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Abstract
This paper develops a model for predicting the failure time of a wide class of weighted
k-out-of-n reliability systems. To this aim, we adopt a rational expectation-type approach by
artificially creating an information set based on the observation of a collection of systems
of the same class–the catalog. Specifically, we state the connection between a synthetic
statistical measure of the survived components’ weights and the failure time of the systems.
In detail, we follow the evolution of the systems in the catalog from the starting point to their
failure–obtained after the failure of some of their components. Then, we store the couples
given by the measure of the survived components and the failure time. Finally, we employ
such couples for having a prediction of the failure times of a set of new systems–the in-
vivo systems–conditioned on the specific values of the considered statistical measure. We
test different statistical measures for predicting the failure time of the in-vivo systems. As
a result, we give insights on the statistical measure which is more effective in contributing
to providing a reliable estimation of the systems’ failure time. A discussion on the initial
distribution of the weights is also carried out.
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prediction · Statistical measures.

A preliminary version of the work was posted on HAL, see https://halshs.archives-ouvertes.fr/halshs-
01673338v2.

B Jessica Riccioni
jessica.riccioni@uniroma3.it

Jorgen-Vitting Andersen
Jorgen-Vitting.Andersen@univ-paris1.fr

Roy Cerqueti
roy.cerqueti@uniroma1.it

1 CNRS, Centre d’Economie de la Sorbonne, Université Paris 1 Pantheon-Sorbonne Maison des
Sciences Economiques, 106-112 Boulevard de l’Hôpital, 75647 Paris Cedex 13, France

2 Department of Social and Economic Sciences, Sapienza University of Rome, Piazzale Aldo Moro,
5, 00185 Rome, Italy

3 GRANEM, Université d’Angers, 49000 Angers, France

4 Department of Business Economics, Roma Tre University, Via Silvio D’Amico, 77, 00145 Rome, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-023-05300-x&domain=pdf
http://orcid.org/0000-0003-2718-5669
https://halshs.archives-ouvertes.fr/halshs-01673338v2
https://halshs.archives-ouvertes.fr/halshs-01673338v2


296 Annals of Operations Research (2023) 326:295–316

1 Introduction

In reliability theory, it is important to assess the failure times of systems with interconnected
components, and this leads to interesting questions in mathematical statistics and probability
modelling. Here, we propose a stochastic model for evaluating and predicting the expected
time of failure of a class of weighted k-out-of-n systems–introduced byWu and Chen (1994).
We recall that the weighted k-out-of-n systems have weighted components, and the failure
of the system occurs when the survived components have aggregated weight below a given
threshold. As we will see, we are slightly different with respect to the original conceptualiza-
tion of the weighted k-out-of-n systems. In particular, a system fails when a given number
of its components fail, and the weight of a failed component is assumed to be opportunely
reallocated to the surviving components–under the so-called reallocation rule.

To this end, we apply a Bayesian approach from a rational expectations perspective.
Some words on our conceptualization of rational expectations are in order. We postpone

them at the end of the introduction when the framework of the model will be clear.
At the moment, rational expectations are used in finance to estimate the fundamental price

of a given asset. The fundamental price is obtained as an expectation value of the price at
time t conditioned on all available information relevant to the given asset. Since people are
assumed to be rational (i.e. to make trading decisions without biases), taking the expectation
value should give the fair or fundamental price. The idea is that every time new information
(relevant for the price of an asset) arrives (e.g. new information about earnings, interest rates,
mergers, etc) this will impact the fundamental price of an asset. In similar fashion, our idea is
that every time new information arrives concerning individual component failure, this should
lead to a new (optimal) prediction for the failure of the ensemble of components, i.e. system
failure. We would like to point out that in finance “all relevant information” is in principle
infinite and very vague to quantify: e.g. how does new information of the sickness of the
CEO impact future earnings of a company? On the contrary, in our case “information” is
crystal clear to quantify via the new values of component weights of the system. Specifically,
as we will see, we estimate the expected failure time of the given systems conditioned by the
distribution of theirweights, on the basis of an extensive collection of preliminary experiments
in which such weights are observed.

Generally, in the literature (see, for example, (Sanyal et al., 1997; Krishnamurthy &
Mathur, 1997; Gokhale et al., 1998), and Yacoub et al. (2004)), the failure of reliability
systems is forecast by using scenario analysis based on the observation of real systems. Once
the failure of a system has been observed, scenario analysis is performed to understand what
happened to that specific system.

Topredict the failure timeof the investigated systems, referred to here as “in-vivo" systems,
we use all the information stored in a previously constructed “information set". In particular,
we create a catalogue of synthetic systems and observe their time evolution, from the begin-
ning to failure. For each system in the catalogue, we store the time-varying weights—i.e.,
the configurations of the weights–and the associated failure times.

As said before, we adopt a rational expectation-type approach. The concept of rational
expectation comes from the economic context. In this respect, in a celebrated paper, Muth
(1961) pointed the need of making reliable predictions on the way expectations modify once
the available information and/or the structure of the considered system change. This can
be seen as the starting point of the rational expectations theory. We adopt this perspective
by developing a rational expectation-type model for predicting the failure time of our class
of reliability systems on the basis of the available information. In more detail, we build
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the information set by creating the catalog of systems of the same class and observing the
connection between their ‘performance’ and their failure times. For us, the considered systems
are weighted k-out-of-n systems and the performance is measured through a pre-selected
synthetic measure of their weights.

Under this perspective, rational expectations are obtained by taking the mean of the failure
times of the systems of the catalog, conditioned to a specific value of the performance. This
procedure is applied for each observed value of the performance. In so doing, the prediction
of the failure times conditioned to the performance is obtained as an arithmetic mean–which
plays here the role of the expected value–of the corresponding failure times of the systems
in the catalog having the same value of the perfomance. This explains why we take the
arithmetic mean. We do not have any reason for over- or under-estimate the contribution of
some systems of the catalog. Then, we compare these expected values with the failure times
of in-vivo systems with a similar configuration of the weights. In doing so, we explore the
informative content of the weights of the system components so that we can then use an
extensive simulation approach to forecast failure times.

