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Abstract
The aim of this paper is to compare the performance of a local solution technique—namely
Sequential Linear Programming (SLP) employing random starting points—with state-of-
the-art global solvers such as Baron and more sophisticated local solvers such as Sequential
Quadratic Programming and Interior Point for the pooling problem. These problems can have
many local optima, and we present a small example that illustrates how this can occur.
We demonstrate that SLP—usually deemed obsolete since the arrival of fast reliable SQP
solvers, Interior PointMethods and sophisticated global solvers—is still themethod of choice
for an important class of pooling problems when the criterion is the quality of the solution
found within a given acceptable time budget. On this measure SLP significantly ourperforms
all other tested algorithms.
In additionwe introduce a new formulation, the qq-formulation, for the case of fixed demands,
that exclusively uses proportional variables. We compare the performance of SLP and the
global solver Baron on the qq-formulation and other common formulations. While Baron
with the qq-formulation generates weaker bounds than with the other formulations tested,
for both SLP andBaron the qq-formulation finds the best solutionswithin a given time budget.
The qq-formulation can be strengthened by pq-like cuts in which case the same bounds as for
the pq-formulation are obtained. However the associated time penalty due to the additional
constraints results in poorer solution quality within the time budget.

Keywords Pooling problem · Sequential linear programming · Global optimization ·
Nonlinear programming

1 Introduction

The Pooling Problem is the problem of mixing a set of rawmaterials to form a specified set of
final products in such a way that the products satisfy a set of given limits on the concentration
of certain qualities. The composition of these qualities in the inputs is a known parameter of
the model (although it may assumed to be stochastic in some variants). In the standard Diet
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Problem the products are directly mixed straight from the inputs, which results in a linear
model. In the Pooling Problems the inputs can also flow through a sets of mixing bins, as
illustrated Fig. 1. The compositions of these mixing bins are variables of the problem and this
results in the mixing constraints being non-linear (indeed bilinear). This makes the problem
non-convex and thus it can have local solutions.

The Pooling Problem was first described by Haverly (1978) in the late 1970’s and shortly
after Lasdon et al. (1979) proposed Sequential Linear Programming (SLP) as a solution
method. Since then the pooling problem has become a much studied global optimization
problem with applications in the oil and coal industry and general process optimization in
chemical engineering. It has been one of the problems driving progress in global optimization
solvers over the last few decades (Androulakis et al., 1995).

The problem of interest to us is a version of the pooling problem arising in the modelling
of animal feed mills. Compared to other application areas, animal feed problems are often
large scale (with up to a hundred raw materials and products and several dozen bins) and
there are many more qualities (nutrients in this case) and restrictions on them than, say, in
problems originating from the oil or coal industry (where there are only a few qualities,
such as sulphur or octane level, that need to be taken care of). In addition the demands are
fixed, firm orders, which need to be satisfied exactly, rather than maximum demand levels.
Therefore, unlike the pooling formulations from the literature, the model does not have the
freedom to decidewhich products to produce. Itmay seem that this substantially simplifies the
problem: it is well known that the pooling problem is NP-hard (Haugland, 2016), however
the proofs typically exploit this combinatorial choice to establish NP-hardness. We will
show by an example that even when there are fixed orders for all products there can be
many local solutions of the problem. Figure 1 also shows some direct connections from the
raw materials to the products. These are called straights. They are typically not available
for all raw material/product combinations and even where they are they can only be used
at a premium cost. Further, while Fig. 1 shows connections for all raw materials and bin

Fig. 1 Superstructure of the standard Pooling Problem
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combinations and likewise for all bin and product combinations, the set of allowable flows
might be a much sparser network. There are variants of the animal feed problem for both the
standard pooling problem and the general pooling problem (with bins allowed to feed into
bins), however in this paper we concentrate on the standard pooling problem.

In the context of the Pooling Problem the usual nomenclature is to speak of inputs (or
sources), pools and outputs (or targets or products). Restrictions are on qualities of the inputs
(and outputs). We will use these terms, but in the specific context of animal feed mills also
refer to them as raw materials, (mixing) bins and products, and we refer to the qualities as
nutrients, though they can represent more general properties such as energy or water content.

The pooling problem is a well studied global optimization problem andmost contributions
to the literature are concerned with solving the problem to proven global optimality (Misener
& Floudas, 2009; Haugland, 2016). In this paper we have a slightly different motivation:
rather than solving the problem to global optimality (which for larger problem instances
may well not be achievable, at least within a reasonable time) we are concerned with finding
as good a solution as possible in a limited timeframe. This point of view is closer to the
concerns of practical applications (at least for animal feed mills where these problems have
to be solved many times per day and additional cost due to suboptimal solutions are not so
high as to make more effort worthwhile).

This paper is laid out as follows. In the following section we review the standard
formulations of the pooling problem and introduce our formulation, which we term the
qq-formulation, that only uses proportional variables. As far as we are aware this is a new
formulation. In Sect. 3 we provide some insight into how a small problem instance can have
many local solutions even for fixed demands. Section 4 we describe the solvers that we
compare including our implementation of Sequential Linear Programming (SLP). Section 5
presents numerical comparisons of the local solution methods with Baron, while in Sect. 6
we draw our conclusions.

2 Review of standard pooling problem formulations

The following sets, parameters and variables are used in the formulations:

◦ Sets:

i ∈ I Set of inputs/raw materials,
m ∈ M Set of pools/bins/mixes,
p ∈ P Set of outputs/products,
n ∈ N Set of nutrients.

