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Abstract
As per the projections of conventional credit risk structured model, the risky asset values tend
to adhere to the geometric Brownian motion. On the contrary, the risky asset values remain
a non-continuous and dynamic ones and jump based on the conditions. Is not possible to
measure the real Knight Uncertainty risks in financial markets with the help of a single
probability measure. In this background, the current research work analyzes a structural
credit risk model that belongs to Levy market under Knight Uncertainty. With the help
of Lévy-Laplace exponent, the authors developed a dynamic pricing model in this study
and acquired the price intervals for default probability, stock value and the bond value of
enterprise. To be specific, the study intended to establish explicit solutions for three value
processes, discussed earlier, with an assumption that the jump process follows a log-normal
distribution. At the end, the study also conducted numerical analysis to understand the crucial
role played by Knight Uncertainty upon the pricing of default probability and the stock value
of the enterprise.
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1 Introduction

In the aftermath of sub-prime mortgage crisis that occurred in the year 2008, there has
been increased attention paid upon the credit risk factors across the globe. Credit risk can
be loosely defined as the possibilities in which either the lender or the borrower may end
up in breaching the contract. Three investment banks such as the Bear Stearns, Lehman
Brothers and Merrill Lynch went bankrupt due to the impact of global credit storm. It further
degraded the credit ratings of a few countries such as Portugal, Italy, Ireland, Greece and
Spain below Baa. Due to this unprecedented financial crisis that brought huge economic
burden, the credit risk management tools have become essential from the initial stages itself.
This phenomenon created the need for the development of a dynamic, reasonable and vibrant
credit risk management model that includes precise and efficient numerical algorithms for
financial forecasting.

A structured credit risk model was proposed in the study conducted by Merton (1974)
upon asset pricing in line with the popular Black and Scholes (1973) (B–S) option pricing
formula. This model triggered a series of concerns in both academic research and market
finance. Currently, this model has been widely applied in credit risk management domain
and has evolved into a huge model system. In practice, this structured model acts as the basis
for KMV model, followed by Moody’s, while the latter is the most sought-after credit risk
management model in this financial domain. In this structured credit risk model, a company’s
asset values are continuously subjected to geometricBrownianmotionwhile themodel quotes
only the continuous changes that occur in the asset values of a company. Interestingly, the
model does not take abnormal events that may change the asset’s values into consideration,
for instance, Brexit vote, COVID-19 pandemic etc., The Merton model has been explored
and expanded in detail by various researchers, into jump process. The first research study
to make use of pure jump to detail the values of corporate assets was conducted by Mason
and Bhattacharya (1981). In the Hilberink and Rogers’s model proposed by the researchers
(Hilberink & Rogers, 2002), Lévy process was introduced in the structured model since the
direction of the jump occurs only from top to bottom. This phenomenon was revolutionized
in the study conducted by Scherer (2005) who optimized the model so that the corporate
asset values jump not only from top to bottom, but also in the opposite direction i.e., bottom
to top. Xiong (2005) proposed the option pricing model in which the Lévy jump-diffusion
process is followed to drive the underlying stocks. Based on thismodel, Xue andWang (2008)
detailed about a structural credit risk model based on Lévy process. The researchers further
derived the formulae for bond price, credit spread and default probability. A reduced credit
risk model was developed by Lin (2018) through the deployment of martingale method and
Laplace transform techniques. The author determined both conditional as well as uncondi-
tional survival probabilities.

Liu (2020) developed a hybrid jump-diffusion KMV-logit model in which the author
integrated the jump-diffusion KMV model and logit model. This conventional logit model
was further supplemented with default distance in the form of an explanatory variable so as to
develop the proposed model. This study established the model’s remarkable performance in
terms of identifying the actual defaulters. On the basis of a hybrid exponential jump-diffusion
model, Shi (2021) introduced a stochastic interest rate risk and the model was found to fit
majority of the features that are usually encountered in the market.