The method is inspired by the one proposed by Andersen and Sornette (2005); Sornette
and Andersen (2006) for the prediction of failure time of the overall system, conditioned on
the information revealed by the damage occurring up until the time at which the system is
being evaluated—i.e., according to the particular weight configuration. This idea was in turn
influenced by the method known as “reverse tracing of precursors" (RTP) (see (Keilis-Borok
et al., 2004), (Shebalin et al., 2004)) for earthquake prediction based on seismicity patterns.

There are two aspects to this. First, we discuss the initial distribution of the weights
to identify which of them leads to more effective rational expectations-based predictions.
Second, we hypothesize that the similarity of the weight configurations is captured by the
similarity of one of their statistical indicators; accordingly,we test several statistical indicators
to find out which has the highest predictive power.

For the initial distribution of the weights, we follow the insights of (Li & Zuo, 2002;
Sarhan, 2005; Asadi & Bayramoglu, 2006; Eryilmaz, 2011; Van Gemund & Reijns, 2012),
and Zhang (2020) and compare five different initial distributions of the weights, viz., the
uniform distribution in the unit interval and four types of Beta distribution, whose parameters
cover the cases of symmetry and asymmetry to the left and to the right.

We also exploit the existing literature to some extent for the analysis of the statistical indi-
cators, considering the variance, skewness, kurtosis, Gini coefficient, and Shannon entropy.
These statistical dimensions were chosen for their crucial informative content.

Concerning the use of moments in forecasting models, some authors consider the lowest
moments of the distributions (the second in our case, i.e., the variance) to be more efficient
than the higher moments (the third, skewness, and the fourth, kurtosis), which are attested
to be less stable and reliable (see, e.g., (Reijns & Van Gemund, 2007; Amari et al., 2012;
Ramberg et al., 1979), and (Kinateder & Papavassiliou, 2019)).

The usefulness of the Gini coefficient when dealing with failure prediction models is
discussed by Ooghe and Spaenjers (2010).

Shannon Entropy has been used for predictive purposes especially in papers dealing with
extreme events (see, e.g.,(Franks&Beven, 1997;Mahanta et al., 2013; Karmakar et al., 2019),
and (Ray & Chattopadhyay, 2021)). This said, to the best of our knowledge our paper is the
first one exploiting Shannon entropy for predicting the failure time of a class of weighted
k-out-of-n reliability systems. In our model, the use of Shannon’s entropy leads us to very
satisfactory predictive results. Therefore, such statistical measure turns out to be an excellent
tool, especially in the presence of very small values in the weight distribution of the system
components.
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Notably, the present paper provides a bridge between reliability theory and rational
expectations.

Indeed, the main message of this paper is the relevance of a rational expectations-type
approach for making prediction in reliability theory. As time goes by, the increase in the
information available to predict failure times clearly improves the possibilities for prediction.
So, after the initial phase of the trends, where the information available is highly random
and there is no gain in rational expectations, the statistical indicators included in the analysis
prove to be good predictive tools. The increase in knowledgewe have about the system allows
us to achieve better performance than the benchmark. In particular, at every time step, we
observe an improvement in the error curves.

Our results agree with the existing literature regarding the initial weight distributions,
confirming the predictive superiority of the negative-exponential distribution. Surprisingly,
among the statistical measures, the Gini coefficient and the Shannon entropy give us the best
predictive results, even though they are almost never used in forecasting models.

The rest of the paper is organized as follows. Section2 contains a review of the main
literature relating to our research. Section3 discusses the relevant reliability systems, with
particular reference to their structure, the main properties of their components, and the failure
rule. Section4 is devoted to the extensive simulations validating the theoretical proposal.
Section5 contains the results and a critical discussion. The last section concludes and suggests
future lines of research.

2 Literature review

Here we review the basic literature that has inspired this research. There are twomain themes:
k-out-of-n reliability systems and rational expectations.

The k-out-of-n systems involve a variety of special cases and generalizations. However,
we can distinguish two types of systems depending on the heterogeneity of their components.
Specifically, systemswith homogeneous components are ones where all the components con-
tribute equally to the reliability of the system; otherwise a system is said to have heterogeneous
components.

As already said in the Introduction, scientific research on weighted k-out-of-n systems
was introduced in Wu and Chen (1994). Studies of systems with homogeneous components
and related applications can be found inGe andWang (1990); Boland and El-Neweihi (1998),
and Milczek (2003). The heterogeneous case is more challenging. Cases with random and
mutually independent weights can be found in Cerqueti (2021); Xie and Pham (2005); Li and
Zuo (2008); Eryilmaz and Bozbulut (2014); Eryilmaz (2014, 2019); Taghipour and Kassaei
(2015); Zhang (2018, 2020), and Sheu et al. (2019). In all the cases, the prediction of the
failure times of k-out-of-n systems has seen the development of severalmethods and iswidely
debated among scholars. It is worth mentioning some of the most relevant contributions:

• Da Costa Bueno and do Carmo, I. M. (2007) applied active redundancy or minimal
standby redundancy depending on the nature of the treated systems, using a martingale
approach.

• Eryilmaz (2012) explored the mean residual lifetime as a fundamental characteristic to
be used for dynamic reliability analysis.

• Wang et al. (2012) considered the reliability estimation ofweighted k-out-of-nmulti-state
systems.
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• Zhang et al. (2019) used a Monte Carlo simulation approach to confirm the accuracy
of a model which assesses the reliability of a given system on the basis of the available
information.

More generally, one can distinguish two main approaches to failure prediction in k-out-
of-n systems in the existing literature: a probabilistic approach that seeks to calculate the
probability distribution of a system’s failure time using techniques of stochastic calculus,
and a Bayesian computational approach that estimates the average failure time of a system,
conditioned on the description of a scenario in which the evolution of the given reliability
system is observed.

