Due to data availability, we thus focus primarily on the loan system. Importantly, this basic two-
stage network system can be enough to illustrate the superiority of the proposed approach. For completeness,
in the Appendix A, we also consider the interest income as an alternative output that acted as proxy for the
ability of banks who employ the deposits to generate income. The results indicate that all our main conclusions
remain even by including such an indicator.
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identical, i.e., w1 = w2 = 0.5. Importantly, for completeness, in the following subsection,
we conduct sensitivity analysis to examine how the choice of stage weights might affect
the results. The results generally indicate the stage weights do have no significant impact on
rankings of banks, and the impacts of stageweights on the estimation results, to certain extent,
can be neglected. Also, we set ε = 0.001 for illustration, below we will further examine how
this parameter affects the estimation results. On the other hand, as the CRS assumption often
relates to the operation at an optimal scale, and we can hardly find banks to operate at such an
ideal status due to imperfect competition and financial constraints (Kourtzidis et al., 2021).
Thus, following Kourtzidis et al. (2021), Li et al. (2021), and Wang et al. (2014), we adopt
the VRS assumption.

4.2.1 The overall and stage efficiencies of Chinese banks

In Table 4, we present the results of overall efficiencies of each bank in detail. The last column
shows the associated rankings of the average overall efficiency of each bank. As shown in
Table 4, we can draw the following conclusions. First, the average overall efficiency of
concerned banks is 0.5182, indicating that there is large room for improvement. Second,
there are few efficient banks (3 out of 41) identified by the proposed two-stage NMEAmodel
during 2016–2020. This indicates that most banks are inefficient at least for one year. For
example, bank of China (BOC) is evaluated as inefficient in 2016, while it is evaluated as
efficient during 2017–2020. Similarly ZRCB, WRCB, BABJ, BASH, BCM, RRCB, BOC,
SZRCB also possess an overall efficiency score of unity in at least one year. Third, we have
an interesting finding that the average overall efficiency of Chinese banks one year before and
after the outbreak of COVID-19 increases from 0.4962 to 0.5325, indicating that Chinese
banks in general can utilize less inputs to produce more outputs after the outbreak of the
sudden pandemic.

Table 5 reports stage efficiencies of 41 selected banks. It can be seen from Tables 4
and 5 that if a bank is estimated as efficient in overall efficiency in one year, it would also
be evaluated as efficient in terms of stage efficiencies. For example, ICBC is evaluated as
overall efficient during 2016–2020, and its stage efficiencies are both evaluated as efficient
over this sample period. This is consistent with the prediction of Proposition 2.

In addition, we also provide the evolution of overall and stage efficiencies in Fig. 2. As
shown in this figure, the average efficiency of the loan subsystem is much higher than that of
the deposit-generating subsystem under the proposed approach. This confirms that the ineffi-
ciency is mainly due to inefficiencies of the deposit-generating subsystem Zhao et al. (2021).
Hence, more attention should be paid to enhance the performance of the deposit-generating
stage, i.e., the input resources should be utilized more efficiently. However, as emphasized
previously, we do not have any ideas of which variable should be enhanced through the above
traditional efficiency decomposition procedure. For this aim, in the following, we would like
to conduct the multi-directional efficiency analysis within such a two-stage banking system
so that more details can be derived through uncovering the sources of the inefficiency of
banking operations.

4.2.2 Multi-directional efficiency analysis with two-stage systems

In the previous subsection, we provide the efficiency analysis from the perspective of overall
and stage efficiencies. This is consistent with the practice of employing traditional two-stage
DEA models. However, as noted previously, one cannot identify the sources of inefficiency
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Table 4 Estimates of overall efficiencies

