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Abstract
To profit from price oscillations, investors frequently use threshold-type strategies where
changes in the portfolio position are triggered by some indicators reaching prescribed lev-
els. In this paper we investigate threshold-type strategies in the context of ergodic control.
We make the first steps towards their optimization by proving ergodic properties of related
functionals. Assuming Markovian price increments satisfying a minorization condition and
(one-sided) boundedness we show, in particular, that for given thresholds, the distribution
of the gains converges in the long run. We also extend recent results on the stability of
overshoots of random walks from the i.i.d. increment case to Markovian increments, under
suitable conditions.

Keywords Minorization · Random walk · Stochastic stability · Threshold-type strategies ·
Optimal investment

1 Introduction

Perhaps the most naive approach to speculative trading is trying to “buy low and sell high”
a given financial asset. More refined versions of such strategies are actually widely used
by practitioners, see (What is mean reversion, 2021; Mean reversion trading, 2021; Mean
reversion trading strategy, 2021) . Their various aspects have been analysed in several papers,
see e.g. (Dai et al., 2010; Zervos et al., 2013; Zhang & Zhang, 2008; Zhang, 2001) and our
literature review in Sect. 3.

We intend to study such strategies in a different setting: that of ergodic control. A rigorous
mathematical formulation turns out to pose thorny questions about the ergodicity of certain
processes, as we shall point out below.
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The present article starts to build a reasonable and mathematically sound framework
for investigating such problems. We establish that key functionals converge to an invariant
distribution and obey a lawof large numbers.We are unaware of any previous study thatwould
tackle these questions. Our resultsmay serve as a basis for further related investigations, using
techniques of ergodic and adaptive control.

We also investigate a closely related object, studied in Mijatović and Vysotsky (2020a, b):
the so-called overshoot process. We extend certain results from Mijatović and Vysotsky
(2020a) from i.i.d. to Markovian summands.

The paper is organized as follows: In Sect. 2, we state our main results on the stability
of level crossings and related quantities of random walks with Markovian martingale dif-
ferences satisfying minorization and (one-sided) boundedness. Section3 presents our results
about overshoots. Section4, concerns with the financial setting and the significance of our
results in studying optimal trading with threshold strategies. In Sect. 5, we simulate a vanilla
buying low and selling high (BLSH) trading strategy in a suitable modified discrete time
stochastic volatility model which fits into our framework. We study how the clustering of
volatility affects the expected daily return realized during each trading cycle. Additionally,
we investigate whether the threshold strategy is indeed suitable for realizing profits from
price fluctuations. Section6 contains the proofs of the main results. Section7 dwells upon
future directions of research.

2 Stability of level crossings

Let M > 0 and let (Xn)n∈N be a time-homogeneous Markov chain on the probability space
(�,F ,P) with state space X := (−∞, M]. Its transition kernel is denoted P : X ×
B(X ) → [0, 1]. We consider the random walk

Sn = S0 + X1 + · · · + Xn, (1)

where S0 is a random variable independent of σ(Xk : k ∈ N).
The next minorization condition ensures that the chain jumps, with positive probability,

in one step to a small neighborhood of zero independently of the initial state. Moreover, the
random movements of S have an absolutely continuous component.

Assumption 2.1 There exist α, h > 0 such that, for all x ∈ X and A ∈ B(X ),

P(x, A) ≥ α�(A) (2)

holds where

�(A) := 1

2h
Leb ([−h, h] ∩ A)

is the normalized Lebesgue measure on [−h, h].
Lemma 2.2 Under Assumption 2.1, there is a unique probability π∗ on B(X ) such that
Law(Xn) → π∗ in total variation as n → ∞, at a geometric speed.

Proof Assumption (2) implies that the state space X is a small set. Hence the chain is
uniformly ergodic by Theorem 16.2.2 of Meyn and Tweedie (1993). �	
Assumption 2.3 For each z ∈ X ,∫

X
|x | P(z, dx) < ∞
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and ∫
X

x P(z, dx) = 0,

Remark 2.4 Clearly, Assumption 2.3 guarantees that Xn , n ∈ N, if integrable, is a martingale
difference sequence and the limit distribution of Lemma 2.2 has zero mean, that is,

∫
X

x π∗(dx) = 0.

Let us fix thresholds θ, θ ∈ R, satisfying θ < 0 < θ . Furthermore, we define the sequence
of crossing times corresponding to θ and θ by the recursion L0 := 0 and for n ∈ N,

Tn+1 := min{k > Ln : Sk < θ}, Ln+1 := min{k > Tn+1 : Sk > θ}. (3)

Lemma 2.5 Let E X2
n < ∞ hold for all n ≥ 1. (This is the case, in particular, if the Xn are

bounded.) Under Assumptions 2.1 and 2.3, the random variables Tn, Ln are well-defined and
almost surely finite.

Proof We will prove the statement inductively, the first step being trivial since L0 < ∞.
Assume that the statement has been shown for L0, L1, T1, . . . , Ln and we go on showing it
for Tn+1 and Ln+1.