In the former group, Oe et al. (1980) used autoregressive models to predict the failure
of a stochastic system. For this purpose, they considered four types of performance indica-
tors: quadratic distance of autoregressive parameter differences, variance of the residuals,
Kullback information, and the distance of the Kullback information (divergence measure).
Furthermore, Azaron et al. (2005) used the reliability function for systems with standby
redundancy. The system fails when all connections between input and output that are con-
nected to the main components are broken. From a different viewpoint, Parsa et al. (2018)
introduced a new stochastic order based on the Gini-type index, showing how it could be used
to gain information about the ageing properties of reliability systems, and thus establishing
the characteristics of active or already failed components.

In the probabilistic approach, a key role is played by the so-called coherent systems,
i.e., systems without irrelevant components; moreover, such systems certainly work when
all the components are active and fail when all the components have failed. An important
contribution here is due to Navarro and coauthors, who give some insight into the case of
dependent components (see (Navarro et al., 2005, 2013), and Navarro et al. (2015)).

In the same context, Gupta et al. (2015) compared the residual lifetime and the inactivity
time of failed components of coherent systems with the lifetime of a system that had the same
structure and the same dependence. In doing so, the paper cited is particularly close to our own
approach, in that it proposes a comparison between a test system and the investigated one–as
we do here, with the comparison between the investigated systems and those in the catalogue.
In contrast, Zarezadeh et al. (2018) investigated the joint reliability of two coherent systems
with shared components, obtaining a pseudo-mixture representation for the joint distribution
of the failure time.

This Bayesian approach includes many papers that estimate the average time to failure
of these systems using asymmetric loss functions. Among them, Mastran (1976) presented
a procedure for exploring the connection between component failure and system collapse in
the case of independent components. Mastran and Singpurwalla (1978) also proposed exam-
ples of series systems with independent components and parallel systems with component
interdependence by using prior data to build in this interdependence. Barlow (1985) modeled
a combination of information between components and systems by exploiting lifetime data.
Martz et al. (1988) proposed a very detailed procedure and explanatory examples for either
test or prior data at three or more configuration levels in the system. Martz andWaller (Martz
& Wailer, 1990) extended (Martz et al., 1988) for the particular cases of series and paral-
lel subsystems. Regarding applications, we should mention (Van Noortwijk et al., 1995),
who developed a Bayesian failure model for the observable deterioration characteristics in
a hydraulic field. Gunawan and Papalambros (2006) presented a Bayesian-type reliability
systemmodel in the field of engineering. Kim et al. (2011) explored deteriorating systems by
conditioning on monitoring data based on three-state continuous time homogeneous Markov
processes. Along the same lines, Aktekin and Caglar (2013) presented Markov chain Monte
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Carlo methods in the area of software reliability to investigate the failure rate of systems
with components that change stochastically. Regarding Bayesian methods, it is also worth
mentioning (Bhattacharya, 1967; El-Sayyad, 1967; Canfield, 1970; Varian, 1975; Zellner,
1986) and Basu and Ebrahimi (1991).

In line with several of the above-mentioned studies, the weighted k-out-of-n systems
presented here have components with an inner dependence structure. The failure of a given
system is assumed to depend on the number and importance of the components. The approach
we follow is of Bayesian type. Indeed, our aim is to estimate the failure time of a system
by using the information collected in an observed catalogue as the prior. In doing so, we
introduce a new element of reliability theory by adopting a rational expectations perspective.

The way expectations are created is a classical theme in the economic debate. Indeed, in
the modern theory of behavioral economics, agents are divided into two different categories
depending on the hypothesis they use to form economic expectations: those who follow the
hypothesis of adaptive expectations, and others who instead follow the hypothesis of rational
expectations. Under the first hypothesis, future economic decisions are made according to
what happened in the past (see, e.g., (Friedman, 1957) and Chow (1991)). In the context of
rational expectations, however, future outcomes are computed as the conditional expectation
of the observed realizations of the quantity to be predicted given the available information (see
the breakthrough contributions by (Muth, 1961; Lucas, 1972; Sargent et al., 1973; Sargent
& Wallace, 1975), and Barro (1976)).

The rational expectations hypothesis is a fundamental assumption in many theoretical
models, with implications for economic analysis, and thanks to the increasing accessibility
of big data in recent years, studies have been carried out on the use of rational expectations
to identify prediction errors in large samples. So, rational expectations are important in any
situation inwhich the agents’ behavior is influenced by expectations (seeMaddock andCarter
(1982)).

In the context of forecasting, we mention (Atici et al., 2014) who applied Cagan’s model
of hyperinflation on discrete time domains. From a different perspective, Becker et al. (2007)
compared the rational expectations hypothesis with the bounds and likelihood heuristic to
explain average forecasting behavior.

The rational expectations perspective proposed here is used to forecast the failure time
of a reliability system, given the available information. Specifically, we check whether the
conditional expectation of the realizations in the catalogue of such a quantity given a peculiar
state of the weights leads to a suitable identification of the failure time of a system with the
same weight configuration.

The crucial aspect of our paper concerns the use of some statistical measures to synthesize
the available information on the components’ weights to predict the failure time of a weighted
k-out-of-n system. Specifically, we provide information also on the role of the considered
statistical measures for predicting the failure time of the system itself. Furthermore, we also
provide information about the initial distribution of the weights for prediction. In doing so,
we adopt a rational expectations-type approach in the context of reliability theory with an
affordable computational complexity. This is the main novelty of our paper.

3 The reliability system

We consider a probability space (�,F,P) containing all the random quantities used through-
out the paper. We denote the expected value operator related to the probability measure P by
E.
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We denote the reliability system–or, simply, the system–by S, and assume that it comprises
n components denoted by C1, . . . ,Cn and collected in a set C.

Aswewill see, in our framework the system can be considered to be ofweighted k-out-of-n
type in the sense that it fails when some of its components fail.

The state of S is a binary quantity. If the system is active and works, then its state is 1.
Otherwise, the state of S is 0, and the system is said to have failed. The state of S evolves in
time and is denoted by Y (t) at time t ≥ 0. At the beginning of the analysis (time t = 0), the
system is naturally assumed to be in state 1.

