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Abstract
We analyze a queueing model for cognitive wireless networks using the asymptotic-diffusion
method (Moiseev et al. (2020); Nazarov et al. (2020)). Cognitive wireless is a technology that
resolves radio spectrum shortages by allowing secondary users (SUs, unlicensed users) to
occupy channels initially assigned to primary users (PUs, licensed users). SUs need to sense
the channel availability upon arrival. After sensing, an SU can transmit if there is an idle
channel; otherwise, the SUmust continue sensing. We consider the situation where SUs may
be interrupted by the arrivals of PUs when all channels are occupied. We derive a diffusion
limit for the queueingmodel when the SUs’mean sensing time tends to infinity. The diffusion
limit leads to an approximate probability distribution of the number of sensing SUs. Finally,
we derive a necessary stability condition which turns out to be consistent with the sufficient
condition obtained in previous research.
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1 Introduction

Recent progress in information technology has led to an explosive increase in Internet traffic.
In addition to the development of the Internet of Things (IoT), COVID-19 drives online
communication needs, making well networked environments essential. As a result, there is
a concern about the shortage of wireless resources, such as radio bandwidth allocated to
unlicensed users.
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Cognitivewireless,which is used to develop5GorBeyond (B5G) technologies, is expected
to alleviate the bandwidth scarcity problem. Cognitive wireless networking separates users
into two classes: primary users (PUs) and secondary users (SUs). PUs are licensed and have
a dedicated bandwidth, while SUs can only opportunistically use that bandwidth. There are
three main types of cognitive technology: overlay access, underlay access and interweave
access (Nasser et al., 2021) . In underlay access, SUs are allowed to transmit concurrently
with PUs over the same channels. However, their traffic must not exceed a certain threshold
so as to keep the interference on PUs below a fair value. In overlay access, SUs may, simul-
taneously with PUs, occupy the same channel until the capacity of the channel is maximized.
In this case, the SU sends its data by relaying the PUs. This type of technology thus needs
the cooperation of each user and may result in an invasion of PUs’ privacy. In interweave
access, SUs are allowed to transmit at maximum power only when PUs are not present. This
paradigm is also known as the classical cognitive radio (CR) (Nasser et al., 2021) .

In this paper, we focus on interweave access. SUs must sense the availability of the
channels before using the frequency bands. If an SU finds an idle channel after sensing, it
occupies the channel and starts communication; otherwise, the SU must sense again to find
an idle channel at a later time.

This sensing behavior of SUs resembles retrial queues. The reader can refer toArtalejo and
Gómez (2008); Falin and Templeton (1997) for research in retrial queues. In retrial queues,
arriving customers are blocked when the servers are already fully occupied. These blocked
customers instead enter a virtual waiting room, called the orbit, and seek service again after
a random waiting time until they successfully complete the communication (Phung-Duc,
2019) . In the cognitive radio model, every arriving SU is sent to the sensing pool (the orbit
in the retrial queue) and senses to find an idle channel.

Queueing systems for cognitive radio networks are extensively studied (PalunčIć et al.,
2018) . Salameh et al. (2017) considered a model with a stochastic choice of channels and
a finite number of simultaneously sensing users (i.e., a finite sensing pool). In Akutsu and
Phung-Duc (2019) and Phung-Duc et al. (2021), they assume that the size of the sensing pool
is infinite.

Diffusion limits for queueing systems were deeply studied in Halfin andWhitt (1981) and
Whitt (2004), and those for retrial queues were studied inMoiseev et al. (2020), Nazarov et al.
(2019), Nazarov et al. (2020) and Nazarov et al. (2020b). The latter used the characteristic
function approach.

In this paper, using the asymptotic-diffusionmethod (Moiseev et al., 2020; Nazarov et al.,
2020; Nazarov et al., 2019, 2020b) , we focus on the situation where it takes SUs a long time
to sense the availability of channels. In this case, the evaluation of the number of SUs in the
orbit is extremely difficult using a conventional method such as level-dependent quasi-birth-
and-death process (QBD) (Phung-Duc et al., 2010) . Because the number of SUs in the orbit
is large, we need to truncate the orbit at an extremely large truncation level, denoted by N∗.
The complexity of the algorithm is proportional to that for computing N∗ inverse matrices
and thus is extremely large. From the computational point of view, the asymptotic diffusion
method is more useful in this case and complements the level-dependent QBD approach.

When σ takes closer to 0, the number of SUs in the sensing pool diverges, but a scaled
version of this number converges to a deterministic process. Furthermore, we study the
second-order asymptotics, in which the scaled and centered number of SUs in the orbit
weakly converges to a diffusion process. Finally, the limiting results are used to approximate
stationary performance measures.

