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Abstract
In this work, we consider a novel single-server retrial queue with event-dependent arrival
rates. Contrary to other related works, the primary customers’ arrival rates depend on the
last realized event, which refers either to a departure, or to an arrival of either type, or to
when a customer arrives during a busy period, compared with others. Our motivation stems
from the modeling of service systems, in which the customers express their willingness to
join the system based on the last realized event. We investigate the stability conditions, and
derive the stationary distribution both at service completion epochs, and at an arbitrary epoch.
We also study the asymptotic behaviour under high rate of retrials. Performance measures
are explicitly derived, and extensive numerical examples are performed to investigate the
impact of event-dependency. Moreover, constrained optimisation problems are formulated
and solved with ultimate goal to derive optimal joining probabilities.

Keywords Queueing · Event-dependent arrival rates · General retrials · Linear control
policy · Performance · Variable arrival rate

1 Introduction

In this work, we introduce a novel retrial queueing system, by incorporating a special feature
for the customers’ behaviour, called event-dependency. Retrial queues are used to model
service systems, in which arriving customers choose to get served remotely. Thus, in case
they find an idle server they begin their service immediately; otherwise, they leave the service
area and enter a pool of blocked customers, called the orbit queue. Three major policies are
employed to model the access from the pool: (i) In the classical retrial policy, any blocked
customer retries independently of each other to access the server after exponentially dis-
tributed random time. (ii) In some situations the time intervals between successive repeated
attempts are independent of the number of blocked customers (constant retrial policy). In
such a case, it is assumed that the server when becomes available start seeking for a blocked
customer, while the seeking time intervals are either exponentially or arbitrarily distributed
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(i.e., general retrials). (iii) In the linear control policy (assuming exponentially distributed
repeated attempts), the classical and the constant retrial policy are combined.

A particular example of such a situation arises in modern call centers, where the call-back
option (i.e., the seeking/retrieval time) allows to essentially improve its overall performance;
see e.g., Armony and Maglaras (2004a, b); Dudin et al. (2004); Phung-Duc and Kawanishi
(2014). Motivated by the fact that often a quick observation of the system (i.e., the nature
of the last realized event) may influence customers’ decision about the utility of joining a
busy system (see e.g., Gencer et al. (2014)), and thus, using the call-back option, our aim is
to study a versatile model for the representation of such service systems, by introducing a
queueing model with repeated attempts and event-dependent arrival rates.

This phenomenon arises when customers either cannot estimate their expected wait from
the observation of the queue length, or they are not aware at all about the queue length. The
latter case is common in retrial systems, since the arriving customers is most likely to not be
aware of the number of the already blocked customers (i.e., the orbit queue length). Thus, in
the call center example, assume that a potential customer is only aware of last realized event.
If he/she receives a busy signal along with the information of the type of customer in service,
as well as whether he/she is the first that arrives during the current service or not (see below
for more details), he/she analogously adapts his/her arrival rate, leaves his/her contact details
and wait to get called back later. In case the last event is a service completion, the customer
also adapts its arrival rate to occupy the idle server, but now there is also a competitive stream
due to the seeking process.

The main contributions of the paper are summarized as follows.

• On the modelling side, we introduce the concept of event-dependent arrival rates in the
retrial setting. We pay particular emphasis to the case of general retrial times, but we also
provided results under the linear retrial policy, thus, considering all the retrial policies. In
particular, we employ a multi-level event dependency framework, where the customer’s
willingness to join the system, which is reflected on the choice of the arrival rates depend
(i) on the last realized event, i.e., an arrival or a departure, (ii) in the former case, on the
type of the customer that has occupied the idle server, (i.e., whether it is a primary or a
retrial customer), (iii) on whether an arriving customer is the first after the arrival that has
occupied the idle server, or they have already joined the system other primary customers
before the corresponding arriving customer.

• On the technical side, we investigate the stationary behaviour at service completion
epoch, as well as at an arbitrary epoch, and provide explicit expressions for various
performance metrics. Under the event-dependency framework, PASTA does not hold,
and the arrival process is no longer a standard, but a modified Poisson process. The
effect of event-dependency on system’s performance, is extensively investigated through
numerical experiments. Constraint optimisation problems are solved and provide insights
on how event-dependency affects the way an arriving customer join or not the system.
Moreover, we investigate the stability condition, and the asymptotic behaviour of our
system under high rate of retrials. A basic framework on how we can investigate the
optimal admission policy based on a Markov decision process (MDP) is also discussed.

1.1 Literature review

Our work is classified into the intersection of the literature of retrial queues and of queues
with state dependent parameters.
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For a detailed treatment on the development of retrial queues see the books in Falin
and Templeton (1997); Artalejo and Gómez-Corral (2008), and references therein; see also
Phung-Duc (2017). The vast majority of works on retrial queues assume the classical retrial
policy; see e.g., Langaris and Dimitriou (2010). However, in specific service settings, the
time intervals between successive attempts are independent of the number of attempting
customers (i.e., the constant retrial policy); see e.g., Farahmand (1990); Fayolle (1986);
Dimitriou (2018). In Artalejo and Gomez-Corral (1997), the authors introduced the linear
control policy, which combined the classical and the constant retrial policies. In Gómez-
Corral (1999), the author presented an exhaustive analysis of the single-server retrial queue
with general service and seeking times; see also Choi et al. (1993). We further mention
the very recent works in Baron et al. (2018, 2022), where the authors considered the state-
dependent version of the model in Gómez-Corral (1999) based on the number of customers
in orbit by using a probabilistic and an efficient computational method.

The performance analysis of the standard (i.e., without retrials) M/G/1 queue with event-
dependent arrival rates was recently introduced in Legros (2018). In Legros and Sezer (2018),
the authors studied queueing models where arrivals depend on the remaining service time.
Recently, in Legros (2021), the authors investigated the admission control problemwith state-
dependent arrivals, and provided an algorithm for dimensioning the system. In Legros (2022),
the author studied a G/M/1 queue with event-dependent service rate. For other works on
standard (i.e., without retrials) queues with workload-dependent or waiting time-dependent
arrival and/or service rates see e.g., Bekker et al. (2004); Boxma et al. (2005); Kerner (2008);
Boxma and Vlasiou (2007); D’Auria et al. (2022).

To our best knowledge, the concept of event-dependency has never been treated in the
retrial queueing literature so far. The main objective of our work is to fill this gap. Our work
generalizes the seminal work in Legros (2018) in the retrial setting, and in a multi-level
framework due to the the presence of primary and orbiting customers; for initial results on
this work see Dimitriou (2022). Our work also differs from Baron et al. (2018), since the
arrival-dependency is based on the last realized event instead of the observed number of
orbiting customers, and we have also considered all the well known retrial policies.

The rest of the paper is summarized as follows. In Sect. 2, we describe in detail the math-
ematical model with general retrials. The stability condition and the stationary analysis at
service completion epochs is given in Sect. 3. The stationary analysis at an arbitrary epoch
is presented in Sect. 4 (we used both the supplementary variable method and the Markov
renewal theory). Explicit expressions for various performance metrics along with an asymp-
totic result are also given. The stationary analysis for the model with the linear control policy
is given in Sect. 5. In Sect. 6, we present extensive numerical results that reveal the effect of
event-dependency on the system’s performance. Moreover, we also solve some interesting
constrained optimisation problems in the presence of event-dependency. A conclusion along
with some future research plans are given in Sect. 7, where we also discuss in detail how one
can investigate the optimal admission policy using a constrained MDP framework.

2 Model description

We consider a single-server queueing system with no waiting space. The service times are
iid random variables with cumulative distribution function (cdf) B(·), density b(·), Laplace-
Stieltjes (LST)β∗(.) andfirstsmoments b̄(k) = (−1)k dk

dsk β∗(s) |s=0, k = 1, 2. The customers
that find the server busy upon arrival, they abandon the system, but leave their contact details
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Table 1 Summary of event description and the corresponding arrival rates

Description of last event Next arrival at rate

Service completion λ−
An external arrival has occupied the idle server λe

At least one external customer has arrived after λe+
the occupation of the idle server by an external customer

A retrial customer has occupied the idle server λr

At least one external customer has arrived after λr+
the occupation of the idle server by a retrial customer

so they are called back by the server in a later instant; hence, we assume that they join
an infinite capacity orbit queue, waiting to be retrieved by the server. After finishing ser-
vice, a customer leaves the system and the server seeks for a customer from the orbit. The
seeking/retrieving times are iid random variables with cdf A(.), density a(.) and LST α∗(.).
However, a new/primary customer may arrive during the seeking process, and in such a case,
the server interrupts the seeking process, and starts serving the newly arriving customer. We
assume that the interarrival, service and seeking times are mutually independent.

Recall that after a service completion, there is a competition between external/primary
arrivals and retrials. The type of the customer that will occupy the server influences the arrival
rates of the subsequent customers. More precisely, based on the last realized event, the next
customer arrives according to a Poisson process, as follows (see also Table 1):

– If the last realized event is a service completion, the next primary customer will arrive at
a rate λ−.

– In case a primary customer has occupied the idle server, then, the first primary customer
that arrive during the corresponding busy period will arrive at a rate λe. Moreover, the
subsequent primary customers (i.e., the second, third, etc arriving customers during the
corresponding busy period) will arrive at a rate λe+.

– In case a retrial customer has occupied the idle server, then, the first primary customer
that arrive during the corresponding busy period will arrive at a rate λr . Moreover, the
subsequent primary customers (i.e., the second, third, etc arriving customers during the
corresponding busy period) will arrive at a rate λr+.

Remark 1 From the customer’s perspective one might expect that λ− > λe ≥ λe+, and
λr ≥ λr+. This is justified as follows: if a customer knows that the last realised event is an
arrival that has occupied the idle server, she knows that if she decides to join the system,
she will be routed to the orbit queue. So she has to wait to be called back by the server in a
later instant (i.e., λ− > λe). Normally, the subsequent arrivals that already know that other
customers have arrived previously, they might be even more doubted to join the orbit queue
(thus, λe ≥ λe+). Similar arguments may hold for the case λr ≥ λr+.

3 The embeddedMarkov chain at service completion epochs

Let τi be the time of the i-th departure and Xi = X(τ+
i ) be the number of customers left in

orbit just after the departure of the i-th customer. Then,
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Xi =
{

Xi−1 − Bi + Ai (Bi ), Xi−1 > 0,
Ai (0), Xi−1 = 0,

(1)

where Bi ∈ {0, 1} is the number of orbiting customers, which enter service at time the i-th
service starts (i.e. Bi = 1 if the i-th customer is an orbiting customer, and Bi = 0 if the i-th
customer is an external customer), and Ai (Bi ) is the number of external arrivals during the
time the i-th served customer stays in the service station (Ai (0) (resp. Ai (1)) is the number
of arriving customers during the service of a primary (resp. a retrial) customer). The random
variable Bi depends on the history of the system before the time τi−1 only through the variable
Xi−1, and its conditional distribution is given by

P(Bi = 0 | Xi−1 = n) = 1 − (1 − δ0,n)α∗(λ−),

P(Bi = 1 | Xi−1 = n) = (1 − δ0,n)α∗(λ−),

where n is the orbit size and δ0,n denotes the Kronecker’s delta function.
The service time of the i-th customer is independent of previous service times and the

number of orbiting customers. Denote by S the corresponding service time. We now focus
on the distribution of Ai . Note that since we consider event-dependent arrival rates, we must
take into account all the possible events mentioned at the end of the previous section. More
precisely,
Case 1: If Xi > 0, the last event is a service completion that leaves the server idle. Thus, the
next customer that occupies the server is either an external customer (at a Poisson rate λ−),
or a registered (i.e., a retrial) customer. Therefore, the last event for the first customer who
arrives during the service of (i + 1)-th customer is either an arrival or a successful retrial.
In case the server was occupied by an external customer, the first customer will arrive at
rate λe, and all subsequent customers at rate λe+. In case the server was occupied by a retrial
customer, the first customer will arrive at rate λr , and all subsequent customers at rate λr+.
With such a framework, the next arrival depends both on the last event (i.e., arrival or service
completion), and on the type of the customer that have occupied the server in the last (arrival)
event.
Case 2: If Xi = 0, the last event is a service completion that leaves the system empty. The
next customer that occupies the server is an external customer (at rate λ−). Therefore, the
last event for the first customer that will arrive after the server’s occupation is an arrival, thus
will arrive at rate λe, and all the subsequent customers will arrive at rate λe+.