Knight, a famous economist from the US, mentioned in 1921 that it is not possible to mea-
sure the financial markets using a single probability measure since the former is filled with
unprecedented risks. This statement is otherwise called as Knight uncertainty risk (Knight,
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1921). Ellsberg (1961) proposed a paradox named Ellsberg paradox in which he added that a
single probabilitymeasure does not possess the potential to explain the existence of numerous
choice behaviors in financial markets. Knight Uncertainty phenomenon has been explored by
various scholars in different perspectives. The Backward Stochastic Differential Equations
(BSDE) theory was first proposed by Chen and Larry Epstein (2002) to incorporate a math-
ematical model that mimics the knight uncertainty risks. The authors further investigated
about the continuous time optimal consumption and portfolio models. Considering this work
as a basis, Huang et al. (2016) investigated the deposit insurance pricing phenomenon under
Knight uncertainty. The authors concluded that the role played by Knight uncertain risk in
determining the premium of the bank of China was phenomenal. This occurred specifically,
when the uncertainty parameter got increased during when there was an increase observed
in the length of the insurance rate interval of every bank. In another study (Huang & Wang,
2017), the authors focused on the option pricing model under Knight Uncertainty that is
gauged by Levy process. The study further deployed the upper and lower bounds’ model
for the European option. In the study conducted by Liu et al. (2020), the authors expanded
the hedge fund compensation price up to Knightian uncertainty market. The study arrived at
the conclusion that when the Knight uncertainty value increases, then it erodes the values of
both, the fees as well as the claim.

Based on the reviewof literature conducted above, it can be understood that the discussions
made the scholars regarding credit risk problem, gauged by Levy process, often excluded the
influence exerted by Knight Uncertainty. On the other hand, whenever the credit risk issue is
investigated under the influence of Knight uncertain environment, no discussion takes place
regarding the role played by actual jump of the underlying asset. In this background, the
current research paper is motivated at detailing the structural corporate credit risk model,
gauged by Levy process, under Knight uncertainty financial market. With the introduction of
a viable control set for the purpose of characterizing the Knight Uncertainty in the financial
market, the current study authors leverage Lévy-Laplace transform. This is performed to
incorporate the dynamic pricing models for bond value, stock value and corporate default
probability and obtain their pricing intervals accordingly. Simultaneously, the study also deals
with the credit risk issue that occurs as a result of pure jump Lévy process. In this study, the
dynamic pricing models’ explicit outcomes were attained, assuming that the jump variable
is log-normally distributed. At the end, the authors used the numerical analysis technique to
portray the crucial influence exerted by the Knight uncertain factor and the jump intensity
upon the pricing intervals of bond value, stock value and the default probability.

The rest of the research article is constructed as briefed herewith. Section 2 provides an
overview of the levy financialmarket under knight uncertainty alongwith a few features of the
Levy process. In Sect. 3, the authors attained the pricing intervals for bond value, stock value
and corporate default probability with the incorporation of dynamic pricing model. Section 4
analyzes the crucial influence exerted by both jump intensity as well as knight uncertain
parameter upon the pricing intervals of these values. Section 5 concludes the research paper.

2 Lévy financial market under knight uncertainty

Let (�, Ft , P) be completely a continuous time trading economywith infinite horizon which
satisfies the usual conditions. The information evolves according to the augmented filtration
{Ft }0≤t≤T generated by a standard Brownian motion {Bt }0≤t≤T and an independent Lévy
process {Xt }0≤t≤T . And the Lévy process {Xt }0≤t≤T satisfies the following properties:
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(i) X0 � 0 almost surely;
(ii) {Xt }0≤t≤T has independent stationary increments and is centered in its origin;
(iii) The Laplace transform of {Xt }0≤t≤T is bounded. There exit τ > 0 and ω2 > 0 so

that for every ω1 ∈ (−∞, ω2] t ∈ [0, τ ], the Laplace transform ω → E
(
eωXt

)
is

bounded by two strictly positive constant over ω ∈ [ω1, ω2]. There exist M1 > 0 and

M2 > 0 for every ω ∈ [ω1, ω2] and t ∈ [0, τ ], it holds that M1 ≤ E
(
eωXt

) ≤ M2.

We also need the follow Lévy-Laplace exponent of Xt ,

Lemma 1 (Applebaum 2009). There exists a function φ : (−∞, ω2] defined as for every
t ∈ R+ and ω ∈ (−∞, ω2] satisfies

E
[
eωXt

]
� eφ(ω)t , (1)

this function φ : (−∞, ω2] is called Lévy-Laplace exponent of Xt .