Themain result of this study is a necessary condition of stability for the steady-state regime,
which turns out to be consistent with the sufficient condition in Phung-Duc et al. (2021). In
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addition, we show the uniqueness of the stationary solution of the differential equation, which
determines the asymptotic number of SUs in the sensing pool in the stationary regime.

The paper consists of seven sections. In Sect. 2, we introduce themodel description and the
mathematical model. Next, we consider the diffusion analysis of cognitive wireless networks
in Sect. 3. In Sect. 4, we prove the main results for the stability condition of our model.
Using the continuous probability distribution obtained from the diffusion limit, we construct
approximations for the discrete distribution in Sect. 5. Section 6 compares the simulation
results and the approximation obtained by the diffusion limit. We conclude with a summary
synthesis in Sect. 7.

2 Model description and preliminaries

In this section, we model cognitive wireless networks as a queueing system of c servers with
PUs and SUs arriving at the system according to Poisson processes with arrival rates λ1
and λ2, respectively. The transmission times of PUs and SUs are exponentially distributed
with parameters μ1 and μ2, respectively. The arrival processes of both user types and the
service times are assumed to be mutually independent. A new PU can use the channel and
transmit unless all channels are occupied by other PUs; otherwise, it gets blocked and leaves
the system. Thus, from PU’s point of view, the model is Erlang-B. Arriving SUs must enter
the sensing pool and sense for available channels. The sensing times of the SUs follow the
exponential distribution with parameter σ and do not depend on other SUs.

When a new PU arrives at the system where the total number of channels c are occupied
by other SUs and PUs, the PU interrupts the transmission of an SU (if exists) and uses that
channel. The interrupted SU must enter the sensing pool (orbit) to sense again.

Gómez-Corral et al. (2005) addressed the assumption that when all channels are busy with
priority customers, a newly arriving priority unit balks. In the model in Salameh et al. (2017),
the sensing pool is limited in size, but our model assumes an infinite sensing pool. Note that
the service time distribution of an interrupted SU is the same as that of a newly arrived SU
because of the memoryless property of exponential distributions.

Let us denote:

• n1(t): the number of PUs that occupy channels at instant t ,
• n2(t): the number of SUs that occupy channels at instant t ,
• i(t): the number of SUs in the sensing pool at instant t .

Let P(n1, n2, i, t) = P {n1(t) = n1, n2(t) = n2, i(t) = i} denote the joint probability
distribution of the process {(n1(t), n2(t), i(t)) | t ≥ 0}. Under the assumptions of themodel,
the process is a three-dimensional Markov chain. The transition rate from x = (n1, n2, i) to
y (x �= y) is given as follows.

qx,y =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 if y = (n1 + 1, n2, i), n1 + n2 ≤ c − 1,

λ1 if y = (n1 + 1, n2 − 1, i + 1), n1 + n2 = c, n2 ≥ 1,

λ2 if y = (n1, n2, i + 1),

n1μ1 if y = (n1 − 1, n2, i), n1 ≥ 1,

n2μ2 if y = (n1, n2 − 1, i), n2 ≥ 1,

iσ if y = (n1, n2 + 1, i − 1), n1 + n2 ≤ c − 1,

0 otherwise.
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Our goal is to obtain the scaling limits of (n1(t), n2(t)) and i(t). We solve this problem by
the asymptotic-diffusion method (Moiseev et al., 2020; Nazarov et al., 2019; Nazarov et al.,
2020) under the asymptotic condition when the sensing time is long: σ → 0.

The Kolmogorov forward equations are given as follows.

(i) n1 + n2 = 0, i ≥ 0

dP(0, 0, i, t)

dt
= − (λ1 + λ2 + iσ)P(0, 0, i, t) + λ2P(0, 0, i − 1, t)

+ μ1P(1, 0, i, t) + μ2P(0, 1, i, t).

(ii) 1 ≤ n1 + n2 ≤ c − 1, i ≥ 0

dP(n1, n2, i, t)

dt
= − (λ1 + λ2 + n1μ1 + n2μ2 + iσ)P(n1, n2, i, t)

+ λ2P(n1, n2, i − 1, t) + λ1P(n1 − 1, n2, i, t)

+ (n1 + 1)μ1P(n1 + 1, n2, i, t)

+ (n2 + 1)μ2P(n1, n2 + 1, i, t)

+ (i + 1)σ P(n1, n2 − 1, i + 1, t).

(iii) n1 + n2 = c, n2 ≥ 1, i ≥ 0

dP(n1, n2, i, t)

dt
= − (λ1 + λ2 + n1μ1 + n2μ2)P(n1, n2, i, t)

+ λ1{P(n1 − 1, n2, i, t) + P(n1 − 1, n2 + 1, i − 1, t)}
+ λ2P(n1, n2, i − 1, t)

+ (i + 1)σ P(n1, n2 − 1, i + 1, t).