Thus, due to the event-dependency we need to obtain the distribution of the number of
arrivals in a service of length t given the type of the customer that occupied the server. Denote
by N (t) the number of arriving customers during a service of length t and let

Pe(N (t) = n) = P(N (t) = n | the server is occupied by a primary customer),
Pr (N (t) = n) = P(N (t) = n | the server is occupied by a retrial customer).

Then, the distribution of N (t), is given by the following set of differential equations:

Pe(N (0) = 0) = 1,
d
dt Pe(N (t) = 0) = −λe

Pe(N (t) = 0),
d
dt Pe(N (t) = 1) = −λ+

e Pe(N (t) = 1) + λe
Pe(N (t) = 0),

d
dt Pe(N (t) = n) = −λ+

e Pe(N (t) = n) + λ+
e Pe(N (t) = n − 1), n ≥ 2.

(2)
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Similarly,

Pr (N (0) = 0) = 1,
d
dt Pr (N (t) = 0) = −λr

Pr (N (t) = 0),
d
dt Pr (N (t) = 1) = −λ+

r Pr (N (t) = 1) + λr
Pr (N (t) = 0),

d
dt Pr (N (t) = n) = −λ+

r Pr (N (t) = n) + λ+
r Pr (N (t) = n − 1), n ≥ 2.

(3)

The solutions of systems (2), (3) are respectively

Pe(N (t) = 0) = e−λet ,

Pe(N (t) = n) = λe

λ+
e −λe

(
λ+

e

λ+
e −λe

)n−1 [e−λet − e−λ+
e t ∑n−1

k=0
((λ+

e −λe)t)k

k! ], n ≥ 1.

and

Pr (N (t) = 0) = e−λr t ,

Pr (N (t) = n) = λr

λ+
r −λr

(
λ+

r
λ+

r −λr

)n−1 [e−λr t − e−λ+
r t ∑n−1

k=0
((λ+

r −λr )t)k

k! ], n ≥ 1.

Note that the arrival processes are modified Poisson processes (see also Legros (2018))
where the first interarrival time follows a different distribution than the other interarrival
times, and at the same time (for the first time in our work) depend also on the type of the
customer that occupy the server (i.e., a primary or a retrial customer). Then, for i, n ≥ 0,

P(Ai (0) = n | Xi ≥ 0) = ∫ ∞
0 Pe(N (t) = n)b(t)dt = be

n .

Similarly, for i, n ≥ 0

P(Ai (1) = n | Xi > 0) = ∫ ∞
0 Pr (N (t) = n)b(t)dt = br

n .

Let Ak(z) = ∑∞
n=0 bk

nzn = ∑∞
n=0

∫ ∞
0 Pk(N (t) = n)znb(t)dt , |z| ≤ 1, k = e, r , i.e.,

Ak(z) is the probability generating function (pgf) of the number of customers that arrive
at the system during the service time of a customer of type k, k = e, r . Then, extensive
computations lead to

Ak(z) = β∗(λk )(λk+−λk )(1−z)−λk zβ∗(λk+(1−z))

λk+(1−z)−λk , k = e, r .

Remark 2 Note that in case of no event-dependency, i.e., for k = e, r , λk+ = λk = λ, then,
Ak(z) = β∗(λ(1 − z)).

The one-step transition probabilities pm,n = P(Xi = n | Xi−1 = m) are given by the
formulae:

pm,n = (1 − α∗(λ−))be
n−m + α∗(λ−)br

n−m+1, m = 1, 2, . . . , n,

p0,n = be
n, n ≥ 0,

pm+1,m = α∗(λ−)br
0, m ≥ 0.

Theorem 1 Let Xi be the orbit length at the time of the i th departure, i ≥ 1. Then, {Xi , i ≥ 1}
is ergodic if and only if

b̄(1) <
α∗(λ−)[λr++(λr −λr+)β∗(λr )]

λr [λe++(λr+−λe+)α∗(λ−)] − (1−α∗(λ−))(λe−λe+)β∗(λe)

λe[λe++(λr+−λe+)α∗(λ−)] . (4)

Proof See Appendix A. ��
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Let πn , n ≥ 0, be the stationary probability that n customers are in the orbit at a service
completion epoch. Then, the Kolmogorov equations reads:

πn = π0be
n + (1 − δ0,n)(1 − α∗(λ−))

∑n
j=1 π j be

n− j

+α∗(λ−)
∑n+1

j=1 π j br
n+1− j , n ≥ 0.

(5)

Let �(z) = ∑∞
n=0 πnzn , |z| ≤ 1. In Theorem 2, we obtain �(z), π0, and give the condition

of the existence of �(z), which also ensures the stationary regime.

Theorem 2 Under the stability condition (4), we have

�(z) = π0α
∗(λ−)

z Ae(z) − Ar (z)

α∗(λ−)(z Ae(z) − Ar (z)) + z(1 − Ae(z))
, (6)

where

π0 = λeα∗(λ−)[λr+(1−λr b̄(1))+β∗(λr )(λr −λr+)]−λr (1−α∗(λ−))[λe+λeb̄(1)+(1−β∗(λe)(λe−λe+)]
α∗(λ−)

[
λe[λr+(1−λr b̄(1))+β∗(λr )(λr −λr+)]+λr [λe+λeb̄(1)+(1−β∗(λe)(λe−λe+)]] .

Asking π0 > 0 we have that (4) is also necessary for the ergodicity of the chain.

Proof The proof is straightforward by using (5) and applying the generating function
approach. The normalization condition implies the expression for π0. ��

Remark 3 Note that our model exhibits a behaviour closely related to the stochastic decom-
position behaviour, which normally arise in the standard (i.e., no event-dependency) retrial
systems. In particular, when λr = λ−, λr+ = λ+,

�(z) = �
(event)
M/G/1(z)χ1(z)χ2(z),

where �
(event)
M/G/1(z) is the pgf of the number of customers at service completion epochs in the

standard M/G/1 queue with event-dependent arrivals in Legros (2018), and

χ1(z) = z−Ar (z)
α∗(λ−)(z Ae(z)−Ar (z))+z(1−Ae(z))

× α∗(λ−)(1+A(1)
e (1)−A(1)

r (1))

1−A(1)
r (1)

,

χ2(z) = z Ae(z)−Ar (z)
zB(z)−Ar (z)

× (1+λ+b̄(1)−A(1)
r (1))

1+A(1)
e (1)−A(1)

r (1)
,

where A(1)
k (1), k = e, r , are given in Corollary 2. Moreover, χ1(z) is the pgf of the number

of orbiting customers given the system is idle. However, although χ2(1) = 1, χ2(z), is not
obvious that constitutes a pgf.

4 Performance analysis at arbitrary instants

Let X(t) be the number of orbiting customers, C(t) be the state of the server, and I (t) be the
last realized event at time t , with values as described in Table 2.

Let also Z(t) be the remaining time until the next service (when C(t) = 1), or seeking
time completion (when C(t) = 0) at time t . Then, {(C(t), X(t), I (t), Z(t)); t ≥ 0} is an
irreducible continuous time Markov chain describing the system model with state space
{(0, 0, E1)} ∪ {(0, j, E1, r) : j ≥ 1, r ≥ 0} ∪ {(1, j, Ek, r) : j ≥ 0, r ≥ 0, k = 2, 3} ∪
{(1, j, Ek, r) : j ≥ 1, r ≥ 0, k = 4, 6} ∪ {(1, j, Ek, r) : j ≥ 2, r ≥ 0, k = 5, 7}.

123



1060 Annals of Operations Research (2023) 331:1053–1088

Table 2 Description of the states
of I (t)

Symbol Last realized event

E1 Service completion

E2 An external arrival occupied the server

E3 A retrial customer occupied the server

E4 The 1st external customer during

The busy period initiated in E2, has arrived

E5 At least one customer has arrived after E4

E6 The 1st external customer during

The busy period initiated in E3, has arrived

E7 At least one customer has arrived after E6

Let also,

p0,0(t) = P(C(t) = 0, X(t) = 0, I (t) = E1),

p0, j (r , t) = P(C(t) = 0, X(t) = j, I (t) = E1, Z(t) ∈ (r , r + dr ]), j ≥ 1,

p(k)
1, j (r , t) = P(C(t) = 1, X(t) = j, I (t) = Ek, Z(t) ∈ (r , r + dr ]), j ≥ 0, k = 2, 3,

p(k)
1, j (r , t) = P(C(t) = 1, X(t) = j, I (t) = Ek, Z(t) ∈ (r , r + dr ]), j ≥ 1, k = 4, 6,

p(k)
1, j (r , t) = P(C(t) = 1, X(t) = j, I (t) = Ek, Z(t) ∈ (r , r + dr ]), j ≥ 2, k = 5, 7.

We are interested in the steady-state counterparts (as t → ∞) of these probabilities.

Lemma 1 Let p0,0 = limt→∞ p0,0(t), p0, j (r) = limt→∞ p0, j (r , t), and p(k)
1, j (r) =

limt→∞ p(k)
1, j (r , t), k = 2, . . . , 7. Then:

λ− p0,0 = ∑3
k=2 p(k)

1,0(0),

− d
dr p0, j (r) = −λ− p0, j (r) + a(r)

∑7
k=2 p(k)

1, j (0), j ≥ 1,

− d
dr p(2)

1, j (r) = −λe p(2)
1, j (r) + λ− p0, j b(r), j ≥ 0,

− d
dr p(3)

1, j (r) = −λr p(3)
1, j (r) + p0, j+1(0)b(r), j ≥ 0,

− d
dr p(4)

1, j (r) = −λe+ p(4)
1, j (r) + λe p(2)

1, j−1(r), j ≥ 1,

− d
dr p(5)

1, j (r) = −λe+ p(5)
1, j (r) + λe+(p(5)

1, j−1(r) + p(4)
1, j−1(r)), j ≥ 2,

− d
dr p(6)

1, j (r) = −λr+ p(6)
1, j (r) + λr p(3)

1, j−1(r), j ≥ 1,

− d
dr p(7)

1, j (r) = −λr+ p(7)
1, j (r) + λr+(p(7)

1, j−1(r) + p(6)
1, j−1(r)), j ≥ 2.

(7)

Proof See Appendix B. ��

Let for Re(s) ≥ 0, |z| ≤ 1,

P∗
0 (s, z) = ∑∞

j=1

∫ ∞
0 e−sr p0, j (r)drz j ,
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P∗
1,k(s, z) = ∑∞

j=0

∫ ∞
0 e−sr p(k)

1, j (r)drz j , k = 2, 3,

P∗
1,k(s, z) = ∑∞

j=1

∫ ∞
0 e−sr p(k)

1, j (r)drz j , k = 4, 6,

P∗
1,k(s, z) = ∑∞

j=2

∫ ∞
0 e−sr p(k)

1, j (r)drz j , k = 5, 7.

