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Abstract
The optimization of cargo loading and transportation are two highly considered optimization
problems (namely “3L-CVRP”). The combination of both has attracted increasing interest
in the past decades. Hereby, 2D or 3D items have to be transported from one depot to a
given set of customers using a homogeneous fleet of vehicles. Each route must be provided
with a feasible packing plan taking various constraints into account. Combining the two
optimization problems increases the complexity of the solution approaches, leading to a
higher difficulty to check the results for correctness. To support the research progress and
to enable transparency of solution structures, this paper provides an overview of recent
literature, problem formulations, and best-known solutions. Furthermore, we introduce two
open-source tools: The “Solution Validator” checks the feasibility of solutions in terms of
considered constraints. The “Visualizer” provides two views and visualizes solutions. In
the vehicle routing view, the tour plan and the corresponding schedule are displayed. In the
loading view, the position of each item in the cargo space is demonstrated. In both views,
it is possible to check the feasibility of the solution and highlight violated items. Besides
the combined problem, the tool can be used also for one optimization problem (e.g. vehicle
routing problem or container loading). The source codes for both tools are available at GitHub
in C++ and Java and can be easily integrated into other researchers’ code.

Keywords Open source tools · Vehicle routing problem · Container loading problem

1 Introduction

Since its introduction by Gendreau et al. (2006), the combined Vehicle Routing (VRP) and
Container Loading Problems (CLP) have consistently challenged researchersworldwide. The
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Fig. 1 Exemplary solution for instance “3l-cvrp01”

3L-CVRP assumes the delivery of 3D cuboid items laying at the depot. A homogeneous fleet
of vehicles is available for transporting the items to a number of customers. Each vehiclemust
be equipped with a feasible packing plan considering a specific set of loading constraints.
An exemplary solution for a 3L-CVRP instance is provided in Fig. 1.

An extension of the 3L-CVRP is the 3L-VRPTW, in which time windows at the depot
and at the delivery are considered. Through the combination of the VRP with 3D CLP,
the solution approaches are more complex but also more practicable. However, at the same
time, the difficulty of ensuring the solution feasibility increases. This is also due to new
formulations of advanced loading constraints in the latest research. These include, but are
not limited to, the consideration of axle weights of vehicles (see Krebs & Ehmke, 2021a),
the unloading sequence, the reachability (see Ceschia et al., 2013), and load-bearing strength
of items (see Krebs et al., 2021).

This paper introduces two open-source tools to support the research for VRP, CLP, and
its combined problems.1 The source codes of both tools are published online at GitHub
and have been coded in Java and C++. The first tool, called “Solution Validator”, reports
the feasibility of solutions. Hereby, several constraints, especially loading constraints, can be
checked concerning feasibility. In the case of infeasible solutions, every violated constraint is
shown. The second tool “Visualizer” visualizes, as the name implies, the solutions. It provides
two views, showing the execution of the tours and giving a detailed schedule indicating
travel, waiting, and handling times. In the second view, the position of each item inside the
vehicle loading space is presented. Besides that, the “Visualizer” contains an interface to the

1 The tools are suitable for e.g. CVRP, VRPTW, SDVRP, 2L-CVRP, 3L-CVRP, 2L-VRPTW, 3L-VRPTW,
2D-CLP, 3D-CLP, SDVRP, 2D-SDVRP and 3D-SDVRP.
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“Solution Validator” and can check the feasibility of solutions. In the case of infeasibility,
the tool highlights the violated elements.

These tools support the transparency of solution structures on the one hand and further
research on the other. Regarding the transparency of solution structures, during our research
concerning best-known solutions, we faced several challenges: Firstly, in most papers, pub-
lished results often report only the objective function value but not the vehicle tours or the
coordinates of the items inside the trucks so that the correctness of the solutions cannot be
guaranteed. Secondly, in rare cases, we found detailed solutions. Then, some of the solutions
were either infeasible or the objective value of the solution differed from the objective value
published in the research paper. Therefore, the publication of full solutions should be stan-
dard. This guarantees the correct comparison of solutions and decreases frustration caused
by incorrect benchmarks.

Regarding supporting further research, first, the tool can be integrated directly into the
programming code as the source code is fully published in C++ and Java. Consequently, it
is not necessary to program the constraint checks. Therefore, the effort of programming new
algorithms is decreased. Secondly, it is possible to visualize each processing step of a new
algorithm by integrating the tools. This enables a better understanding of the algorithm so
that improvements can be found and implemented. Thirdly, the “Solution Validator” checks
the correctness of the solutions, which can help to detect errors in algorithms. Lastly, through
visualizing the final solutions, further improvement potentials can be identified. This helps
improve the solution quality (the total travel distance and/or the total time).