(iv) n1 = c, i ≥ 0

dP(c, 0, i, t)

dt
= − (λ2 + cμ1)P(c, 0, i, t) + λ2P(c, 0, i − 1, t)

+ λ1{P(c − 1, 0, i, t) + P(c − 1, 1, i − 1, t)}.
We note that P(n1, n2, i, t) = 0 for n1 < 0 or n2 < 0 or i < 0 and let j = √−1 be the

imaginary unit. The partial characteristic function is defined by

H(n1, n2, s, t) =
∞∑

i=0

e jsi P(n1, n2, i, t).

We obtain the following differential equations.

(i) n1 + n2 = 0

∂H(0, 0, s, t)

∂t
= − (λ1 + λ2)H(0, 0, s, t) + e jsλ2H(0, 0, s, t)

+ μ1H(1, 0, s, t) + μ2H(0, 1, s, t) + jσ
∂H(0, 0, s, t)

∂s
. (1)

(ii) 1 ≤ n1 + n2 ≤ c − 1

∂H(n1, n2, s, t)

∂t
= − (λ1 + λ2 + n1μ1 + n2μ2)H(n1, n2, s, t)
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+ e jsλ2H(n1, n2, s, t) + λ1H(n1 − 1, n2, s, t)

+ (n1 + 1)μ1H(n1 + 1, n2, s, t)

+ (n2 + 1)μ2H(n1, n2 + 1, s, t)

+ jσ
∂H(n1, n2, s, t)

∂s
− e− js jσ

∂H(n1, n2 − 1, s, t)

∂s
. (2)

(iii) n1 + n2 = c, n2 ≥ 1

∂H(n1, n2, s, t)

∂t
= − (λ1 + λ2 + n1μ1 + n2μ2)H(n1, n2, s, t)

+ e jsλ2H(n1, n2, s, t) + λ1{H(n1 − 1, n2, s, t)

+ e js H(n1 − 1, n2 + 1, s, t)}
− e− js jσ

∂H(n1, n2 − 1, s, t)

∂s
. (3)

(iv) n1 = c

∂H(c, 0, s, t)

∂t
= − (λ2 + cμ1)H(c, 0, s, t) + e jsλ2H(c, 0, s, t)

+ λ1{H(c − 1, 0, s, t) + e js H(c − 1, 1, s, t)}. (4)

By using linear finite difference operatorsA,B,C, I0, I1, we can rewrite (1)–(4) as follows.

∂H(s, t)

∂t
=

{
A + e js(λ1B + λ2C)

}
H(s, t) + (I0 − e− jsI1) jσ

∂H(s, t)

∂s
, (5)

where H(s, t) is a (c + 1) × (c + 1) top-left triangle matrix with elements being equal to
H(n1, n2, s, t) for n1 ≥ 0, n2 ≥ 0, n1 + n2 ≤ c. Operators in (5) are defined as:

AH(s, t)n1,n2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λ1 + λ2)H(0, 0, s, t) + μ1H(1, 0, s, t) + μ2H(0, 1, s, t),

(n1 + n2 = 0),

−(λ1 + λ2 + n1μ1 + n2μ2)H(n1, n2, s, t)

+λ1H(n1 − 1, n2, s, t) + (n1 + 1)μ1H(n1 + 1, n2, s, t)

+(n2 + 1)μ2H(n1, n2 + 1, s, t), (1 ≤ n1 + n2 ≤ c − 1),

−(λ1 + λ2 + n1μ1 + n2μ2)H(n1, n2, s, t)

+λ1H(n1 − 1, n2, s, t), (n1 + n2 = c),

−(λ2 + cμ1)H(c, 0, s, t) + λ1H(c − 1, 0, s, t), (n1 = c),

BH(s, t)n1,n2 =
{
H(n1 − 1, n2 + 1, s, t), (n1 + n2 = c, n2 ≥ 1),

0, (otherwise),

CH(s, t)n1,n2 = H(n1, n2, s, t), (0 ≤ n1 + n2 ≤ c),

I0H(s, t)n1,n2 =
{
H(n1, n2, s, t), (n1 + n2 ≤ c − 1),

0, (otherwise),

I1H(s, t)n1,n2 =
{
H(n1, n2 − 1, s, t), (1 ≤ n2 ≤ c),

0, (otherwise).
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Summing (1)–(4), we obtain
{

∂

∂t

∑

n1+n2≤c

H(n1, n2, s, t)

}

= (e js − 1)
{
λ1

∑

n1+n2=c
n2≥1

H(n1, n2, s, t)

+λ2
∑

n1+n2≤c

H(n1, n2, s, t) + e− js jσ
∑

n1+n2≤c−1

∂H(n1, n2, s, t)