We assume that the enterprise value process is described by a geometric Brownian motion
times the exponential of a Lévy process with no Brownian motion part. This leads to the
following Vt :

Vt � V0exp

{∫ t

0

[
μs − σ 2

s

2

]
ds +

∫ t

0
σsd Bs + Xt

}
, t ∈ [0, T ]. (2)

whereμs , σs are the expected return and volatility of the value of Vt respectively, and assume
they are integrable functions in [0, T ] → R, and σt > 0 for all t ∈ [0, T ].

In theory, no arbitrage in the financial market means that the discounted asset is a martin-
gale under the natural probability measure P , that is

E

[
exp

{
−
∫ t

0
rsds

}
Vt

]
� V0 a.s. , (3)

here rs is the zero-coupon interest rate. Bring Vt into (3) we can get the following equations

E

[
exp

{
−
∫ t

0
rsds

}
Vt

]

� E

[
exp

{
−
∫ t

0
rsds

}
V0exp

{∫ t

0

[
μs − σ 2

s

2

]
ds +

∫ t

0
σsd Bt + Xt

}]

� V0 exp

{∫ t

0
(μs − rs)ds −

∫ t

0

1

2
σ 2

s ds

}
E

[
exp

{∫ t

0
σsd Bs

}]
E
[
exp{Xt }

]
,

since {Bs}0<t<T is a standard Brownian motion under probability measure P , and Lévy-
Laplace exponent of Xt , the following two equations hold

E

[
exp

{∫ t

0
σsd Bs

}]
�
∫ t

0

1

2
σ 2

s ds, E
[
exp{Xt }

]
= exp{φ(1)t}.

Then

E

[
exp

{
−
∫ t

0
rsds

}
Vt

]
� V0 exp

{∫ t

0
(μs − rs)ds + φ(1)t

}
,

therefore we can get the no-arbitrage constraint in this financial market is
∫ t

0
μsds �

∫ t

0
rsds − φ(1)t , t ∈ [0, T ] (4)
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In order to describe the risk of Knight uncertainty in financial markets, Knight (1921)
introduced the following set � called K-ignorance,

� � {
(θt )0≤t≤T , |θt |≤ k a.s. t ∈ [0, T ]

}
, (5)

where k > 0 is a constant. And θt reflects the amount of market information that financial
investors can capture at time t .Namely there is a family of equivalent probabilitymeasurement
spaces

(
�, Ft , Pθ

)
with θ ∈ � in the financial market. θt � 0 indicates an rational investor,

and the probability measurement spaces is (�, Ft , P) mentioned above.θt > 0 indicates an
pessimistic investors, the bigger the θt , the stronger the pessimism;θt < 0 indicates an
optimistic investor, the smaller the θt , the stronger the optimism.

Assume that the enterprise value process under Knight uncertainty

Vt � V0exp

{∫ t

0

[
μs − σ 2

s

2
− σsθs

]
ds +

∫ t

0
σsd Bθ

s + Xt

}
, t ∈ [0, T ]. (6)

3 Structural credit risk model

3.1 Default probability

Let us denoted {Nt }0≤t≤T is a Poisson process of intensity λ and a sequence of independent
variable independent identically distributed {Ui }i∈N+ satisfied

(i) U0 � 1, Ui ∈ (−1, +∞);

(i i) ∀u ∈ (−∞, 1), E
[
(1 + U )u

]
< ∞.

Assume the standard Brownian motion {Bt }0≤t≤T , Poisson process {Nt }0≤t≤T and
{Ui }i∈N+ are independent and the filtration {Ft }0≤t≤T in this market is spanned by the three
stochastic processes. In this framework, the enterprise asset value process (3) can be mod-
eled as a risky asset with some stochastic jumps of stochastic intensity {Ui }i∈N+ which occur
according to the Poisson process {Nt }0≤t≤T . Between two jumps, the enterprise asset value
process can be modeled by the standard Brownian motion {Bt }0≤t≤T as follows

V θ
t � V0exp

{∫ t

0

[
μs − σsθs − σ 2

s

2

]
ds +

∫ t

0
σsd Bθ

s

} Nt∏

i�1

(1 + Ui ), t ∈ [0, T ], θ ∈ �.