Bank 2016 2017 2018 2019 2020 Mean Ranking

PAB 0.2803 0.2928 0.3100 0.2822 0.5534 0.3437 29

BANB 0.5137 0.5188 0.5407 0.5657 0.5700 0.5418 17

JRCB 0.0566 0.5619 0.5815 0.6123 0.5915 0.4807 20

ZRCB 1.0000 1.0000 0.6602 0.2938 0.5502 0.7008 12

BAZZ 0.2577 0.2010 0.2273 0.2368 0.2459 0.2337 36

BAQD 0.2740 0.1978 0.2138 0.2478 0.2721 0.2411 33

QRCB 0.2284 0.1999 0.2175 0.2492 0.2394 0.2269 37

BASZ 0.2587 0.2503 0.2405 0.2467 0.2553 0.2503 32

SPDB 0.6563 0.6706 0.5762 0.5970 0.6289 0.6258 13

HXB 0.6178 0.5674 0.5810 0.6095 0.5890 0.5929 15

CMSB 0.3958 0.3953 0.3583 0.3624 0.3401 0.3704 26

CMBC 0.2674 0.2188 0.5642 0.6166 0.6244 0.4583 21

WRCB 1.0000 0.7479 0.6648 0.6425 1.0000 0.8110 9

BAJS 0.4764 0.4242 0.7390 0.3990 0.3677 0.4813 19

BAHZ 0.2751 0.3061 0.3583 0.4003 0.3585 0.3397 30

BAXA 0.7842 0.2556 0.2732 0.5256 0.2927 0.4262 24

BANJ 0.5538 0.4093 0.3766 0.4584 0.4130 0.4422 22

CQRCB 0.2258 0.2157 0.2421 0.2398 0.2549 0.2357 34

CSRCB 0.5003 0.5112 0.5039 0.5013 0.5020 0.5037 18

IB 0.3889 0.4072 0.3832 0.3525 0.6279 0.4319 23

BABJ 1.0000 1.0000 0.7501 0.7501 0.7139 0.8428 7

BAXM 0.5243 0.2333 0.0864 0.1963 0.5119 0.3104 31

BASH 0.7503 0.7503 1.0000 0.4505 0.7497 0.7402 11

ABC 0.5604 0.6879 0.2709 0.7500 0.7500 0.6038 14

BCM 1.0000 1.0000 0.7048 0.6855 0.7500 0.8281 8

ICBC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1

RRCB 0.6312 1.0000 1.0000 1.0000 1.0000 0.9262 5

BACS 0.2818 0.2050 0.1943 0.2517 0.2431 0.2352 35

PSBC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1

QLB 0.2086 0.2012 0.1902 0.2172 0.2446 0.2124 38

CEB 0.4561 0.4266 0.3886 0.3467 0.3283 0.3893 25

SRCB 0.7481 0.7447 0.7421 0.7504 0.7190 0.7409 10

BACD 0.1958 0.1748 0.2701 0.1998 0.2166 0.2114 39

ZJRCB 0.0800 0.0817 0.1187 0.1882 0.1513 0.1240 41

CZSB 0.3096 0.3114 0.6232 0.2877 0.2777 0.3619 27

CCB 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1

BACQ 0.5484 0.2754 0.2768 0.3260 0.3345 0.3522 28

BOC 0.7500 1.0000 1.0000 1.0000 1.0000 0.9500 4

BAGY 0.2218 0.1833 0.1578 0.2357 0.2575 0.2112 40

CNCB 0.7342 0.7502 0.2849 0.2690 0.7477 0.5572 16

SZRCB 1.0000 1.0000 1.0000 1.0000 0.5607 0.9121 6

Mean 0.5369 0.5214 0.5042 0.4962 0.5325 0.5182
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Fig. 2 Average efficiencies of selected banks during 2016–2020

from the perspective individual variable. For this aim, Table 6 below presents the summary
statistics for four concerned discretionary variables across four bank types. In addition, Table
6 also presents the summary statistics of variable-specific inefficiencies for the whole sample.

The results in Table 6 show that the average Employee-specific, Expense-specific, Good
loan-specific and Bad loan-specific inefficiency in the whole sample are 0.8115, 0.8284,
0.9419 and 0.9068, respectively. This indicates potentials for reducing the use of Employee
(18.85%) and Expense (17.16%) and for increasing Good loan (5.81%) and for decreasing
Bad loan (9.32%). Moreover, we can also identify substantial variations in variable-specific
efficiency across different bank types. For example, the variable-specific efficiencies for SOB
are greater than 0.9 across all five discretionary variables. However, other three bank types
have relative vulnerable performance for specific variables. Taking R-CB as an example,
the potential for reducing the use of Employee (22.64%) is significantly greater than that
for increasing good loan (5.16%). In addition, the difference between the minimum and the
maximum efficiencies demonstrate that the highest dispersion was found for R-CB. For this
type of bank, the minimum efficiency had an average efficiency of 0.2671, while for the
maximum level this efficiency estimate was as high as 1.0000.

4.2.3 Evolution of two-stage multi-directional efficiency scores of four types of banks

In this subsection, we proceed to investigate the evolution of variable-specific efficiencies of
four types of Chinese commercial banks as presented in Fig. 3. Specifically, as the previous
section have already illustrated that there is considerable dispersion in efficiency estimates
for banks in the sample, the development of average efficiency might not be a good repre-
sentations for the data utilized in the present study (Kapelko & Lansink, 2017). As a result,
following Kapelko and Lansink (2017), we depict the evolution of median NMEA values for
each discretionary variables, which provides the decision maker with a better understanding
of the central tendency rather than averages.
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Table 6 Summary statistics for
the multi-directional efficiency
by bank type