∂s

}
. (6)

Let S1 be the summing operator for the elements n1 + n2 = c and n2 ≥ 1 and S2 be that
for the elements n1 + n2 ≤ c − 1. Furthermore, let S be the total summing operator. We
rewrite (6) in the following form

∂

∂t
[SH(s, t)] = (e js − 1)

{
λ1S1H(s, t) + λ2SH(s, t) + e− js jσ

∂

∂s
[S2H(s, t)]

}
. (7)

3 Asymptotic-diffusion analysis

Weconstruct the solution for the first order asymptotic (fluid limit (Robert, 2013) ) in Sect. 3.1
and that for the diffusion limit in Sect. 3.2. The idea of the fluid limit is that we scale the
time by a factor that in our model is chosen to be the retrial rate σ . In the diffusion limit, the
time is scaled by another factor that is square of that in the fluid limit, i.e., σ 2. In the fluid
limit, we prove that σ i( τ

σ
) converges to a deterministic process x(τ ). Using this result, we

can approximate the stochastic process i( τ
σ
) by 1

σ
x(τ ). In Sect. 3.2, we study the fluctuation

of i(t) around its mean for which we subtract 1
σ
x(τ ) from i(t).

3.1 First step of asymptotic analysis

In this section, we solve the system of Eqs. (5) and (7) using the asymptotic-diffusion method
(Nazarov et al., 2020) under the asymptotic condition: σ → 0. Here, we make the following
substitutions:

σ = ε, τ = εt, s = εω, H(s, t) = F(ω, τ, ε).

It should be noted that τ = εt is the standard procedure for the change of time scale in
fluid limit while s = εω is to consider the characteristic function of the scaled version of
i(t) that is εi(t). With these substitutions, F(ω, τ, ε) represents the characteristic function
of εi(t).

Then, we obtain the following equations:

ε
∂F(ω, τ, ε)

∂τ
= {A + e jεω(λ1B + λ2C)}F(ω, τ, ε) + j(I0 − e− jεωI1)

∂F(ω, τ, ε)

∂ω
,

(8)

ε
∂

∂τ
[SF(ω, τ, ε)] = (e jεω − 1){λ1S1F(ω, τ, ε) + λ2SF(ω, τ, ε)

+e− jεω j
∂

∂ω
[S2F(ω, τ, ε)]}. (9)
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Fig. 1 Transitions among states of the Markov chain

Lemma 3.1
The following equality holds as σ → 0.

lim
σ→0

E[e jωσ i( τ
σ

)] = e jωx(τ ), (10)

where x(τ ) is a solution of

x ′(τ ) = a(x) = (λ1S1 + λ2S)R − xS2R. (11)

Here, R = R(x) is a left-top triangle matrix which is a solution of the following system

{A + λ1B + λ2C − x(τ )(I0 − I1)}R = 0, (12)

and satisfies the normalization condition of a probability distribution

SR =
∑

n1+n2≤c

R(n1, n2, x) = 1. (13)

From (12) and (13), R(n1, n2, x) is the steady state probability of a Markov chain at state
(n1, n2). The transition diagram of the Markov chain is illustrated in Fig. 1(for simplicity,
we show the case of c = 4). It follows from (12) that this Markov chain represents the
corresponding loss system, where the arrival rates of PUs and SUs are λ1 and x , respectively.
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Proof Denoting lim
ε→0

F(ω, τ, ε) = F(ω, τ) and taking the limit ε → 0 in (8), we have

(A + λ1B + λ2C)F(ω, τ) + (I0 − I1) j
∂F(ω, τ)

∂ω
= 0. (14)

Due to the structure of (14), similar to the scalar case, we find its solution in the form

F(ω, τ) = Re jωx(τ ), (15)

where R is a left-top triangle matrix and x(τ ) is a scalar function which represents the
asymptotic value of the normalized number of SUs in the sensing pool σ i( τ

σ
). Substituting

(15) into (14), we obtain (12). Because the matrix before R in the left-hand side of (12) is
the infinitesimal generator of the Markov chain (Fig. 1), we can choose R as the stationary
distribution of that Markov chain for which (13) holds.

Taking the limit ε → 0 in (9) yields

S
∂F(ω, τ)

∂τ
= jω

{

λ1S1F(ω, τ) + λ2SF(ω, τ) + j
∂

∂ω
[S2F(ω, τ)]

}

. (16)

Substituting (15) into (16), we obtain (11). Since the scalar function x(τ ) is the asymptotic
value of the normalized number of SUs in the sensing pool σ i( τ

σ
), (10) holds. 
�

Remark 3.2 We note that the solution of (11) in the case c = 1 is given by

x(τ ) = −K · W
(
N exp(−Lτ − M − 1) + 1

)
− (λ1 + μ2),

where

K = μ1μ2(λ1 + μ2)

λ2(λ1 + μ1) − μ1μ2
,

L = {λ2(λ1 + μ1) − μ1μ2}2
μ1μ2(λ1 + μ1)(λ1 + μ2)

,

M = λ2(λ1 + μ1) − μ1μ2

μ1μ2
,

and where N is a constant of integration given the initial value x(0) = 0, and W (x) is
Lambert W -function.