◦ Parameters:

ri,n Nutrient composition (amount of nutrient per unit mass) of raw material i ,
dpn, dpn Lower and upper bounds on nutrient composition of product p,
ci Per unit cost of raw material i—when used through bins,
cSi Per unit cost of raw material i—when used directly (straights),
sp Per unit selling price of product p,
tp Tonnages: (maximum) demand for product p.
◦ Variables (p-formulation):
vmn Nutrient composition of bin m,
fim, fmp Flows from raw material i to bin m and from bin m to product p,
fip Flow from raw material i to product p (straights).
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◦ Variables (Other formulations):
λmi Proportion of bin m that originates from raw material i ,
μpi Proportion of demand p that originates from raw material i ,
μpm Proportion of demand p that originates from bin m,
dpn Nutrient composition of demand p,
cDp Per unit cost of product p,

cMm Per unit cost of bin m.

2.1 PQ-formulation (variables fmp, fip,�mi)

The earliest mathematical formulation of the problem was the p-formulation (Haverly, 1978)
which can be seen as a flow-formulation of the problem. Its variables are the total flows fim
from raw materials to bins and onto products as well as the nutrient composition of the bins
vmn .

However, the standard formulation used today is the pq-formulation due independently to
Quesada and Grossmann (1995) and Tawarmalani and Sahinidis (2002). It is a strengthening
of the earlier q-formulation proposed byBen-Tal et al. (1994). Both the pq- and q-formulation
introduce proportion variables λmi ≥ 0 : ∑

i λmi = 1 that give the proportion of material
in pool m originating from raw material i , and expresses the nutrient content of the bins
in terms of these proportional variables and the nutrient content of the raw materials. The
pq-formulation of the pooling problem can be stated as

min
f ≥0,λ≥0

∑

i∈I

⎛

⎝ci
∑

m∈M

∑

p∈P
λmi fmp + cSi

∑

p∈P
fip

⎞

⎠ −
∑

p∈P
sp

(
∑

i∈I
fip +

∑

m∈M
fmp

)

(1a)

s.t.

product
demand

[
∑

i∈I
fip +

∑

m∈M
fmp ≤ tp, ∀p (1b)

convexity

[
∑

i∈I
λmi = 1, ∀m (1c)

product
quality

⎡

⎣
∑

i∈I
rin fip +

∑

m∈M

∑

i∈I
rinλmi fmp

⎧
⎨

⎩

≤ dpn(
∑

i∈I
fip + ∑

m∈M
fmp),

≥ dpn(
∑

i∈I
fip + ∑

m∈M
fmp),

⎫
⎬

⎭
∀p, n

(1d)

pq-cuts

[
∑

i∈I
λmi fmp = fmp, ∀p,m (1e)

Note that, when the network of connections between the raw materials, mixing bins and
demands is sparse, then the flow and proportion variables for the missing links will simply
be equal to zero and the corresponding terms can be omitted from the sums over sets I and
M. In order not to unduly clutter the presentation we will, however, present the models as
they would be for a fully dense network. Here (and in what follows) there are two different
unit prices for each raw material: the costs of using raw-materials as straights, i.e. feeding
directly into the products (through the fip at price cSi ) is higher than when they are supplied
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via the mixing bins (i.e. variables fim at cost ci : ci < cSi ). Typically straights are only
allowed for a subset of raw material/demand combinations.

The only bilinear terms in this formulation are the λmi fmp appearing in (1a), (1d) and
(1e): the remainder of the problem is linear.

The final set of constraints are the pq-cuts. They are redundant, indeed they are obtained
by multiplying (1c) with fmp . Their advantage is that they provide extra (linear) constraints
for the bilinear terms λmi fmp,∀i,m, p which are already part of the formulation, and this
results in significantly tighter relaxations. However, their use does not come for free: there
is one of these constraints for every choice of p ∈ P,m ∈ M which increases the number
of constraints (roughly by a factor 1 + |M|/(|N | + 1)—see Sect. 2.3). The pq-formulation
without the pq-cuts is indeed the q-formulation of Ben-Tal et al.

Note that in this formulation the objective is to maximize the net profit (i.e. difference
between selling price and production cost) for each product. While there is an upper limit
tp on how much can be produced of each product p the optimization can decide to produce
less (or even nothing at all). In the absence of capacity restrictions (on either raw materials
or bins), it is always optimal to produce at the upper limit (if the product is to produced at
all), however it may well be optimal not to produce a product at all (in case where this would
place undue restrictions on the composition of the pools). This adds a combinatorial choice
to the other obvious non-convexities arising from the mixing constraints.

In the case of interest to us, this choice is not present: Indeed, tp , rather than being an upper
bound, is a firm order that has to be satisfied. This has some consequences for the formulation
of the problem: constraint (1b) becomes an equality and the terms

∑
i fi p +∑

m fmp in (1d)
and the objective can be replaced by a constant tp . Indeed the second half of the objective is
then a constant and can be dropped. Thus formulation (1) can be replaced by the somewhat
simpler form

min
f ≥0,λ≥0,d

∑

i∈I

⎛

⎝ci
∑

m∈M

∑

p∈P
λmi fmp + cSi

∑

p∈P
fip

⎞

⎠ (2a)

s.t.

product demand

[
∑

i∈I
fip +

∑

m∈M
fmp = tp, ∀p (2b)

product quality

[
∑

i∈I
rin fip +

∑

m∈M

∑

i∈I
rin fmpλmi = dpntp, ∀p, n (2c)

convexity

[
∑

i∈I
λmi = 1, ∀m (2d)

pq-cuts

[
∑

i∈I
λmi fmp = fmp, ∀p,m (2e)

bounds
[
dpn ≤ dpn ≤ dpn, ∀p, n (2f)

where the new variables dpn explicitly denote the nutrient composition of the products. As a
consequence product quality constraint (1d) can be expressed as simple bounds (2f) on the
dpn . Note that (2c) could be used to substitute out dpn from (2f) thus removing the explicit
variables. In the feed-mixing problems there are often limits on the composition of the
mixing bins, both in terms of the raw material content and nutrient content of the bins. The
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former can be simply expressed by bounds on the proportional variables λmi while the latter
requires additional (linear) constraints

vmn ≤
∑

i∈I
rinλmi ≤ vmn, ∀m, n. (2g)

We refer to the formulation (2a)–(2g) as the pqs-formulation in what follows.