X1 X2 Y B

SOB Mean 0.9897 0.9964 0.9834 0.9703

Std 0.0218 0.0064 0.0284 0.0413

Min 0.9508 0.9852 0.9345 0.9156

Max 1.0000 1.0000 1.0000 1.0000

JS-CB Mean 0.8601 0.7756 0.9668 0.9369

Std 0.1433 0.1118 0.0490 0.0607

Min 0.5468 0.5836 0.8257 0.7863

Max 1.0000 1.0000 1.0000 1.0000

C-CB Mean 0.7417 0.7950 0.9055 0.8742

Std 0.1518 0.1328 0.0822 0.0903

Min 0.5274 0.6116 0.7572 0.7076

Max 1.0000 1.0000 1.0000 1.0000

R-CB Mean 0.7736 0.8526 0.9484 0.8906

Std 0.2807 0.1727 0.0435 0.1220

Min 0.2671 0.5086 0.8877 0.7060

Max 1.0000 1.0000 1.0000 1.0000

All Mean 0.8115 0.8284 0.9419 0.9068

Std 0.1944 0.1445 0.0661 0.0923

Min 0.2671 0.5086 0.7572 0.7060

Max 1.0000 1.0000 1.0000 1.0000

From Fig. 3, we can have the following observations. First, we observe that there are
clear differences between efficiencies of each bank type across different dimensions. Specif-
ically, the SOB generally being consistently more efficient than other three types of banks.
However, the evolution mode differs from different variable-specific efficiencies. For exam-
ple, as shown in Fig. 3a the median NMEA scores of Employee for R-CB exhibited an
inverse-U shape, while generally exhibited a “U” shape for JS-CB and C-CB. Similarly,
as presented in Fig. 3c, the evolution of median NMEA scores of Good loan for JS-CB
presented a relatively stable increasing trend, while for C-CB’s median NMEA scores first
decreased and then increased until 2019 and eventually presented an obvious declining trend
after 2019.

Second, we can obtain mixed results for the MEA efficiency comparisons over other
three types of banks. For example, with regard to NMEA scores for Expense, R-CB consis-
tently performs better than JS-CB and C-CB over the sample period. However, the median
NMEA scores for Good loan is less than that of JS-CB during 2017–2020. In terms of
C-CB, this type of banks has the worst median NMEA scores for Employee during 2016–
2020 while has higher median NMEA scores for Expense than JS-CB during 2018–2020.
This demonstrates that different types of banks generally have different evolution modes
over different dimensions. This generally provides the decision maker with a detailed
picture of the dynamics of bank performance. However, this cannot be observed by tra-
ditional network DEA models, demonstrating the importance of employing the proposed
approach.

Third, as the outbreak of the unexpected COVID-19 generally occurred in late 2019,
it is therefore meaningful to compare the bank performance between 2019 and 2020.
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(a) Evolution of median NMEA scores for Employee (b) Evolution of median NMEA scores for Expense

(c) Evolution of median NMEA scores for good loan (d) Evolution of median NMEA scores for Bad loan

Fig. 3 Evolution of median NMEA scores for discretionary variables

In doing so, we believe that one may have a more thorough understanding of deter-
minants which might guide banks out of the crisis. Focusing on these two years, we
can find obvious changes in terms of efficiency scores corresponding to some discre-
tionary variables. For example, in terms of NMEA scores for Employee, the median
score for C-CB seems to decrease from a trend perspective, however an opposite direc-
tion showing a marked increase in 2020. Interestingly, the trends for different types of
banks exhibit different patterns for different discretionary variables. To illustrate, it is
obvious that, the median NMEA scores of Expense for all types of banks, except for
the SOB, exhibit an increasing trend in 2020 compared to 2019. However, the median
NMEA scores of both good and bad loans for JS-CB generally increased in 2020 com-
pared with 2019, while an opposite trend can be observed for C-CB and R-CB. This result
might indicate that small banks appear to be more fragile over the post-pandemic period.
However, they have differentiated ability in respond to the pandemic. For instance, the
median NMEA scores for R-CB experienced an increase for variable Expense. This nev-
ertheless cannot be observed in traditional efficiency results such as the Fig. 2, because
the aggregated efficiency scores might neglect those information hidden in specific vari-
ables.
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Finally, we demonstrate whether the efficiency scores are statistically different among the
four types of groups. Following Zhao et al. (2021), we apply the Kruskal-Wallis H test for
examining the efficiency differences across four types of banks. In addition, as the Mann–
Whitney U text is suitable for comparing two independent samples, we further apply the
Mann–Whitney U text to investigate differences between two groups in the four types of
banks. Table 7 reports the detailed results. Based on this table, it is shown that we can reject
the null hypothesis of equal efficiency scores among these four bank groups. This implies
that there are significant differences between the four types of banks in the five discretionary
variables.

However, from the results derived from the Mann–Whitney test, we can generally iden-
tify varied differences across different groups. Specifically, the MEA score difference for
Employee is the result of differences between SOB and JS-CB, SOB and C-CB, SOB and
R-CB, and JS-CB and C-CB. The NMEA score difference for Expense is the result of dif-
ferences between SOB and JS-CB, SOB and C-CB, SOB and R-CB, JS-CB and R-CB, and
C-CB and R-CB. Similar conclusions can be found in the final outputs. For example, the
MEA score difference for good loan is the result of differences between SOB and JS-CB,
SOB and C-CB, SOB and R-CB, JS-CB and C-CB, and C-CB and R-CB, while the differ-
ence for bad loan is the result of differences between SOB and JS-CB, SOB and C-CB, SOB
and R-CB, and JS-CB and C-CB. Overall, the results shown in Table 7 generally conveys
an important result that there are significant differences across different variable-specific
efficiencies for different types of banks. This further confirms the importance of the pro-
posed approach, as it is able to uncover efficiency differences in a more comprehensive
way.