3.2 Second step of asymptotic analysis

In this section, using the approach (Nazarov et al., 2020) , we perform the second stage of
the asymptotic-diffusion method to obtain the diffusion limit.

Let us rewrite H(s, t) as

H(s, t) = H(1)(s, t)e js
x(σ t)

σ .

We obtain

∂H(1)(s,t)
∂t + jsa(x)H(1)(s, t)

= [A + e js(λ1B + λ2C) + x(e− jsI1 − I0)]H(1)(s, t)

+(I0 − e− jsI1) jσ
∂H(1)(s,t)

∂s ,

∂
∂t [SH(1)(s, t)] + jsa(x)SH(1)(s, t)
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= (e js − 1)
{
(λ1S1 + λ2S − xe− jsS2)H(1)(s, t) + jσe− js ∂

∂s [S2H(1)(s, t)]
}
.

We note thatH(1)(s, t) is the matrix characteristic function of the centered process i(t) −
1
σ
x(σ t). Here, x(τ ) is the asymptotic value of the normalized number of SUs in the sensing

pool.
We denote σ = ε2 and make the following substitutions:

τ = ε2t, s = εω, H(1)(s, t) = F(1)(ω, τ, ε)

to obtain

ε2
∂F(1)(ω, τ, ε)

∂τ
+ jεωa(x)F(1)(ω, τ, ε) = [A + e jεω(λ1B + λ2C)

+ x(e− jεωI1 − I0)]F(1)(ω, τ, ε) + jε(I0 − e− jεωI1)
∂F(1)(ω, τ, ε)

∂ω
,

∂

∂τ
[SF(1)(ω, τ, ε)] + jεωa(x)SF(1)(ω, τ, ε)

= (e jεω − 1)
{
(λ1S1 + λ2S − xe− jεωS2)F(1)(ω, τ, ε)

+ jεe− jεω ∂

∂ω
[S2F(1)(ω, τ, ε)]

}
(17)

It should be noted that τ = ε2t is the standard time change procedure in diffusion limit.
The following lemma states the asymptotic property.

Lemma 3.3
Let �(ω, τ) be the characteristic function of the asymptotic process,

lim
σ→0

√
σ

{
i( τ

σ
) − 1

σ
x(τ )

}
. Then, we have

∂�(ω, τ)

∂τ
= a′(x) ∂�(ω, τ)

∂ω
+ b(x)

( jω)2

2
�(ω, τ),

where a(x) is given by (11), and b(x) is given by:

b(x) = a(x) + 2{(λ1 + x)S1g(x) + xS2R(x)},
in which g(x) is a left-top triangle matrix, and is the particular solution of the system of
equations

{A + λ1B + λ2C + x(I1 − I0)}g(x) = a(x)R(x) + (xI1 − λ1B − λ2C)R(x), (18)

such that

Sg(x) =
∑

n1+n2≤c

g(x) = 0.

Proof We consider the first equation of (17) up to O(ε2)

jεωa(x)F(1)(ω, τ, ε) = [A + λ1B + λ2C + x(I1 − I0)

+ jεω(λ1B + λ2C − xI1)]F(1)(ω, τ, ε) + jε(I0 − I1)
∂F(1)(ω, τ, ε)

∂ω
+ O(ε2). (19)

From the first-order result in Sect. 3.1, we find the solution of (19) in the following form

F(1)(ω, τ, ε) = �(ω, τ){R(x) + jεωf(x)} + O(ε2). (20)
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Here, f(x) is some matrix function which we will find later. Substituting (20) into (19) yields

jεωa(x)R(x) ={A + λ1B + λ2C + x(I1 − I0)}{R(x) + jεωf(x)}

+ jεω(λ1B + λ2C − xI1)R(x) + (I0 − I1)R(x) jε
∂�(ω,τ)

∂ω

�(ω, τ)
+ O(ε2).