2.2 A newmodel: QQ-formulation (variables�mi,�pi,�pm, vmn, cMm, dpn, c
D
p )

For the above case of fixed demands it is possible to state a different formulation which uses
Only proportional and no flow variables. We call it the qq-formulation: as far as we are aware
it has not been described in the literature. In this formulation flows fmp and fip are removed
from the formulation and instead proportions μpi ≥ 0, μpm ≥ 0 : ∑

i μpi + ∑
m μpm = 1

are introduced that represent the fraction of product p that originates from pools m or raw
materials i respectively.

The nutrient composition vmn of pools and dpn of products can be calculated using

vmn =
∑

i∈I
λmirin, ∀m, n, (3a)

dpn =
∑

i∈I
μpi rin +

∑

m∈M
μpmvmn, ∀p, n. (3b)

Since this formulation does not include any flow variables the objective function needs to be
changed. In this formulation variables cMm , cDp representing per-unit prices of pools (mixes)
and products (demands) are introduced and set via the constraints

cMm =
∑

i∈I
λmi ci , ∀m (4a)

cDp =
∑

i∈I
μpi c

S
i +

∑

m∈M
μpmc

M
m , ∀p. (4b)

The complete qq-formulation is thus

min
λ≥0,μ≥0,d,cD,m,cM

∑

p∈P
tpc

D
p (5a)

s.t.

pool quality

[

vmn =
∑

i∈I
λmirin, ∀m, n (5b)

product quality

[

dpn =
∑

i∈I
μpi rin +

∑

m∈M
μpmvmn, ∀p, n (5c)

convexity-m

[
∑

i∈I
λmi = 1, ∀m (5d)

convexity-d

[
∑

i∈I
μpi +

∑

m∈M
μpm = 1, ∀p (5e)
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price pools

[

cMm =
∑

i∈I
λmi ci , ∀m (5f)

price products

[

cDp =
∑

i∈I
μpi c

S
i +

∑

m∈M
μpmc

M
m , ∀p (5g)

bounds
[
dpn ≤ dpn ≤ dpn, ∀p, n (5h)

The bilinear terms in this formulation are μpmvmn and μpmcMm appearing in constraints (5c)
and (5g).

Constraints similar to the pq-constraint (1e) can be derived by substituting vmn from (5b)
into (5c) and then multiplying (5d) by μpm,∀p,m to obtain

dpn =
∑

i

μpi rin +
∑

m

∑

i

μpmλmirin, ∀p, n (6a)

∑

i

μpmλmi = μpm, ∀p,m (6b)

Again the introduction of these strengthening constraints comes at the cost of increasing
the problem size. We call this strengthened qq-formulation the qq+-formulation in the later
sections.

There is a close connection of the qq-formulation with the q/pq-formulations through the
relations

fip = μpi tp, fmp = μpmtp (7)

Indeed the qq-formulation can be obtained from the pq-formulation by using the above to
substitute out the fip and fmp variables.

Note that the qq-formulation does not include any flow variables so if there are any
capacity limits on pools or availability limits for raw materials then flow variables would
need to be added where needed by explicitly including the (bilinear) constraints (7). On the
other hand, limits on nutrient composition of the bins can be modelled by simple bounds on
the vmn , whereas in the pq-formulation additional variables and constraints (2g) are needed
as discussed at the end of Section 2.1. Our test problem instances have bounds on the nutrient
composition of the bins but not on the raw material availability. In addition our test problem
instances have limits on the raw material composition of the bins which can be modelled by
simple bounds on the λmi variables. The next section summarizes the situation.

2.3 Size of Formulations

The table below summarises the size (number of constraints and variables) of the different
formulations of the pooling problem as given in (1), (2) and (5) assuming a dense network of
connections. Here N=#nutrients, I=#rawmaterials, M=#bins, P=#products, and S=#straights
(raw materials that can be used directly in products).

We note that

• The pq-constraints (2e/6b) introduce an additional MP constraints to either the q- or
qq-formulation.

• The qq-formulation has explicit vmn variables. When these are needed (for example to
express bounds on the pool quality) the other formulations (q, pq, pqs) need a further
MN variables and constraints. This accounts for the major size difference between the
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Form Variables Constraints

q (S + M)P + I M P(2N+1) + M
pq (S + M)P + I M P(2N+1) + M + MP
pqs (S + M)P + I M + PN P(N+1) + M + MP
qq (S + M)P + I M + (M + P)(N+1) P(N+1) + M + M(N+1) + P
qq+ (S + M)P + I M + (M + P)(N+1) P(N+1) + M + M(N+1) + P + MP

formulations. Since our test problem instances have bounds on the nutrient composition
the size of the qq-formulations and the pqs-formulation with those added variables and
constraints are roughly comparable.

• If there are limits on the amount of available rawmaterials, these can be expressed directly
as I linear constraints in formulations with explicit flow variables (namely p, q and pq),
while the qq-formulation would need to introduce additional bilinear constraints.

• The qq-formulation has an additional M + P + PN variables and M + P constraints
compared to the q/pq/pqs-formulations. These are due to the explicit cM , cD and dpn
variables (the latter two of which could be substituted out).

3 Occurrence of Local Solutions

Despite having fixed demands the pooling problems that arise in animal feed mills often
have large numbers of local optima. To understand the reason for this it is helpful to view
the problem in nutrient space, with the compositions of each raw material, product and bin
as points in this space. The bins must lie in the convex hull of the raw materials, and for the
problem to be feasible the product specifications must also lie there.