(7)

here Xt � ln

(
Nt∏

i�1
(1 + Ui )

)

is a pure jump Lévy process, and define
0∏

i�1
(1 + Ui ) � 1 means

there is no jump in this market.
In order to get the Lévy-Laplace exponent of pure jump Lévy process Xt , we need the

following proposition of Poisson process.

E
[
eXt
]

�E

[
Nt



i�1
(1 + Ui )

]

�
∞∑

n�0

E

(
Nt �n



i�1
(1 + Ui )|Nt � n

)
P(Nt � n)
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�
∞∑

n�0

(E(1 + U1))
n e−λt (λt)n

n!

� exp{λt E(U1)}
that is φ(1) � λE(U1), then we get the concrete expression of the no-arbitrage constraint in
this section:∫ t

0 μsds � ∫ t
0 rsds − λE(U1)t , t ∈ [0, T ].

Under the risk-neutral measure, enterprise value process

V θ
t � V0

Nt∏

i�1

(1 + Ui )exp

{∫ t

0

[
rs − σsθs − σ 2

s

2

]
ds − λE(U1)t +

∫ t

0
σsd Bθ

s

}
, (8)

Let E(t , Vt , T ) and D(t , Vt , T ) be the value of the stock and bonds issued by the enterprise
at time t , T is the maturity date of the enterprise bonds. Assume that the enterprise’s default
time can only be the bond maturity date T . Concretely, at the maturity date T , if VT < L ,
the enterprise will default, and enterprise bond holders can only receive amount of wealth as
VT ; if VT > L , the enterprise will not default, enterprise bond holders will receive amount
of wealth as L. Here L is the par value of enterprise bonds.

Theorem1 Assume enterprise asset value process is described by (6), the enterprise’s default
probability under Knight uncertainty is.

(9)pθ � Pθ
{

V θ
T < L

} �
+∞∑

n�1

(λT )ne−λT

n!
N (−dθ

n ) , θ ∈ � .

where N (·) is a standard normal distribution and

dθ
n �

ln V0
L + ln

[
n∏

i�1
(1 + Ui )

]
− λT E(U1) +

∫ T
0

[
rs − σsθs − σ 2

s
2

]
ds

√∫ T
0 σ 2

s ds
. (10)

and the default probability interval is [p−k , pk], (k > 0).

Proof According to the definition of enterprise default probability and enterprise value pro-
cess (7), we can get.

Pθ
{

V θ (T ) < L
}

� Pθ

{

V0

NT∏

i�1

(1 + Ui ) exp

{∫ T

0

[
rs − σsθs − σ 2

s

2

]
ds − λE(U1)T +

∫ T

0
σsd Bθ

s

}
< L

}

� Pθ

⎧
⎨

⎩

∫ T
0 σsd Bθ

s√∫ T
0 σ 2

s ds
< −dθ

n

⎫
⎬

⎭
,

For writing convenience, set

A �
⎧
⎨

⎩

∫ T
0 σ (s)d Bθ (s)
√∫ T

0 σ 2(s)ds
< −dθ

n

⎫
⎬

⎭
,
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then

P � Pθ
{

V θ (T ) < L
} � Eθ [IA]

� Eθ
[
Eθ ( IA|NT )

]

�
+∞∑

n�1

(λT )ne−λT

n!
Eθ [IA|NT � n ]

�
+∞∑

n�1

(λT )ne−λT

n!
Pθ [A|NT � n ]

�
+∞∑

n�1

(λT )ne−λT

n!
Pθ

⎧
⎨

⎩

∫ T
0 σ (s)d Bθ (s)
√∫ T

0 σ 2(s)ds
< −dθ

n

⎫
⎬

⎭
.

Since
∫ T
0 σ (s)d Bθ (s) is an standard normal distribution with mean 0 and variance

∫ T
0 σ 2(s)ds under probability measure Pθ , then

pθ �
+∞∑

n�1

(λT )ne−λT

n!
N (−dθ

n ) .

Easy to verify by the definition of set Knight uncertainty�, the default probability interval
is [p−k , pk], (k > 0).

The conclusion in Ref Lin (2018), is the special case when θ � 0 here.