4.3 Sensitivity analysis

In this section, wewould like to examine the impacts of stage weights on the efficiency results
and then investigate how parameter ε affect the results.

4.3.1 Impact of stage weights on the two-stage NMEA results

In the proceeding analysis, we give the same priority to both the deposit-generating and
loan subsystems, i.e., w1 = w2 = 0.5. To better understand how these weights affect the
estimation results, we further consider the following four cases to recalculate the overall and
stage efficiencies of the concerned banks: (1) w1 = 0.1 and w2 = 0.9; (2) w1 = 0.3 and
w2 = 0.7; (3) w1 = 0.7 and w2 = 0.3; (4) w1 = 0.9 and w2 = 0.1. Figure4 shows the
graph of rankings associated with the overall efficiencies in 2020. In the Appendix B, we
also provide similar graphs for other years.

As shown in Fig. 4 we can find subtle changes in the estimation results of overall
efficiencies. As noted in Zhao et al. (2021), if efficiency rankings determined by differ-
ent scenarios are totally different, one may conclude that we have different estimation
results. The similar results under these five cases imply that the impact of stage weights
on the estimation results is limited. To further confirm this finding, following Zhao et
al. (2021), we conduct the Friedman testing of the results in 2020. Details can be found
in Table 8. The Friedman test results suggest that there are no significant ranking differ-
ences between the five cases both in terms of the overall efficiencies as well as in terms
of two stage efficiencies. Further, we also conduct the Friedman test for other four years
in the Appendix B. The results further confirm the above conclusions. In other words,
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Table 7 Rank-sum test results of the efficiency differences of four types of banks

Variable Kruskal–Wallis H test Group Mann–Whitney U test

P value Significance P value Significance

Employee 0.000 *** SOB vs. JS-CB 0.000 ***

SOB vs. C-CB 0.000 ***

SOB vs. R-CB 0.000 ***

JS-CB vs. C-CB 0.000 ***

JS-CB vs. R-CB 0.644 INSIG

C-CB vs. R-CB 0.120 INSIG

Expense 0.000 *** SOB vs. JS-CB 0.000 ***

SOB vs. C-CB 0.000 ***

SOB vs. R-CB 0.000 ***

JS-CB vs. C-CB 0.632 INSIG

JS-CB vs. R-CB 0.010 ***

C-CB vs. R-CB 0.009 ***

Good loan 0.000 *** SOB vs. JS-CB 0.022 **

SOB vs. C-CB 0.000 ***

SOB vs. R-CB 0.007 ***

JS-CB vs. C-CB 0.000 ***

JS-CB vs. R-CB 0.179 INSIG

C-CB vs. R-CB 0.004 ***

Bad loan 0.000 *** SOB vs. JS-CB 0.016 **

SOB vs. C-CB 0.000 ***

SOB vs. R-CB 0.006 ***

JS-CB vs. C-CB 0.000 ***

JS-CB vs. R-CB 0.190 INSIG

C-CB vs. R-CB 0.198 INSIG

*,**Represent 5

the stage weights do have no significant impact on the rankings of banks both based on
the overall efficiency and the stage efficiencies. Given these, the impacts of stage weights
on the estimation results can be neglected in our concerned study. However, the man-
ner in which w1 and w2 are determined may have an effect - even if it is limited -
on the measurement of efficiency, which in turn affect the improvement strategies that
DMUs should adopt. Thus, it is advisable to reach a consensus prior to assigning these
weights.

4.3.2 Impact of parameter � on the NMEA results

Before conducting sensitivity analysis associated with ε, we would like to empirically illus-
trate the necessity of adopting parameter ε. For example, if we set ε = 0, and then apply the
data in 2020 to model (9). Table 9 presents the gaps between original values and those ideal
values determined by models (6)–(8). As shown in the table, it is obvious that the ideal values
associated with variables X1, X2, and Y for many banks are equal to their corresponding
current observed values, i.e., obtain zero gap between original value and ideal value. For all
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Fig. 4 Rankings of average overall efficiencies under different cases of stage weights

Table 8 Friedman test results with different stage weights

Friedman test

Ranking of overall efficiency in 2020 0.157 (INSIG)

Ranking of deposit-generating efficiency in 2020 1.000 (INSIG)

Ranking of loan efficiency in 2020 1.000 (INSIG)

INSIG denotes insignificant. The significance level is 5%

these banks, model (9) obtains an unbounded solution. However, one can always guarantee
a feasible solution by employing the proposed approach by introducing a strictly positive
constant ε.