Figure 2 shows an illustrative example with 2 nutrients. The two dimensions are the
amounts of each nutrients per unit weight. There are 7 raw materials, 6 at the vertices of the
outer black hexagon, each with a unit cost of 6, and one at its centre, with a unit cost of 1.
There are no limits on their supply. There are 6 products, which are at the corners of the
inner green hexagon (we assume exact demand specifications dpn = dpn in this example),
each with demand of 1, and 3 mixer bins shown in red, whose composition depends on the
amounts of raw materials supplying it. Since the central raw material is cheaper than the
others, the unit cost of the mixture in a bin increases with its distance from the centre.

Consider first the case where no straights are used. To be feasible the convex hull of the
bins must contain all the products. The optimization problem can therefore be viewed as
finding the bin triangle that contains all the products that is as close to the centre as possible.
The solid red triangle in Fig. 2 shown one global optimum. There is another global optimum
with the bin triangles rotated through 60◦, however all intermediate positions are worse. Two
sub-optimal solutions are shown. These are the best possible configurations where a bin is
forced to lie at angles 37◦ or 44◦. Forcing the rotation forces the average position of the bins
to move outwards, so increasing the cost.

Now consider the case where it is possible to supply raw materials straight to products
without passing thought the mixer bins, but at an extra cost. This removes the need for the
convex hull of the bins to contains all the products, and can lead to local optima where the
convex hull containing different subsets of the products. Although this is a simple example,
it is still too complex to analytically derive the full set of local solutions. To get an idea of
how many local solutions there are, we have solved this problem from one million random
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Fig. 2 Optimal and forced
rotations

starting points using a local solver (namely SQP—see page 11). As SQP may converge to
saddle points as well as local minima, each solution found was classified as local minimum
or a saddle point. Finally solutions that are equivalent to others but for symmetry were
eliminated.

Figure 3 shows all the local solutions found for the case when the cost of straights is
2.1 time the cost of supply via the bins. We report the cost and the number of repetitions
of this solution due to symmetries. When a raw is used as a straight its location is shown
with a black dot. In total there are 94 local optimal in addition to the two global solutions
in Fig. 2. Due to symmetry in the example there are only 13 different values of the cost,
but a minor perturbation of the demands or raw material costs would remove this symmetry
without destroying the local optimality, and in that case there would be 96 distinct objective
values. There is an additional symmetry in the problem as we are assuming all the bins are
interchangeable. If this is not the case, for example because the have different capacities or
are in different locations with different transport costs, then the number of solutions could
increase by a factor of 6.

Finally note that in this example the global solution was the one that did not use any
straights. This is due to the relatively high cost of straights. At lower costs this is no longer
the optimal solution, and other local solutions become the global one.

4 Solutionmethods

The first solution method proposed for the pooling problem was Sequential Linear Program-
ming (SLP) by Lasdon et al. (1979). SLP, as a local method, is not guaranteed to converge
to a global minimizer and may even terminate at a local minimum of the corresponding
feasibility problem. Even as a local solution method for nonlinear programming problems,
SLP has been deemed obsolete due to the development of more sophisticated methods such
as Sequential Quadratic Programming (SQP, (Fletcher & Leyffer, 2002)) and Interior Point
Methods (IPM, (Wright, 1997)). Progress made in the implementations of these methods has
made the local solution of pooling problems very fast.

On the other hand recent advances in dealing with bilinear constraints in MINLPmethods
(Misener & Floudas, 2009) within Outer Approximation Branch & Bounds solvers such as
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Fig. 3 Local Optima: All except the final 4 cases are isolated local optima. The final 4 cases are one example
from a 1- or 2-dimensional flat area of local optima
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Couenne and Baron, have made the global solution pooling problem tractable at least for
small instances.

The aim of this study is to evaluate the performance of different local solution methods,
namely SQP, SLP and Interior Point using random multistart, and to compare this with a
global solution method.
Sequential Linear Programming (SLP). In order to solve a constrained nonlinear optimization
problem

min
x

f (x), subject to g(x) ≤ 0, (8)

the basic sequential linear programmingmethod uses successive linearizations of the problem
around the current solution estimate x (k). That is, given x (k), SLP solves the problem

min
Δx

f (x (k)) + ∇ f (x (k))TΔx, s.t. ∇g(x (k))TΔx ≤ −g(x (k)). (9)

and then takes a step xk+1 = xk + Δx . Such an iteration will converge to a local solution of
the problem only under fortuitous circumstances: even if x (k) is close to the optimal solution,
problem (9) may be unbounded or lead to very large steps.1 In practice the SLP subproblem
is therefore wrapped in a Trust Region scheme (Conn et al., 2000), that is, given a trust region
radius ρ(k) > 0, we solve

min
Δx

f (x (k)) + ∇ f (x (k))TΔx, s.t. ∇g(x (k))TΔx ≤ −g(x (k)), ‖Δx‖∞ ≤ ρ(k) (10)

and employ the usual Trust Region methodology: that is after every solution we compare the
improvement in function value and constraint violation predicted by the linearized model
with what can actually be achieved by taking the step x (k) + Δx . Depending on the outcome
of the test we either choose to take the step, that is x (k+1) = x (k) +Δx (and possibly enlarge
the trust region), or we reject the step, reduce the trust region and keep the same iterate
x (k+1) = x (k). Since the test of goodness of the step Δx consists of two criteria (objective
function and constraint violation) either a merit function or a filter (Fletcher & Leyffer 2002)
can be employed. In our implementation we are using a filter strategy.
Sequential Quadratic Programming (SQP) essentially uses the samemethodology, but rather
than solving the linear approximation (10) it augments this problem by adding the Hessian of
the Lagrangian to the problem: that is given a primal-dual estimate (x (k), λ(k)) of the optimal
solution and the constraint multipliers at that point, SQP solves the problem

min
Δx

f (x (k)) + ∇ f (x (k))TΔx + 1
2ΔxT∇2

xxL(x, λ)Δx,

s.t. ∇g(x (k))TΔx ≤ −g(x (k)),

‖Δx‖∞ ≤ ρ(k) (11)

where L(x, λ) = f (x) − ∑m
i=1 λi gi (x) is the Lagrangian function of problem (8).