3.2 Enterprise bond value and stock value

In Sect. 3, we have analyzed that at time i ∈ N+ if VT < L , the enterprise will default, and
enterprise bond value D(VT ) will be VT , and stock value E(VT ) will be 0, due to the priority
claim of bond. Contrarily, if VT > L , the enterprise will not default, then enterprise bond
value D(VT ) will be L and stock value E(VT ) will be VT − L. That is,

E(VT ) � max{VT − L , 0}; (11)

D(VT ) � L − max{L − VT , 0}. (12)

It means that stock value is a call option of the enterprise asset value. Enterprise bond
value is equivalent to such a portfolio: buy a risk-free bond with a par value of L and a
maturity date of T , and sell a put option with an execution price of L and a maturity date of T
for the assets of the enterprise at the same time. According to Black–Scholes formula (Black
& Scholes, 1973) and martingale measure transformation, we get the following theorem 2
about the value of enterprise stock and enterprise bond.

Theorem2 Assume enterprise asset value process is described by (6), the value of enterprise
stock and enterprise bond under Knight uncertainty are
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Eθ (0, V0, T ) �
∞∑

n�1

e−λT (λT )n

n!
E

θ

⎡

⎣V0 exp

{

−λE(U1)T −
∫ T

0
σsθsds

} Nt∏

i�1

(1 + Ui )N (dθ
2, n

) − L exp

{

−
∫ T

0
rsds

}

N (dθ
1, n)

⎤

⎦,

(13)

Dθ (0, V0, T ) � V0 − Eθ (0, V0, T ), (14)

where N (·) is a standard normal distribution and

dθ
1, n�dθ

n �
ln V0

L + ln

[
n∏

i�1
(1 + Ui )

]
− λT E(U1) +

∫ T
0

[
rs − σsθs − σ 2

s
2

]
ds

√∫ T
0 σ 2

s ds
, (15)

dθ
2, n

�dθ
1, n+

√∫ T

0
σ 2

s ds, (16)

and the enterprise stock value interval is
[
Ek(0, V0, T ), E−k(0, V0, T )

]
, (k > 0), the

enterprise bond value interval is
[
D−k(0, V0, T ), Dk(0, V0, T )

]
, (k > 0).

Proof According to Black–Scholes formula (Black & Scholes, 1973) of call option

Eθ (0, V0, T ) �Eθ

[
exp

{
−
∫ T

0
rsds

}(
V θ

T − L
)+
]

�Eθ

[

exp

{
−
∫ T

0
rsds

}(

V0

Nt∏

i�1

(1 + Ui ) exp

{∫ T

0

[
rs − σsθs − σ 2

s

2

]
ds

− λE(U1)T +
∫ T

0
σsd Bθ

s

}
− K

)+]

�
∞∑

n�1

e−λT (λT )n

n!
E

θ[
V0 exp

{
−λE(U1)T −

∫ T

0
σsθsds

}

×
Nt∏

i�1

(1 + Ui )N (dθ
2, n
) − L exp

{
−
∫ T

0
rsds

}
N (dθ

1, n)

]

,

where

dθ
1, n�dθ

n , dθ
2, n

�dθ
1, n+

√∫ T

0
σ 2

s ds,

and the value interval of enterprise stock is
[
Ek(0, V0, T ), E−k(0, V0, T )

]
, (k > 0).

According to Black–Scholes formula (Black & Scholes, 1973) of put option

Dθ (0, V0, T ) �Eθ

[
exp

{
−
∫ T

0
rsds

}
D(V θ

T )

]

� exp

{
−
∫ T

0
rsds

}
Eθ [L − max{L − VT , 0}]
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�L exp

{
−
∫ T

0
rsds

}
− Eθ

[
exp

{
−
∫ T

0
rsds

}
(
L − V θ

T

)+
]

�V0 −
∞∑

n�1

e−λT (λT )n

n!
E

θ[
V0 exp

{
−λE(U1)T −

∫ T

0
σsθsds

}

×
Nt∏

i�1

(1 + Ui )N (dθ
2, n
) − L exp

{
−
∫ T

0
rsds

}
N (dθ

1, n)

]

and the value interval is
[
D−k(0, V0, T ), Dk(0, V0, T )

]
, (k > 0).

For detailed certification of option pricing, please refer to Xue and Wang (2008).