To further investigate the impact of ε on the results of overall and stage efficiencies, we
test the sensitivity of our baseline results to changes in values of ε. Table 10 provides the
detailed Pearson and Spearman correlation coefficients across different scenarios in terms
of the overall and stage efficiencies in 2020. The tests for other years are provided in the
Appendix C. For the overall and stage efficiencies, Tables 10 and 15 in Appendix C indicate
that the effect of ε on efficiency results is limited, as the estimation results with different
values of ε are highly correlated.

5 Conclusions

This paper proposes a novel two-stage NMEA approach to evaluate the performance of Chi-
nese banks. Compared with existing studies, the proposed approach can not only guarantee
a unique efficiency decomposition under a relatively mild condition, but also allow for effi-
ciency analysis in each discretionary variable. Through this approach, onemay be able togain
insights into the complex banking system and make informed performance improvement ini-
tiatives.
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Table 9 Gaps between original values and ideal values in 2020

Bank Original values Gaps between original values and ideal values

X1 X2 Y B xv
1k − d∗

1k xv
2k − d∗

2k φ∗
1k − y1k b1k − ψ∗

1k

PAB 36115 106.6 2408.28 28.69 4599.85 53.66 0.00 28.69

BANB 24291 22.49 623.58 4.99 15444.47 7.78 0.00 4.99

JRCB 1835 2.04 72.02 1.31 0.00 0.00 10.13 0.91

ZRCB 2324 2.92 76.65 0.91 517.21 0.75 0.00 0.91

BAZZ 5331 9.68 212.97 4.52 2183.30 4.83 84.50 1.90

BAQD 4342 7.15 186.11 2.86 1586.00 2.94 53.35 1.69

QRCB 5145 5.91 196.25 2.87 2628.11 2.10 24.88 1.93

BASZ 4495 6.43 169.57 2.37 2004.75 2.66 41.06 1.56

SPDB 61686 118.5 4072.29 71.71 9589.53 40.56 0.00 71.71

HXB 39748 62.3 1892.89 34.71 21542.52 31.83 0.00 34.71

CMSB 59262 135.05 3458.43 64.02 12393.03 66.97 247.04 49.83

CMBC 90867 153.4 4547.57 49 10169.01 48.78 0.00 49.00

WRCB 1535 2.19 90.11 1 0.00 0.00 0.00 1.00

BAJS 15363 32.23 1083.79 14.47 2962.05 7.56 97.92 11.80

BAHZ 9139 15.3 437.32 4.73 2200.23 4.54 76.33 3.72

BAXA 3381 3.7 155.32 1.86 1230.29 0.49 20.43 1.45

BANJ 12138 17.26 610.92 5.64 1812.58 1.68 49.92 5.00

CQRCB 15088 16.56 458.13 6.07 7138.04 5.38 125.21 3.86

CSRCB 6864 3.98 119.24 1.16 5137.79 1.52 0.00 1.16

IB 59630 115.7 3579.2 45.39 8037.65 36.84 0.00 45.39

BABJ 15490 36.34 1410.44 22.44 0.00 0.00 144.80 16.03

BAXM 2840 3.4 127.29 1.26 1184.68 1.01 0.00 1.26

BASH 13365 25.98 991.43 12.25 0.00 0.00 107.85 9.76

ABC 459000 358.27 13617.54 216.72 0.00 0.00 498.19 207.66

BCM 90716 146.23 5256.1 89.29 0.00 0.00 428.31 62.52

ICBC 439787 449.03 16753.73 268.69 0.00 0.00 0.00 268.69

RRCB 2360 1.66 69.12 0.92 0.00 0.00 0.00 0.92

BACS 7618 10.26 284.42 3.48 2694.58 3.22 70.20 2.53

PSBC 177797 199.66 5178.57 46.03 0.00 0.00 0.00 46.03

QLB 4130 4.65 154.81 2.24 1557.86 0.87 54.21 1.51

CEB 46316 88.47 2712.55 38.08 1540.93 16.58 349.02 28.40

SRCB 8645 11.16 480.24 4.79 0.00 0.00 47.17 3.94

BACD 6461 7.09 255.21 3.53 1440.68 0.34 93.37 2.37

ZJRCB 2265 2.66 108.45 1.86 666.21 0.36 19.50 1.10

CZSB 15997 30.37 1075.83 15.58 641.68 5.31 134.51 11.48

CCB 349671 382.61 15067.16 238.3 0.00 0.00 0.00 238.30

BACQ 4401 6.67 253.78 3.26 1278.21 1.86 20.81 2.60
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Table 9 continued