Analogously, the state of the j-th component C j at time t is denoted by Y j (t), and it takes
value 1 when C j is active and 0 when C j has failed. At time t = 0 we have Y j (0) = 1, for
each j = 1, . . . , n.

3.1 The structure of the system

To express the dependence of the state of S on the states of its components, we simply
introduce a function φ : {0, 1}n → {0, 1}

Y (t) = φ(Y1(t), . . . , Yn(t)). (1)

In reliability theory, φ is usually called the structure function of the system.
The elements of {0, 1}n are called configurations of the states of the components of the

system or, briefly, configurations.
The function φ in (1) has the role of clustering the set of configurations into two subsets:

those leading to failure (F) of the system and those associatedwith the not-failed (NF) system.
Thus, we say that KF ⊆ {0, 1}n is the collection of configurations such that φ(xF ) = 0,
for each xF ∈ KF , while KNF ⊆ {0, 1}n is the collection of configurations such that
φ(xN F ) = 1, for each xN F ∈ KNF . By definition, {KF , KNF } is a partition of {0, 1}n .

We may reasonably assume that the system is coherent and that the following three
conditions are satisfied:

First, (0, . . . , 0) ∈ KF and (1, . . . , 1) ∈ KNF . This condition means that, when all the
components of the system are active (not active), then the system as a whole is also active
(not active).

Second, φ is non-decreasing with respect to its components. This has an intuitive explana-
tion: the failure of one of the components of the system might worsen the state of the system
and cannot improve it.

Third, each component is able to determine the failure of the system. Formally, this condi-
tion states that, for each j = 1, . . . , n, there exists

(
y1, . . . , y j−1, y j+1, . . . , yn

) ∈ {0, 1}n−1

such that (y1, . . . , y j−1, 1, y j+1, . . . , yn) ∈ KNF and (y1, . . . , y j−1, 0, y j+1, . . . , yn) ∈
KF .

3.2 Components and weights

We now note three natural assumptions about the components of the system, inspired by
standard reliability theory: first, the various components of the system don’t all have the same
"relevance". Thismeans that a possiblemeasure of the centrality of the components’ role in the
overall system would lead to a heterogeneous distribution. As we will explain in more detail
soon, "relevance" here stands for the role played by the components’ failure in contributing
to the failure of the system; second, the components of the system are interconnected and

123



302 Annals of Operations Research (2023) 326:295–316

exhibit different levels of interconnection; third, relevance and interconnection levels change
over time, with the changing status of the components of the system. We now spell this out.

For each j = 1, . . . , n and t ≥ 0, the relative importance of the component C j over the
entire systemat time t ismeasured byα j (t), whereα j : [0,+∞) → [0, 1] and∑n

j=1 α j (t) =
1, for each t .

For each t ≥ 0, we collect the α(t)’s in a time-varying vector a(t) = (α j (t)) j , where

a : [0,+∞) → [0, 1]n such that t �→ a(t). (2)

If a component is not active at time t , then its relevance for the system is null. More-
over, each active component has positive relative relevance, i.e., the system does not contain
irrelevant active components. Formally,

α j (t) = 0 ⇔ Y j (t) = 0. (3)

Condition (3) is useful, in that it allows us to describe the status of the system’s components
directly through the α’s.

For each j = 1, . . . , n, the relative relevance of C j varies with the variation of the
state of each of the system’s components. Once a component fails, it disappears from the
reliability system – i.e., its relative relevance becomes null–and the relative relevances of
the components of the remaining active ones are modified on the basis of a suitably defined
reallocation rule.

The next example proposes a way to build a reallocation rule.

Example 1 Consider a system S whose component set is C = {C1,C2,C3,C4,C5}.
Assume that, at time t = 0, we have α1(0) = 0.1, α2(0) = 0.15, α3(0) = 0.3, α4(0) = 0.2,
α5(0) = 0.25.

Now, suppose that the first failure of one of the components of the system occurs at time
t = 7, when C3 fails. Of course, α j (t) = α j (0), for each t ∈ [0, 7) and j = 1, 2, 3, 4, 5.
Moreover, α3(7) = 0.

We consider a specific reallocation rule which states that the relevance is reallocated
over the remaining active components in proportion to their α values before the failure (see
Fig. 1). This means that

α1(7) = 0.1

0.1 + 0.15 + 0.2 + 0.25
, α2(7) = 0.15

0.1 + 0.15 + 0.2 + 0.25
,

α3(7) = 0, α4(7) = 0.2

0.1 + 0.15 + 0.2 + 0.25
, α5(7) = 0.25

0.1 + 0.15 + 0.2 + 0.25
.

In general, if τ1, τ2 are the dates of two consecutive failures, with τ1 < τ2, we have

α j (τ2) = α j (τ1)1{Y j (τ2)=1}
∑5

i=1 αi (τ1)1{Yi (τ2)=1}
, j = 1, 2, 3, 4, 5.

The α’s are step functions, with jumps each time one of the components fails.

Regarding the interconnections among the components, we define their time-varying rel-
ative levels using functions wi j : [0,+∞) → [0, 1], for each i, j = 1, . . . , n, so that wi j (t)
is the relative level of the interconnection between Ci and C j at time t ≥ 0. We assume
that the arcs in the resulting network are oriented, so that in general wi j (t) 	= w j i (t), for
each t . Moreover, by construction,

∑n
i, j=1 wi j (t) = 1, for each t . We also assume that

self-connections do not exist in our network, i.e., wi i (t) = 0, for each i and t .
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Fig. 1 Blob graph representing the proportional reallocation rule described in Example 1: [Top] A component
has failed and is deleted from the system. Then, [Bottom] The relevance of the failed component is reallocated
over the remaining active components in proportion to their α values (bubble size) before the failure

For each t ≥ 0, thew(t)’s are collected in a time-varying matrixw(t) = (wi j (t))i, j , with

w : [0,+∞) → [0, 1]n×n such that t �→ w(t). (4)

IfCi is a non-active component at time t , thenwi j (t) = w j i (t) = 0, for each j = 1, . . . , n.
This condition simply formulates the idea that a failed component is disconnected from the
system. It suggests that the failure of a component might generate disconnections among the
components of the system.