The paper is structured as follows: Relevant literature is reviewed in Sect. 2. To introduce
the 3L-CVRP and show the covered features, the problems are formulated in Sect. 3. In
Sect. 4 both tools are introduced and their application is explained. In Sect. 5, we present
an overview of available instance sets, their properties, and the best-known solutions in the
literature. Finally, Sect. 6 provides a summary and avenues for future work.

2 Literature review

In the following, relevant literature with a focus on constraints for the combined vehicle
routing and container loading problem is presented. In Iori et al. (2007), the Vehicle Rout-
ing Problem with Two-Dimensional Loading Constraints (2L-CVRP), a combination of the
Capacitated Vehicle Routing Problem and the 2D Container Loading Problem, is introduced.
To solve the optimization problem, an exact approach, based on a branch-and-cut algorithm,
is provided. The three-dimensional variant, namely 3L-CVRP, is introduced by Gendreau et
al. (2006). The presented solution algorithm consists of several parts: The customer sequence
is determined by an “outer” Tabu Search. Then, an “inner” Tabu Search deals with the item
sequence. The loading algorithms are based on the touching parameter algorithm by Lodi
et al. (1999) and the bottom-left-algorithm by Baker et al. (1980). As loading constraints,
the following are considered: items are packed orthogonally into the vehicle loading space
(Orthogonality constraint) without overlapping through respecting their dimensions (Geom-
etry); rotation of items only along the width-length plane (Rotation constraint); respecting
the maximum vehicle’s capacity (Load Capacity); considering the fragility of items; stacking
stably through requiring the support of a certain percentage of the base area (Minimal Sup-
porting Area constraint) and unloading done by direct movements parallel to the length of
the vehicle (LIFO constraint). This constraint set is here defined as a basic constraint set as
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it is commonly considered in related research. For testing, Gendreau et al. (2006) developed
27 instances.

The 3L-CVRP has been studied intensively in recent years so that the solutions for this
instance set have been improved repeatedly (e.g. Tarantilis et al., 2009; Fuellerer et al., 2010;
Bortfeldt et al., 2012; Escobar et al., 2016; Zhang et al., 2015). In Fuellerer et al. (2010), an
extended instance set for the 3L-CVRP is generated. Tarantilis et al. (2009) present a new
variant—the Capacitated Vehicle Routing Problem with Manual 3D Loading Constraints
(M3L-CVRP). In contrast to the LIFO policy, it is here allowed that items hang over others
(MLIFO). This adaption is also examined in a paper by Ceschia et al. (2013). Furthermore,
they consider the reachability of an item. The reachability constraint was initially developed
by Junqueira et al. (2013) in the context of the Three-Dimensional Bin Packing Problem, to
avoid the driver standing on items to reach other items for unloading operations. Moreover,
Ceschia et al. (2013) consider a robust stacking of items and the Load Bearing Strength
constraint, which was first mentioned by Bischoff and Ratcliff (1995) and examined in
Bischoff (2003) for the Three-Dimensional Bin Packing Problem.

The Split Delivery Vehicle Routing Problem with three-dimensional loading constraints
(3L-SDVRP) is included in Ceschia et al. (2013). It enables the possibility to split the demand
of customers over two or more tours is, i.e. a customer can be visited several times. This
problem variant is further investigated in Bortfeldt and Yi (2020), where among others the
instance set by Ceschia et al. (2013) is used. Zhang et al. (2017) introduce the 3L-VRPTW
with a hybrid approach, consisting of a new loading heuristic and a routing heuristic based
on a Tabu Search and an Artificial Bee Colony algorithm. They include the basic constraint
set and combine the two well-known instance sets provided by Gendreau et al. (2006) and
Solomon (1987). In Moura (2008) and Moura and Oliveira (2009) the VRTWLP is intro-
duced. This problem variant is the 3L-VRPTW without the consideration of masses (Load
Capacity constraint), without the Fragility constraint, with higher Stability requirements (full
support) and with more rotation possibilities. Pace et al. (2015) examine the distribution of
fibre boards. For this purpose, a 70–30% left/right balance should be obeyed. This constraint
is further examined in Krebs et al. (2021). Other approaches for ensuring balanced loading
within the loading space are integrated in the algorithm itself. In Ramos et al. (2017), the algo-
rithm includes vehicle specific Load Distribution Diagrams (LDDs) that define the feasibility
domain for the location of the center of gravity of the cargo. It is based on multi-population
biased random-key genetic algorithm with a specialized fitness function.