The second order term can be motivated by realising that the step calculated by (11),
without the trust region constraint is the same step that would be calculated by Newton’s
Method employed to find a stationary point of the Lagrangian L(x, λ). See for example
(Fletcher & Leyffer, 2002) for further details on the implementation of an SQP method.
Interior Point Methods (IPM) follow an entirely different methodology where logarithmic
barrier terms ln(−g(x)) for the inequality constraint g(x) ≤ 0 are added to the objective

1 Local convergence from starting points close to the solution is typically only ensured when the solution to
(8) is at a vertex of the constraints.
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function (multiplied by a barrier parameter μ) and the inequalities are otherwise dropped
from the problem to arrive at

min
x

f (x) + μ
∑

i

ln(−gi (x)). (12)

Due to the barrier terms, iterates a kept strictly inside the feasible region defined by the
inequalities. The IPM employs Newton-like steps to solve the barrier problem (12) while
reducingμ to zero in a finely controlledmanner. Details can be found for example inWächter
and Biegler (2006).

5 Results

To evaluate the efficiency of the various problem formulations and solution methods we have
tested them on a set of problems instances taken from the animal feed mix industry.

We have compared four different formulations, namely the standard pq-formulation (pq),
the pq-formulations including the simplifications due to fixed demands (pqs), the qq-
formulation (qq) and the qq-formulation strengthenedwith the pq-equivalent cuts (6b) (qq+).
The solvers that we have compared are Baron as a global solver and our own implementation
of SLP, FilterSQP (Fletcher & Leyffer, 2002) and IPOpt (as an Interior Point Method).

Our test problem instances and their sizes (of the qq-formulation) are summarised in
Table 1. These are problem instances from industrial practice. The network of connections
between raw materials, bins and demands is mostly dense, but a few links are excluded for
some of the instances. This accounts for the difference in the stated number of variables and
those given in Section 2.3. In most instances only a subset of the raw materials can be used
as straights (i.e. directly feeding into the products). The variants with names ending on ‘fs’,
however, allow the full set of straights (at a cost of 10× the normal raw material cost). The
set of problem instances is available for download from Grothey and McKinnon (2020). The
final two columns in Table 1 give the best objective value that has been found by any method
in our tests and the best lower bound found by Baron, within 2h of computation time, for any
of the tested formulations. Note that for none of the instances and formulations was Baron
able to prove optimality. For the strengthened formulations (pq, pqs, qq+) the gap was
between 0.1% (af-7b-fs) and 4.5% (af-6), but was between 59% up to 100% (lower bound
of 0) for formulation qq.

5.1 Local solvers: SLP, SQP and interior point

To compare the different solution algorithms we start with the local solvers: namely SLP,
SQP and Interior Point. We have used the qq-formulation for all these runs since it was
observed to perform best.

As the Interior Point solver in these comparisons we have used IPOpt (Wächter & Biegler,
2006), for SQP we have used FilterSQP(Fletcher & Leyffer, 2002) and our own implemen-
tation of a filter-SLP algorithm. FilterSQP uses the active set solver bqpd (Fletcher, 1993)
as the QP solver, whereas SLP uses CPLEX (primal Simplex, which was found to work best
in this setting) as the LP solver. Both of these employ LP/QP hotstarts between SLP/SQP
iterations and a pre-solve phase that performs bound tightening and scaling of variables.
Although bqpd uses a sparse linear algebra implementation, CPLEX is significantly faster
than bqpd when both are used to solve the same LP. In order to give a fair comparison of
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Table 1 Test problem statistics

Instance N I M P S n m Best known obj Best LB Gap

af-1 8 16 6 25 16 925 310 296.44604 295.93153 0.1%

af-2 9 35 7 30 2 871 407 239334.02 235751.11 1.5%

af-3 11 31 7 27 2 819 442 122257.45 120498.73 1.4%

af-4 14 28 6 32 4 973 608 186097.11 183620.39 1.3%

af-5-fs 17 29 7 18 29 1266 475 119016.92 118763.29 0.2%

af-5 17 29 7 18 5 816 475 124003.48 123243.60 0.6%

af-6-fs 17 31 7 40 31 2555 893 2921.30 2881.41 1.4%

af-6 17 31 7 40 4 1402 893 3074.23 2937.68 4.5%

af-7b-fs 14 35 14 50 35 3788 1024 130290.06 130147.66 0.1%

af-7 14 35 7 50 8 1690 912 151381.81 145928.01 3.6%

af-7b 14 35 14 50 8 2334 1024 147285.00 145928.01 0.9%

N=#nutrients/qualities, I=#raw materials/inputs, M=#mixing bins/pools, P=#products/outputs, S=#straights
(inputs that are allowed to feed directly to outputs), n, m=#variables and constraints in the qq-formulation

SLP against SQP independent of the subproblem solver used we have in fact tested three
SLP/SQP solvers: FilterSQP, FilterSQP as an SLP solver (by simply passing it zero Hes-
sians), and SLP-CPLEX. Apart from the different LP solvers, SLP-CPLEX when compared
to FilterSQP without Hessians uses a more aggressive trust region logic and the removal of
all features that make use of Hessian information (such as second order correction steps).
We initially (Tables 2 and 3) compare only the three SLP/SQP variants to asses the effect of
SLP vs SQP and the different subproblem solvers (bqpd and CPLEX) on the performance
of the algorithms. Later (Table 3) we include IPOpt in the comparison.

As we show below, even the ad-hoc SLP setup in FilterSQP-noHess shows some of the
advantages of SLP vs SQP, whereas SLP-CPLEX is significantly better than either of them.