Dividing both sides by jεω and taking limit as ε → 0, we obtain

a(x)R(x) = {A + λ1B + λ2C + x(I1 − I0)}f(x)

+(λ1B + λ2C − xI1)R(x) + (I0 − I1)R(x)
∂�(ω,τ)

∂ω

ω�(ω, τ)
. (21)

Applying the superposition principle, we find f(x) in the following form:

f(x) = CR(x) + g(x) − ϕ(x)
∂�(ω,τ)

∂ω

ω�(ω, τ)
. (22)

Substituting (22) into (21), we obtain

{A + λ1B + λ2C + x(I1 − I0)}g(x) =a(x)R(x) + (xI1 − λ1B − λ2C)R(x),

{A + λ1B + λ2C + x(I1 − I0)}ϕ(x) =(I0 − I1)R(x). (23)

Differentiating (12) by x , we have

{A + λ1B + λ2C − x(τ )(I0 − I1)}dR(x)

dx
− (I0 − I1)R(x) = 0. (24)

Because this equation has the same form as (23), we can interpret ϕ(x) as the solution of
(24) in the form

ϕ(x) = dR(x)

dx
.

We notice that Sϕ(x) = 0 because of the normalization condition. We rewrite (17) up to
order ε3

ε2 ∂
∂τ

[SF(1)(ω, τ, ε)] + jεωa(x)SF(1)(ω, τ, ε)

= jεω
{
(λ1S1 + λ2S − xS2 + jεωxS2)F(1)(ω, τ, ε) + jε ∂

∂ω
[S2F(1)(ω, τ, ε)]}

+ ( jεω)2

2 (λ1S1 + λ2S − xS2)F(1)(ω, τ, ε) + O(ε3).

Substituting (20) into this equation, we have

ε2
∂�(ω, τ)

∂τ
+ jεa(x)�(ω, τ)[1 + jεωSf(x)]

= jεω{(λ1S1 + λ2S − xS2)�(ω, τ)[R(x) + jεωf(x)] + jεωxS2�(ω, τ)R(x)

+ jε
∂�(ω, τ)

∂ω
S2R(x)} + ( jεω)2

2
�(ω, τ)(λ1S1 + λ2S − xS2) + O(ε3). (25)

We take into account (11), (12), dividing (25) by ε2, and taking the limit as ε → 0 to obtain

∂�(ω, τ)

∂τ
+ ( jω)2a(x)�(ω, τ)Sf(x) = ( jω)2

2
�(ω, τ)a(x)
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+( jω)2�(ω, τ)
{
(λ1S1 − xS2)f(x) + xS2R(x) + ∂�(ω, τ)

∂ω

1

ω�(ω, τ)
S2R(x)

}
.

Substituting (22) into this equation, and combining with SR(x) ≡ 1, Sg(x) ≡ 0, Sϕ(x) ≡ 0,
Sf(x) ≡ 0, we obtain the following:

∂�(ω, τ)

∂τ
= ω

∂�(ω, τ)

∂ω
{(λ1S1 − xS2)ϕ(x) − S2R(x)}

+ ( jω)2

2
�(ω, τ) {a(x) + 2[(λ1S1 − xS2)g(x) + xS2R(x)]} . (26)

Differentiating (11) yields

a′(x) = λ1S1
∂R(x)

∂x
− xS2

∂R(x)

∂x
− S2R(x). (27)

The coefficient of ω
∂�(ω,τ)

∂ω
of (26) matches the right-hand side of (27). Let us denote the

coefficient in the second term by b(x):

b(x) = a(x) + 2[(λ1S1 − xS2)g(x) + xS2R(x)]. (28)

We rewrite (26) using a(x) and b(x) as

∂�(ω, τ)

∂τ
= a′(x) ∂�(ω, τ)

∂ω
+ b(x)

( jω)2

2
�(ω, τ).

Thus, the lemma is proved. 
�

3.3 Stationary distribution of the diffusion limit

Following the asymptotic-diffusion method, we construct an approximation to the stationary
distribution of the number of sensing SUs. First, we perform an inverse Fourier transform as
follows:

1

2

∫ ∞

−∞
e− jωy�(ω, τ) dω = P(y, τ ).

We obtain the Fokker-Planck equation for P(y, τ ) as follows:

∂P(y, τ )

∂τ
= − ∂

∂ y
{a′(x)yP(y, τ )} + 1

2

∂2

∂ y2
{b(x)P(y, τ )},

where y(τ ) = lim
σ→0

√
σ

{
i
(

τ
σ

) − 1
σ
x(τ )

}
.�(ω, τ) and P(y, τ ) are the characteristic function

and probability density function of y(τ ) respectively. The reader may refer to Risken (1996)
for the details of the methodologies.

y(τ ) is the diffusion process with drift coefficient a′(x)y and diffusion coefficient b(x).
Since y(τ ) is a solution of the stochastic differential equation (SDE), we can write

dy(τ ) = a′(x)y dτ + √
b(x) dω(τ). (29)

Here, ω(τ) is the standard Brownian motion. To solve this equation, we rewrite the ordinary
differential equation (11) as

dx(τ ) = a(x) dτ. (30)
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We consider the stochastic process:

z(τ ) = x(τ ) + εy(τ ). (31)

Because z(τ ) = lim
σ→0

σ i
(

τ
σ

)
, z(τ ) is associated with the number of SUs in the orbit i(t).