The behavior of the w’s is analogous to that of the α’s. In this case, too, the relative levels
of interconnections change when one of the components of S changes its state, and there is
a reallocation rule for the remaining levels of interconnection.

We denote the whole set of reallocation rules for the weights on nodes and arcs by R.
Therefore, a natural rewriting of the system S with components in C and reallocation ruleR
at time t is

S(t) = {a(t),w(t)}. (5)

Notice that (5) highlights the observable features of the systemwith a given set of components
and a specific reallocation rule, i.e., the weights on the nodes and on the arcs. Thus, according
to (5), we can refer to {ā, w̄} as an observation of the system at a given time, where ā ∈ [0, 1]n
and w̄ ∈ [0, 1]n×n .

When needed, we will conveniently remove the dependence on t from the quantities in
(5).
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3.3 Failure of the system

As mentioned, time t = 0 represents today–the point at which we begin to observe the
evolution of the system. Since the system is coherent in the sense that there are no irrelevant
components, at time t = 0 all the components are active and the system works. The failure
of the system is then a random event, which occurs when the system achieves one of the
configurations belonging to KF .

We define the system lifetime by

T := inf{t ≥ 0|φ(Y1(t), . . . , Yn(t)) = 0}. (6)

Analogously, the n-dimensional vector of component lifetimes is X = (X1, . . . , Xn), where

X j = inf{t > 0 | Y j (t) = 0}. (7)

To be as general as possible, we assume that the failure lifetimes of the components of
the system {X1, . . . , Xn} are not independent random variables and do not share the same
distribution. In fact, for each component failure, the α’s and w’s change in accordance with
the reallocation ruleR; this also modifies the probability of subsequent failures of the system
components in the very natural case where failures depend on the weights.
Moreover, we can reasonably assume that the failure of the system coincides with the failure
of one its components.

To fix ideas, we provide an example.

Example 2 Assume that C = {C1,C2,C3,C4,C5} and

a(0) = (0.1, 0.5, 0.2, 0.1, 0.1), w(0) =

⎛

⎜⎜⎜⎜
⎝

0 0 0.1 0.1 0
0 0 0.1 0 0
0.1 0.1 0 0.1 0.05
0.1 0 0.1 0 0.05
0 0 0.05 0.05 0

⎞

⎟⎟⎟⎟
⎠

Suppose that the reallocation rulesR for relative relevance and interconnection levels are
of proportional type, as in Example 1. Such reallocations are implemented if the system has
not failed.

Furthermore, assume that the failure of a component has a twofold nature: on the one
hand, it can be brought about by an idiosyncratic shock; on the other, it can be driven by
the failure of the other components. Specifically, we hypothesize that, if a given component
fails, then other components that are only connected to that component will fail as well,
independently of their levels of interconnection. In contrast, the idiosyncratic shocks are
assumed to be captured by a Poisson process with parameter λ–giving the timing of the
failures–jointly with a uniform process over C, independent of the Poisson process, which
identifies the failed component.

Moreover, suppose that the system fails at the first time in which components with
aggregated relative relevance greater than 0.4 fail.

Now, suppose that the first failure is observed at time t = 8, when C2 fails. Then, auto-
matically, C3 fails as well, since it is connected only to C2. The aggregate relative relevance
before the failures is α2(8−) + α3(8−) = 0.5 + 0.2 > 0.4, and the system fails.

To compute the expected failure time of the system under a rational expectations approach,
we use the information contained in the specific values of the weights at time t , namely
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(a(t),w(t)). Specifically, we compute the expected value of T at time t , conditioned on the
specific values of the weights (a(t),w(t)).

If REt is the value of the rational expectations prediction, issued at time t , of the failure
time T , given all the possible observations of the system, we have

REt = {
E [T | (ā(t), w̄(t))] : (ā(t), w̄(t)) ∈ [0, 1]n × [0, 1]n×n} . (8)

The formula (8) gives the expected value of the lifetime of S(t) conditioned on the specific
observations of the state of the system at time t , viz., (ā(t), w̄(t)).

We note the link to rational expectations used in finance, with the left hand side of (8)
corresponding to the fundamental price of an asset, which can be obtained as an expectation
value of the price at time t conditioned on all available information relevant for the given
asset. in finance, the idea is that every time new information arrives (e.g. new information
about earnings, interest rates, mergers, etc) this will impact the fundamental price of an
asset. In similar fashion our idea is that every time new information arrives concerning
individual component failure, this should lead to a new (optimal) prediction for the failure of
the ensemble of components, i.e. system failure.Wewould like to point out that in finance “all
relevant information” is in principle infinite and very vague to quantify: e.g. how does new
information of the sickness of the CEO impact future earnings of a company?On the contrary,
in our case “information” is crystal clear to quantify via the new values of (ā(t), w̄(t)).

In order to calculate, for a given system at a given time, the conditioned expected value
in (8) for the investigated systems, referred to here as “in vivo" systems, the central trick
is to first create a “catalogue” of information. To produce the catalogue, we generate a set
of M systems and we follow their lives from the beginning to failure. For each time t , we
record the state of each system of the catalogue (ā(t), w̄(t)) and the failure time T , i.e., we
effectively record the pair ((ā(t), w̄(t)), T ). In this way, we create an “information set" IM .
Now, each in vivo system at each time step t presents a specific configuration (ā(t), w̄(t)),
and we can predict its failure time REt using (8) and referring to the systems in IM .

In practice, the use of (8) to create a large enough information set on a computer requires
a lot of CPU time and storage space. We reduce the dimensionality of the problem by
introducing a function f that maps the weights (ā(t), w̄(t)) into real numbers. We then
replace (8) by

RE f
t = {

E [T | f (ā(t), w̄(t))] : (ā(t), w̄(t)) ∈ [0, 1]n × [0, 1]n×n} . (9)

The idea now is to test our method using the variance, skewness, kurtosis, Gini coefficient,
and Shannon entropy as the function f . The next section details the simulation procedure.