All tests were perfomed on a Scientific Linux 7 system using a Intel Xeon E5-2670 CPU
running at 2.60GHz. All solvers used only a single thread.

Table 2 shows results from 500 runs of FilterSQP with Hessians (SQP-withHess), Filter-
SQPwithout Hessians (SQP-noHess) and our SLP implementation (SLP-CPLEX). Solutions
are counted as feasible if the point at which the algorithm stops has a constraint violation
of < 10−6, independent of the status returned by the solver. Column ‘Ti’ shows the average
solution time per run, column ‘It’ the average number of SQP or SLP iterations per run and
column ‘%Good’ gives the percentage of solutions that are feasible and whose objective
value is within 0.2% of the best known solution from any method (which is an acceptable
tolerance in practice).

A direct comparison of SQP with either of the two SLP variants is shown in Table 3. The
arrows indicate if larger or smaller numbers indicate better results. For columns ‘Ti’, ‘It’ and
‘Ti/It’ we give the value for the SLP variants as a percentage of the corresponding value for
SQP-withHess. Column ‘%Good’ gives the percentage point difference of good solutions
found between the solvers (positive numbers indicating that SLP found more good solutions,
negative numbers show an advantage of SQP). Generally the quality of the solutions found
by the SLP variants (SQP-noHessian and SLP-CPLEX) are better than SQP-withHess: the
percentage of runs that are within a tolerance of 0.2% of the the best known is on average
4.7% and 18.5% higher for SQP-noHess and SLP-CPLEX respectively. The solution times
per run are also better, significantly so in the case of SLP-CPLEX.
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Table 2 Performance of SQP-withHess, SQP-noHess and SLP-CPLEX

SQP-withHess SQP-noHess SLP-CPLEX
Instance Ti %Good It Ti %Good It Ti %Good It

af-1 6.6 66.4 64.9 3.9 81.0 42.2 0.5 79.0 38.0

af-2 44.9 2.0 254.5 19.2 13.2 202.2 1.3 19.4 58.7

af-3 20.6 11.4 105.6 8.0 6.0 111.6 1.3 20.0 50.6

af-4 42.3 12.2 127.4 30.2 10.0 100.7 1.7 19.8 49.1

af-5-fs 145.5 20.2 366.1 26.1 56.0 340.0 1.7 99.6 61.2

af-5 24.2 97.8 106.2 13.2 99.2 151.9 1.5 100.0 53.9

af-6-fs 400.8 0.2 199.5 169.5 0.4 92.7 6.5 5.2 47.0

af-6 112.1 0.0 110.3 87.7 0.0 83.1 4.5 4.0 47.7

af-7b-fs 681.0 0.4 359.0 508.0 0.0 349.0 14.7 52.6 48.5

af-7 99.0 32.6 119.1 58.0 27.2 161.3 4.6 20.4 61.5

af-7b 307.4 27.0 180.1 208.9 33.8 198.2 12.3 71.8 72.0

Average per run: Ti (solution time in sec), It (number of iterations), %Good (percentage of solutions within
0.2% of best known)

Table 3 Improvements from SQP-withHess to SQP-noHess or SLP-CPLEX

SQP-withHess v SQP-noHess SQP-withHess v SLP-CPLEX

Instance Ti↓ %Good↑ It↓ Ti/it↓ Ti↓ %Good↑ It↓ Ti/It↓
af-1 59.1 14.6 65.0 90.9 7.58 12.6 58.55 12.94

af-2 42.8 11.2 79.4 53.8 2.90 17.4 23.06 12.55

af-3 38.8 −5.4 105.7 36.7 6.31 8.6 47.92 13.17

af-4 71.4 −2.2 79.0 90.3 4.02 7.6 38.54 10.43

af-5-fs 17.9 35.8 92.9 19.3 1.17 79.4 16.72 6.99

af-5 54.5 1.4 143.0 38.1 6.20 2.2 50.75 12.21

af-6-fs 42.3 0.2 46.5 91.0 1.62 5.0 23.56 6.88

af-6 78.2 0.0 75.3 103.8 4.01 4.0 43.25 9.28

af-7b-fs 74.6 −0.4 97.2 76.7 2.16 52.2 13.51 15.98

af-7 58.6 −5.4 135.4 43.3 4.65 −12.2 51.64 9.00

af-7b 68.0 6.8 110.0 61.8 4.00 44.8 39.98 10.01

Average 55.2 4.7 93.1 64.1 3.81 18.5 35.21 10.56

Ti↓, It↓ and Ti/It↓ are the ratio (as %) of SQP-withHess values to SQP-noHess or SLP-CPLEX values.
%Good↑ is the difference between the SLP-CPLEX or SQP-noHess quality and the SQP-withHess quality

The improvements in time per run are due both to a reduction in the number of SQP or SLP
iterations and in the time per iteration. On average SQP-noHess and SLP-CPLEX take 55.2%
and 3.8% of the SQP-withHess time. This can be accounted for by the time per iteration being
significantly less (64.1% and 11.6%), and also because the number of iterations is less (93%
and 35%). SQP-withHess and SQP-noHess use the same solver, bqpd, and the reduction in
time is due to LP iterations being faster than QP iterations. The further big reduction in time
per iteration achieved by SLP-CPLEX is due to the faster LP implementation in CPLEX
compared to bqpd. A more surprising reason for the improved time per run is the fact that
SQP-noHess and SLP-CPLEX take fewer iterations than SQP-withHess (average 93% and
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35% respectively). Intuitively SQP would be expected to be superior to SLP: after all it uses
a higher order approximation of the nonlinear programming problem at each iteration. As
one (but not the only) consequence SQP displays second order convergence inherited from
Newton’s method once it has reached a point close enough to the solution. SLP methods
on the other hand may have to resort to reducing the trust region radius to zero after many
steps being rejected by the filter in order to terminate. This results in SLP often taking more
iterations than SQP to converge to high accuracy.