In the induction step, we work on the events Bk := {Ln = k}, k ∈ N separately. Fixing
k, the process Mj := ∑ j

l=0 1Bk Xk+l , j ∈ N is a square-integrable martingale (remember
Remark 2.4) with conditional quadratic variation

Q j := E[(Mj − Mj−1)
2 | σ(Mi , i ≤ j − 1)] ≥ 1Bk

α

2h

∫ h

−h
y2 dy = 1Bk

αh2

3
,

using Assumption 2.1. Hence
∑∞

j=1 Q j = ∞ almost surely on Bk . Proposition VII-3-9.
of Neveu (1975) implies that lim inf j→∞ Mj = −∞ on Bk . It follows that, on Bk , almost
surely

lim inf
j→∞ (S0 + X1 + · · · + XLn + · · · + XLn+ j ) = −∞

which implies, in particular, Tn+1 < ∞ on Bk . A similar argument establishes that also
P(Ln+1 < ∞) = 1. �	

Although XT1 can be positive when S0 < θ , for n ≥ 2, XTn is always negative. Moreover
it is also straightforward to verify that the process

Un := (XTn , STn , XLn , SLn , Ln − Tn), n ≥ 2, (4)

is a time-homogeneous Markov chain on the state space

U := (−∞, 0) × (−∞, θ) × (0, M] × (θ, θ + M) × (N \ {0}).
The next theorem states that under our standing assumptions, the law of Un converges to

a unique limiting law, as n → ∞, moreover, bounded functionals of Un admit an ergodic
behavior.
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Theorem 2.6 Let E X2
n < ∞ hold for all n ≥ 1. Under Assumptions 2.1 and 2.3, there exists

a probability υ onB(U ) such that Law(Un) → υ at a geometric speed in total variation as
n → ∞. Furthermore, for any bounded and measurable function φ : U → R,

∑n
j=1 φ(Uj )

n
→

∫
U

φ(u) υ(du), n → ∞, (5)

almost surely.

Proof See in Sect. 6. �	
A “mirror image” of the proof of Theorem 2.6 establishes the following result, the

“symmetric pair” of Theorem 2.6.

Theorem 2.7 Let X̃t , t ∈ N be a Markov chain on the state space [−M,∞) for some M > 0
and define S̃n := S0 +∑n

k=1 X̃k . Let E X̃2
n < ∞ hold for all n ≥ 1. Let Assumptions 2.1 and

2.3 hold for X̃t Then the recursively defined quantities T̃0 := 0 and

L̃n+1 := min{k > T̃n : S̃k > θ}, T̃n+1 := min{k > L̃n+1 : S̃k < θ} (6)

are well-defined and finite. Furthermore, there exists a probability υ on B(Ũ ) such that
Law(Ũn) → υ at a geometric speed in total variation as n → ∞, where

Ũn := (X̃ L̃n
, S̃L̃n

, X̃ T̃n
, S̃T̃n , T̃n − L̃n), n ≥ 2

is a homogeneous Markov chain on the state space

Ũ := (0,∞) × (θ,∞) × [−M, 0) × (θ − M, θ) × (N \ {0}).
For any bounded and measurable function φ : Ũ → R,

∑n
j=1 φ(Ũ j )

n
→

∫
˜U
φ(u) υ(du), n → ∞, (7)

almost surely. �	

3 Stability of overshoots

In Mijatović and Vysotsky (2020a) the authors consider a zero-mean i.i.d. sequence Xn ,
n ≥ 1 and a random variable S0 independent of the Xt . They determine the (stationary)
limiting law μ∗ for the Markov process of overshoots defined by O0 := max(S0, 0),

On = SLn , n ≥ 1

where Ln, Tn are defined as in (3) but with the choice θ = θ = 0.1 They also establish
the convergence of Law(On) to μ∗ under suitable conditions. Generalizations to entrance
Markov chains on more general state spaces have been obtained in Mijatović and Vysotsky
(2020b).

Using methods of the present paper, we may obtain generalizations into another direction:
we may relax the independence assumption on the Xt .

1 Strictly speaking, in the definition of Ln+1, see (3), they have ≥ instead of >.
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Theorem 3.1 Under Assumption 2.1 and 2.3, there exists a probability υ onB((0,∞)) such
that Law(On) → υ at a geometric speed in total variation as n → ∞. Furthermore, for any
bounded and measurable function φ : (0,∞) → R,∑n

j=1 φ(Oj )

n
→

∫
(0,∞)

φ(u) υ(du), n → ∞, (8)

almost surely.

Proof See in Sect. 6. �	
Remark 3.2 In the i.i.d. case Theorem 3.1 applies if Xt is square-integrable, bounded from
above and the law of Xt dominates constant times the Lebesguemeasure in a neighborhood of
0. InMijatović and Vysotsky (2020a) a much larger class of i.i.d. random variables is treated.
On the other hand, we can handle Markovian summands unlike (Mijatović & Vysotsky,
2020a) .

4 Trading with threshold strategies

Let the observed price of an asset be denoted by At at time t ∈ N. We may think of the price
of a futures contract, for instance. Positive prices can also be handled, see Remark 4.4 below.
We assume a simple dynamics:

At = μt + St , (9)

where μ ∈ R, S0 ∈ R are constants and St := S0 + ∑t
j=1 X j for a Markov process X with

values in [−M, M] for some M > 0 and satisfying Assumptions 2.1 and 2.3.
In this pricemodel,μt represents the drift (or “trend”) and St performs fluctuations around

the trend (the martingale part). The minorization condition (2) is easy to interpret: whatever
the current increment x ∈ [−M, M] of the fluctuations S is, with a positive probability the
next increment will be small (that is, the price changewill be close to 0) and the distribution of
the movements of S has no atom, more precisely, it has an absolutely continuous component.

The practical situation we have in mind is an algorithm that tries to “buy low and sell
high” an asset at high (but not ultra-high) frequencies, revising the portfolio, say, once every
second or every minute. Such an algorithm is run continuously during the trading day which
can be considered a “stationary” environment as economic fundamentals do not change
significantly on such timescales. It seems that ergodic stochastic control is the right setting for
such investment problems: the algorithm obeys the same rules prescribed by its programmer
for a very long time (a horizon of one day is very long when the portfolio is revised every
second) and its average perfomance should be optimized by choosing the best parameters (in
our case the thresholds), possibly in an adaptive manner. We remark that μ in such a setting
is negligible and can safely be assumed 0, as often done in papers on high-frequency trading.
Our results work nevertheless for arbitrary μ which is of interest for trading on different
timescales (e.g. daily revision of a portfolio for several months).