(8)

Theorem 3 The stationary distribution of (C, X , I ) has the following pgfs

P∗
0 (0, z) = p0,0z(1−α∗(λ−))(Ae(z)−1)

α∗(λ−)(z Ae(z)−Ar (z))+z(1−Ae(z))
,

P∗
1,2(0, z) = λ− 1−β∗(λe)

λe (p0,0 + P∗
0 (0, z)),

P∗
1,3(0, z) = 1−β∗(λr )

λr K (z),

P∗
1,4(0, z) = λ−z[ λe+(1−β∗(λe))−λe(1−β∗(λe+))

λe+(λe+−λe)
](p0,0 + P∗

0 (0, z)),

P∗
1,5(0, z) = λeλ−z[ z

λeλe+(1−z) + β∗(λe+(1−z))
(λe+(1−z)−λe)λe+(1−z)

− β∗(λe+)

λe+(λe+−λe)
− λe+zβ∗(λe)

λe(λe+−λe)(λe+(1−z)−λe)
](p0,0 + P∗

0 (0, z)),

P∗
1,6(0, z) = zK (z)[ λr+(1−β∗(λr ))−λr (1−β∗(λr+))

λr+(λr+−λr )
],

P∗
1,7(0, z) = λr zK (z)[ z

λr λr+(1−z) + β∗(λr+(1−z))
(λr+(1−z)−λr )λr+(1−z)

− β∗(λr+)

λr+(λr+−λr )
− λr+zβ∗(λr )

λr (λr+−λr )(λr+(1−z)−λr )
],

(9)

where

K (z) = λ−α∗(λ−)[p0,0(Ae(z)−1)+Ae(z)P∗
0 (0,z)]

z−α∗(λ−)Ar (z)
,

p0,0 = α∗(λ−)(λetr +λr te)−λr te
α∗(λ−)[(1+λ−b̄)λetr +λ−b̄λr te] ,

where

te = (λe − λe+)(1 − β∗(λe)) + λeλe+b̄(1),

tr = (λr − λr+)β∗(λr ) + λr+(1 − λr b̄(1)).

Proof See Appendix C. ��
Note that asking p0,0 > 0, we obtain the necessary stability condition, which is the same as
the one in (4).

4.1 The event-independent case

We now consider the event-independent case, where λk = λk+ = λ, k = e, r . Then, using
the previous results, our model reduces to the one in Gómez-Corral (1999), where the event-
independent case was treated. Indeed, it easy to see that when λk = λk+ = λ, k = e, r , then

Ak(z) = β∗(λ − λz), and π0 = p0,0 = 1 − λb̄(1)

α∗(λ)
with λb̄(1) < α∗(λ) being the stability

condition; see Theorems 1, 2 in Gómez-Corral (1999).

4.2 Performancemetrics

Having obtained explicitly the pgfs, we can have in closed form the basic performance
metrics.
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Corollary 1 The probabilities of server’s state are:

P(C = 0) = p0,0 + P∗
0 (0, 1) = λetr

(1+λ−b̄)λetr +λ−b̄(1)λr te
,

P(C = 1, I = E2) = P∗
1,2(0, 1) = λ−tr (1−β∗(λe))

(1+λ−b̄(1))λetr +λ−b̄(1)λr te
,

P(C = 1, I = E3) = P∗
1,3(0, 1) = λ−te(1−β∗(λr ))

(1+λ−b̄(1))λetr +λ−b̄(1)λetr
,

P(C = 1, I = E4) + P(C = 1, I = E5) = P∗
1,4(0, 1) + P∗

1,5(0, 1)

= λ−λr tr
(1+λ−b̄(1))λetr +λ−b̄(1)λr te

(b̄(1) − 1−β∗(λe)
λe ),

P(C = 1, I = E6) + P(C = 1, I = E7) = P∗
1,6(0, 1) + P∗

1,7(0, 1)

= λ−λr te
(1+λ−b̄(1))λetr +λ−b̄(1)λr te

(b̄(1) − 1−β∗(λr )
λr ).

Proof From the results obtained in Theorem 3 and using the normalization condition, the
Corollary 1 is proved after heavy but straightforward computations. ��
The following corollary provides the throughput (T HS) generated by the system, the expected
orbit queue length (E(X)), and the expected sojourn time (E(W )).

Corollary 2 We have,

E(X) = p0,0[(1 − α∗(λ−))(1 + λ−b̄(1))G − λ−α∗(λ−)
1−α∗(λ−)

Sr ]
+b̄(1)F + λ− P(C = 0)[Se + α∗(λ−)

1−α∗(λ−)
Sr ],

T HS = λ−(λetr +λr te)
λetr +λ−b̄(1)(λetr +λr te)

,

E(W ) = E(X)
T HS

,

(10)

where p0,0, tr , te, P(C = 0) are given in Theorem 3 and Corollary 1, and

Sk := λk−λk+
λk (b̄(1) − 1−β∗(λk )

λk ) + λk+b̄(2)

2 , k = e, r ,

G := α∗(λ−)[(2A(1)
e (1)+A(2)

e (1))(1−A(1)
r (1))+A(1)

e (1)A(2)
r (1)]

2[A(1)
e (1)(α∗(λ−)−1)+α∗(λ−)(1−A(1)

r (1))]2 ,

F := [p0,0(1−α∗(λ−))G+A(1)
e (1)P(C=0)]−P∗

0 (0,1)(1−α∗(λ− A(1)
r (1)))

(1−α∗(λ−))2
,

with

A(1)
k (1) = (λk−λk+)(1−β∗(λk ))+λkλk+b̄(1)

λk ,

A(2)
k (1) = λk+(2b̄(1) + λk+b̄(2)) − 2

λk+
λk A(1)

k (1),

for k = e, r .

Proof See Appendix D. ��

4.3 Asymptotic behaviour under high rate of retrials

Let P(z) = p0,0 + P∗
0 (0, z) + z

∑7
k=2 P∗

1,k(0, z). Then,

lima∗(λ−)→1 P(z) = P(∞)(z),

where P(∞)(z) is the pgf of the number of customers in the system obtained in the seminal
paper Legros (2018), by assuming that λr = λ−, and λe = λe+ = λr+ = λ+. Note that in
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such a case, the customers who find the server busy repeat their calls almost immediately.
Note also that if we further assume λ− = λ+ = λ, P(∞)(z) coincides with the pgf of the
number of customers in the standard M/G/1 queue.

Theorem 4 As α∗(λ−) → 1,

2λr te(1−α∗(λ−))

α∗(λ−)[(1+λ−b̄(1))λetr +λ−b̄(1)λr te] ≤ ∑∞
n=0[P(X = n) − P(∞)(X = n)] ≤ 2λr te(1−α∗(λ−))

α∗(λ−)λetr
.

Proof The proof follows the steps given in Artalejo and Falin (1994), and further details are
omitted. ��
Theorem 4 provides a measure of the proximity between the steady state distributions for
the standard M/G/1 queueing system with event dependent arrivals in Legros (2018) and our
queueing system. The importance of these bounds is to provide upper and lower estimates
for the distance between both distributions.

4.4 Explicit expressions for theMarkovian case

In the following, we consider the purely Markovian case, where we assume that service, and
retrieval times are exponentially distributed with rates μ, and α, respectively. To simplify
further the analysis, we also assume that λr+ = λr , λe+ = λe. Note that under such a setting
there are three events that affect the arrival rates:

1. a service completion, after which an external arrival occurs with rate λ−,
2. a service initiation by an external arrival, after which the next arrivals occur at rate λe,
3. a service initiation by a retrial customer, after which the next arrivals occur at rate λr .

Let p0, j = limt→∞ P(X(t) = j, C(t) = 0, I (t) = E1), p(k)
1, j = limt→∞ P(X(t) =

j, C(t) = 1, I (t) = Ek), j = 0, 1, . . ., k = 2, 3. The following theorem states the main
result.

Theorem 5 Under the stability condition αλr + λ−λe < αμ, the stationary probabilities of
the system state are as follows:

p0,0 = μ(αμ−αλr −λ−λe)

a((λ−+μ)(μ−λr )+λeλ−)
,

p0, j =
(

λeλr (λ−+α)
αμ(λe+μ)

) j λr p0,0
λ−+α

[∑ j
i=0 z j−i

1 zi
2 − αμ

λe(λ−+α)

∑ j−1
i=0 z j−i+1

1 zi
2

]
, j ≥ 1,

(11)

p(2)
1, j = λ− p0,0

μ

(
λeλr (λ−+α)

αμ

) j [
μ

∑ j
i=0 z j−i

1 zi
2 − αμ(λe+μ)

λe(λ−+α)

∑ j−1
i=0 z j−i+1

1 zi
2

]
, j ≥ 0,

(12)

p(3)
1, j = λ−λ− p0,0

μ

(
λeλr (λ−+α)

αμ

) j ∑ j
i=0 z j−i

1 zi
2, j ≥ 0, (13)

where z1, z2, with zi > 1, i = 1, 2, the two zeros of the polynomial

f (z) := z(αμλr + λe(λ− + α)(λr + μ)) − αμ(λe + μ) − λeλr (λ− + α)z2.

Moreover, the probabilities of server’s state are:

P(C = 0) = α(μ−λr )p0,0
αμ−αλr −λ−λe ,

P(C = 1) = λ−α(μ+λe−λr )p0,0
μ(αμ−αλr −λ−λe)

.
(14)

Proof Appendix E. ��
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4.5 TheMarkov regenerative approach

Our aim in this subsection is to provide expressions for the joint distribution of the state of
the server, the number of jobs in orbit, and the last realized event by following the method of
regenerative processes. This method provides quicker the results on the stationary behaviour
than the method of supplementary variables applied in Theorem 3, since the probability
distribution of the embedded Markov chain in service completion epochs is known; see
Theorem 2. For ease of computations, we assume that the seeking/retrieving times are iid
exponentially distributed random variables with rate α (i.e., we adopt the constant retrial
policy).

It can be easily verified that {(C(t), X(t), I (t); t ≥ 0)} is a Markov regenerative process
with the embedded Markov renewal process {Xm; m ∈ N}. Thus, using the classical limit-
ing theorems in Cinlar (1975), we have that under the ergodicity conditions established in
Theorem 1

q(k)
i, j := limt→∞ P((C(t), X(t), I (t) = (i, j, Ek))

=
∑∞

n=0 πnτn(i, j,k)∑∞
n=0 πnτn

, (i, j, k) ∈ S,

where S = {(0, j, E1); j ≥ 0} ∪ {(1, j, Ek); j ≥ 0, k = 2, 3} ∪ {(1, j, Ek); j ≥ 1, k =
4, 6} ∪ {(1, j, Ek); j ≥ 2, k = 5, 7}, τn(i, j, k) denotes the expected amount of time spent
by the process {(C(t), X(t), I (t); t ≥ 0)} in the state (i, j, Ek) during an interval between
two successive service completion epochs, given that at the beginning of this interval there
were n jobs in orbit, τn denotes the expectation of the time interval between two successive
service completion epoch given that at the beginning of this interval there were n jobs in
orbit, and {πn; n ≥ 0} are the limiting probabilities of {Xm; m ∈ N}, as given through the
pgf in (6) for α∗(λ−) = α

α+λ− .
For the model at hand,

τn = 1

λ− + α(1 − δ0,n)
+ b̄(1), n ≥ 0, (15)

so that U := ∑∞
n=0 πnτn := π0α+λ−(1+b̄(1)(λ−+α))

λ−(λ−+α)
, and π0 as given in Theorem 2 for

α∗(λ−) = α
α+λ− . The following theorem states our main result.