Bank Original values Gaps between original values and ideal values

X1 X2 Y B xv
1k − d∗

1k xv
2k − d∗

2k φ∗
1k − y1k b1k − ψ∗

1k

BOC 309084 292.85 12774.02 189.45 0.00 0.00 0.00 189.45

BAGY 6594 8.52 207.91 3.23 3064.61 3.04 91.89 1.98

CNCB 58879 125.14 4021.42 67.13 0.00 0.00 221.81 54.59

SZRCB 1829 2.45 70.88 0.92 0.00 0.00 5.27 0.91

The empirical results validate the usefulness of the proposed approach. Moreover,
the paper also grasps several interesting conclusions. First, the average overall effi-
ciency of Chinese listed banks is less than 0.6, suggesting that there is large room
for improvement and that it might generate potential gains by improving the per-
formance of Chinese listed banks. Second, the inefficiency is mainly sourced from
the deposit-generating subsystem, which indicates that more attention should be paid
to this stage so as to enhance the efficiency of Chinese listed banks as a whole.
Third, different types of banks generally have different evolution modes over differ-
ent dimensions. This cannot be observed in the analysis of traditional two-stage DEA
models, which further emphasizes the importance of employing the proposed two-stage
NMEA approach. Finally, the sensitivity analysis in terms of the weights attached to
each stage and the changes in values of ε confirms the robustness of the proposed
approach.

Future works can be extended in the following ways. First, it should be noted that the
empirical study is conducted for the listed commercial banks operated in China. In fact, the
proposed approach can also be applied to assess bank performance across different countries.
We believe that this may convey more fruitful information on efficiency differences over
different institutional environments.

Second, in our proposed model, we assume a basic two-stage network framework.
In practice, we recognize that there may exist other structures which generally present
more complex structure [See e.g., (Kao, 2014)]. Fortunately, the proposed approach can
be easily adapted to these cases. As such, future works can potentially investigate how
to extend the proposed approach to accounting for bank performance with other alterna-
tive network frameworks. Similarly, it is also interesting to apply the proposed approach
to have more insights into the variable-specific (in)efficiency of other production sys-
tems.

Finally, the present study also has broad applicability. For example, it is of interests to
extend the proposed approach to adopt advanced DEAmethods such as additive/slack-based
measures DEA (Wang et al., 2014), common set of weights DEA (Hammami et al., 2020),
inverse DEA (Boubaker et al., 2022), Malmquist DEA (Asmild et al., 2016a), among others.
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Appendix

Appendix A: Comparison to the case when the interest income is considered

In the main analysis, we focus on the loan procurement process. In theory, when all necessary
data is available to characterize the real banking operational process, we can assess bank
performance in a more accurate way. However, the practical situation often constrained by
data availability. To isolate the impact of other potential factors, we thus focus primarily on
the loan procurement process. Interestingly, as illustrated in the main context, one may also
consider other potential outputs generated by the deposits. Specifically, the interest income
can be as an alternative output that represents the ability of banks to generate income (Wang
et al., 2014; Zhao et al., 2021). Though this indicator is composed of various incomes such as
deposit income, loan interest, bond interest, arrears interest and other income, it can be proxy
for the ability of banks who employ the deposits to generate income. So, one may concern
that whether the incorporation of the interest income will significantly affect the estimation
results or not.

Following the same procedure as in the main analysis, we recalculate efficiencies of each
bank during 2016–2020 based on models (6)–(9). Table 11 presents the results associated
with the overall when the interest income is considered.

To illustrate differences between different practices of whether taking the interest income
into account or not, we denote the case of the main analysis as Scenario A, while the case
when the interest income is considered as Scenario B. Figure 5 shows the ranking comparison

Table 11 The overall efficiency results when the interest income is considered during 2016–2020

Bank 2016 2017 2018 2019 2020 Mean Ranking

PAB 0.3617 0.3708 0.3453 0.2871 0.5534 0.3837 30

BANB 0.5137 0.5188 0.5407 0.5657 0.5700 0.5418 21

JRCB 0.5030 0.5646 1.0000 0.6123 0.5915 0.6543 14

ZRCB 1.0000 1.0000 0.6602 0.2938 0.5502 0.7008 13

BAZZ 0.3123 0.2956 0.2644 0.2245 0.2558 0.2705 37

BAQD 0.3266 0.2942 0.2481 0.2729 0.3095 0.2903 35

QRCB 0.2405 0.2143 0.2311 0.2742 0.2576 0.2435 38

BASZ 0.3600 0.3415 0.3125 0.2823 0.2950 0.3183 34
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Table 11 continued