Formulas for the consideration of axleweights are introduced inKrebs and Ehmke (2021a)
and examined for the 2L- and 3L-CVRP. In Krebs et al. (2021), various loading constraints
are analyzed and combined for the 3L-VRPTW.Moreover, new formulations are introduced:
a new variant for robust stacking of items, the consideration of load-bearing strength based
on the science of statics, and balanced loading inside the loading space. Further formulations
for stable stacking based on the science of statics are evaluated in Krebs and Ehmke (2021b).
All mentioned loading constraints can be tested w.r.t. feasibility in the “Solution Validator”
tool.

3 Problem formulation

To provide an introduction to the problem and to demonstrate the scope of the tools, the
3L-CVRP and its extension, the 3L-VRPTW, are formulated in the following by adapting
the convention as presented by Koch et al. (2018). All constraints covered by the tools are

123



Annals of Operations Research

briefly presented. The loading constraints are described in detail in Krebs et al. (2021) and
Krebs and Ehmke (2021b).

3.1 3L-CVRP

Let G = (N , E) be a complete, directed graph, where N is the set of n+1 nodes including one
depot (node 0) and n customers to be served (node 1 to n), and E is the edge set connecting
each pair of nodes. Each edge ei, j ∈ E (i �= j, i, j = 0, ..., n) has an associated routing
distance di, j (di, j > 0). The demand of customer i ∈ N \ {0} consists of ci cuboid items.

Each item Ii,k (k = 1, ..., ci ) is defined by mass mi,k , length li,k , width wi,k and height
hi,k . Depending on the constraints (see below), additional parameters are necessary. The
items are delivered by vmax available, homogeneous vehicles. Each vehicle has a maximum
load capacity D and a cuboid loading space defined by length L , width W and height H .
The number of used vehicles in a solution is described by vused (vused ≤ vmax ). A solution is
a set of vused pairs of routes Rv and packing plans P Pv (v = 1, ..., vused). Hereby, the route
Rv is an ordered sequence of at least one customer, and P Pv is a packing plan containing the
position within the loading space for each item included in the route. The 3L-CVRP aims
at determining a feasible solution minimizing the total travel distance t td , and meeting all
included constraints.

3.2 3L-VRPTW

In the extension with time windows (“3L-VRPTW”), three times are assigned to each node
i : the ready time RTi , which is the earliest possible start time of service, the due date DDi ,
the latest possible start time, and the service time STi , which specifies the needed time to
(un-)load all ci items of a customer i . It is assumed that each vehicle has a constant speed
of 1 distance unit per time unit. If a vehicle arrives at an edge before its ready time, it has to
wait until the ready time is reached. The objective function is either the minimization of the
total travel distance or a combination of minimizing the number of used vehicles (vused ) first
and total travel distance second (see e.g. Moura, 2008).

3.3 Constraints

The following constraints are categorized in solution constraints (S), in routing constraints
(R), and loading constraints (C). In terms of the loading constraints, there are several alter-
native constraint formulations for the Unloading Sequence, Vertical Stability, and Stacking.
This means, only one of these alternative constraint formulations can be included into the
model. All described constraints are covered in the “Solution Validator” tool.

A solution is feasible if

(S1) All routes Rv and packing plans P Pv are feasible (see below);
(S2) The number of used vehicles vused does not exceed the number of available vehicles

vmax ;
(S3) Each solution contains all demanded items once and all customers.

A route Rv must meet at least the following routing constraint:

(R1) Each route starts and terminates at the depot and visits at least one customer.

In case of split deliveries are not allowed, the following routing constraintsmust be obeyed:
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(R2) Each customer is visited exactly once;
(R3) Each packing plan P Pv contains all ci items of all customers i included in the corre-

sponding route (i ∈ Rv).

In terms of the 3L-VRPTW, an additional routing constraint must apply:

(R4) The vehicle does not arrive after the due date DDi of any location i .

Each packing plan must obey a loading set P defining a subset of the following loading
constraints. As described before, if several formulations for a loading constraint are available
(e.g. Unloading Sequence), then only one formulation can be included into the optimization
problem. For constraints differing from the basic constraint set by Gendreau et al. (2006),
we provide the corresponding reference.

(C1) Geometry: The items must be packed within the vehicle without overlapping;
(C2) Orthogonality: The items can only be placed orthogonally inside a vehicle;
(C3) Rotation: The item can be rotated.

(a) Length-Width: The items can be rotated 90◦ only on the width-length plane;
(b) All Rotations: The items can be rotated along all planes.

(C4) Load Capacity: The sum of masses of all included items of a vehicle does not exceed
the maximum load capacity D.