Now we set up the elements of our trading mechanism. Let the thresholds θ, θ ∈ R be
fixed, satisfying θ < 0 < θ . We interpret θ as a level for St under which it is advisable to buy
the asset. Analogously, it is recommended to sell the asset if St exceeds θ . Thus, to realize a
“buying low, selling high”-type strategy, the asset should be bought at the times Tn , n ≥ 1
and sold at the times Ln , n ≥ 1, realizing the profit

ALn − ATn = SLn − STn + μ(Ln − Tn). (10)
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Wenowexplain the significance of Theorem2.6 in studying optimal tradingwith threshold
strategies. An investor aims to maximize in θ, θ the long-term average utility from wealth,
that is,

lim sup
n→∞

∑n
k=1

[
u(SLk (θ) − STk (θ) + μ(Lk(θ) − Tk(θ))) − p(Lk(θ) − Tk(θ))

]
n

, (11)

where u : R → R is a utility function and Lk(θ), Tk(θ) refer to the respective stopping times
defined in terms of the parameter θ = (θ, θ). The function p : R+ → R+ serves to penalize
long waiting times.

Remark 4.1 If the price is modelled by processes with continuous trajectories, as in Cartea
et al. (2014), Dai et al. (2010), Zervos et al. (2013) and Zhang (2001) then the thresholds are
hit precisely and the profit realized between Tn and Ln is exactly θ − θ . In the present setting
(just like in the case of continuous-time processes with jumps), the profit realized may be
significantly different due to the overshoot (resp. undershoot) of the level θ (resp. θ ). From
the point of view of ergodic control, it is crucial to establish that these overshoots/undershoots
tend to a limiting law, which is the central concern of our present paper.

According to Theorem 2.6, the limsup in the above expression is, in fact, a limit, for a
large class of u, p. One could easily incorporate various types of transaction costs in the
model but we refrain from that.

Example 4.2 Let u, p be non-decreasing functions that are bounded from above (e.g. u can be
the exponential utility, expressing high risk-aversion), and assume μ ≥ 0. Since SLk − STk is
necessarily bounded from below, (7) holds with the choice φ(Un) := u(SLk − STk +μ(Lk −
Tk)) − p(Lk − Tk) and the limsup is a limit in (13) above.

Remark 4.3 In the alternative setting of Theorem 2.7 above (with X̃n = Xn), the trader sells
one unit of the financial asset at L̃n (shortselling) and then closes the position at T̃n thus
realizing a profit

− (AT̃n
− AL̃n

) = SL̃n
− ST̃n − μ(L̃n − T̃n). (12)

This is the analogue (with short positions) of the long-position strategy realizing (10).
Theorem 2.7 implies that

lim sup
n→∞

∑n
k=1

[
u(SL̃k (θ)

− ST̃k (θ)
+ μ(L̃k(θ) − T̃k(θ))) − p(L̃k(θ) − T̃k(θ))

]

n
(13)

is a limit in this case, too.

In future work, we intend to optimize θ, θ by means of adaptive control, using recursive
schemes such as the Kiefer–Wolfowitz algorithm, see (Zhuang, 2008) and Section 6 of
Rásonyi and Tikosi (2022). To prove the convergence of such procedures, it is a prerequisite
that the process SLk − STk + μ(Lk − Tk), k ∈ N has favorable ergodic properties. This is
precisely the content of Theorem 2.6 above.

Remark 4.4 In an alternative setting, At may model the logprice of an asset. In that case
investing one dollar between Tn and Ln yields exp

(
SLn − STn + μ(Ln − Tn)

)
dollars. Let

u : (0,∞) → R, p : R+ → R+ be non-decreasing functions, p bounded and u bounded
from above (such as a negative power utility function). In this setting the optimization

max
θ,θ

lim sup
n→∞

∑n
k=1

[
u(exp

(
SLk (θ) − STk (θ) + μ(Lk(θ) − Tk(θ))

)
) − p(Lk(θ) − Tk(θ))

]
n
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corresponds to maximizing the utility of the long-term investment of one dollar (minus an
impatience penalty), using threshold strategies controlled by θ . When μ ≥ 0, the limsup is
a limit, again by Theorem 2.6.

Example 4.5 Let us look at a concrete case now, a very simple stochastic volatility model
where the asset’s current volatilitymay depend on the previous pricemovement. Suchmodels
may display the important “leverage effect” observed in market data: that price movements
are negatively correlated with volatility, see (Cont, 2001) .

Let the dynamics be determined by Xt+1 = σ(Xt )εt+1 with a zero-mean i.i.d. sequence
εt and with a measurable function σ : R → (0,∞). Assume that σ , ε0 are bounded, ε0 has
an absolutely continuos law (with respect to the Lebesgue measure) which is bounded away
from 0 in a neighborhood of 0. It is clear that both Assumptions 2.1 and 2.3 hold true and
thus both Theorems 2.6 and 2.7 apply.

It is an intriguing question how realistic such a view of trading is in real-life situations.
See (Gál & Lovas, 2022) where evidence on the law of large numbers is presented for both
simulated autoregressive Xt and for empirical data (S& P 500 index).