Theorem 6 Under the stability conditions given in Theorem 1, we have
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1. The limiting probabilities are given by

q(1)
0, j = 1

U
π j

λ−+α(1−δ0, j )
, j ≥ 0

q(2)
1, j = 1

U
π j λ

−
λ−+α(1−δ0, j )

∫ ∞
0 e−λet (1 − B(t))dt

= λ−(
1−β∗(λe)

λe ) 1
U

π j

λ−+α(1−δ0, j )
, j ≥ 0,

q(3)
1, j = 1

U
π j+1α

λ−+α

∫ ∞
0 e−λr t (1 − B(t))dt

= α(
1−β∗(λr )

λr ) 1
U

π j+1
λ−+α

, j ≥ 0,

q(4)
1, j = 1

U
π j−1λ

−
λ−+α(1−δ0, j−1)

∫ ∞
0 (1 − B(t))

∫ t
u=0 λee−λeue−λe+(t−u)dudt

= λ−(
λe(1−β∗(λe+)−λe+(1−β∗(λe)

λe+(λe+−λe)
) 1

U
π j−1

λ−+α(1−δ0, j−1)
, j ≥ 1,

q(5)
1, j = 1

U

∑ j−2
n=0

πnλ−
λ−+α(1−δ0,n)

× ∫ ∞
0 (1 − B(t))

∫ t
u=0 λee−λeue−λe+(t−u) (λe+(t−u)) j−n−1

( j−n−1)! dudt, j ≥ 2,

q(6)
1, j = 1

U
π j λ

−
λ−+α

∫ ∞
0 (1 − B(t))

∫ t
u=0 λr e−λr ue−λr+(t−u)dudt

= α
(

λr (1−β∗(λr+)−λr+(1−β∗(λr )

λr+(λr+−λr )

)
1
U

π j

λ−+α
, j ≥ 1,

q(7)
1, j = 1

U

∑ j−1
n=1

πnα
λ−+α

×
∫ ∞

0
(1 − B(t))

∫ t

u=0
λr e−λr ue−λr+(t−u) (λ

r+(t − u)) j−n

( j − n)! dudt, j ≥ 2.

(16)

2. The partial generating functions Qi,k(z) = ∑∞
j=0 q(k)

i, j z j , i = 0, 1, k = 1, . . . , 7, are
given by

Q0,1(z) = απ0(λ
−+α)

απ0+λ−(1+b̄(1)(λ−+α))
(

z−Ar (z)
λ−z(1−Ae(z))+α(z−Ar (z)) ),

Q1,2(z) = λ− 1−β∗(λe)
λe Q0,1(z),

Q1,3(z) = α
1−β∗(λr )

λr (Q0,1(z) − q(1)
0,0),

Q1,4(z) = λ−z(
λe(1−β∗(λe+)−λe+(1−β∗(λe)

λe+(λe+−λe)
)Q0,1(z),

Q1,5(z) = λeλ−z[ z
λeλe+(1−z) + β∗(λe+(1−z))

(λe+(1−z)−λe)λe+(1−z)

− β∗(λe+)

λe+(λe+−λe)
− λe+zβ∗(λe)

λe(λe+−λe)(λe+(1−z)−λe)
]Q0,1(z),

Q1,6(z) = α[ λr+(1−β∗(λr ))−λr (1−β∗(λr+))

λr+(λr+−λr )
](Q0,1(z) − q(1)

0,0),

Q1,7(z) = αλr [ z
λr λr+(1−z) + β∗(λr+(1−z))

(λr+(1−z)−λr )λr+(1−z)

− β∗(λr+)

λr+(λr+−λr )
− λr+zβ∗(λr )

λr (λr+−λr )(λr+(1−z)−λr )
](Q0,1(z) − q(1)

0,0),

(17)

where q(1)
0,0 = 1

U
π0
λ− = π0(λ

−+α)

π0+λ−(1+b̄(1)(λ−+α))
, and π0 as given in Theorem 2 when α∗(λ−) =

α
α+λ− .

Proof See Appendix F. ��
Remark 4 With simple but tedious calculations, it is easy to realize that the expressions of
pgfs in Theorem 6 coincide with those in Theorem 3 when α∗(λ−) = α

α+λ− (i.e., when
the seeking/retrieval times are iid exponentially distributed random variables with rate α).
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More precisely, Q0,1(z) = p0,0 + P∗
0 (0, z), Q1,k(z) = P∗

1,k(0, z), k = 2, . . . , 7, with

K (z) = α(
Q0,1(z)−q(1)

0,0
z ).

Remark 5 Note that in case of no-event dependency, i.e., λ− = λe = λe+ = λr = λr+ = λ,
U = 1/λ, as expected, since U is the expected time between two successive departures.

5 Themodel under the linear control policy

In this section, we provide results on themodel withmulti-level event-dependent arrival rates,
under the linear retrial policy Artalejo and Gomez-Corral (1997). Note that such a policy
incorporates two types of retrial requests, i.e., the classical retrial policy and the constant
retrial policy.More precisely, in the former policy, anyorbiting customer retries independently
to access the server, while in the latter one the time between two successive repeated attempts
is independent of the number of customers applying for service. This section deals with the
M/G/1 retrial queue with event-dependent arrival rates, allowing the simultaneous presence
of both types of repeat requests.

Thus, for themodel as described in Sect. 2, we assume now that the control policy to access
from the orbit queue to the server is governed by an exponential law with linear intensity
nα + β(1 − δ0,n) when the orbit size is n ≥ 0, where δ0,n denotes Kronecker’s delta. Due
to the linear retrial policy, the state probabilities defined in section 4 are the same except
the one that refer to the case where the server is idle. Thus, we have p0, j (t) := P(C(t) =
0, X(t) = j, I (t) = E1), j ≥ 0, and p0, j = limt→∞ p0, j (t). The pgfs in (8) remain valid,
and let P0(z) = ∑∞

j=0 p0, j z j , |z| ≤ 1.

Theorem 7 The embedded Markov chain {Xi ; i ≥ 0} at service completion epochs is ergodic
if and only

A(1)
r (1) < 1 − λ−

β
A(1)

e (1)δ0,a, (18)

where A(1)
k (1) = d j

dz j Ak(z)|z=1, k = e, r .

Proof To prove ergodicity, we use the Foster’s criterion as in the proof of Theorem 1. By
considering the function f (n) = n, themean drifts xn := E( f (Xi+1)− f (Xi ) | f (Xi ) = n),
n ≥ 0 are:

xn =
{

A(1)
e (1), n = 0,

λ−
λ−+β+nα

A(1)
e (1) + β+nα

λ−+β+nα
A(1)

r (1) − β+nα

λ−+β+nα
, n ≥ 1.

Clearly, if β > 0 and

A(1)
r (1) < 1 − λ−

β
A(1)

e (1)δ0,α, (19)

then, limn→∞ xn < 0 and (19) is a sufficient condition for ergodicity. The proof of necessity
follows Theorem 1 in Sennott et al. (1983) and further details are omitted. ��
Remark 6 In case α = 0, and Ae(.) = Ar (.) := A(.), i.e., no event dependency, (19)
reduces to the ergodicity condition for the retrial model under the constant retrial policy; see
(Farahmand (1990), eq. (2.14)). In case α > 0, β ≥ 0, the ergodicity condition reduces to
A(1)

r (1) < 1.
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The main result is as follows.

Theorem 8 If α > 0, β ≥ 0 and A(1)
r (1) < 1, then

P0(z) = z−β/α H(z)

(
1 − (1 − δ0,α)

∫ 1
z x

β
α −1H−1(x)dx∫ 1

0 x
β
α −1H−1(x)dx

)
, (20)

where

H(z) = P0(1)exp{λ
−

α

∫ 1

z

Ae(x) − 1

Ar (x) − 1
dx}, (21)

P0(1) = 1 − A(1)
r (1)

(1 + λ−b̄(1))(1 − A(1)
r (1) + λ−b̄(1) A(1)

e (1)
, (22)

and

P∗
1,2(s, z) = λ−(β∗(λe)−β∗(s))

s−λe P0(z),

P∗
1,3(s, z) = (αz P ′

0(z)+β(P0(z)−p0,0))(β∗(λr )−β∗(s))
z(s−λr )

,∑5
k=4 P∗

1,k(s, z) = λeλ−z
s−λe+(1−z) [

β∗(λe)−β∗(λe+(1−z))
λe+(1−z)−λe − β∗(s)−β∗(λe)

s−λe ]P0(z),

∑7
k=6 P∗

1,k(s, z) = λr (αz P ′
0(z)+β(P0(z)−p0,0))

s−λr+(1−z) [β∗(λr )−β∗(λr+(1−z))
λr+(1−z)−λr − β∗(s)−β∗(λr )

s−λr ]

(23)

Proof See Appendix G. ��
Remark 7 Note that in the special case α = 0, our model refers to the retrial queue with
constant retrial policy and event dependent arrival rates. In such a case, (G32) reduces to a
simple expression for obtaining P0(z),

P0(z) = β(z−Ar (z))
β(z−Ar (z))+λ−z(1−Ae(z))

p0,0,

p0,0 = β(1−A(1)
r (1))−λ− A(1)

e (1)

β[(1+λ−b̄)(1−A(1)
r (1))+λ−b̄A(1)

r (1))] .

The rest expressions are derived analogously by using (23) and α = 0. When we further
assume that λ− = λr = λr+ = λe = λe+ = λ (i.e., no event-dependency), we derive the
expressions in Farahmand (1990).

In case β = 0, α > 0 we have the model under the classical retrial policy, and P0(z) =
H(z). The rest expressions are derived by (23) for β = 0.

6 Numerical results

Our aim here is twofold. First, to focus on the effect of event-dependency on system perfor-
mance: In particular, we aim to investigate how the event-dependency, i.e., the customers’
behaviour based on the last realized event, affects the major performance metrics of our
system; see Sect. 6.1. In this direction, we model the customer’s behaviour by a vector
q := (q1, q2, q3, q4) that refers to the joining probabilities of arriving customers after an
arrival. In particular, the vector q states the willingness of an arriving customer to join the
system when the server is busy, by taking into account the type of the customer that has occu-
pied the server (i.e., either a primary, or a retrial customer), and whether he/she is the first
after the arrival that has occupied the idle server, or they have already joined the system other
primary customers before him/her. More precisely, let q1 be the joining probability when the
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last event is an arrival of an external customer that occupies the idle server, q2 be the joining
probability when at least one customer has arrived after the occupation of the server by an
external/primary customer, q3 be the joining probability when the last event is an arrival of a
retrial customer that occupies the idle server, and q4 be the joining probability when at least
one customer has arrived after the occupation of the server by an orbiting customer. Thus,
we assume that (λe, λe+, λr , λr+) = λ+q = λ+(q1, q2, q3, q4).

Second, we aim to obtain optimal joining probabilities that helps a system manager to
determinewhether an arriving customerwill be allowed to enter the systemorwill be rejected.
These probabilities are selectedwith ultimate goal tomaximize the systemgenerated through-
put subject to certain constraints on the expected number of orbiting customers; see Sect. 6.2.
Note that throughput optimisation problems with delay constraints have been recently inves-
tigated in several service systems with shared resources as in Chen et al. (2018); Pappas et
al. (2018); Ploumidis et al. (2017).

Assume hereon that the service and the retrieval times are such that B ∼ Erlang(M, μ),
A ∼ Erlang(N , α), respectively. All the results are based on the derivations in Theorem 3,
and in Corollary 2.

6.1 The effect of event-dependency on system performance

Example 1a: Set λ+ = 0.3, μ = 2.5 and q = (q1, q2, q3, q4) = (0.5, 0.4, 0.6, 0.4). Our
aim is to investigate the effect of the number of phases of service times and retrial times on
E(X) for increasing values of λ−. Moreover, we aim to investigate how the relation among
λ− and λ+ affects E(X).

Note that by increasing the number of phases of service times, E(X) is also increasing
as expected (see Fig. 1). Moreover, as λ− < λ+, E(X) decreases, and as λ− ≥ λ+, E(X)

increases. Thus, under such a setting, by keeping the arrival rates after a service time lower
than the arrival rates after an arrival, we ensure a better performance. This is due to the
fact that keeping lower as possible λ− with respect to λ+, we give better chances for the
blocked (i.e., retrial customers) to connect with the server. Thus, under the current setting,
the customers feel more comfortable to arrive after an arrival, and connect with the server as
retrial customers (as long as λ− < λ+).

Figure2 indicate that by decreasing α from 3.5 to 1.5, we cannot have the advantage of
the previous setting. Thus, even if λ− < λ+, by increasing λ−, E(X) increases as expected.