(C5) Unloading Sequence: The items can be unloaded by movements parallel to the x-axis.

(a) LIFO: No item is placed above or in front of item Ii,k , which belongs to a customer
served after customer i ;

(b) MLIFO by Tarantilis et al. (2009): No item is placed on or in front of item Ii,k ,
which belongs to a customer served after customer i ;

(C6) Vertical Stability: The items are stable packed and cannot topple.

(a) Minimal Supporting Area: Each item has a supporting area of at least a percentage
α of its base area;

(b) Top Overhanging by Krebs et al. (2021): Only the topmost item of a stack is
allowed to overhang obeying the Minimal Supporting Area;

(c) Multiple Overhanging by Ceschia et al. (2013): The Minimal Supporting Area
must be obeyed at each level of a stack;

(d) New Static Stability by Krebs and Ehmke (2021b): The center of gravity of each
item must be supported at each level of the stack and the Minimal Supporting
Area must be obeyed;

(e) Static Stability by Mack et al. (2004): The center of gravity of each item must
be supported by the directly underlying items and the Minimal Supporting Area
must be obeyed between each item and the indirectly supporting items laying on
the ground;

(C7) Stacking: The items are stacked respecting their bearing capacities.

(a) Fragility: A fragility flag fi,k is assigned to each item Ii,k to divide them into
fragile items ( fi,k = 1) and non-fragile ones ( fi,k = 0). No non-fragile items are
placed on top of fragile items;

(b) Load Bearing Strength—Simplified Selection by Bischoff and Ratcliff (1995):
Each item Ii,k can support a maximum load per area described by parameter
lbsi,k . It must not be exceeded anywhere on the top face of an item. For the load
distribution all items underneath the bottom surface are used;
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(c) Load Bearing Strength—Complete Selection by Krebs et al. (2021): As before,
each item is assigned the lbsi,k parameter. The load of an item Ii,k is distributed
recursively from its bottom surface to its directly underlying items;

(C8) Reachability by Junqueira et al. (2013): The distance between the front side of an item
and the nearest possible position of the operator must be less or equal than a certain
length λ;

(C9) Axle Weights by Krebs and Ehmke (2021a): Each vehicle is assigned the wheelbase
W B (distance between two axles), the length between the front axle and the loading
space (L f ), and permissible axle weights F Aperm and R Aperm , which are not allowed
to be exceeded;

(C10) Balanced Loading by Pace et al. (2015): Themass of an item is proportional distributed
to the horizontal vehicle halves according to its position. The load of one vehicle half
must not exceed a certain percentage p of D.

4 Open source tools

Both “Solution Validator” and “Visualizer” are open source and published online via GitHub
repositories. Moreover, the tools are written in Java, requiring at least version 10. For the
“Solution Validator”, the code is additionally available in C++ (min. version C++11). For the
C++ code, no additional libraries are required. In terms of Java code, several dependencies
must be provided. Therefore, Apache Maven is used to simplify the building process. The
necessary pom file is available online along with the source code. The “Visualizer” requires
the JavaFX Framework, which must be downloaded and linked separately. In the following,
the necessary data format and the application are shown.

4.1 Data format

To provide the necessary data for the tools, three files are required: An Instance, a Solution,
and a Constraint File. All three files are explained and shown in the following. Example files
are provided in the appendix.

4.1.1 Instance file

The Instance File contains all relevant data as described in Sect. 3. Consequently, it has
information about the problem (3L-CVRP or 3L-VRPTW), nodes (coordinates, demanded
items), vehicle (number of available vehicles, dimensions, parameters), and items (dimen-
sions, parameters). An exemplary, shortened file is shown in Fig. 6 in the appendix. For
common benchmarks, Instance Files are available via https://github.com/CorinnaKrebs/
Instances. Moreover, the Solution Validator contains a “Write” class to create your own
Instance Files. Another option is to use the class constructors to provide the necessary data
within the program.

4.1.2 Constraint file

The Constraint File defines all included loading constraints and their necessary parameters
(see Sect. 3.3). A complete Constraint File defining the basic constraint set by Gendreau et
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al. (2006) is presented in Fig. 7 in the appendix. Further constraint sets are published along
with the solutions via https://github.com/CorinnaKrebs/Results. For own files, the “Solution
Validator” provides a “Write” class, or alternatively, class constructors can be used to define
the necessary data for the program.

4.1.3 Solution file

The Solution File contains the Routing Rv and the Packing Plans P Pv for each vehicle v. It
shows the sequence of each visited customer and the exact position of each item inside the
loading space. An exemplary, shortened file is shown in the appendix in Fig. 8. The results of
our previous work are available via https://github.com/CorinnaKrebs/Results. As before, the
Solution Validator includes a “Write” class that may be used to build custom Solution Files.
Another way is to input the necessary data within the program using the class constructors.