We briefly compare our approach to existing ones. We do not survey the large literature
on switching problems, see Chapter 5 of Pham (2008), only some of the directly related
papers. Formulations as optimal stopping problems with discounting appear e.g. in Shiryaev
et al. (2008), Dai et al. (2010) and Zhang (2001). Sequential buying and selling decisions
are considered for mean-reverting assets in Zhang and Zhang (2008) and Song et al. (2009).
Mean-reversion trading is also analysed in Leung and Li (2015). Zervos et al. Zervos et al.
(2013) treats a general diffusion setting, again using discounting.

In our setting of intraday trading discounting is not an appealing option: on such timescales
the decrease of the value of future money is not manifested. Here the ergodic control
of averages seems more natural an objective to us. Recall also (Cartea et al., 2014)
exploring high-frequency perspectives maximizing expectation on a finite horizon (without
discounting).

All the above mentioned papers are about diffusion models where the phenomenon of
“overshooting” and “undershooting” does not appear. They are, on the contrary, the main
focus of the present work. Similar problems seem to come up in an ergodic control setting
for continuous-time price processes with jumps. We are unaware of any related studies.

5 Buying low and selling high in a stochastic volatility model: a
numerical experiment

Market risk and volatility are closely related concepts in financial markets. Market risk, also
known as systematic risk, refers to the uncertainty that results from changes in the overall
market or the economy. Volatility, on the other hand, refers to the degree of variation of a
trading price over time. In otherwords, it is ameasure of howmuch the price of a stock or other
asset fluctuates in a given period of time. In general, increased market risk leads to increased
volatility. For example, when there is a recession, investors becomemore fearful andmay sell
their assets, which causes the market to drop and the prices of assets to becomemore volatile.
This can cause the prices of several assets to rise or fall at the same time, resulting in increased
volatility. However, increased market risk does not always mean increased volatility, as there
could be specific market conditions that could lead to the opposite, see (Risk vs. Volatility,
2023) .
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Volatility is not always a bad thing, as it can sometimes provide entry points from which
investors can take advantage. On one hand, it can create opportunities for investors who are
able to tolerate risk and have a long-term investment horizon. When stock prices are volatile,
there are more opportunities to buy low and sell high. On the other hand, volatility can be
a threat to investors who are strongly risk-averse or have a short-term investment horizon,
because it can lead to significant losses in a short period of time, see (Market Volatility,
2023; Is there opportunity, 2023; If volatility is risk, 2023; Stock Market Volatility, 2023) .

Out of the various possibilities for exploiting price fluctuations (option trading, etc.),
buying low and selling high (BLSH) stands out as probably the simplest strategy that investors
use to profit from stock market volatility. This can be difficult to do in practice, as it requires
being able to predictmarketmovements accurately, butmany investors use technical analysis,
fundamental analysis or both to help them time the market.

We consider a slightly modified version of a widespread standard stochastic volatility
(SV) model. (It can even be used for energy prices, see (Chan & Grant, 2016) ). As it was
outlined in Remark 4.4, let At stand for the logarithmic price of the underlying asset. We
intend to study the sequence of daily logarithmic returns (rn)n∈N over investment periods i.e.
between Tn and Ln ,

rn := r(Un) := μ + SLn − STn
Ln − Tn

, n ∈ N, (14)

whereUn is given by (4). Sinceμ is a deterministic additive constant whose value is supposed
to be known (estimated), from now on, we may and will assume that μ = 0.

We model the time evolution of the daily log-returns of the underlying asset using the
truncated stochastic volatility model

Xt = X̃t − E(X̃t | σt ), t ≥ 0 (15)

σt = ρσt−1 + εσ
t , t ≥ 1, (16)

where for some fixed constants M1, M2 > 0,

X̃t = σtε
X
t 1−M1≤σt ε

X
t ≤M2

− M11σt ε
X
t <−M1

+ M21σt ε
X
t >M2

, t ∈ N. (17)

Furthermore, (εXt )t∈N and (εσ
t )t∈N are i.i.d. sequences of standardGaussian randomvariables,

independent of each other, the autocorrelation factor ρ can be chosen between −1 and 1.
It is also straightforward to check that E(X2

t ) < ∞, and by construction, E(Xt | σt ) = 0
hence Assumption 2.3 is clearly satisfied. (We remark that, for M1, M2 large, the termE(X̃t |
σt ) is practically 0.) Note that, for large M1 and M2, Xt ≈ σtε

X
t , moreover, the state space

of (Xt )t∈N is bounded.

Remark 5.1 Theorem 2.6 does not apply to this model directly since Xt is not Marko-
vian. However, (σt , Xt ) is Markovian. Thus, instead of (4), we have to consider Un :=
(σTn , XTn , STn , XLn , SLn , Ln − Tn). Our arguments can be extended to this setting, too, but
this is out of the scope of the present paper.

By observing the process (rn)n≥0 for a sufficiently long period of time, we can draw
conclusions about the dependence of

E(r(U∞)) =
∫
U

r(u) υ(du)

on model parameters, where in the above expression υ denotes the limiting law of Un as
n → ∞. This opens door to the statistical analysis of such models.
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Fig. 1 Simulated trajectories of the stochastic processes σt , Xt , and St , 0 ≤ t ≤ 5000

Fig. 2 Average of the daily logarithmic returns achieved over 100 simulated trading periods as a function of
the autocorrelation factor

We also wrote a numerical simulation in Python whose source code has been uploaded
to the public Github repository https://github.com/mathlov89/Trading-With-Threshold-
Strategies.git. In our experiments, we set M1 = 108, M2 = 1, and simulated hundred
trading cycles (buying and selling periods).

The simulated paths of σt , Xt , and St , 0 ≤ t ≤ 5000, processes are shown in Fig. 1.
The graph in Fig. 2shows the average of the daily logarithmic returns achieved over 100

trading periods under different autocorrelation parameter settings. We conjecture that the
buying low and selling high can be profitable only when ρ is far from zero, so when volatility
shows clustering behavior.