Furthermore, by increasing the number of phases of retrial times, we also fail to retain the
advantage of the previous setting (see Fig. 3). This is because in such a case, there is a longer
delay for the retrial customers to connect with the server, which in turn results in increasing
the expected number of orbiting customers.

Example 1b: Let know λ+ = 0.5, α = 3.5, N = 2, and q = (0.1, 0.4, 0.5, 0.2). In Fig. 4
we observe that by increasing the number of phases of service we effectively reduce the
expected waiting time when q1 < q2, as λ− → λ+ and beyond. This result is surprising,
since as shown in Fig. 5, it is in contradiction with the improvement in the expected waiting
time which results from the increase in the variability in the service process when the number
of phases decreases and q1 > q2.

Example 1c: In Fig. 6 we can observe the effect of λe = λ+q1 on the expected number
of orbiting customers for λ− = 0.1, (q2, q3, q4) = (0.5, 0.6, 0.1). It is seen that there is
a critical value of λ+ (close to 0.5 in that example), where we can achieve a substantial
decrease on E(X). Moreover, we can see that a small increase on q1 (from 0.2 to 0.4) will
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Fig. 1 Effect of service phases when N = 2, α = 3.5

Fig. 2 Effect of decreasing α from 3.5 to 1.5 (N = 2)

cause an increase on E(X), which is expected. However, by further increasing q1, we observe
that E(X) start decreasing. It seems that such a behaviour arises as soon as q1 > q2. Thus,
it seems that it is better for the system manager to allow with high probability the arriving
customers to join the system when the last event is the occupation of the server by the arrival
of an external customer and then, to keep lower the joining probability after that event.

A similar behaviour is observed (even clearer) in Fig. 7, where now we focused the effect
of q3, which is the joining probability when the last event was an arrival from the orbit
that occupied the idle server. It seems that the more we increase q3 (for fixed values of
q1 = 0.6 > q2 = 0.5, q4 = 0.4), the better performance we achieve, i.e., E(X) decreases.
In Fig. 8, we assume that q1 = 0.2 < q2 = 0.5, and observe a similar behaviour as in Fig. 7.
However, for small values of λ+, E(X) is smaller when q3 < q4. As λ+ increases, E(X)

remains smaller as long as q3 > q4.
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Fig. 3 Effect of phases of retrial times (α = 3.5, M = 2)

Fig. 4 Effect of M when N = 2, α = 3.5, λ+ = 0.5, q = (0.1, 0.4, 0.5, 0.2)

6.2 Optimisation problems

Our goal is to determine the optimal joining probabilities q = (q1, q2, q3, q4) that maximize
the throughput (T HS) generated by the system, subject to constraints on the maximum
attained service level on E(X), and the stability.

These probabilitieswill dictate theway the arriving customers join the systemwhen the last
event is known. Therefore, they can serve as a guide for the systemmanager to seewhatwould
ideally be the arriving customer’s behaviourwhen the last event is known. Equivalently, based
on these values, he/she can adequately accept or reject arriving jobs subject to the last realized
event, so that to maximize the system throughput. Throughput optimisation problems with
delay constraints have been recently investigated in wireless systems with shared resources;
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Fig. 5 Effect of M when N = 2, α = 3.5, λ+ = 0.5, q = (0.6, 0.4, 0.5, 0.2)

Fig. 6 Effect of q1 when N = 2, M = 5 α = 3.5, λ− = 0.1

see e.g., Mehmeti et al. (2023); Chen et al. (2018); Pappas et al. (2018); Ploumidis et al.
(2017).

Thus, we focus on the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize T HS,

subject to

E(X) ≤ E(X),

b̄ <
α∗(λ−)[λr++(λr −λr+)β∗(λr )]

λr [λe++(λr+−λe+)α∗(λ−)] − (1−α∗(λ−))(λe−λe+)β∗(λe)

λe[λe++(λr+−λe+)α∗(λ−)] ,

q2 < q1, q4 < q3,
0 ≤ qi ≤ 1, i = 1, 2, 3, 4,

(24)
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Fig. 7 Effect of q3 when N = 2, M = 5 α = 3.5, λ− = 0.1, q1 = 0.6 > 0.5 = q2

Fig. 8 Effect of q3 when N = 2, M = 5 α = 3.5, λ− = 0.1, q1 = 0.2 < 0.5 = q2

where b̄ = M
μ
,β∗(s) = (

μ
μ+s )M ,α∗(s) = ( α

α+s )N , and (λe, λe+, λr , λr+) = λ+(q1, q2, q3, q4).
In the optimisation problem (24), the first constraint refers to the maximum number of orbit-
ing jobs, and the second one on the stability condition. The last two conditions are related to
the ordering of the joining probabilities (q1, q2, q3, q4). In particular, we assume q2 < q1,
q4 < q3, by assuming that if a customer knows that another one has already arrived, it is less
likely to join. The optimal joining probabilities are in Tables 3, 4, 5.

Example 2a: Set λ+ = 2, μ = 1.5, α = 3, M = 4, N = 3, E(X) = 20. The optimal joining
probabilities as functions of λ− that maximize T HS are given in Table 3. We observe that by
increasing λ−, T HS increases too. It seems that when λ− < λ+, it is better to reject newly
arriving customers after the occupation of the server by a primary customer (i.e., small q1,
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Table 3 Optimal values of
joining probabilities as functions
of λ−

λ− qopt = (q1, q2, q3, q4) Optimal T HS

0.1 (0.0001, 0.0001, 0.3148, 0.1431) 0.0788

1 (0.0547, 0.0287, 0.1719, 0.033) 0.3082

2 (0.0727, 0.027, 0, 0) 0.3289

4 (0.0094, 0.0048, 0.0962, 0.0271) 0.3452

6.1 (0.0006, 0.0003, 0.2856, 0.0687) 0.354

Table 4 Optimal values of
joining probabilities as functions
of N

N qopt = (q1, q2, q3, q4) Optimal T HS

1 (1, 0, 0.7199, 0) 0.328

2 (0.4614, 0.1678, 0.6339, 0.1532) 0.3221

5 (0.2669, 0.0383, 0.0309, 0.0157) 0.2916

15 (0.0062, 0.0031, 0.3373, 0.1446) 0.2737

30 (0.0001, 0, 0.3269, 0.1533) 0.2727

Table 5 Optimal values of
joining probabilities as functions
of M

M qopt = (q1, q2, q3, q4) Optimal T HS

1 (0.4755, 0.4755, 1, 0) 0.6702

2 (0.4259, 0.0974, 0.7478, 0.6007) 0.4958

5 (0.2721, 0.0415, 0.1334, 0.0512) 0.2484

15 (0.0104, 0.0053, 0.4011, 0.0143) 0.0936

q2 compared with q3, q4). When λ− = λ+, T HS is maximized by rejecting all the newly
arriving customers that arrive after the occupation of the server by a retrial customer.

Example 2b: Set now λ− = 1, λ+ = 0.5, μ = 1.5, α = 3, M = 4, E(X) = 20. In
Table 4 we observe that the more we increase number of phases of retrial times, the less
number of arriving customers we allow to enter the system. More precisely, we observe that
when N = 30, T HS is maximized when we reject customers that arrive after the arrival of
a primary customer, and it is better to accept customers that arrive after a successful retrial
that occupies the idle server. This make sense since by increasing the number of phases of
retrial times we also increase the time to retrieve an orbiting customer. Thus, if we aim to
maximize the system throughput we need to somehow prioritize the orbiting customers, and
give more chances to arriving customers to join the system when an orbiting customer is in
service.

Under the same setting, but now fixing N = 4, and by varying M , we observe in Table
5 that the optimal joining probabilities are more sensitive on the number of service phases
compared with the number of retrieval phases. In particular, if the number of service phases
increases, then the maximum throughput decreases very fast.

Example 2c: We now consider the optimisation problem in (24) with λ− = 1, λ+ = 0.5,
μ = 1.5, α = 3, M = 4, E(X) = 20, but now by excluding the constraints q2 < q1, q4 < q3.
Table 6 contains the corresponding optimal joining probabilities. We can now observe that
contrary to the case in Table 4, there is no specific trend on the values of the optimal joining
probabilities.Moreover, in most of the cases qopt

2 > qopt
1 and qopt

4 > qopt
3 . Thus, it seems that
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Table 6 Optimal values of
joining probabilities

N qopt = (q1, q2, q3, q4) Optimal T HS

1 (1, 0, 0.7199, 0) 0.328

2 (0.0933, 0.7073, 0.2362, 0.5123) 0.2908

5 (0.0744, 0.714, 0.2016, 0.5106) 0.287

15 (0.179, 0.9938, 0.0001, 0.7527) 0.295

30 (0.0293, 0.0374, 0.1065, 0.0439) 0.276

Table 7 Optimal values of
joining probabilities as functions
of λ+, λ−

λ− λ+ qopt = (q1, q2, q3, q4) Optimal T HS

0.1 0.5 (1, 1, 1, 0.2129) 0.5654

1.5 (0.3813, 0.2076, 0.3001, 0.1480) 0.4742

2.5 (0.1316, 0.0610, 0.2394, 0.1141) 0.4459

3.5 (0.1170, 0.0359, 0.1898, 0.0742) 0.4435

0.5 0.5 (1, 0, 0.6694, 0) 0.5161

1.5 (0.4142, 0.0682, 0.2474, 0.0543) 0.4726

2.5 (0.0614, 0.0239, 0.3470, 0.0076) 0.4375

3 (0.1497, 0.0017, 0.2509, 0.1190) 0.4476

1.5 0.5 (0.2422, 0.1515, 0.6712, 0.1349) 0.4676

1.5 (0.0584, 0.0252, 0.3116, 0.0361) 0.4369

2.5 (0.1795, 0.0153, 0.0205, 0.0088) 0.4479

3 (0.0138, 0.0068, 0.4500, 0.0272) 0.4308

it is better to accept customers with small probability when the last event is the occupation
of the idle server by a primary (resp. orbiting) customer, and then to increase the accepting
probability for the subsequent customers. Similarly to the case in Table 4, the number of
phases of the retrieval times heavily affects the optimal values of the joining probabilities.

Example 2d: Table 7 contains optimal joining probabilities as functions of λ+, λ−. Remind
that these rates characterize the arrival rates when the last event is an arrival and a departure,
respectively. We can observe that when both λ+, λ− are small, the maximum throughput is
achieved by allowing all the customers that arrive after the occupation of the idle server by
either a primary or a retrial customer, but keeping lower joining probability for subsequent
arriving customers after the server occupation by an orbiting customer.

Example 2e:We now investigate the effect of service rateμ of a phase of the service time, on
the optimal joining probabilities when the server is busy (we assume no specific ordering of
joining probabilities). In particular, we assume that α = 3, M = 4, N = 2. Table 8 contains
the optimal joining probabilities when λ− = λ+ = 0.5, i.e., we assume that arrivals occur
with rate λ+, and if a service completion is the last event, the will join with certainty the
system, and seek for optimal joining probabilities when an arrival has occurred (i.e., λ+qi ,
i = 1, 2, 3, 4). Clearly, the more we increase μ, the less the expected service time, and the
maximum throughput is achieved by allowing with high probability the arriving jobs to enter
the system. For example, when μ > 4, arriving jobs after the occupation of the idle server
by a primary customer are accepted with certainty, and the more we increase μ, the more
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Table 8 Optimal values of
joining probabilities as functions
of μ

μ qopt = (q1, q2, q3, q4) Optimal T HS

0.5 (0.1274, 0.0282, 0.0369, 0.1675) 0.4432

1.5 (0.2497, 0.1249, 0.2694, 0.0902) 0.4598

2.5 (0.2448, 0.3541, 0.4338, 0.3820) 0.4672

3.5 (0.1221, 0.7456, 0.2277, 0.4977) 0.4503

4.5 (1, 0.1736, 0.8286, 0) 0.5274

5.5 (1, 0.7668, 0.8736, 0) 0.5471

7.5 (1, 1, 1, 1) 0.6

Table 9 Optimal values of joining probabilities as functions of λ+, μ

λ+ μ q̃opt = (q1, q2, q3, q4, q5) Optimal T HS

0.1 0.5 (1, 0, 1, 0, 0.4704) 0.5275

1.5 (0.0084, 0.7301, 0.0046, 0.4843, 0.8284) 0.43

2.5 (0.0399, 0.8051, 0.867, 0.4714, 0.7932) 0.4414

3.5 (0.1928, 0.8553, 0.8635, 0.7085, 0.956) 0.4844

0.3 0.5 (1, 0, 1, 0, 0.151) 0.5275

1.5 (1, 1, 1, 1, 0.1788) 0.6

2.5 (1, 1, 1, 1, 0.5323) 0.6

3.5 (1, 1, 1, 1, 0.572) 0.6

0.6 0.5 (0.1773, 0.2851, 0.299, 0.1755, 0.0298) 0.454

1.5 (1, 1, 1, 0.3026, 0) 0.5687

2.5 (1, 1, 1, 1, 0.0386) 0.6

3.5 (1, 1, 1, 1, 0.3052) 0.6

we increase the joining probability for subsequent arrivals, as well as for arriving customers
when the last event is the occupation of the server by an orbiting customer.