3.3 Particular case

Furthermore, for any i ∈ N+, we assume the jump process (1+Ui ) follows a log-normal
distribution with mean and μ volatility σ 2, then the expectation of U1 is

E(U1) � exp{μ +
σ 2

2
} − 1. (17)

Their product
n∏

i�1
(1 + Ui ) follows a log-normal distribution with mean and n μ volatility

nσ 2 as (1+Ui ) are independently distributed. Y �
(

n∏

i�1
(1 + Ui ) − nμ

)/√
nσ follows a

standard normal distribution (Y ∼ N (0, 1)), then

n∏

i�1

(1 + Ui ) � exp
{
nμ +

√
nσY

}
. (18)

We also need the following important property of a centered normalized normal distribu-
tion Y ∼ N (0, 1), for every a1, a2, a3 ∈ R,

E (exp{a1Y }N (a2Y + a3)) � exp

{
a2
1

2

}

N

⎛

⎝a1a2 + a3√
1 + a2

2

⎞

⎠. (19)

Under this framework, assume the expected returnμ and volatility σ 2 of enterprise value
are constants.

Theorem 3 Under the assumption of the jump process (1+Ui ) follows a lognormal distribu-
tion with mean and μ volatility σ 2, the value of enterprise stock (13), enterprise bond (14)
and default probability (9) under Knight uncertainty have the following expressions.

Eθ (0, V0, T ) �
∞∑

n�1

e−λT (λT )n

n!
[

V0 exp

{
nμ̄ +

nσ̄ 2

2
− λT E(U1) −

∫ T

0
σθsds

}
N
(

d̄θ
2, n

)
− Le−rT N

(
d̄θ
1, n

)]
, (20)

Dθ (0, V0, T ) � V0 − Eθ (0, V0, T ), (21)
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pθ � Pθ
{

V θ
T < L

} �
+∞∑

n�1

(λT )ne−λT

n!
N (−d

θ

n) , θ ∈ � . (22)

where N (·) is a standard normal distribution, and

E(U1) � exp

{
μ +

σ 2

2

}
− 1,

d
θ
1, n � d

θ
n �

ln V0
L + nμ +

(
r − σ 2

2 − λE(U1)
)

T − ∫ T
0 σθsds

√
σ 2T + nσ 2

, d
θ
2, n�d

θ
1, n+

√
σ 2T + nσ 2.

Proof Since ln(1+Ui ) ∼ N (μ, σ 2) and formula (18) holds, the value of enterprise stock
(13) can be rewritten as follows.

Eθ (0, V0, T ) �
∞∑

n�1

e−λT (λT )n

n! Eθ
[
V0 exp

{
−λT E(U1) − ∫ T

0 σθsds
}

exp
{
nμ +

√
nσY

}
N (dθ

2, n
) − Le−rT N (dθ

1, n)
]
Set

A � Eθ
[
exp
{
nμ +

√
nσY

}
N (dθ

2, n
)
]
, B � Eθ

[
Le−rT N (dθ

1, n)
]
,

then

A �enμ · Eθ

⎡

⎣exp
{√

nσY
}

N

⎛

⎝
√

nσ

σ
√

T
Y +

ln V0
L + nμ +

(
r + σ 2

2 − λE(U1)
)

T − ∫ T
0 σθsds

σ
√

T

⎞

⎠

⎤

⎦

�enμ · exp
{

nσ 2

2

}

N

⎛

⎝
nσ 2 + ln V0

L + nμ +
(

r + σ 2

2 − λE(U1)
)

T − ∫ T
0 σθsds

σ
√

T ·
√
1 + nσ 2

σ 2T

⎞

⎠

� exp

{

nμ +
nσ 2

2

}

N

⎛

⎝
ln V0

L + nμ + nσ 2 +
(

r + σ 2

2 − λE(U1)
)

T − ∫ T
0 σθsds

√
σ 2T + nσ 2

⎞

⎠

and

B �Le−rT Eθ

⎡

⎣N

⎛

⎝
√

nσ

σ
√

T
Y +

ln V0
L + nμ +

(
r − σ 2

2 − λE(U1)
)

T − ∫ T
0 σθsds

σ
√

T

⎞

⎠

⎤

⎦

�Le−rT N

⎛

⎝
ln V0

L + nμ +
(

r − σ 2

2 − λE(U1)
)

T − ∫ T
0 σθsds

√
σ 2T + nσ 2

⎞

⎠

Set

d
θ

1, n �
ln V0

L + nμ +
(

r − σ 2

2 − λE(U1)
)

T − ∫ T
0 σθsds

√
σ 2T + nσ 2

, d
θ

2, n�d
θ

1, n+
√

σ 2T + nσ 2.