123

https://github.com/mathlov89/Trading-With-Threshold-Strategies.git
https://github.com/mathlov89/Trading-With-Threshold-Strategies.git


Annals of Operations Research

Fig. 3 The histogram (left) represents the distribution of the time elapsed between buying and selling. The chart
(right) shows the ergodic average of the daily returns realized during each trading cycle over 100 investment
periods

On the left side of Fig. 3, we presented the empirical histogram of the time elapsed between
buying and selling. On the right side, we can see the ergodic average of the daily logarithmic
returns realized on each trading cycle. We can see that, in most cases, the investor can sell
the stock shortly after entering the market, and thus close his position. However, with a
small probability, it can happen that the price reaches the selling point only about 1.5 million
steps after buying. This means, in practice, that an investor following the threshold trading
strategy might have to wait an unreasonably long time in certain cases. Adding a penalty
term depending on Ln − Tn thus seems a reasonable idea.

Based on what we’ve seen so far, we can draw the conclusion that although the BLSH
strategy can help investors to profit on price oscillation, the liquidity of the investment may
decrease significantly hence from an investor’s perspective, it is not advisable to use this
strategy on its own, rather combined with other strategies.

6 Proofs

Proof of Theorem 2.6 Iterated random function representation of Markov chains on stan-
dard Borel spaces is a commonly used construction, see e.g. (Bhattacharya & Waymire,
1990; Bhattacharya & Majumdar, 1999) . A similar representation for (Xn)n∈N is shown in
Lemma 6.1 below which will play a crucial role in the proof. Although the proof is quite
standard, we present it for the reader’s convenience.

Lemma 6.1 Let (ξn)n∈N and (ηn)n∈N be i.i.d. sequences, independent of each other, and also
independent of σ(X0, S0), moreover let ξ0, η0 be uniform on [0, 1]. Then there exists a map
� : X × [0, 1] × [0, 1] → X such that for all x ∈ X , and u ∈ [0, 1], we have

∀v ∈ [0, α) �(x, u, v) = h(2u − 1), (18)

where h, α > 0 are as in Assumption 2.1. Furthermore, the process (X ′
n)n∈N given by the

recursion X ′
0 = X0, X ′

n+1 = �(X ′
n, ξn+1, ηn+1), n ∈ N is a version of (Xn)n∈N.
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Proof For x ∈ X and A ∈ B(X ), let us consider the decomposition

P(x, A) = α�(A) + (1 − α)q(x, A),

where by Assumption 2.1,

q(x, A) = P(x, A) − α�(A)

1 − α

is a probability kernel. For x ∈ X and u, v ∈ [0, 1], we define

�(x, u, v) = 1{v<α} h(2u − 1) + 1{v≥α} q−1(x, u),

where q−1(x, u) := inf{r ∈ Q | q(x, (−∞, r ]) ≥ u}, u ∈ [0, 1] is the pseudoinverse of the
cumulative distribution function r �→ q(x, (−∞, r)), x ∈ X = (−∞, M].

Obviously, (18) holds true, and thus for any fixed u ∈ [0, 1], the random map x �→
�(x, u, ηn+1) is constant onX with probability α showing that X ′

n forgets its previous state
with positive probability. This observation will play a central role later.

On the other hand, by the definition of the pseudoinverse, Law(q−1(x, ξ0)) = q(x, ·), and
thus we can write

P(�(x, ξ0, η0) ∈ A) = P(�(x, ξ0, η0) ∈ A; η0 < α) + P(�(x, ξ0, η0) ∈ A; η0 ≥ α)

= αP(h(2ξ0 − 1) ∈ A) + (1 − α)P(q−1(x, ξ0) ∈ A)

= α�(A) + (1 − α)q(x, A) = P(x, A).

To sum up, the chains (Xn)n∈N and (X ′
n)n∈N have the same transition kernel, and their

initial states also coincide showing that these processes are versions of each other. �	

Since we are interested in the distribution of Un , from now on we may and will assume
that the the random walk (Sn)n∈N is driven by (X ′

n)n∈N, whereby for every n ∈ N, each of
XTn , STn , XLn , SLn , Ln and Tn is a function of X0, S0, (ξn)n∈N and (ηn)n∈N.

In what follows, we are going to prove that the minorization property of (Xn)n≥1 is
inherited by (Un)n≥1. Let us denote the transition kernel ofU by Q : U ×B(U ) → [0, 1],
that is for all y ∈ U and B ∈ B(U )

P(Un+1 ∈ B | Un = y) = Q(y, B), n > 1

holds. We aim to show that there exist a non-zero Borel measure κ̃ : B(U ) → [0,∞) such
that for all y ∈ U and B ∈ B(U ),

Q(y, B) ≥ κ̃(B). (19)

For n ∈ N+, we define τn = sup{t ∈ N | ηLn+k < α, k = 1, . . . , t}. Clearly, τn is
independent of Un , moreover it follows a Geo(1 − α) distribution counting the number of
failures until the first success i.e. P(τn = j) = α j (1 − α), j ∈ N.
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Now, let y = (x, s, x, s, r) ∈ U and B ∈ B(U ) be arbitrary and fixed. By the tower
rule, we have

Q(y, B) = P (Un+1 ∈ B | Un = y)

=
∞∑
k=0

P (Un+1 ∈ B | Un = y, τn = k)P(τn = k | Un = y)

=
∞∑
k=0

P (Un+1 ∈ B | Un = y, τn = k) αk(1 − α)

≥
∞∑
k=2

P
(
Un+1 ∈ B, Ln+1 ≤ Ln + k | SLn = s, τn = k

)
αk(1 − α),

(20)

where we used that the sigma algebras σ(ξLn+k, ηLn+k, k ≥ 1) and σ(Un) are independent,
moreover on sets {SLn = s̄, τn = k}, we have

(XLn+ j , SLn+ j ) =
⎛
⎝h(2ξLn+ j − 1), s̄ +

j∑
i=1

h(2ξLn+ j − 1)

⎞
⎠ , 1 ≤ j ≤ k (21)

implying thatUn+1 and (XTn , STn , XLn , Ln−Tn) are conditionally independent given {SLn =
s̄, τn = k} whenever k ≥ 1.