Bank 2016 2017 2018 2019 2020 Mean Ranking

SPDB 0.6563 0.6706 0.5762 0.5970 0.6289 0.6258 16

HXB 0.6178 0.5674 0.5810 0.6095 0.5890 0.5929 18

CMSB 0.4583 0.6451 0.4197 0.4459 0.5937 0.5125 23

CMBC 0.2806 0.2435 0.5642 0.6166 0.6244 0.4659 25

WRCB 1.0000 0.7562 0.6639 0.6425 1.0000 0.8125 10

BAJS 0.5667 0.4895 0.8095 0.4986 0.4241 0.5577 20

BAHZ 0.3327 0.3348 0.3952 0.4388 0.4056 0.3814 31

BAXA 0.7842 0.2556 0.2732 0.5256 0.3124 0.4302 29

BANJ 0.5538 0.6586 0.6663 0.7137 0.4839 0.6152 17

CQRCB 0.2258 0.5073 0.2707 0.2942 0.2951 0.3186 33

CSRCB 0.5003 0.5112 0.5039 0.5013 0.5020 0.5037 24

IB 0.6493 0.6572 0.6440 0.6416 0.6279 0.6440 15

BABJ 1.0000 1.0000 0.7914 1.0000 0.7449 0.9073 8

BAXM 0.5243 0.5020 0.5048 0.2424 0.5119 0.4571 26

BASH 1.0000 0.7900 1.0000 0.5347 0.7791 0.8208 9

ABC 0.5850 0.7153 0.2709 1.0000 1.0000 0.7143 12

BCM 1.0000 1.0000 0.8183 1.0000 0.7531 0.9143 6

ICBC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1

RRCB 0.6312 1.0000 1.0000 1.0000 1.0000 0.9262 5

BACS 0.2711 0.2370 0.2435 0.3121 0.3274 0.2782 36

PSBC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1

QLB 0.2282 0.2363 0.2163 0.2368 0.2562 0.2348 39

CEB 0.5590 0.4769 0.3948 0.3963 0.3589 0.4372 28

SRCB 0.7481 0.7447 0.7421 0.7504 0.7190 0.7409 11

BACD 0.2062 0.1741 0.2735 0.2324 0.2430 0.2258 40

ZJRCB 0.0766 0.2602 0.3024 0.1945 0.1513 0.1970 41

CZSB 0.3850 0.5584 0.6232 0.3712 0.3070 0.4490 27

CCB 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1

BACQ 0.5484 0.5285 0.3787 0.5881 0.6227 0.5333 22

BOC 0.7500 1.0000 1.0000 1.0000 1.0000 0.9500 4

BAGY 0.2218 0.2152 0.2849 0.5560 0.5726 0.3701 32

CNCB 0.7796 0.7732 0.2849 0.3035 0.7616 0.5806 19

SZRCB 1.0000 1.0000 1.0000 1.0000 0.5607 0.9121 7

Mean 0.5795 0.5880 0.5634 0.5624 0.5741

of average overall efficiency between scenarios A and B. The figure clearly demonstrates that
most banks exhibit similar rankings, which implies that, though with slightly fluctuations, the
practice of focusing on the loan process can exactly capture the relative position of overall
NMEA scores of most banks by using the proposed approach.

Table 12 contains the results of stage efficiency scores when the interest income is con-
sidered. We can also confirm similar conclusions the same as those obtained from the overall
NMEA efficiency.
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Fig. 5 Ranking comparison of average overall efficiency between scenario A and scenario B

To further confirm the relevance of both scenarios, we also conduct the correlation tests
of the overall efficiency results from 2016 to 2020. Table 13 provides the detailed Pearson
and Spearman correlation coefficients in terms of the overall NMEA efficiency over the
sample period. Table 13 indicates that the overall NMEA scores obtained from scenario A
and scenario B have a closer association with the relative measure of bank performance.
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Table 13 Correlation tests between scenario A and scenario B during 2016–2020

Pearson correlation Spearman correlation

Scenario A Scenario B Scenario A Scenario B

2016 Scenario A – 0.954*** – 0.949***

Scenario B 0.954*** – 0.949*** –

2017 Scenario A – 0.956*** – 0.946***

Scenario B 0.956*** – 0.946*** –

2018 Scenario A – 0.916*** – 0.910***

Scenario B 0.916*** – 0.910*** –

2019 Scenario A – 0.929*** – 0.927***

Scenario B 0.929*** – 0.927*** –

2020 Scenario A – 0.951*** – 0.947***

Scenario B 0.951*** – 0.947*** –

***Represents correlation is significant at the 0.01 level (2-tailed)

Appendix B: Sensitivity analysis of stage weights on the two-stage NMEA results
during 2016–2019

In the main analysis, we provide rankings of overall NMEA scores in 2020 under different
cases of stage weights. In this appendix, we further provide ranking comparisons of overall
NMEA scores for other four years. Figures6, 7, 8 and9 depict rankings of overall efficiency
scores under different cases of stage weights in 2016, 2017, 2018, and 2019, respectively.