To solve the SDE for z(τ ), differentiating (31) and considering (29), (30), we obtain

dz(τ ) = dx(τ ) + εdy(τ ) = {a(x) + εy′′(x)} dτ + ε
√
b(x) dω(τ).

We rewrite the coefficients of the above equation in the form of the first-order Taylor series
expansion

a(x) + εya′(x) = a(x + εy) + O(ε2) = a(z) + O(ε2),

ε
√
b(x) = ε

√
b(x + εy) + O(ε) = ε

√
b(z) + O(ε2).

In this way, taking into account ε = √
σ , we obtain

dz(τ ) = a(z) dτ + √
σb(z) dω(τ).

This explains that z(τ ) is a diffusion process with drift coefficient a(z) and diffusion
coefficients σb(z).

Letting π(z) as the stationary PDF of z(τ ), π(z) is the stationary solution of the Fokker-
Plank equation and thus we have

−{a(z)π(z)}′ + σ

2
{b(z)π(z)}′′ = 0.

For simplicity, we find a special solution as follows.

−{a(z)π(z)} + σ

2
{b(z)π(z)}′ = 0.

The general solution of the differential equation is given as follows.

π(z) = C

b(z)
exp

{
2

σ

∫ z

0

a(x)

b(x)
dx

}

, (32)

where C is the integration constant for normalizing π(z), given by

C =
{∫ ∞

0

1

b(z)
exp

{
2

σ

∫ z

0

a(x)

b(x)
dx

}

dz

}−1

.

Hence, we obtain the asymptotic probability density function π(z) of the scaled number of
SUs in the sensing pool in the steady state, that is σ i( τ

σ
) as σ → 0 and τ → +∞.

4 Stability condition

In this section, we consider the necessary stability condition to guarantee the existence of
the steady state. (Nazarov et al., 2020) and Phung-Duc and Kawanishi (2019) found that
lim
x→∞ a(x) < 0 is necessary and sufficient for the stability of the orbit size for a relatedmodel.

We show that the necessary stability condition is equivalent to the sufficient stability condition
proved in Phung-Duc et al. (2021). Furthermore, we define R(n1, n2) := lim

x→∞ R(n1, n2, x).

123

996 Annals of Operations Research (2023) 331:985–1006



Theorem 4.1 When c ≥ 1, lim
x→∞ a(x) < 0 is equivalent to

λ2

μ2
<

c∑

i=0

(c − i)πi , (33)

where πi is the steady-state probability that the number of transmitting PUs is i , and is given
as follows:

πi =
λi1
i !μi

1

∑c
k=0

λk1
k!μk

1

.

Proof Applying the method of cut off graph, we obtain the equations for the probabilities
R(n1, n2, x).

For diagonal cuts when n1 + n2 = n ≤ c − 1 (see Fig. 1), we can derive

(λ1 + x)
∑

n1+n2=n

R(n1, n2, x) =
∑

n1+n2=n+1

(n1μ1 + n2μ2)R(n1, n2, x). (34)

Therefore, taking a limit x → ∞, all the probabilities R(n1, n2, x) for n1 + n2 ≤ c − 1 are
equal to zero. Combining with the normalization condition,

lim
x→∞

∑

n1+n2=c

R(n1, n2, x) = 1, (35)

we can notice that the probabilities R(n1, n2) are non-zerowhenn1+n2 = c. Furthermore,
from (34), we have

∑

n1+n2=n
R(n1, n2, x) are infinitesimals order of 1

xc−n for n ≤ c − 1.

Specifically, the probabilities R(n1, n2, x) = o( 1x ) for n1 + n2 = c − 1, and all other
probabilities R(n1, n2, x) have higher infinitesimal order.

Hence, taking the limit x → ∞ for n = c − 1 in (34), we obtain

lim
x→∞ x

∑

n1+n2=c−1

R(n1, n2, x) =
∑

n1+n2=c

(n1μ1 + n2μ2)R(n1, n2)

=
c∑

n1=0

(n1μ1 + (c − n1)μ2) πn1 . (36)

Here, we note that the asymptotic property holds lim
x→∞ R(n1, n2, x) = πn1 for n1+n2 = c.