Example 2f: In all the preceding examples we have assumed that arrivals at an idle server
join the system with certainty. Assume now that λ− = λ+q5, q5 ∈ [0, 1]. In the following we
observe that the T Hs is heavily affected by the arrivals that see an idle server; see Table 9.
More precisely, we can observe that in order to maximize the system throughput, it is better to
keep low the probabilities of entering the system just after a service completion. This seems
to be crucial as λ+ increases and μ remains as small as possible. However, as μ increases the
situation becomes smoother. Interestingly, in all cases, the maximum throughput is achieved
when the joining probability after a departure is strictly less than 1.

7 Conclusion and future work

In this work, we introduced the concept of event-dependent arrivals in the retrial setting.
We studied the stability condition, and investigated the stationary behaviour both at service
completion, and at an arbitrary epoch (by applying both the supplementary variable method
and the Markov renewal theory). We provided results for all the well known retrial policies,
i.e., with general retrials, and under the linear retrial policy (which combines the classical and

123



1076 Annals of Operations Research (2023) 331:1053–1088

the constant retrial policy). Explicit expressions for various performance metrics are derived,
and used to numerically investigate the effect of event-dependency on system’s performance.
We also formulated and solved constrained optimisation problems that shown insights into
the effect of event dependency on the optimal joining probabilities.

It seems that event-dependency is a result of customer’s strategic behaviour, although we
postpone the formal game-theoretical investigation as a future work. Indeed, consider an
initial unobservable system with a potential arrival rate λ. At an arrival epoch, a customer
decides either to join or not system.Although the system is unobservable, an arriving customer
is informed about the last realized event; an arrival or a service completion. Let the net benefit
for a customer who joins by the value of service, B, minus the cost of waiting proportional to
a waiting cost per time unit,C . Given that the expectedwaiting time of an arriving customer is
differentwhether the last eventwas an arrival or a service completion, a strategy after an arrival
and after a service is described by five different probabilities of joining p̄+ := (q1, q2, q3, q4)
and p−, by taking also into account the type of a customer that occupies the server (i.e., a
retrial or a primary). More precisely, let λ̄+ := λ p̄+, λ− := λp−. The values of p−, p̄+ are
such that the stability condition is satisfied, and the values of p̄+ are such that: q1 refers to
the case the last event is an arrival of an external customer to an idle server, q2 refers to the
case the last event is a subsequent arrival to a busy server, which was initially occupied by
an external customer, q3 refers to the case the last event is an arrival of a retrial customer to
an idle server, and q4 refers to the case the last event is a subsequent arrival to a busy server,
which was initially occupied by a retrial customer. Having that description in mind one can
consider the net benefit for a customer who arrives after and arrival and service and seeking
for optimal joining probabilities and identify the equilibrium, social and profit maximizing
strategies.

Several other questions are open for future research. It would be worth investigating the
effect of event-dependency on service times, i.e., to allow the service rates to depend on the
last realized event. Our modeling framework allows also to consider several characteristics,
such as priorities, vacations, breakdowns and repairs. Another option is to investigate the
possibility of obtaining the performance metrics through the QMCD (Queueing & Markov
Chain Decomposition) method Baron et al. (2018).

7.1 On the admission control problem

Wenowdiscuss howone can investigate the admission control problemKoole (2007) by using
an MDP framework. In the admission control problem, the system manager must determine
upon the the arrival of a customer whether to allow him/her to enter the system or to reject
him/her.

With ultimate goal to maximize the throughput of served customers with a service level
constraint on the expected number of orbiting customers, such a decision can be based on the
number of customers present in orbit, the distribution of the remaining service time and the
last realized event. Due to the fact that a deterministic admission policy is easier (than the
randomized) to implement in real system one can focus on determining a threshold policy,
depending on the last realized event and on the remaining service time of the customer in
service. More precisely, given that there will be k customers in orbit, and the remaining
service equal s, we seek for thresholds, say ke,1

s , ke,2
s , kr ,1

s , kr ,2
s , k− such that,

– If a primary arrival occurs after an arrival of a primary customer that occupies an idle
server, then, this customer is rejected (and leave the system without service) if k > ke,1

s .
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– If a primary arrival occurs after at least one primary arrival after the occupation of an
idle server by a primary customer, then, this customer is rejected (and leave the system
without service) if k > ke,2

s .
– If a primary arrival occurs after an arrival of an orbiting customer that occupies an idle

server, then, this customer is rejected if k > kr ,1
s .

– If a primary arrival occurs after at least one primary arrival after the occupation of an
idle server by an orbiting customer, then, this customer is rejected (and leave the system
without service) if k > kr ,2

s .
– If a primary arrival occurs after a service completion, then, this customer is rejected if

k > k− (i.e., we give priority to the orbiting customers to occupy the idle server, if there
are more than k−).

To proceed with the set up of the problem, we assume that the service time is Coxian
distributed (note that this is a proper choice to approximate the service time distribution
since it is dense in the class of all non-negative distributions. However, one still needs to set
the number of phases to appropriately approximate the considered service time distribution
Horváth and Telek (2002)). Coxian distribution is defined by the parameters μ j > 0, and
r j ∈ [0, 1], 1 ≤ j ≤ N , with r1 = 0, where r j (resp. r̄ j = 1− r j ) denotes the probability of
entering the remaining phase j −1 after leaving the remaining phase j (resp. completing the
service time after leaving phase j), while and the parameterμ j is the rate of the exponentially
distributed random duration of the remaining phase j . For simplicity, we assume that the
retrial times can be exponentially distributed with rate α. We seek for necessary conditions
under which a deterministic threshold-type policy can be optimal. This can be done by using
the value iteration technique, where structural properties of the value function can be proven
by induction.

Our problem can be considered as a constrained Markov decision process (MDP) Altman
(1999) (i.e., maximize the throughput of served customers with a constraint on the expected
number of customers in the system), and can be investigated using various techniques, such
that the one that introduces the constraint into the objective function by using a Lagrange
multiplier. Then, one can realize that the optimal policy for a certain Lagrange multiplier is
optimal for the constrained problem when the value of the constraint under this policy attains
exactly E(X). Thus, it follows that this policy is stationary and randomizes in at most one
state. Then, the optimisation problem can be rewritten as min(E(X) − c × T HS), where the
non-negative coefficient c is the Lagrange multiplier which refers to the relative importance,
given by the system manager, of the throughput of served customers (T HS) compared to the
expected number of customers in the system (E(X)).

Denote by (x, y) the state of the system, where x ≥ 0 is the number of remaining phases of
work, and y denotes the nature of the last event, i.e., y ∈ {+e,+e,1,+e,2,+r ,+r ,1,+r ,2,−},
where y = +e (resp. y = +r ), when the last event is the occupation of the idle server by
an external (resp. orbiting) customer, y = +e,1 (resp. y = +r ,1) when the last event is the
first arrival after the occupation of the idle server by an external (resp. orbiting) customer,
y = +e,2 (resp. y = +r ,2) when at least one arrival has occurred after the occupation of the
idle server by an external (resp. orbiting) customer, and y = −when the last event is a service
completion. Denote the transition rate from state (x, y) to state (x ′, y′) by q(x,y),(x ′,y′). Then,
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q(x,y),(x ′,y′)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α, x > 0, y = −, x ′ = x, y′ = +r ,

λ−, x ≥ 0, y = −, x ′ = x + N , y′ = +e,

λe, x ≥ 0, y = +e, x ′ = x + N , y′ = +e,1,

λe+, x ≥ 0, y =∈ {+e,1,+e,2}, x ′ = x + N , y′ = +e,2,

λr , x ≥ 0, y = +r , x ′ = x + N , y′ = +r ,1,

λr+, x ≥ 0, y ∈ {+r ,1,+r ,2}, x ′ = x + N , y′ = +r ,2,

r jμ j , x = k N + j, y ∈ {+e,+e,1,+e,2,+r ,+r ,1,+r ,2}, x ′ = x − 1, y′ = y,

r̄ jμ j , x = k N + j, y ∈ {+e,+e,1,+e,2,+r ,+r ,1,+r ,2}, x ′ = k N , y′ = −,

0, otherwise.

It would be better to proceed by applying a uniformization method (Puterman (1994),
Sect. 11.5.2) and consider the discrete time version of the model asking λ− + λe + λe+ +
λr + λr+ + α + ∑N

j=1 μ j = 1. Then, we formulate a two-step value function so that to sep-
arate transitions and actions, and then, we define the dynamic programming value functions
V y

n (x), y ∈ {+e,+e,1,+e,2,+r ,+r ,1,+r ,2,−}, W y
n (x), y ∈ {+e,1,+e,2,+r ,1,+r ,2,−},

with V y
0 (x) = W y

0 (x) = 0, x ≥ 0. In particular, for 1 ≤ j ≤ N , k ≥ 0,

V +e
n+1(k N + j) = k + 1 + λeW

+e,1
n (k N + j) + r jμ j V +e

n (k N + j − 1)
+r̄ jμ j V −

n (k N ) + (1 − λe − μ j )V +e
n (k N + j),

V
+e,1
n+1 (k N + j) = k + 1 + λe+W

+e,2
n (k N + j) + r jμ j V

+e,1
n (k N + j − 1)

+r̄ jμ j V −
n (k N ) + (1 − λe+ − μ j )V

+e,1
n (k N + j),

V
+e,2
n+1 (k N + j) = V

+e,1
n+1 (k N + j),

V +r
n+1(k N + j) = k + 1 + λr W

+r,1
n (k N + j) + r jμ j V +r

n (k N + j − 1)
+r̄ jμ j V −

n (k N ) + (1 − λr − μ j )V +r
n (k N + j),

V
+r,1
n+1 (k N + j) = k + 1 + λr+W

+r,2
n (k N + j) + r jμ j V

+r,1
n (k N + j − 1)

+r̄ jμ j V −
n (k N ) + (1 − λe+ − μ j )V

+r,1
n (k N + j),

V
+r,2
n+1 (k N + j) = V

+r,1
n+1 (k N + j),

V −
n+1(k N ) = k + λ−W −

n ((k + 1)N ) + αV +r
n (k N )

+(1 − λ− − α)V −
n (k N ),

(25)

where the operator Wn denotes the decision to accept or to reject a newly arriving customer.
In particular,

W
+e,1
n (k N + j) = min{V +e

n (k N + j) − c, V +e
n (k N + j)},

W
+e,2
n (k N + j) = min{V

+e,1
n (k N + j) − c, V

+e,1
n (k N + j)},

W
+r,1
n (k N + j) = min{V +r

n (k N + j) − c, V +r
n (k N + j)},

W
+r,2
n (k N + j) = min{V

+r,1
n (k N + j) − c, V

+r,1
n (k N + j)},

W −
n (k N + j) = min{V +e

n (k N + j) − c, V −
n (k N + j)}.