Furthermore, we can write

P
(
Un+1 ∈ B, Ln+1 ≤ Ln + k | SLn = s, τn = k

)

=
k∑

l=2

P
(
Un+1 ∈ B, Ln+1 = Ln + l | SLn = s, τn = k

)

=
k∑

l=2

l−1∑
j=1

P
(
Un+1 ∈ B, Tn+1 = Ln + j, Ln+1 = Ln + l | SLn = s, τn = k

)
(22)

Let us introduce the auxiliary random walkWn = s+h
∑n

i=1(2ξi −1), and we introduce
the associated quantities LW

0 := 0 and for n ∈ N,

TW
n+1 := min

{
k > LW

n : Wk < θ

}
, LW

n+1 := min

{
k > TW

n+1 : Wk > θ

}
.

Similarly, we define UW
n =

(
h(2ξTW

n
− 1),WTW

n
, h(2ξLW

n
− 1),WLW

n
, LW

n − TW
n

)
, n ∈ N.

Obviously, for fixed 1 ≤ j < l ≤ k, we have

P
(
Un+1 ∈ B, Tn+1 = Ln + j, Ln+1 = Ln + l | SLn = s, τn = k

)
= P(UW

1 ∈ B, TW
1 = j, LW

1 = l).
(23)

We estimate this probability from below by taking into account only trajectories that
consist of just one decreasing and one increasing segment (see Fig.4for an illustration).
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Fig. 4 Trajectories of (Wn)n∈N with one local minimum at n = 5 (s = 1, h = 1)

P(UW
1 ∈ B, TW

1 = j, LW
1 = l)

≥ 1

2l
P

⎛
⎝UW

1 ∈ B, TW
1 = j, LW

1 = l

∣∣∣∣∣∣
j⋂

i=1

{ξi < 1/2},
l⋂

i= j+1

{ξi ≥ 1/2}
⎞
⎠

= 1

2l
P

⎛
⎝UW

1 ∈ B, Wj < θ ≤ Wj−1, Wl−1 ≤ θ < Wl

∣∣∣∣∣∣
j⋂

i=1

{ξi < 1/2},
l⋂

i= j+1

{ξi ≥ 1/2}
⎞
⎠

(24)

Note that the conditional distribution of (W1, . . . ,Wl) given
⋂ j

i=1{ξi < 1/2} and⋂l
i= j+1{ξi ≥ 1/2} coincides with the distribution of (W ′

1, . . . ,W
′
l ), where

W ′
m := s − h

min( j,m)∑
i=1

ξi + h
m∑

i= j+1

ξi , 1 ≤ m ≤ l

with the convention that empty sums are defined to be zero.
Using this, and that B ⊂ U = (−∞, 0) × (−∞, θ) × (0, M] × (θ, θ + M) × (N\{0}),

we can write

P

⎛
⎝UW

1 ∈ B, Wj < θ ≤ Wj−1, Wl−1 ≤ θ < Wl

∣∣∣∣∣∣
j⋂

i=1

{ξi < 1/2},
l⋂

i= j+1

{ξi ≥ 1/2}
⎞
⎠

= P

(
(−hξ j ,W

′
j , hξl ,W

′
l , l − j) ∈ B, θ ≤ W ′

j−1, W
′
l−1 ≤ θ

)

=
∫ 1

0

∫ 1

0

∫ ∞

0

∫ ∞

0
1(−hw,s−hu−hw,hz,s−hu−hw+hv+hz,l− j)∈B

× 1θ≤s−hu × 1s−hu−hw+hv≤θ × f j−1(u) × fl−1− j (v) dudvdwdz

where for m ∈ N+, fm : [0,∞) → [0,∞) stands for the probability density function of the
sum of m independent random variables each having a uniform distribution on [0, 1]. Now,
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we can evaluate the quadruple integral using the substitution x1 = −hw, x2 = s − hu − hw,
x3 = hz, x4 = s − hu − hw + hv + hz, and thus we have

∫ 1

0

∫ 1

0

∫ ∞

0

∫ ∞

0
1(−hw,s−hu−hw,hz,s−hu−hw+hv+hz,l− j)∈B

× 1θ≤s−hu × 1s−hu−hw+hv≤θ × f j−1(u) fl−1− j (v) dudvdwdz

= 1

h4

∫ θ+M

θ

∫ h

0

∫ θ

−∞

∫ 0

−h
1(x1,x2,x3,x4,l− j)∈B × 1θ≤x2−x1 × 1x4−x3≤θ

× f j−1

(
s − (x2 − x1)

h

)
× fl−1− j

(
x4 − x3 − x2

h

)
dx1dx2dx3dx4

=
∫
V
1(x,l− j)∈B × gs, j,l− j (x) λ(dx),

where x is a shorthand notation for (x1, x2, x3, x4), λ is the Lebesgue measure on R4, and V
is used for (−∞, 0) × (−∞, θ) × (0, M] × (θ, θ + M), moreover for j,m > 1

gs, j,m(x) = 1

h4
1θ≤x2−x1 × 1x4−x3≤θ × 1x1∈[−h,0] × 1x3∈[0,h]

× f j−1

(
s − (x2 − x1)

h

)
× fm−1

(
x4 − x3 − x2

h

)
.