4.2 Solution validator

As the name implies, the Solution Validator validates the feasibility of solutions w.r.t. the
observanceof constraints. It is available via https://github.com/CorinnaKrebs/SolutionValidator.
In the following, the scope and application are described.

4.2.1 Scope

The Solution Validator is created to check the feasibility of solutions for the combined VRP
and CLP (“3L-CVRP” and “3L-VRPTW”). It checks the observance of routing and loading
constraints in each step of each tour. Hereby, a subset of loading constraints (as described in
the Problem Formulation in Sect. 3) can be used for the feasibility check.

The Solution Validator can also be adapted to check the feasibility for solely the VRP or
CLP as shown below. The Problem Formulation in Sect. 3 defines the features of this tool:
In terms of the VRP, this tool can deal with one depot where the demand is delivered by a
homogeneous fleet without a split of the delivery. TimeWindows at the depot and at customer
locations can be obeyed optionally. Regarding the CLP, it is also possible to adapt it for the
2D case by setting the height of each item to the cargo loading space height H .

4.2.2 Application

In the following Code 1, the Java Program is presented. The code is structured in three parts:
reading data from files, a feasibility check, and notification about the feasibility check. The
C++ Code is structured in a similar way. In lines 2 to 4, the Instance, Constraint, and the
Solution File are read. Hereby, the necessary paths (pathToInstanceFile, pathToConstraint-
File, pathToSolutionFile) to the files must be provided as strings. Instead of fixed strings for
the definition of the file paths, one can adapt lines 2 to 4 so that the program arguments (args)
can be used to inject the file paths which is shown in Code 2. In the next part (feasibility
check), the solution is checked w.r.t. routing constraints (line 5) and loading constraints (line
6). Internally, only the activated constraints as specified in theConstraint File, are checked. In
the last part, a message is printed depending on the feasibility and the program exits returning
an exit code indicating the feasibility status.

The Solution Validator can be adapted to checking only the VRP by removing the Loading
Constraints Check in line 6. For the check of the CLP, the Routing Constraints Check in line
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Code 1 Original Java Solution Validator Program

1 public static void main(String[] args) {
2 Instance instance = Read.readInstanceFile(pathToInstanceFile);
3 ConstraintSet constraintSet =

Read.readConstraintFile(pathToConstraintFile);↪→
4 Solution solution = Read.readSolutionFile(pathToSolutionFile,

instance);↪→
5 if (checkRoutingConstraints(solution, constraintSet, instance,

true)↪→
6 && checkLoadingConstraints(solution, constraintSet, instance,

true)) {↪→
7 System.out.println("All Constraints checked. Solution is

feasible.");↪→
8 System.exit(1);
9 }

10 System.err.println("Solution is not feasible. Please check error
hints above.");↪→

11 System.exit(-1);
12 }

Code 2 Java Solution Validator Program using Program Arguments

1 public static void main(String[] args) {
2 Instance instance = Read.readInstanceFile(args[0]);
3 ConstraintSet constraintSet = Read.readConstraintFile(args[1]);
4 Solution solution = Read.readSolutionFile(args[2], instance);
5 ...

5 must be removed respectively. Further adaption can be implemented easily as the entire
source code is structured and well documented.

4.3 Visualizer

The “Visualizer” creates interactive views of the 3L-CVRP and 3L-VRPTW solutions. The
tool is published online via https://github.com/CorinnaKrebs/Visualizer. In the following,
the tool is presented in more detail.

4.3.1 Scope

The Visualizer displays the solution of Vehicle Routing and Container Loading Problems in
separated views. It has the same limitations as the Solution Validator (see Problem Formu-
lation, Sect. 3). The tool enables further analysis of solutions: In terms of the VRP, the tool
shows the resulting tours including their distances and the total time per tour. Thus, improve-
ment potentials can be identified. Regarding the CLP, the loading space and the loading
sequence are visualized. This assists in understanding the loading process and determining
weaknesses of placements (e.g. unbalanced or unstable). Moreover, the Visualizer has an
interface to the Solution Validator so that the feasibility of each solution can be checked.
Infeasible elements (tours or items) are directly highlighted. This is beneficial e.g. to trace
errors in the solution approach.
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Fig. 2 View of the data input mask

4.3.2 Application

The Visualizer has three main views: one for the data input, one for the VRP, and one for the
CLP. The application of each view is described in the following.

After executing the Visualizer, a welcome view appears. By clicking on the Start menu
on File Open, one reaches the data input view (see Fig. 2).