4 Simulation experiments

We now present the simulation procedure used to test our methodological proposal.

4.1 Specifying the systems

The scenario analyses performed in the works dealing with prediction simulate real systems
and are based on all the observations of the simulated systems (see, e.g., Sanyal et al. (1997),
Krishnamurthy&Mathur (1997), Gokhale et al. (1998) andYacoub et al. (2004)). Differently,
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from this approach, we compare the failure time of the real systems (we will call them "in-
vivo" systems)with those observed in a previously recorded catalog (denoted by "information
set") in correspondence to several statistical measures related to the weights of the survived
components. In detail, we firstly consider the distribution of variance, skewness, kurtosis,
Gini coefficient and Shannon entropy of the weights of the catalog systems’ components as
the individual components fail. Then, we condition the failure times to various percentiles
of such statistical measures to see what happens for different levels of value (small, medium
and large). Finally, we compare the conditioned failure times of the "in-vivo" systems with
those observed in the information set–hence, obtaining insights into the predictive role of the
considered statistical measures.

More specifically, the procedure for the failure of components works in a stepwise form.
The system is assumed to fail the first time the number of failed components exceeds N/2.
The reallocation rule is of proportional type, as in Example 1, so the relevance of the

failed component is reallocated over the remaining active components in proportion to their
α values before the failure. Such a reallocation rule, together with the condition for failure
described above, clearly indicates the stochastic interdependenceof the lifetimes of the system
components. This said, for the sake of simplicity, we keep this interdependence implicit by
setting the links among the components equal, i.e., at any given time t , any active component
Ci is connected with the same strength wi j to any other active component C j , whence all
the entries in w(t) can be taken as equal to unity, for each time t . We can thus remove any
further reference to the matrix w.

We now consider the condition for the failure of a component. At a generic time t , one
component, say C j , is selected at random, i.e., from a uniform distribution on the set of
active components, as the candidate failed component. Then, a random number r is sampled
from a uniform distribution U (0, 1). If α j (t) > r , the component C j fails at time t , and
α j (s) = 0, for each s > t . On the other hand, if α j (t) ≤ r , the component C j does not fail.
This procedure is then reiterated at time t + 1 and so on, until the system fails.

4.2 Stepwise description of the procedure

We consider two different sets of systems, information set systems and in-vivo systems. The
in-vivo systems are the ones we wish to predict, the information set systems are the systems
we use to create an information set, fromwhichwe can issue a prediction of an in-vivo system
via Eq.9. We first create an information set by letting a certain number of systems M fail.
For each time t we record the state of the system f (ā(t)), and when the system fails, at say
time T , we record the pair ( f (ā(t)),T ). Repeating this procedure for M different systems,
we thereby create an “information set" I(t)Mf . The idea behind the rational expectations
approach is then, for each in vivo system at each time step t , to use the systems in I(t)Mf with
the same information to give an averaged evaluation of the prediction time via (9).

We present the simulation procedure in a stepwise form:

1. For each function f , we build the information set I f = (I(t)mf : t ≥ 0; m = 1, . . . , M)

by creating and following the lives of M systems from time t = 0 until they fail. For each
time t we record the state of the m-th system f (ām(t)), and when the system fails, at say
time Tm , we record the pair ( f (ām(t)), Tm). We do this for each m = 1, . . . , M .

2. We follow the same procedure by creating X in-vivo systems and following their lives
from the beginning at time t = 0 until they fail. For each time t , we record the state of
the x-th system f (āx (t)), and its failure time Tx , i.e., the pair ( f (āx (t)),Tx ).

3. We now compute the rational expectations in (9) on the basis of the information set I f .
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• First, we state and check a tolerance threshold condition.
Specifically, we fix a tolerance level � > 0; then, for each in vivo system x̄ =
1, . . . , X , time t̄ = 0, 1, . . . , Tx̄ , and observed configuration f (āx̄ (t)), we identify
the systems in the catalogue with label m ∈ {1, . . . , M} such that the following
Condition holds:

| f (āx̄ (t̄)) − f (ām(t̄))| < �. (10)

We denote the number of systems in the catalogue for which (10) is satisfied by
m[ f (āx̄ (t̄))]. Hypothetically, one might have m[ f (āx̄ (t̄))] = 0. In this unlucky case,
the catalogue does not provide complete information about the configurations of the
systems. To avoid such an inconsistency, we have reasonably selected values of �

and M large enough to guarantee that m[ f (āx̄ (t̄))] > 0 for each x̄ and t̄ (see the next
subsection, where we introduce the parameter set we used here).

• To apply (9), we compute the arithmetic mean of the failure times of the systems of
the catalogue satisfying (10), so that

E
[
T | f (āx̄ (t̄))

] = 1

m[ f (āx̄ (t̄))]
M∑

m=1

Tm · 1(m satisfies (10)), (11)

where 1(•) the indicator function with value 1 if • is satisfied and 0 otherwise.

4. In order to assess the quality of such predictions, we proceed as follows:

• First, at each time t̄ , we consider the 10th, 50th, and 90th percentiles of the distributions
of the observed configurations of the catalogue ām(t̄)’s, with m = 1, . . . , M . We
denote these percentiles by ā(10)(t̄), ā(50)(t̄), and ā(90)(t̄), respectively.

• We assign system x̄ at time t̄ with configuration āx̄ (t̄) to the percentile ā(per(x̄))(t̄) if
and only if the following condition is satisfied:

|āx̄ (t̄) − ā(per(x̄))(t̄)| < 0.8 × std(t̄), (12)

where per = 10, 50, 90, per(x̄) is the percentile related to x̄ , and std(t̄) is the
standard deviation of the configurations of the in vivo systems at time t̄ , namely the
āx (t̄)’s with x = 1, . . . , X .