As can be seen from Figs. 6, 7, 8 and 9, we also find subtle changes in the estimation
results with respect to the overall NMEA scores. Further, we also conduct Friedman tests
for the remaining four years. Table 14 clearly indicates that there are no significant ranking
differences between the five cases in terms of both overall NMEA scores and stage NMEA
scores during 2016–2019. Given these, we can conclude that the stage weights do have no
significant impact on the rankings of banks and can be neglected in our concerned study.
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Fig. 6 Rankings of overall efficiency scores in 2016 under different cases of stage weights

Fig. 7 Rankings of overall efficiency scores in 2017 under different cases of stage weights
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Fig. 8 Rankings of overall efficiency scores in 2018 under different cases of stage weights

Fig. 9 Rankings of overall efficiency scores in 2019 under different cases of stage weights
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Table 14 Friedman test results with different stage weights

2016 2017 2018 2019 2020

Overall efficiency 0.408 0.192 0.321 0.167 0.157

(INSIG) (INSIG) (INSIG) (INSIG) (INSIG)

Deposit-generating efficiency 1.000 1.000 1.000 1.000 1.000

(INSIG) (INSIG) (INSIG) (INSIG) (INSIG)

Loan efficiency 1.000 1.000 1.000 1.000 1.000

(INSIG) (INSIG) (INSIG) (INSIG) (INSIG)

Appendix C: Impact of parameter� on the two-stage NMEA results during
2016–2019

Table 15 provides the correlation tests between different values of ε during 2016–2019. From
this table, we can clearly obtain similar conclusions as those in the main analysis. That is,
the ranking results under different values of ε are distinctly correlated. That is, the choice of
different values of ε generally has limited impact on the NMEA ranking results.

Table 15 Correlation tests between different values of ε

Pearson correlation Spearman correlation

0.01 0.001 0.0001 0.01 0.001 0.0001

2016 Overall efficiency 0.01 – 0.989** 0.979** – 0.996** 0.989**

0.001 0.989** – 0.998** 0.996** – 0.997**

0.0001 0.979** 0.998** – 0.989** 0.997** –

Deposit-generating
efficiency

0.01 – 0.981** 0.962** – 0.994** 0.948**

0.001 0.981** – 0.996** 0.994** - 0.972**

0.0001 0.962** 0.996** – 0.948** 0.972** –

loan efficiency 0.01 – 0.993** 0.989** – 0.997** 0.997**

0.001 0.993** – 1.000** 0.997** – 1.000**

0.0001 0.989** 1.000** – 0.997** 1.000** –

2017 Overall efficiency 0.01 – 0.999** 0.999** – 0.992** 0.992**

0.001 0.999** – 1.000** 0.992** – 1.000**

0.0001 0.999** 1.000** – 0.992** 1.000** –

Deposit-generating
efficiency

0.01 – 0.999** 0.999** – 0.974** 0.965**

0.001 0.999** – 1.000** 0.974** – 0.999**

0.0001 0.999** 1.000** – 0.965** 0.999** –

loan efficiency 0.01 – 0.999** 0.999** – 0.972** 0.969**

0.001 0.999** – 1.000** 0.972** – 1.000**

0.0001 0.999** 1.000** – 0.969** 1.000** –

2018 Overall efficiency 0.01 – 0.999** 0.998** – 0.997** 0.995**

0.001 0.999** – 1.000** 0.997** – 0.999**
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Table 15 continued

Pearson correlation Spearman correlation

0.01 0.001 0.0001 0.01 0.001 0.0001

0.0001 0.998** 1.000** – 0.995** 0.999** -

Deposit-generating
efficiency

0.01 – 1.000** 1.000** – 0.998** 0.998**

0.001 1.000** – 1.000** 0.998** – 1.000**

0.0001 1.000** 1.000** – 0.998** 1.000** –

loan efficiency 0.01 – 0.995** 0.994** – 0.957** 0.953**

0.001 0.995** – 1.000** 0.957** – 0.995**

0.0001 0.994** 1.000** – 0.953** 0.995** –

2019 Overall efficiency 0.01 – 0.989** 0.978** – 0.998** 0.991**

0.001 0.989** - 0.998** 0.998** - 0.997**

0.0001 0.978** 0.998** - 0.991** 0.997** –

Deposit-generating
efficiency

0.01 – 1.000** 1.000** – 0.999** 0.997**

0.001 1.000** – 1.000** 0.999** – 0.997**

0.0001 1.000** 1.000** – 0.997** 0.997** -

loan efficiency 0.01 – 0.956** 0.913** – 0.929** 0.923**

0.001 0.956** – 0.992** 0.929** – 0.999**

0.0001 0.913** 0.992** – 0.923** 0.999** –

2020 Overall efficiency 0.01 – 0.992** 0.992** – 0.986** 0.985**

0.001 0.992** – 1.000** 0.986** – 0.999**

0.0001 0.992** 1.000** – 0.985** 0.999** –

Deposit-generating
efficiency

0.01 – 1.000** 1.000** – 1.000** 0.992**

0.001 1.000** – 1.000** 1.000** – 0.992**

0.0001 1.000** 1.000** – 0.992** 0.992** –

loan efficiency 0.01 – 0.976** 0.975** – 0.940** 0.935**

0.001 0.976** – 1.000** 0.940** – 0.995**

0.0001 0.975** 1.000** – 0.935** 0.995** –
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