(26)

For each n > 0, x ≥ 0, we have a minimizing action upon a customer’s arrival, i.e., to
allow this customer to enter the system or reject him/her. In order to obtain the long-run
average optimal actions one can use the value iteration method developed in Howard (1960),
by recursively evaluating Vn using equations (25), (26), for n ≥ 0. The form of the optimal
policy is closely related to the structural properties of the value function, and it would be
interesting to derive conditions for which one can have optimal threshold policies based
on the number of orbiting customers for a given number of remaining phases of service.
We believe that by using a standard MDP approach where structural properties of the value
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function are proved by induction, one can derive such optimal threshold-type policy. The
formal and detailed investigation of this task is postponed as a future research work.

Due to the complicated nature of this problem, it seems to be a difficult task to find,
and further to implement the optimal policy in a real system. With that in mind, one
can consider a simplified version, where the thresholds on the orbit queue length would
depend only on the number of orbiting customers, and further to assume that ky = k+,
y ∈ {+e,+e,1,+e,2,+r ,+r ,1,+r ,2}, so that we would have two thresholds, k+, k−: If an
arrival occur after an arrival (resp. a service), this customer is rejected if k > k+ (resp.
k > k−). Although the proposed policy would be not optimal, it is simpler to implement in
practice. Moreover, compared to the Coxian approximation, which leads to the application
of the matrix-geometric method to derive the performance measures, the simplified approach
we propose here leads to the derivation of explicit expressions for the performance metrics
for any service/retrieval time distribution.

Assuming that k+ > k−, the stationary probabilities at departure instants, say p̃ :=
(π̃0, . . . , π̃k+), can be derived using a similar approach as in Sect. 3, where now the one step
transition probability matrix, say P̃ := ( p̃i, j ), i, j = 0, . . . , k+, is given by

p̃0, j = be
j , j = 0, 1, . . . , k+ − 1,

p̃0,k+ = 1 − ∑k+−1
j=0 be

j ,

p̃i,i−1 = α∗(λ−)br
0,

p̃i, j = (1 − α∗(λ−))be
j−i + α∗(λ−)br

j−i+1, i = 1, 2, . . . , k−, j = i, i + 1, . . . , k+ − 1,

p̃i,k+ = 1 − ∑k+−1
j=i−1 p̃i, j , i = 1, 2, . . . , k−,

p̃i,i−1 = 1, p̃i, j = 0, j 
= i − 1, i = k− + 1, . . . , k+,

Note that from i = k− + 1 to i = k+, there cannot be any arrival during a service since the
first arrival after the service completion cannot occur. Thus, we can only have an orbiting
customer that will enter the service with probability 1, and the orbiting customers will be
reduced by one at the next service completion.

One can then solve the system π̃ = π̃ P̃ , with
∑k+

i=0 π̃i = 1, to obtain the stationary
distribution of the orbit size at service completion epochs. The stationary probabilities at
an arbitrary epoch can be also derived in a similar fashion as in Sect. 4, so further details
are omitted. With these results, one can solve optimisation problems (as for the case of the
infinite thresholds in the optimisation problem in (24)) to find optimal thresholds, say k+

opt ,
k−

opt , to maximize the generating system throughput. Again, we do not claim that this can be
an optimal two-threshold policy.
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Appendix A: Proof of Theorem 1

(Sufficiency) We use standard Foster-Lyapunov arguments. Let A( j)
k (1) = d j

dz j Ak(z)|z=1,
k = e, r , j = 1, 2. Then, the mean drifts are given by:

xn = E(Xi+1 − Xi | Xi = n) = E(Ai+1(Bi+1) | Xi = n) − E(Bi+1 | Xi = n)

= (1 − α∗(λ−)(1 − δ0,n))A(1)
e (1) + α∗(λ−)(1 − δ0,n)(A(1)

r (1) − 1),

where δ0,n denotes the Kronecker’s delta. Suppose that

(1 − α∗(λ−))A(1)
e (1) + α∗(λ−)A(1)

r (1) < α∗(λ−).

Then,

ε = 1
2 [α∗(λ−) − (1 − α∗(λ−))A(1)

e (1) − α∗(λ−)A(1)
r (1)] > 0,

and there exists

limn→∞ xn = (1 − α∗(λ−))A(1)
e (1) + α∗(λ−)A(1)

r (1) − α∗(λ−)

= −2ε < −ε.

Hence, xn < −ε for all the states except for a finite number. Therefore,

(1 − α∗(λ−))A(1)
e (1) + α∗(λ−)A(1)

r (1) < α∗(λ−), (A1)

is a sufficient condition for the ergodicity of the embedded Markov chain. After straightfor-
ward computations (A1) reduces to (4). (Necessity) The necessity part can be proved using
the Kaplan’s condition and further details are omitted (The necessity can also proved using
the generating function approach; see Theorem 3).

Appendix B: Proof of Lemma 1

Considering the evolution of {(C(t), X(t), I (t), Z(t)); t ≥ 0} in the interval [0, t + dt] and
conditioning on its value at time t we have for dt → 0+, the equations

d

dt
p0,0(t) = −λ− p0,0(t) +

3∑
k=2

p(k)
1,0(0, t), (B2)

(
∂

∂t
− ∂

∂r

)
p0, j (r , t) = −λ− p0, j (r , t) + a(r)

7∑
k=2

p(k)
1, j (0, t), j ≥ 1, (B3)

(
∂

∂t
− ∂

∂r

)
p(2)
1, j (r , t) = −λe p(2)

1, j (r , t) + λ− p0, j (t)b(r), j ≥ 0, (B4)

(
∂

∂t
− ∂

∂r

)
p(3)
1, j (r , t) = −λr p(3)

1, j (r , t) + p0, j+1(0, t)b(r), j ≥ 0, (B5)
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(
∂

∂t
− ∂

∂r

)
p(4)
1, j (r , t) = −λe+ p(4)

1, j (r , t) + λe p(2)
1, j−1(r , t), j ≥ 1, (B6)

(
∂

∂t
− ∂

∂r

)
p(5)
1, j (r , t) = −λe+ p(5)

1, j (r , t) + λe+(p(5)
1, j−1(r , t) + p(4)

1, j−1(r , t)), j ≥ 2,(B7)

(
∂

∂t
− ∂

∂r

)
p(6)
1, j (r , t) = −λr+ p(6)

1, j (r , t) + λr p(3)
1, j−1(r , t), j ≥ 1, (B8)

(
∂

∂t
− ∂

∂r

)
p(7)
1, j (r , t) = −λr+ p(7)

1, j (r , t) + λr+(p(7)
1, j−1(r , t) + p(6)

1, j−1(r , t)), j ≥ 2.

(B9)

Letting t → ∞, Eqs. (B2)-(B9) reduce to those given in (7).

Appendix C: Proof of Theorem 3

Multiplying the second in (7) with e−sr , integrating with respect to s ∈ [0,∞), and having
in mind that p∗

0, j (s) = ∫ ∞
0 e−sr p0, j (r)dr , yields

(s − λ−)p∗
0, j (s) = p0, j (0) − α∗(s)

∑7
k=2 p(k)

1, j (0).

Multiplying with z j , and summing for all j ≥ 0 yields

(s − λ−)P∗
0 (s, z) = P0(0, z) − α∗(s)

[∑7
k=2 P1,k(0, z) − λ− p0,0

]
. (C10)

For s = λ− we obtain,

P0(0, z) = α∗(λ−)
[∑7

k=2 P1,k(0, z) − λ− p0,0
]
, (C11)

and substituting back in (C10),

P∗
0 (s, z) = α∗(λ−)−α∗(s)

s−λ−
[∑7

k=2 P1,k(0, z) − λ− p0,0
]
. (C12)

By repeating the same procedure for the third in (7), we obtain

(s − λe)P∗
1,2(s, z) = P1,2(0, z) − λ−β∗(s)[p0,0 + P∗

0 (0, z)], (C13)

and setting s = λe yields

P1,2(0, z) = λ−β∗(λe)[p0,0 + P∗
0 (0, z)].

Substituting back in (C13) yields

P∗
1,2(s, z) = λ−

s−λe (β∗(λe) − β∗(s))[p0,0 + P∗
0 (0, z)]. (C14)

So the second in (9) has been proved. By applying the same procedure for the forth in (7) we
obtain

P1,3(0, z) = β∗(λr )
z P0(0, z),

P∗
1,3(s, z) = β∗(λr )−β∗(s)

z(s−λr )
P0(0, z).

(C15)

Now repeat the same procedure for the fifth and sixth in (7) we obtain

(s − λe+)P∗
1,4(s, z) = P1,4(0, z) − λez P∗

1,2(s, z), (C16)
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(s − λe+)P∗
1,5(s, z) = P1,5(0, z) − λe+z(P∗

1,5(s, z) + P∗
1,4(s, z)). (C17)

Substituting (C14) in (C16), and setting s = λe+ yields an expressions for P1,4(0, z). Substi-
tuting back in (C16) yields,

P∗
1,4(s, z) = λeλ−z

s − λe+
[β

∗(λe) − β∗(λe+)

λe+ − λe
− β∗(λe) − β∗(s)

s − λe
](p0,0 + P∗

0 (0, z)). (C18)

Using (C18) in (C17), setting now s = λe+(1 − z), and following the same procedure as
above, we obtain

P∗
1,5(s, z) = λeλ−z

s−λe+(1−z) [
β∗(λe)−β∗(λe+(1−z))

λe+(1−z)−λe − β∗(λe)−β∗(λe+)

λe+−λe (
s−λe+(1−z)

s−λe+
)

+ λe+z
s−λe+

(
β∗(λe)−β∗(s)

s−λe )](p0,0 + P∗
0 (0, z)).

(C19)

Summing the above equations and using (C14), we obtain

∑5
k=4 P1,k(0, z) = λ−λez[β∗(λe)−β∗(λe+(1−z))]

λe+(1−z)−λe [p0,0 + P∗
0 (0, z)],

∑5
k=4 P∗

1,k(s, z) = λ−λez
s−λe+(1−z)

(
β∗(λe)−β∗(λe+(1−z))

λe+(1−z)−λe − β∗(λe)−β∗(s)
s−λe

)
×[p0,0 + P∗

0 (0, z)].
(C20)

Similar operations for the last two equations in (7) yield

P∗
1,6(s, z) = λr

s−λr+
[β∗(λr )−β∗(λr+)

λr+−λr − β∗(λr )−β∗(s)
s−λr ]P0(0, z),

P∗
1,7(s, z) = λr

s−λr+(1−z) [
β∗(λr )−β∗(λr+(1−z))

λr+(1−z)−λr − β∗(λr )−β∗(λr+)

λr+−λr (
s−λr+(1−z)

s−λr+
)

+ λr+z
s−λr+

(
β∗(λr )−β∗(s)

s−λr )]P0(0, z).

(C21)

and
∑7

k=6 P1,k(0, z) = λr [β∗(λr )−β∗(λr+(1−z))]
λr+(1−z)−λr P0(0, z),∑7

k=6 P∗
1,k(s, z) = λr P0(0,z)

s−λr+(1−z)

(
β∗(λr )−β∗(λr+(1−z))

λr+(1−z)−λr − β∗(λr )−β∗(s)
s−λr

)
.