• We compute

Ẽ
[
T | f (āx̄ (t̄))

] = 1

|per(x̄)|
X∑

x=1

Tx · 1(x satisfies (12)), (13)

where |per(x̄)| is the cardinality of the set of the percentile per(x̄).
• We compute the error at time t̄ and at a given percentile per–i.e., the difference in

absolute value between the term in (11) and the one in condition (13) conditioned on
the percentile per :

ERE |per(t̄) =
∣∣∣E

[
T | f (āx̄ (t̄))

] − Ẽ
[
T | f (āx̄ (t̄))

]∣∣∣ . (14)

In this way, at each time t̄ we obtain three different distributions of errors conditioned
on the percentiles:
– ERE |10(t̄)
– ERE |50(t̄)
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– ERE |90(t̄)
• We also compare the distributions in (14) with a naive benchmark error EB given by

the errors made without the use of rational expectations, as follows:

EB = 1

X

X∑

x=1

∣
∣
∣
∣
∣
1

M

M∑

m=1

Tm − Tx

∣
∣
∣
∣
∣

(15)

As the formula (15) states, the performance of the naive benchmark prediction is
obtained by constantly issuing the failure time of a given in vivo system, using the
averaged failure time of the systems in the information set. The benchmark prediction
is a natural measure for making forecasts without using rational expectations; indeed,
it assumes that the failure prediction is given by the average of the failures of the
systems in the catalogue.

• For the purposes of comparison, we normalize all the times at the percentile level, so
that for each percentile per , the maximum time over all the in vivo systems in which
ā(per) is observed is unity, while the minimum time is 0.

4.3 Setting the parameters

The parameters for the catalogue and in vivo systems are: n = 10, M = 5000 and X =
5000. This choice leads to satisfactory results without resulting in too much computational
complexity.

The initial distribution of the weights in a(0) is assumed to be generated from different
types of random variable with particular characteristics. Specifically, we take:

• Uniform distribution U (0, 1).
• Some cases of the two-parameter Beta distribution B(a, b). This distribution has support

in (0,1); moreover, depending on the values assigned to the shape parameters a and b,
the behavior of the density function of B(a, b) can be of different type. We consider four
combinations of shape parameters (see Fig. 2):

– a = 1 and b = 3, which is an asymmetric distribution more concentrated over the
values close to zero;

– a = b = 0.5, which is a symmetric distribution bimodal over the endpoints 0 and 1;
– a = b = 2, which corresponds to a platykurtic symmetric distribution centered in

0.5;
– a = 1 and b = 0.5, which is an asymmetric distribution on the right with a high

concentration of values close to 1.

Note that a B(a, b) with a = b = 1 is a special case, corresponding to U (0, 1).

The tolerance level� plays a key role in the analysis, as (10) suggests. We evaluated three
different tolerance levels, taking � = 0.005, 0.05, 0.5.

It turned out that the results were scarcely affected by the tolerance levels. Thus, we
present here only the case � = 0.05.
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Fig. 2 Beta distribution with four different combinations of shape parameters, together with the uniform
distribution

Fig. 3 Uniform distribution of initial weights. The y-axis shows the prediction error (absolute value) and the
x-axis shows the time normalized so that failure occurs at t = 1 in order to compare performance of the
predictions across systems. Symbols correspond to the five different choices of function f as indicated in the
key. Panel a) shows the errors of the 10th percentile of the distribution for each function calculated using the
information set IM . Panels b) and c) show likewise the errors of the 50th and 90th percentiles. The horizontal
line in each panel shows the performance of the benchmark prediction

5 Results and discussion

The main results of our method are all encompassed in Figs. 3 , 4 , 5 , 6and 7. Each figure
has three panels A–C, corresponding to the percentiles per = 10, 50, 90. For each plot, the
y-axis shows the error in the prediction given by (14), while the x-axis shows the time. The
five different graphs correspond to the five initial distributions of the weights.

To allow an intuitive analysis of the predictive performance of the five statistical indicators
f and compare the systems, time is normalized to unity at failure as explained in the last
section.

The straight line in each plot corresponds to the performance of the benchmark prediction
(15).
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Fig. 4 Beta distribution of initial weights with a = 1 and b = 3. See caption to Fig. 3 for further explanation

Fig. 5 Beta distribution of initial weights with a = b = 0.5. See caption to Fig. 3 for further explanation

Fig. 6 Beta distribution of initial weights with a = b = 2. See caption to Fig.3 for further explanation

Fig. 7 Beta distribution of initial weights with a = 1 and b = 0.5. See caption to Fig. 3 for further explanation
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A quick look at all three panels in all five figures gives an intuitive confirmation of how
well our method works: in all five figures, in all three panels, and for all five functions our
predictions are better than the benchmark at almost any time t . More specifically, the only
clear but very short period where it would be better to use the benchmark prediction would
be if the initial weights were randomly distributed, in the case of the 50% percentile of the
variance in the prediction of the in vivo systems. In this special case, we observe that the
benchmark initially outperforms the rational expectations predictions; however, for longer
times–even in this extreme case–the rational expectations predictions beat the benchmark
predictions.

Moreover, the rational expectations predictions with any function f become greatly supe-
rior to the benchmark prediction for times that are not too far away from failure. This outcome
remains valid for any of the five considered distributions of the initial weights of the nodes.
This is a clear illustration that the more information you have of a given in vivo system, the
better your prediction can be. In contrast, close to the starting time–e.g., if we consider the
case where only one node has yet been broken – all the in vivo systems look similar. In this
case, the difference in performance of the various functions f is negligible, whatever initial
weight distribution is selected. In short, the best you can do without the benefit of any further
information is to make the naive benchmark prediction. But as the in vivo system begins
to deteriorate, every additional broken node provides new information, and that information
should be used to optimize the prediction.

It is clear that, because the information obtained by each of the five possible functions f
will be different, it will lead to different possibilities for optimizing predictions. Consider
the case of initially uniformly distributed weights shown in Fig. 3. Note that, for systems
with abnormally small values of the statistical indicator (the 10% percentile), the Shannon
entropy gives predictions of the failure times which are around 80% of the time better than
those given by the other measures described by f . However, the particular in vivo system
that is observed to deteriorate may not be one with a small Shannon entropy. It may instead
have a persistently large Gini coefficient, say belonging to the 90% percentile. In this case,
it is the Gini coefficient that provides the optimal predictions.