We do observe this tail effect in our experiments, but note that due to LP hotstarts these
iterations are very fast, often requiring only 1 or even 0 simplex basis updates. A larger effect,
however, is that away from the neighbourhood of the solution, SQP is observed to repeatedly
enter the restoration phase before the algorithm is able to “home in” on a solution, and this
results in both a higher iteration count and a decreased likelihood of finding a feasible solution
than with SLP.

As an explanation of this behaviour we offer the following insight: the nonlinearity in
the pooling problem is exclusively due to bilinear terms; these give an indefinite Hessian
contribution of the form

[
0 1
1 0

]

.

In fact rather than being helpful, these Hessians bias the algorithm towards taking steps along
negative curvature directions (increase one bilinear variable while decreasing the other, as
much as possible) which is not desirable. Away from the region of quadratic convergence of
Newtons method (that is, for the vast majority of the SQP iterations) this can lead to rather
erratic behaviour of SQP.

When comparing the two SLP variants, SQP-noHess and SLP-CPLEX, it can be observed
that SLP-CPLEX takes significantly fewer iterations and less time to solve each problem
instance, butmost noticeablymassively increases the likelihood of finding a feasible solution.
This does not seemwell explained by the algorithmic differences between them. In fact, while
the main reason for an infeasible run in the plain SQP algorithm, is convergence to a local
solution of the feasibility (phase-I) problem, in the no-Hessian version the main reason for
infeasibility is algorithmic failure due to inconsistent second order information – often there
are long sequences of rejected second order correction steps that reduce the trust region
radius and subsequently lead to premature termination of the algorithm. In SLP-CPLEX this
inconsistent algorithm logic has been removed.

We now drop the artificial intermediate algorithm SLP-noHess from further comparisons
and compare the performance of SLP/SQP first with another local solver IPOpt and then
also with the global solver Baron. Table 4 compares the average solution time of IPOpt, SQP
(with Hessians) and SLP-CPLEX. Generally IPOpt takes about the same amount of time as
SQP, although with some large variation. In all cases, however, SLP is an order of magnitude
faster than either of the other two algorithms. Somewhat surprisingly IPOpt struggles to find
feasible solutions for some instances, in particular af-2, af-7 and af-7b where none or almost
none of the runs where feasible.

Another way to look at the results in Table 3 would be in terms of Expected Time to find
a Good solution (ETiGood), which can be worked out as the ratio 100Ti/%Good. These are
presented in Table 5. On this measure SLP-CPLEX is significantly faster than the others. The
ETiGood speed up of SLP-CPLEX relative to SQP-withHess is in the range 13.5 to 6,091.9
with average 863.3 (excluding the 1 problem instance where SQP-withHess failed to find a
Good solution). The ETiGood speed up of SLP-CPLEX relative to IPOpt is in the range 4.9
to 4,258.4 with average 570.6 (excluding the 2 problem instances where IPOpt failed to find
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Table 4 Performance of IPOpt, SQP-withHess and SLP-CPLEX

IPOpt SQP-withHess SLP-CPLEX
Instance Ti %Feas %Good Ti %Feas %Good Ti %Feas %Good

af-1 6.4 96.2 93.2 6.6 80.6 66.4 0.5 100.0 79.0

af-2 30.9 0.0 0.0 44.9 12.6 2.0 1.3 100.0 19.4

af-3 33.9 50.4 33.8 20.6 96.2 11.4 1.3 99.2 20.0

af-4 46.1 53.4 12.8 42.3 56.4 12.2 1.7 98.5 19.8

af-5-fs 58.8 85.0 86.4 145.5 20.6 20.2 1.7 100.0 99.6

af-5 67.3 33.2 33.2 24.2 98.8 97.8 1.5 99.8 100.0

af-6-fs 71.3 99.4 9.6 400.8 15.4 0.2 6.5 95.0 5.2

af-6 37.6 99.4 6.8 112.1 42.8 0.0 4.5 78.4 4.0

af-7b-fs 508.6 58.2 32.0 681.0 22.4 0.4 14.7 99.0 52.6

af-7 82.6 0.0 0.0 99.0 81.0 32.6 4.6 99.0 20.4

af-7b 437.7 2.2 0.6 307.4 72.6 27.0 12.3 98.8 71.8

Ti (average time per run in sec), %Feas (percentage of runs that are feasible), %Good (percentage of runs with
a solutions within 0.2% of best known)

Table 5 ETiGood is the expected time (in sec) to find a Good (i.e. 0.2%) solution

ETiGood SLP-CPLEX Speedup relative to:

Instance IPOpt SQP-withHess SLP-CPLEX Baron IPOpt SQP-withHess Baron

af-1 6.9 9.9 0.6 3 10.8 15.7 4.7

af-2 Inf 2245.0 6.7 11 Inf 335.0 1.6

af-3 100.3 180.7 6.5 20 15.4 27.7 3.1

af-4 360.2 346.7 8.6 21 41.9 40.4 2.4

af-5-fs 68.1 721.7 1.7 151 39.9 422.8 88.5

af-5 202.7 24.7 1.5 51 135.1 16.5 34.0

af-6-fs 742.7 200400.0 125.0 2331 5.9 1603.2 18.6

af-6 552.9 Inf 112.5 147 4.9 Inf 1.3

af-7b-fs 1589.4 170250.0 27.9 1362 56.9 6091.9 48.7

af-7 Inf 303.7 22.5 268 Inf 13.5 11.9

af-7b 72950.0 1138.5 17.1 107 4258.4 66.5 6.2

Average 507.7 863.3 20.1

ETiGood = Ti 100
%Good

a Good solution). For comparison Table 5 also states the time that the global solver Baron
takes to find a solution of the required quality (0.2% gap to the best known). Since Baron
only employs one run rather than the random multistart used for the local methods, the value
given for Baron is the actual time taken (rather than the ETiGood). The ETiGood speed up
of SLP-CPLEX relative to Baron is in the range 1.3 to 88.5 with average 20.1.
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5.2 Comparison of local and global solvers

We have compared the performance of the global solver Baron using the formulations pre-
sented in Sect. 2 with the two best local solvers, namely SLP-CPLEX and IPOpt. Each
solve employed a 2 hour time limit for Baron. For the local solvers we have only used the
qq-formulation. For Baron we have tried a strengthened version of both the qq- and the pq-
formulations that includes symmetry breaking cuts on the bin compositions. However these
have consistently (for all instances) worsened Barons performance. Subsequently we have
used for Baron the same formulations as for the local solvers. The results of the experiments
are presented in Fig. 4.