In the following, the areas shown in Fig. 2 are described in more detail:

2.1 In the left column, the problem is defined and the views are activated or deactivated
accordingly. In the right column, one can (de-)activate the constraints check and therefore,
the interface to the Solution Validator.

2.2 The next field is to provide the Instance File. It is possible to Drag & Drop the file
directly over the dotted field. Alternatively, one can select the file via a File Browser.
After providing the Instance File, the field changes as in the next item. Then, the path to
the file is shown.

2.3 In this area, the Solution File can be provided. As the Solution File is already selected,
the path is shown. The field can be reset by clicking on the cross button.

2.4 In the center area of this view, additional routing constraints for the feasibility check can
be included.

2.5 In the bottom area of this view, it is possible to define the subset of the loading constraints
for the feasibility check. If one loading constraint has several formulations as described
in Sect. 3, a drop-down list for the selection appears.
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Fig. 3 View of the vehicle routing problem

2.6 If the necessary data is provided, the start button can be clicked. The current view is then
closed and the Solution views (CLP and/or VRP) are opened. This might take some time
due to the feasibility check.

The VRP view is exemplarily shown in Fig. 3. Directly after opening, an animation starts
showing the complete routing process.
Regarding Fig. 3, the areas describe the following:

3.1 In the center of the view, the depot and the customer locations are displayed. Starting from
the depot, the tours are shown. The vehicle is indicated as a blue circle. Each customer
has its unique color. Its corresponding items use the same color in the CLP view. Within
this area, it is possible to zoom in or out via the mouse wheel in order to see further
details.

3.2 In this field, general information about the solution is provided, such as the total number
of used vehicles, the total travel distance, and the total time. Moreover, if activated, the
feasibility of the routes is shown.

3.3 Through the slider, it is possible to jump to each step of the routing process (0 to total
time). Consequently, it enables tracking the position and status of each vehicle within the
tour at each timestamp. The play button starts the animation which automatically goes
through each step of the routing process.

3.4 The underlying Gantt chart displays the current vehicle status per tour and per timestamp.
Hereby, three vehicle statuses exist: The traveling time, the service time (unloading time),
and the waiting time that occurs when the vehicle has to wait until the start time. As
the waiting time is not value-adding in the process, the tool helps to identify and then
minimize waiting times.

3.5 This tree enables changing the visibility of tours. This might be helpful in case of hidden
details.

3.6 As in the previous item, this tree changes the visibility of the customer pins.
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Fig. 4 View of the container loading problem

3.7 Through the download button, it is possible to download the currently displayed area for
further research purposes.

In Fig. 4, the CLP view is presented. Similar to the VRP view, an animation showing the
loading process starts directly after opening the view.
As shown in Fig. 4, there are six areas in the CLP view:

4.1 In the center, the loading space of the first tour is displayed. It shows the position of each
item inside the loading space. The loading space can be completely rotated and scaled
to analyze the positions effectively. When double-clicking on an item, the corresponding
row in the table gets highlighted.

4.2 Through the drop-down menu, it is possible to switch the tours and consequently, to
change the loading space in the center.

4.3 In the underlying table, the information about the items is presented. The visibility of
each item can be changed in the first column. An invisible item is shown via its borders
in the loading space. By clicking on the header, the table can be sorted according to the
clicked column.

4.4 The last three columns indicate the feasibility of the itemposition. If the positionof an item
is not feasible, its color changes from the customer’s color to red. The feasibility status
is indicated in the column “Feasible” through green for feasible and red for infeasible.
In the last column, an error text describes the violated constraint.

4.5 As in the VRP view, there is also a slider to visualize the loading process per each loaded
item. This enables the possibility to analyze the sequence of the loading processes and
identify inefficient item positions. Through the play button, the animation can be started
showing the loading of items step by step.

4.6 The download button enables downloading a picture of the displayed loading space with
its current loading step.
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Fig. 5 MVP design

4.3.3 Code structure

If it becomes necessary to modify the source code, it is beneficial to understand the structure
of the code. Hereby, the Model-View-Presenter (MVP) design as proposed by Potel (1996)
is used (see Fig. 5).

The code is distributed in three parts: The model, the view, and the presenter. The model
contains all the necessary data. The view is responsible to display the data via components. It
has no direct link to the model. The presenter connects the model and the view. It updates the
components of the view in case of data changes in the model, and it updates also the model
according to user inputs in the view. The presenter is informed through internal events to
trigger updates if needed. For each view (Main view, CLP view, VRP view) the MVP design
is implemented. Moreover, it is also applied to layout components within the views (e.g. text
fields).