This finding illustrates that as time goes by one should opportunistically switch between
the different measures introduced by the five choices for f . This combined approach will
ensure the path to globally optimal predictions, i.e., ones that are optimal at any given time
t .

So, what happens to the other initial weight distributions? Fig. 4 shows that the case of the
Beta distribution with a = 1 and b = 3 has many features similar to the uniform distribution
in Fig. 3, such as the Shannon entropy being the best function for making predictions for
the 10% and 50% percentiles, while the Gini coefficient is the best for the 90% percentile.
So the fact of having a system with a higher initial concentration of small nodes, like the
Beta distribution with a = 1 and b = 3, does not seem to give rise to a profoundly different
optimal choice in our rational expectations predictions about the statistical measures.

This particular initial weight distribution corresponds towhat in the literature is considered
the ideal distribution to allow the best minimization of the prediction errors in absolute value,
the negative exponential distribution. Following the insights of some literature contributions
such as Li&Zuo (2002), Sarhan (2005), Asadi andBayramoglu (2006), and Eryilmaz (2011),
we confirmed the predictive superiority of this form of distribution over the others. In fact, by
comparing Fig. 4 with the others we can notice that the level of error drops slightly compared
to the uniformly distributed realizations already from the starting point–which is the one with
zero information available. The predictive gain is very high instead, when compared to the
other distributions.
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Consider then the more extreme case of systems that tend to have clusters of both small
and large nodes, but few nodes of moderate size, corresponding to the Beta distribution with
a = b = 0.5, illustrated in Fig. 5. Again the Shannon entropy works well for the 10% and
50% percentiles, but now the 90% percentile of the kurtosis predicts just as well as the 90%
percentile of the Shannon entropy, while it is still the 90% percentile of the Gini coefficient
that performs best.

For systems that have their nodes concentrated around their mean, corresponding to the
Beta distribution with a = b = 2 shown in Fig. 6, the Shannon entropy is only performs best
for small percentiles, while the Gini coefficient is better for the 50% and 90% percentiles.
Somewhat surprisingly, for systems that have their nodes concentrated around large values,
corresponding to the Beta distribution with a = 1 and b = 0.5 shown in Fig. 7, performance
does not differ notably from the uniform distribution (Fig. 3).

We note that the Gini coefficient is not usually used as a performance measure in failure
prediction models. One exception is Ooghe and Spaenjers (2010), whose authors would
agree with us that the Gini coefficient is a powerful and attractive measure. In accordance
with the conclusions of this study, the Gini coefficient turns out to be an excellent predictive
tool, especially for very high abnormal values. In the literature, several studies have been
carried out in the field of reliability theory–specifically, considering k-out-of-n systems–
which exploit the various statistical moments to validate their models. We refer for example
to Reijns and Van Gemund (2007) or Amari et al. (2012). According to these authors, lower
moments are more robust than higher moments. In contrast, our results seem in general to
indicate an advantage in using the kurthosis rather than the variance, and both the variance
and the kurtosis seem in general to perform better than the skewness. However, there are
exceptions, notably for the asymmetric distributions which allow large values–i.e., the Beta
distribution with a = 1 b = 0.5. For the 90% percentile for these two distributions, the
skewness equals or outperforms both the variance and the kurtosis. This makes sense since
knowing for an asymmetric distribution that the remaining set of nodes has a large skewness
indicates a system that has a large fraction of nodes with large values. This information is
useful in predicting the (probably longer than usual) failure time. We confirm the predictive
goodness of the Shannon entropy in all the proposed cases–in line with the other papers using
it as a forecasting tool (see, e.g.,(Franks & Beven, 1997; Mahanta et al., 2013; Karmakar et
al., 2019) and (Ray & Chattopadhyay, 2021)).

6 Conclusions

In this paper, we have shown that using rational expectations – together with the idea of using
different measures that can change over time–enables us to come up with tools for failure
predictions for weighted k-out-of-n systems. The core idea in our method is that every time a
node breaks, this provides new information, and one should use this information via rational
expectations to optimize predictions continually.

Through extensive computer simulations,we have shownhowour newmethod can dynam-
ically outperform static predictions. We have explored how the procedure works for systems
with five different initial distributions of the weights of the nodes. To see how different
information influences the predictions for systems with different initial distributions of the
weights, we have tested five measures: mean, variance, kurtosis, Gini coefficient, and Shan-
non entropy. As we have shown, different measures may be optimal depending on the given
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initial distribution of a system. However, as we have also shown, we can obtain optimal pre-
dictions by adopting a dynamic perspective–viz., by switching between different measures
at different times, depending on the state of deterioration of the given system.

The presented framework is general and can be suitably modified and adapted to several
contexts. In particular, it is easy to modify the method to apply it for any given initial
distribution of weights. Obviously, the five measures we introduced were meant only to
illustrate how using different information might be optimal depending on the state of the
system and the initial distribution of the weights. Our claim is not that these measures are
“the best” but rather to illustrate their different impact on the accuracy of prediction. Better
measures might possibly be found for different circumstances.

We argue that ourmethod could have real practical relevance in economics and finance, for
example, for banking networks or for assessing the systemic risk of a country, the Eurozone,
or sovereign credit, among other things. Our future research will focus on such practical
examples.

Actually, the rational expectations prediction method should lead to a broad range of
studies. A natural extension would be to try out other reallocation rules instead of the pro-
portional one; for other systems, it may be more natural to apply a uniform reallocation
rule or a threshold-based reallocation rule. One could also consider rules that depend on
the trajectories of previous failures. And as mentioned beforehand, the analysis could be
extended by comparing additional statistical indicators: the Frosini index to compare with
the Gini coefficient, the Bienaym–Chebyshev inequality, the Pearson index to capture the
dependence between the components, andGoodman andKruskal’s index, taking into account
the correlation between the components. Other measures belonging to the Shannon family
of entropies could also be studied, such as the Kullback–Leibler divergence, the Jeffreys
distance, the K divergence, or the Jensen difference. In short, we encourage the reader to use
our method to study the performance of other measures for their specific system of choice.
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