From the above analysis, we can get

Eθ (0, V0, T ) �
∞∑

n�1

e−λT (λT )n

n!
E

θ [
V0 exp{−λT E(U1)

−
∫ T

0
σθsds} exp{nμ +

√
nσY

}
N (dθ

2, n
) − Le−rT N (dθ

1, n)

]
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�
∞∑

n�1

e−λT (λT )n

n!

[
V0 exp{−λT E(U1)

−
∫ T

0
σθsds} exp

{
nμ +

nσ 2

2

}
N
(

d
θ

2, n

)
− Le−rT N

(
d

θ

1, n

)]
.

The same method can be used to prove (21) and (22).

4 Example analysis

The current section analyzes the impact exerted by Knight parameter and Poisson intensity
upon three varying price values discussed earlier. In order to perform the calculations easer,
it has been assumed that the enterprise’ asset value at time 0 was V0 � 55 and its volatility
was σ 2 � 0.04. Further, the risk free rate of interest was r � 0.05 while the enterprise bond’s
face value was L � 50. The maturity of the enterprise bond was T � 3. The mean value
of the jump process is μ � −0.15 while its volatility (1 + Ui ) is denoted by σ 2 � 0.01.
Knight uncertain parameter k ∈ [0, 1]. As per the conclusion arrived in the section ear-
lier, the default probability interval is [p−k , pk] whereas

[
Ek(0, V0, T ), E−k(0, V0, T )

]

denots the enterprise’ stock value interval while the bond value interval is denoted by[
D−k(0, V0, T ), Dk(0, V0, T )

]
. In this study, varying values of the Poisson intensity

λ � 0.01, 0.05, and 0.1 were considered to attain the three figures given below.
Figures 1, 2, and 3 infer the presence of a significant influence exerted by Poisson intensity

λ and Knight uncertain parameter upon the default probability, enterprise stock value and
bond value interval respectively. Whenever the Poisson intensity λ increased, there was an
increase observed in the value of enterprise stocks as well as the default probability. However,
the bond value got significantly reduced. This infers that it is not possible to ignore the impact
created by jump intensity of the corporate assets, in financial markets, upon corporate default
probability. However, when the Knight uncertain increased, there was a gradual increase
observed in market uncertainty as well. On the other hand, the company’s default probability
too increased in a gradual manner and started exhibiting rapid default probability interval too.

Fig. 1 Thevariation trend of the default probability interval onKnight uncertain parameter andPoisson intensity
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Fig. 2 The variation trend of the enterprise stock value interval on Knight uncertain parameters and Poisson
intensity

Fig. 3 The variation trend of the enterprise bond value interval on Knight uncertain parameters and Poisson
intensity

This infers that the default probability increases in a phased manner along with the degree
of uncertainty. The current study findings clearly established the impact created by Knight
uncertainty on a company’s default probability, its stock and bond values. So, it becomes
inevitable to consider the impact created by Knight uncertainty on a company’s default in
actual operation.

5 Conclusions

The current research paper analyzed the credit risk measure of the listed firms in Levymarket
in the presence of Knight uncertainty environment. This study was conducted based on two
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unavoidable crucial elements of the Knight uncertainty risk in the financial markets along
with jumps in the pricing process of risky assets. Based on the assumption that Levy process
is followed to determine the values of the assets of the listed companies, the current study
proposed a credit risk measure model under Knight uncertainty environment. On the contrary
to the existing conventional credit risk structure model, there is no specific number exists
for default probability of the public companies. However, there exists an interval, as a result
of Knight uncertainty. In case of the uncertainty parameter being zero, then this uncertain
credit risk model becomes the conventional structured credit risk model. By developing a
credit risk measurement theory, the current research work empowers the investors with a new
model for evaluating the credit risks of a firm.
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