5 Instances and best known results

In this section, we first present common instance sets for the 3L-CVRP and the 3L-VRPTW
with their main properties. Then, we show the current best-known solutions (BKS) for each
instance.

Table 1 presents an overview of common instance sets for the 3L-CVRP and 3L-VRPTW.
Hereby, themost relevant parameters are the number of customers (n) and the number of items
(m). The most common instance set for the 3L-CVRP is created by Gendreau et al. (2006),
which is extended by Tarantilis et al. (2009)with 12more difficult instances. The 3L-VRPTW
instance set by Zhang et al. (2017) is created by combining the two well-known instance sets
provided by Gendreau et al. (2006) and Solomon (1987). Concerning the instances by Krebs
et al. (2021), the instances vary systematically in the number of customers, items, and item
types to enable detailed analysis of influencing parameters. Moreover, for all instance sets,
axle weights were added based on realistic parameters. All instance sets are published at
GitHub.2

In terms of the instance set by Gendreau et al. (2006) shown in Table 2, the algorithm
proposed in Zhang et al. (2015) receives currently the best overall solutions indicated by
the lowest average total travel distance. Therefore, most BKS are found by this algorithm.
As detailed results for Zhang et al. (2015) are available,3 we validated all results with the
Solution Validator. However, some of the best solutions within the published data differ from

2 https://github.com/CorinnaKrebs/Instances.
3 see https://alim.algorithmexchange.com/orlib/topic/3L-FCVRP/;jsessionid=BE16D2007BD713BBFCCE3A5
926C6EFC0\#Zhang2015.

123

https://github.com/CorinnaKrebs/Instances
https://alim.algorithmexchange.com/orlib/topic/3L-FCVRP/;jsessionid=BE16D2007BD713BBFCCE3A5926C6EFC0\#Zhang2015
https://alim.algorithmexchange.com/orlib/topic/3L-FCVRP/;jsessionid=BE16D2007BD713BBFCCE3A5926C6EFC0\#Zhang2015


Annals of Operations Research

Table 1 Overview of instance sets

Authors Problem # n m

Gendreau et al. (2006) 3L-CVRP 27 [15, 100] [26, 199]

Fuellerer et al. (2010) 3L-CVRP 12 [50, 125] [73, 379]

Zhang et al. (2017) 3L-VRPTW 27 [15, 100] [26, 199]

Krebs et al. (2021) 3L-VRPTW 600 20, 60, 100 200, 400

Table 2 BKS for Gendreau et al. (2006) instances

No. t td Reference No. t td References

1 300.69 Escobar-Falcon et al. (2016) 15 1338.22 Zhang et al. (2015)

2 334.96 Zhang et al. (2015) 16 698.61 Zhang et al. (2015)

3 374.81 Escobar-Falcon et al. (2016) 17 866.40 Zhang et al. (2015)

4 430.88 Escobar-Falcon et al. (2016) 18 1207.70 Bortfeldt (2012)

5 436.48 Tao and Wang (2015) 19 741.74 Bortfeldt (2012)

6 498.16 Bortfeldt (2012) 20 576.88 Zhang et al. (2015)

7 767.46 Tao and Wang (2015) 21 1067.70 Zhang et al. (2015)

8 804.75 Tao and Wang (2015) 22 1147.80 Bortfeldt (2012)

9 630.13 Zhang et al. (2015) 23 1103.44 Zhang et al. (2015)

10 820.35 Bortfeldt (2012) 24 1102.14 Zhang et al. (2015)

11 772.85 Tao and Wang (2015) 25 1370.34 Zhang et al. (2015)

12 610.23 Zhang et al. (2015) 26 1557.15 Zhang et al. (2015)

13 2608.68 Tao and Wang (2015) 27 1496.28 Zhang et al. (2017)

14 1368.40 Bortfeldt (2012) Avg 927.15

the values described in Zhang et al. (2015). Therefore, we report only the best-known results
that were actually found in the data set. These validated and best-known results are published
viaGitHub.4 The used algorithm shows its strength for instanceswithmore than 32 customers
(see instances 14-27). For instances with less customers, the algorithms by Escobar-Falcon
et al. (2016), Tao and Wang (2015) and Bortfeldt (2012) find better solutions. However, for
these solutions, validation was not possible due to summarized results.

In Table 3, the BKS for the instance set by Tarantilis et al. (2009) are presented. As for
the other 3L-CVRP instance set, most of the BKS are found by Zhang et al. (2015). As
detailed results are available, these solutions are checked with the Solution Validator and
are published via GitHub4, except for instance no 34, where a feasible solution could not be
found.