The graphs should be read as follows: Each gives a plot of quality of solution found (y-
axis) vs time spend in seconds (x-axis, logarithmic). For Baron (for each of the four different
formulations) this is a straightforward plot of the progression of the best feasible solution
found within the time limit. The lower bounds on the solution obtained are not shown as
they are much lower and off the scale of most of the graphs. Indeed the qq+, pq and pqs
formulations all obtained the same lower bound (at the root node) that could not be improved
within the 2h time limit The qq-formulation leads to significantly weaker lower bounds (gap
larger by a factor of 10). Values can be seen in Table 1.

For SLP (blue curve) and IPOpt (red curve) on the qq-formulation we show the expected
time that would be needed to obtain a solution at least as good as a given objective value v̂.
That is let t̄ be the average time needed for a local solve. If k out of n SLP/IPOpt runs find
a solution better than v̂ we model this as a Bernoulli trial with success probability p = k/n.
The expected number of trials until the first success is 1/p = n/k runs or time t̂ = t̄n/k.
From the figures it can be seen that

1. The SLP and IPOpt curves are almost smooth (rather than step functions) indicating that
the instances have a huge number of local optima. This ties in with the earlier analysis
in Section 3.

2. Baron always finds better solutionswith the qq-formulation thanwith the pq-formulation.
The main reason seems to be that the qq-formulation is smaller (since it does not include
the pq-constraints) and thus is able to process many more nodes in the same time. In
fact the first feasible solution is found by the qq-formulation much faster than for the
pq-formulation.

3. Strengthening the qq-formulation by the pq-cut (qq+) does not pay off: neither for the
local solvers (due to the larger problem size), nor, somewhat surprisingly, for Baron.
While it does strengthen the lower bound, the resulting increase in problem size means
that it takes longer to find solutions of the same quality.

4. However, with Baron, the qq-formulation strengthened by the pq-cut (qq+) performs
better than the pq-formulation (to which it is in some sense equivalent).

5a. SLP is clearly superior to Baron in terms of time taken to find a solution of a given
quality: The SLP curve lies well below the Baron curve for almost all instances, times
and formulations.

5b. Only for the qq-formulation there are a few instances (af-1, af-2, af-6,
af-5-fs, af-5) where the first feasible solution found by Baron is better than the
best solution that could be expected to be found by SLP in the same time and only for
af-2 is the difference more than marginal. However given more time SLP will find a
better solution. Also SLP will have already have found very good solutions before Baron
with the qq-formulations has found the first feasible solution.
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Fig. 4 Comparing SLP (blue, solid) with IPOpt (red, solid) and Baron for different formulations
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Fig. 5 Comparing SLP (blue, solid) with IPOpt (red, solid) and Baron for different formulations (cont)

6. At the end of the 2h time limit SLP has always found the best known solution (as given
in Table 1). Baron with the qq-formulation fails to find the best solution within 2h for
instances af-1, af-5-fs, af-5, af-7b-fs and af-7b.

7. The curve of IPOpt looks similar to the one for SLP but shifted to the right. The reason
is that IPOpt needs much longer for a single run (t) than SLP does. The IPOpt curves
seem to drop down quicker than the SLP ones. This is mainly due to the logarithmic
scale of the x-axis, but also for some instances due to the probability of finding a solution
close to globally optimal being larger for IPOpt than for SLP-CPLEX (see Table 4).
IPOpt is however clearly uncompetitive for all instances. For instances af-2, af-7
and af-7b the IPOpt curve is not shown (or off the plot) since all (or almost all) of the
runs are infeasible.

6 Conclusions

We have given a comparison of several local solvers employing randomized starting points
with that of the global solver Baron for the pooling problem.

The best local solver is sequential linear programming, which – while the oldest method
– somewhat surprisingly significantly outperforms newer methods such as SQP and Interior
Point. Measured by best quality solution obtained in a given time we find that SLP performs
muchbetter thanBaron for all problem formulations, including the traditional pq-formulation,
and almost all time limits. In terms of the expected time to find a solution within 0.2% of the
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best known SLPwith CPLEX as subproblem solver shows an average speedup of respectively
863, 507 and 20 times relative to FilterSQP, IPOpt and Baron.

We further propose a new formulation of the pooling problem, for the case of fixed
demands, which we term the qq-formulation. This is of comparable size to the q-formulation
and can be strengthened by additional cuts analoguous to pq-cuts. When measured as quality
of solution found in a given time Baron’s performance on the qq-formulation is superior to
all other formulations. However, strengthening this formulation with the pq-like-cuts is not
worthwhile on this criterion. The qq-formulation is the only one for which Baron is not totally
dominated by SLP for all time limits. With the qq-formulation for a minority of instances
the first feasible solution found by Baron is marginally better than the solution that could be
expected by randomized SLP in the same time. However for the vast majority of time limits
SLP returns better solutions than Baron even for the qq-formulation. One advantage of Baron
is that it is able to return a lower bound (and thus an optimality gap), which is not the case
for any of the local solvers. However for most of the test examples the bound gap achieved
is too large to be of practical value to the problem owner.
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