(C22)

Now from (C12),

7∑
k=2

P1,k(0, z) = λ− p0,0 + P0(0, z)

α∗(λ−)
. (C23)

Using (C14)-(C22), and after lengthy algebraic computations, we obtain

7∑
k=2

P1,k(0, z) = λ− Ae(z)(p0,0 + P∗
0 (0, z)) + P0(0, z)

z
Ar (z). (C24)

Equating (C23), (C24) we obtain

P0(0, z) = λ−zα∗(λ−)(p0,0(Ae(z) − 1) + Ae(z)P∗
0 (0, z))

z − α∗(λ−)Ar (z)
. (C25)

Using (C11), (C25), we obtain

P∗
0 (s, z) = α∗(λ−)−α∗(s)

s−λ−
P0(0,z)
α∗(λ−)

. (C26)
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Setting s = 0 in (C26), and using (C25) we obtain the first in (9). Setting s = 0 in (C15),
and letting K (z) := P0(0,z)

z , we obtain the third in (9). Similarly we can obtain the rest
expressions in (9).

Having obtain the expressions in (9), and having in mind that 1 = p0,0 + P∗
0 (0, 1) +∑7

k=2 P∗
1,k(0, 1) we derive after lengthy but straightforward computations the probability of

an empty system p0,0.

Appendix D: Proof of Corollary 2

Let A( j)
k (1) = d j

dz j Ak(z)|z=1, k = e, r , j = 1, 2. Then, for k = e, r we have

A(1)
k (1) = (λk−λk+)(1−β∗(λk ))+λkλk+b̄(1)

λk ,

A(2)
k (1) = λk+(2b̄(1) + λk+b̄(2)) − 2

λk+
λk A(1)

k (1).

Let also,

G := α∗(λ−)[(2A(1)
e (1)+A(2)

e (1))(1−A(1)
r (1))+A(1)

e (1)A(2)
r (1)]

2[A(1)
e (1)(α∗(λ−)−1)+α∗(λ−)(1−A(1)

r (1))]2 ,

F := [p0,0(1−α∗(λ−))G+A(1)
e (1)P(C=0)]−P∗

0 (0,1)(1−α∗(λ−)A(1)
r (1))

(1−α∗(λ−))2
.

Then, using the results in Theorem 3, and differentiating with respect to z, at z = 1, we
obtain after heavy computations

d
dz P∗

0 (0, z)|z=1= p0,0(1 − α∗(λ−))G,

d
dz P∗

1,2(0, z)|z=1= p0,0(1 − α∗(λ−))λ− 1−β∗(λe)
λe G,

d
dz P∗

1,3(0, z)|z=1= λ−α∗(λ−)
1−β∗(λr )

λr F,

d
dz

∑5
k=4 P∗

1,k(0, z)|z=1= λ−(b̄(1) − 1−β∗(λe)
λe )[ d

dz P∗
0 (0, z)|z=1+ λe−λe+

λe P(C = 0)]
+ λ−λe+b̄(2)

2 P(C = 0),

d
dz

∑7
k=6 P∗

1,k(0, z)|z=1= (b̄(1) − 1−β∗(λr )
λr )(

λr −λr+
λe P0(0, 1) + F) + λr+b̄(2)

2 P0(0, 1).

(D27)

Sum the terms in (D27) to obtain E(X) in (10). Let T HS is the throughput generated by the
system. Then,

T HS = λ− P∗
0 (0, 1) + λe P∗

1,2(0, 1) + λe+
∑5

k=4 P∗
1,k(0, 1)

+λr P∗
1,3(0, 1) + λr+

∑7
k=6 P∗

1,k(0, 1).

After tedious computations we can have the expression given in (10).

Appendix E: Proof of Theorem 5

Let P0(z) = ∑∞
j=0 p0, j z j , P1,k(z) = ∑∞

j=0 p(k)
1, j z

j , |z| ≤ 1. Writing down the global
balance equations and forming the generating functions we come up with the following
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system:

P0(z)(λ− + α) − α p0,0 = μ(P1,1(z) + P1,2(z)),

P1,1(z) = λ−
μ+λe(1−z) P0(z),

P1,2(z) = α(P0(z)−p0,0)
z(μ+λr (1−z)) .

Simple calculation leads to

P0(z) = α(μ + λe(1 − z))(λr z − μ)p0,0
α(μ + λe(1 − z))(λr z − μ) + λ−λez(μ + λe(1 − z))

.

Setting z = 1, and asking P0(1)+ P1,1(1)+ P1,2(1) = 1, we obtain p0,0 as given in the first in
(11), so that αλr +λ−λe < αμ is a necessary condition for ergodicity. Having obtained p0,0,
simple algebraic calculation provide the stationary probabilities of server’s state as given in
(14).

Note that P0(z) can be written as follows:

P0(z) = α p0,0
λ− + α

[1 + μλ− λr z − λe − μ

f (z)
],

where f (z) as given in Theorem 5. Note that f (0) = −αμ(λe +μ), f (1) = μ(αλr +λeλ−−
αμ) < 0, due to the ergodicity condition, and d2 f (z)

dz2
= −2λeλr (λ− + α) < 0, so that f (z)

is a concave function for all z, and d f (z)
dz = 0 ⇒ z = αμλr +λe(λ−+α)(λr +μ)

2λeλr (λ−+α)
> 1. Thus,

f (z) = 0 has two positive zeros, say z1, z2, such that zi > 1. Thus, f (z) = −λeλr (λ− +
α)(z − z1)(z − z2), with z1z2 = αμ(λe+μ)

λeλr (λ−+α)
, z1 + z2 = αμλr +λe(λ−+α)(λr +μ)

λeλr (λ−+α)
. Then, the

expression of P0(z) can be rewritten as

P0(z) = α p0,0
λ− + α

[1 − μλ−

λeλr (λ− + α)

∞∑
j=0

(
Az j+1

2 + Bz j+1
1

(z1z2) j+1

)
z j ],

where

A = μ + λe − λr z1
z1 − z2

, B = −λr − A.

Tedious but simple calculation leads to the expression in (11). Similar work can be done by
using the expressions of P1,k(z), k = 1, 2 and P0(z) in order to obtain the (12), (13), so
further details are omitted.

Appendix F: Proof of Theorem 6

We start by obtaining the expressions for τn(i, j, k), (i, j, k) ∈ S, n ≥ 0. Remind that τn ,
n ≥ 0 is given in (15). Since,

τn(0, j, 1) = 1

λ− + α(1 − δ0,n)
δ j,n, j, n ≥ 0,

it is readily seen that q(1)
0, j = 1

U
π j

λ−+α(1−δ0, j )
, j ≥ 0, and forming the pgf we obtain after some

algebra the expression of Q0,1(z) in (17). Similarly,

τn(1, j, 2) = λ−

λ− + α(1 − δ0,n)
δ j,n

∫ ∞

t=0
e−λet (1 − B(t))dt, j ≥ 0,
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τn(1, j, 3) = αδ j+1,n

λ− + αδ j+1,n

∫ ∞

t=0
e−λr t (1 − B(t))dt, j ≥ 0,

τn(1, j, 4) = λ−δ j−1,n

λ− + α(1 − δ0,n)

∫ ∞

t=0
(1 − B(t))

∫ t

u=0
λee−λeue−λe+(t−u)dudt, j ≥ 1,

τn(1, j, 5) = λ−

λ− + α(1 − δ0,n)

∫ ∞

t=0
(1 − B(t))

×
∫ t

u=0
λee−λeue−λe+(t−u) (λ

e+(t − u)) j−n−1

( j − n − 1)! dudt, j ≥ 2, 0 ≤ n ≤ j − 2,

τn(1, j, 6) = αδ j,n

λ− + αδ j,n

∫ ∞

t=0
(1 − B(t))

∫ t

u=0
λr e−λr ue−λr+(t−u)dudt, j ≥ 1,

τn(1, j, 7) = α

λ− + α

∫ ∞

t=0
(1 − B(t))

×
∫ t

u=0
λr e−λr ue−λr+(t−u) (λ

r+(t − u)) j−n

( j − n)! dudt, j ≥ 2, 1 ≤ n ≤ j − 1. (F28)

To have a clearer view on how we obtain the above expressions, let us briefly explain
τn(1, j, 3). So, we need to have j +1 jobs in orbit upon a service completion (i.e., n = j +1),
and an orbiting job joins the server. Then, its service time begins at time, say t = 0, and the
time interval (t, t + dt) contributes to τn(1, j, 3) if (i) service time has not been completed
before time t (with probability 1− B(t)), and (ii) No primary jobs arrive during (0, t] (with
probability e−λr t ). The other expressions are derived in a similar reasoning.

Now, by using (F28), simple computations result in the expressions given in (16). After
routine algebraic calculations of (16), we can derive the rest partial generating functions
Q1,k(z), k = 2, . . . , 7, as given in (17).

Appendix G: Proof of Theorem 8

Using the state probabilities and usual arguments lead to the differential difference equations:

(λ− + jα + β(1 − δ0, j ))p0, j = ∑3
k=2 p(k)

1, j (0) + ∑
k=4,6 p(k)

1, j (0)1{ j≥1}
+∑

k=5,7 p(k)
1, j (0)1{ j≥2},

− d
dr p(2)

1, j (r) = −λe p(2)
1, j (r) + λ− p0, j b(r), j ≥ 0,

− d
dr p(3)

1, j (r) = −λr p(3)
1, j (r) + p0, j+1(( j + 1)α + β)b(r), j ≥ 0,

− d
dr p(4)

1, j (r) = −λe+ p(4)
1, j (r) + λe p(2)

1, j−1(r), j ≥ 1,

− d
dr p(5)

1, j (r) = −λe+ p(5)
1, j (r) + λe+(p(5)

1, j−1(r) + p(4)
1, j−1(r)), j ≥ 2,

− d
dr p(6)

1, j (r) = −λr+ p(6)
1, j (r) + λr p(3)

1, j−1(r), j ≥ 1,

− d
dr p(7)

1, j (r) = −λr+ p(7)
1, j (r) + λr+(p(7)

1, j−1(r) + p(6)
1, j−1(r)), j ≥ 2.

(G29)

By taking Laplace transforms in (G29), and applying the generating function approach (fol-
lowing similar arguments and notation as in the proof of Theorem 3) we obtain after some
algebra

αz P ′
0(z) + P0(z)(λ− + β) = β p0,0 + ∑7

k=2 P1,k(0, z), (G30)
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and equation (23). Moreover,

P1,2(0, z) = λ−β∗(λe)P0(z),

P1,3(0, z) = β∗(λr )
z [αz P ′

0(z) + β(P0(z) − p0,0)],∑5
k=4 P1,k(0, z) = λ−λez[β∗(λe)−β∗(λe+(1−z))]

λe+(1−z)−λe P0(z),∑7
k=6 P1,k(0, z) = λr (αz P ′

0(z)+β(P0(z)−p0,0))
λr+(1−z)−λr (β∗(λr ) − β∗(λr+(1 − z))).

(G31)

Then, simple computations yield∑7
k=2 P1,k(0, z) = αAr (z)P ′

0(z) + P0(z)(λ− Ae(z) + β
z Ar (z)) − β p0,0

Ar (z)
z .

Substituting back in (G30) yields

αz P ′
0(z) + P0(z)(β + λ−z(1−Ae(z))

z−Ar (z)
) = β p0,0. (G32)

Setting z = 1 in (G32) yields

αP ′
0(1) + β(P0(1) − p0,0) = λ− A(1)

e (1)

1 − A(1)
r (1)

P0(1). (G33)

Using (G33) and setting s → 0, z → 1 in (23) we obtain after simple calculations Eq. (22).
The solution of the (G32) is

P0(z) = exp{ 1
α

∫ 1
z u−1(β + λ−u(1−Ae(u))

u−Ar (u)
)du}

×
(

P0(1) − β p0,0
α

∫ 1
z x−1exp{ 1

α

∫ 1
x u−1(β + λ−u(1−Ae(u))

u−Ar (u)
)du}dx

)
.

(G34)

Setting z = 0 in (G34), and using (22) we obtain after manipulations

p0,0 = δ0,β H(0) + (1 − δ0,β) α
β

(∫ 1
0 xβ/α−1H−1(x)dx

)−1
.

Substituting p0,0 and (22) into (G34) leads after some algebra to the expression (20).
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