Concerning the 3L-VRPTW instances by Zhang et al. (2017), the BKS are presented in
Table 4. All solutions are found by the algorithms described in Krebs et al. (2023). As before,
the validated results are published via Github4.

Table 5 presents the best-known results for the instance set by Krebs et al. (2021). As
before, all solutions are found by the hybrid algorithms presented in Krebs et al. (2023). The
detailed results are published via GitHub4.

4 https://github.com/CorinnaKrebs/BestKnownResults.

123

https://github.com/CorinnaKrebs/BestKnownResults


Annals of Operations Research

Table 3 BKS for Tarantilis et al. (2009) instances

No. t td References No. t td References

28 1417.88 Zhang et al. (2015) 34 2595.22 Bortfeldt (2012)

29 2189.27 Zhang et al. (2015) 35 4163.02 Zhang et al. (2015)

30 1713.82 Zhang et al. (2015) 36 3400 Zhang et al. (2015)

31 2010.58 Zhang et al. (2015) 37 3159.15 Zhang et al. (2015)

32 2971.58 Zhang et al. (2015) 38 5315.97 Zhang et al. (2015)

33 2339.3 Zhang et al. (2015) 39 4031.62 Zhang et al. (2015)

Avg 2942.28

Table 4 BKS for Zhang et al. (2017) instances

Name vused t td time Name vused ttd time

VRPTWP01 4 245.44 3.95 VRPTWP15 8 527.62 98.78

VRPTWP02 5 276.64 1.39 VRPTWP16 11 693.92 5.72

VRPTWP03 4 274.55 30.01 VRPTWP17 14 951.11 17.31

VRPTWP04 6 336.79 2.39 VRPTWP18 12 979.93 33.89

VRPTWP05 6 345.89 17.81 VRPTWP19 12 971.43 127.27

VRPTWP06 6 374.22 2.83 VRPTWP20 17 1311.32 765.60

VRPTWP07 5 324.29 22.06 VRPTWP21 16 1189.80 1943.54

VRPTWP08 6 320.75 21.19 VRPTWP22 18 1466.27 305.06

VRPTWP09 9 458.32 19.40 VRPTWP23 17 1325.73 690.63

VRPTWP10 7 487.60 58.50 VRPTWP24 16 1289.15 708.50

VRPTWP11 7 493.58 114.46 VRPTWP25 20 1432.66 3600.00

VRPTWP12 9 575.04 14.76 VRPTWP26 24 1642.74 1455.63

VRPTWP13 6 452.05 467.32 VRPTWP27 22 1597.13 2111.58

VRPTWP14 8 550.16 89.08

Total 295 20,894.11 12,728.66

6 Summary and future work

In this paper, two open-source tools are presented for the combined Vehicle Routing and
Container Loading Problem (alias “3L-CVRP” and “3L-VRPTW”). The Solution Validator
checks the feasibility of solutions in terms of considered constraints. The Visualizer displays
the solutions in separated views. Both tools are also suitable for the usage of each optimization
problem. In the paper, all necessary data, the access, the requirements, and the usage of the
tools are demonstrated. Using these tools can be beneficial for further research: Through the
Solution Validator, the feasibility of solutions can be ensured and the results can be published
online to increase transparency. Moreover, solutions can be checked concerning different
loading constraints and various formulations which gives insights into the restrictiveness and
usage of loading constraints. The Visualizer provides information about the solution and
visualizes the entire routing and loading process step by step. Further analysis can reveal
weaknesses and therefore lead to improvements in the solution approaches. The tools are
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Table 5 BKS for Krebs et al.
(2021) instances

n m Types Sum Sum Avg
vused ttd Time

20 200 3 73 8163.90 767.16

10 71 8351.98 1804.59

100 73 8444.32 1817.26

400 3 88 8834.64 2340.33

10 95 9215.81 2673.61

100 106 9694.34 3172.97

60 200 3 430 39,940.64 1563.98

10 448 40,562.89 2027.61

100 464 41,765.02 2163.44

400 3 693 53,718.93 2287.25

10 719 55,179.40 2563.58

100 782 59,381.69 2964.56

100 200 3 465 47,770.81 2024.01

10 510 50,906.28 2330.88

100 548 54,124.17 2146.65

400 3 797 66,799.70 2702.32

10 865 71,842.97 2937.54

100 878 72,187.87 2967.32

Total 8105 706,885.36 2331.14

fully adaptable as the source code is well documented and published online. As future work,
the tools are improved by including new features or removing currently unknown bugs.
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Fig. 6 Exemplary instance file

Fig. 7 Constraint file with basic constraint set

Fig. 8 Exemplary solution file
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