(25)

Substituting this back into (22) and reindexing by m = l − j yields

P
(
Un+1 ∈ B, Ln+1 ≤ Ln + k | SLn = s, τn = k

)

≥
k∑

l=2

l−2∑
j=2

1

2l

∫
V
1(x,l− j)∈B × gs, j,l− j (x) λ(dx)

=
∫
V

k−2∑
m=2

k−m∑
j=2

1

2 j+m
1(x,m)∈B × gs, j,m(x) λ(dx)

and thus by (20), we arrive at

Q(y, B) ≥
∫
V

∞∑
k=4

αk(1 − α)

k−2∑
m=2

k−m∑
j=2

1

2 j+m
1(x,m)∈B × gs, j,m(x) λ(dx)

=
∞∑

m=1

∫
V
1(x,m)∈B × 1m≥2 ×

∞∑
k=m+2

k−m∑
j=2

αk(1 − α)

2 j+m
gs, j,m(x) λ(dx)

=
∞∑

m=1

∫
V
1(x,m)∈B × 1m≥2 ×

∞∑
j=2

∞∑
k= j+m

αk(1 − α)

2 j+m
gs, j,m(x) λ(dx)

=
∫
B
1m≥2 ×

∞∑
j=2

α j+m

2 j+m
gs, j,m(x) λ(dx) ⊗ δ(dm),

where δ is the usual counting measure on N.
Let us observe that on Supp(g) ⊆ U , θ ≤ x2 − x1 ≤ θ + h. Now, we fix 0 < γ̃ <

min
(
(θ − θ)/h, 1

)
and consider only x1 and x2 satisfying θ ≤ x2−x1 ≤ θ+γ̃ h. Furthermore,

since the jumps of (Sn)n∈N are bounded from above by M , we have θ < s < θ + M hence
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for the argument of f j−1 in (25), we get

0 <
θ − θ

h
− γ̃ ≤ s − (x2 − x1)

h
≤ θ − θ

h
+ M

h
. (26)

provided that θ ≤ x2 − x1 ≤ θ + γ̃ h.
Introducing ω j = min{ f j−1(t) | (θ − θ)/h − γ̃ ≤ t ≤ (θ − θ)/h + M/h}, we arrive at

the estimate

f j−1

(
s − (x2 − x1)

h

)
≥ ω j × 1θ≤x2−x1≤θ+γ̃ h

which is uniform in s, and ω j > 0 whenever j > (θ − θ)/h + M/h + 1.
If we put all together, forCh = {(x,m) ∈ U | x1 ∈ [−h, 0]; θ ≤ x2−x1 ≤ θ + γ̃ h; x3 ∈

[0, h]; x4 − x3 ≤ θ; m ≥ 2}, we obtain

Q(y, B) ≥
∫
B∩Ch

αm

h42m
fm−1

(
x4 − x3 − x2

h

)
×

∞∑
j=2

α jω j

2 j
λ(dx) ⊗ δ(dm),

where the right hand-side depends only on α, M, h, θ, θ , but not on s hence (19) holds with

κ̃(B) =
∫
B∩Ch

αm

h42m
fm−1

(
x4 − x3 − x2

h

)
×

∞∑
j=2

α jω j

2 j
λ(dx) ⊗ δ(dm) (27)

which is obviously a non-zero Borel measure on B(U ).
To sum up, we showed that the chain (Un)n≥1 satisfies the uniformminorization condition

(19), and thus by Theorem 16.2.2 in Meyn and Tweedie (1993), there exist a probability
measure, independent of (S0, X0), such that Law(Un) → υ in total variation. Moreover, by
Theorem 17.0.1 in Meyn and Tweedie (1993), for bounded measurable functionals of Un

the law of large numbers holds as it is stated in Theorem 2.6. (Actually, even a central limit
theorem could be established.) This completes the proof. �	
Proof of Theorem 3.1 The idea of the proof is similar to that of Theorem 2.6, but the details
are somewhat simpler. We only sketch the main steps.

We consider the process Zn = (XLn , SLn ), n > 1which is obviously a time-homogeneous
Markov chain on the state space � := {(x, s) ∈ (0, M]2 | x ≥ s}. In what follows, we
prove that chain (Zn)n>1 satisfies a minorization condition similar to (19) in the proof of
Theorem 2.6. More precisely, we aim to show that there exist a non-zero Borel measure
β : B(�) → [0,∞) such that for all z ∈ � and A ∈ B(�),

Q(z, A) ≥ β(A), (28)

where Q : � × B(�) → [0, 1] is the transition kernel of the chain (Zn)n∈N.
Let (ξn)n∈N, (ηn)n∈N, and (τn)n∈N be as in the the proof of Theorem 2.6. For z = (x, s) ∈

� and A ∈ B(�) arbitrary and fixed, by the tower rule, we have

Q(z, A) = P (Zn+1 ∈ A | Zn = z) =
∞∑
k=0

P (Zn+1 ∈ A | Zn = z, τn = k) αk(1 − α)

≥
∞∑
k=2

k∑
l=2

P
(
Zn+1 ∈ A, Ln+1 = Ln + l | SLn = s, τn = k

)
αk(1 − α),

(29)
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where we applied the same principles as in the derivation of (20).
Again by introducing the auxiliary random walk Wn = s + h

∑n
j=1(2ξ j − 1), and the

associated quantities LW
n , ZW

n = (h(2ξLW
n

− 1),WLW
n

), n ∈ N, where LW
0 := 0 and for

n ∈ N, LW
n+1 := inf{k > LW

n | Wk−1 ≤ 0 < Wk}, for fixed 2 ≤ l ≤ k, we can write

P
(
Zn+1 ∈ A, Ln+1 = Ln + l | SLn = s, τn = k

) = P(ZW
1 ∈ A, LW

1 = l)

= 1

2l
P

(
(h(2ξl − 1),Wl) ∈ A, Wl−1 ≤ 0 < Wl

∣∣∣∣∣
l−1⋂
i=1

{ξi < 1/2}, {ξl ≥ 1/2}
)

(30)

where similarly to (24), we have taken into account trajectories decreasing in l −1 > 0 steps
and increasing only in the l-th step. For the conditional probability, we have

P

(
(h(2ξl − 1),Wl) ∈ A, Wl−1 ≤ 0 < Wl

∣∣∣∣∣
l−1⋂
i=1

{ξi < 1/2}, {ξl ≥ 1/2}
)

=
∫ 1

0

∫ ∞

0
1(hv,s−hu+hv)∈A × 1s−hu≤0 × fl−1(u)dudv

= 1

h2

∫ h

0

∫ x1

0
1(x1,x2)∈A × fl−1

(
s − (x2 − x1)

h

)
dx2dx1

=
∫

(0,h]2∩A
fl−1

(
s − (x2 − x1)

h

)
λ(dx)

where fm : [0,∞) → [0,∞) is the probability density function of the sum of m ≥ 1
independent random variables each having a uniform distribution on [0, 1], x = (x1, x2), and
λ denotes the Lebesgue measure on R2.

Notice that if (x1, x2) ∈ (0, h]∩� then 0 ≤ x1 − x2 ≤ min(M, h), moreover 0 < s ≤ M
hence we have 0 ≤ (s − (x2 − x1))/h ≤ M/h + min(M/h, 1), and thus we obtain

fl−1

(
s − (x2 − x1)

h

)
≥ ω′

l × 1γ̃ ′ min(M,h)≤x1−x2 , (31)

where γ̃ ′ can be any fixed number in (0, 1), and ω′
l = inf{ fl−1(t) | γ̃ ′ min(M/h, 1) ≤ t ≤

M/h +min(M/h, 1)} that is a positive number not depending on s whenever l > M/h + 1.
If we put all together, we obtain the following lower estimate

Q(z, A) ≥
∫

(0,h]2∩A

∞∑
k=2

k∑
l=2

αk(1 − α)

2l
ω′
l × 1γ̃ ′ min(M,h)≤x1−x2 λ(dx)

=
∫

(0,h]2∩A
1γ̃ ′ min(M,h)≤x1−x2 ×

∞∑
l=2

αlω′
l

2l
λ(dx),

where the right hand-side depends only on α, M, h and the choice of γ̃ ′ ∈ (0, 1), but not
depends on z, moreover

B(�) � A �→ β(A) :=
∫

(0,h]2∩A
1γ̃ ′ min(M,h)≤x1−x2 ×

∞∑
l=2

αlω′
l

2l
λ(dx)

defines a non-zeros Borel measure on B(�), and thus (28) holds with this β.
To sum up, we proved that the chain (Zn)n∈N satisfies the uniformminorization condition,

and thus it admits a unique invariant probability measure π such that Law(Zn) → π at a
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geometric rate in total variation as n → ∞ (See for example Lemma 18.2.7 and Theorem
18.2.4 in Douc et al. (2018)) which completes the proof of Theorem 3.1. �	

Remark 6.2 We explain a seemingly innocuous but actually powerful extension of some of
the arguments above. Let Xt be a time inhomogeneousMarkov chain with kernels Pn , n ≥ 1
such that

P(Xn+1 ∈ A|Xn = x) = Pn+1(x, A), x ∈ X , A ∈ B(R), n ∈ N.

Let Assumption 2.1 hold for each Pn , n ∈ N (with the same α, h) and let Assumption 2.3 hold
for each Pn . In this case,Ut , t ≥ 2 will be a time-inhomogeneousMarkov chain and repeating
the argument of the proof for Theorem2.6 establishes the existence of a probability κ̃ such that
Qn(x, A) ≥ κ̃(A), x ∈ U , A ∈ B(U ), n ≥ 3, where Qn+1(x, A) = P(Un+1 ∈ A|Un = x)
is the transition kernel of U .

Remark 6.3 One could treat certain stochastic volatility-type models where Xt = σtεt with
εt i.i.d. and σt a Markov process. In this case Xt is not Markovian but the pair (Xt , σt ) is. An
extension to even more general non-Markovian Xt also seems possible. We do not pursue
these generalizations here.

7 Conclusions

It would be desirable to remove the (one-sided) boundedness assumption on the state space
of Xt and relax the minorization condition (2) to some kind of local minorization. Due to
the rather complicated dynamics of Ut such extensions do not appear to be straightforward
at all.

Removing the boundedness hypothesis on u, p in Sect. 4 would also be desirable but looks
challenging.

Replacing the constant drift μ by a functional of Xt would also significantly extend the
family of models in consideration.

An adaptive optimization of the thresholds θ, θ could be performed using the Kiefer–
Wolfowitz algorithm, as proposed in Section 6 of Rásonyi and Tikosi (2022). There are a
number of technical conditions (e.g. mixing properties, smoothness of the laws) that need to
be checked for applying (Rásonyi & Tikosi, 2022) but the ergodic properties established
in this article strongly suggest that this programme indeed can be carried out.

Extensions to non-Markovian stochastic volatility models (see (Comte & Renault, 1998;
Gatheral et al., 2018) ) seem feasible but require further technicalities.
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