Especially, R(c, 0, x) = πc, which is independent of x .
Moreover, using (35), and we obtain

lim
x→∞

∑

n1+n2=c
n2≥1

R(n1, n2, x) = 1 − R(c, 0)

= 1 − πc. (37)

Taking x → ∞ in (11) and substituting (36) and (37) into the result, we have

lim
x→∞ a(x) = λ1(1 − πc) + λ2 −

c∑

n1=0

(n1μ1 + (c − n1)μ2) πn1 < 0.
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Fig. 2 The behavior of a(x) for λ1 = 1, μ1 = 4, μ2 = 20

Applying Little’s law, we have the following equation.

λ1(1 − πc) = μ1

c∑

n1=0

n1πn1 .

Thus, we obtain Eq. (33), and the theorem is proved. 
�
Figure 2 illustrates the behavior of a(x). The function determines the derivative of the

process of the normalized number of SUs. When x is sufficiently large, a(x) converges to a
certain value, and Fig. 2 shows that the limit of a(x) is negative under the stability condition
(33). If the parameters do not satisfy the stability condition (33), however, the limit is positive.

Theorem 4.2 Under the stability condition, the solution of a(x) = 0 is unique.

Proof Due to (11) and (33), it is clear that a(0) > 0 and lim
x→∞ a(x) < 0. From the interme-

diate value theorem, there is at least one value κ in (0,∞) for which a(κ) = 0. We show
that this equation has a unique solution κ .

We rewrite the function a(x) as follows:

a(x) = λ1S1R(x) + λ2SR(x) − xS2R(x)

= λ1{1 − S2R(x) − R(c, 0, x)} + λ2 − xS2R(x)

= λ1(1 − πc) + λ2 − (λ1 + x)S2R(x). (38)

Here, (λ1+x)S2R(x) in (38) expresses the ingoing flow of the two types of users success-
fully entering the system without blocking or interrupting. In other words, (λ1 + x)S2R(x)
represents the arrival rate that increases the number of customers (PUs or SUs) in the channels,
i.e., the throughput.

Thus, (λ1 + x)S2R(x) increases with the original arrival rate λ1 + x (that may be blocked
or interrupt). As a consequence, a(x) decreases with the increase in x , and thus the theorem
is proved. 
�

Figure 3 shows−(λ1+ x)S2R(x) against x . We observe that this quantity decreases when
x increases and thus a(x) decreases with x .
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Fig. 3 The transition of the third term for λ1 = 1, μ1 = 4, μ2 = 20

5 Approximation of steady state distributions

We first construct the approximations for the distribution P(n1, n2) of the states of the
channels and the mean number of sensing SUs using the first-order asymptotic analysis
(Sect. 3.1).

Algorithm for finding κ and R(n1, n2, κ) and is as follows.

1. We solve the balance Eq. (12) and the normalization condition (13) for elements
R(n1, n2, x).

2. We find all R(n1, n2, x) for given parameters and x .
3. From (11), we have

a(x) = λ1
∑

n1+n2=c
n2≥1

R(n1, n2, x) + λ2 − x
∑

n1+n2≤c−1

R(n1, n2, x). (39)

4. We solve the equation a(x) = 0 and obtain the solution x = κ .

Using R(n1, n2, κ) as the steady-state probability, we calculate performance measures and
verify the accuracy of the approximations in Sect. 6.

Remark 5.1 In case c = 1, the solution of a(x) = 0 is given by

κ = λ2(λ1 + μ1)(λ1 + μ2)

μ1μ2 − λ2(λ1 + μ1)
.

Next, we also construct an approximation GA(i) for the probability density function P(i)
of the number of sensing SUs in the orbit by using the diffusion analysis (Sects. 3.2 and 3.3).

Algorithm for building the approximation GA(i) is given as follows.

1. Solving (18) and
∑

n1+n2=c

g(n1, n2, x) = 0 for a particular solution g(n1, n2, x).

2. From (28), we calculate b(x) by

b(x) = a(x) + 2

[

(λ1 + x)
∑

n1+n2=c
n2≥1

g(n1, n2, x) + x
∑

n1+n2≤c−1

R(n1, n2, x)

]

.

3. To obtain an approximation for the discrete steady-state probability distribution, we
normalize the Eq. (32) using σ as follows.

G(i) = 1

b(σ i)
exp

{
2

σ

∫ σ i

0

a(x)

b(x)
dx

}

. (40)
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Fig. 4 The average number of terminations against arrival rate of PUs (λ2 = 8)

4. We obtain the probability distribution GA(i) as follows because i(t) only take non-
negative values.

GA(i) = G(i)
∑∞

i=0 G(i)
.

In the next section, we compare this analytic approximation with simulation results. The
comparison will be shown in Fig. 12.

6 Numerical experiment

In this section, we provide some numerical experiments on the results derived in Sect. 5
above. In our experiment, for fixed μ1 = 4, μ2 = 20 and c = 5, we examine the changes
in performance measures against λ1 and λ2. Under the same frameworks, we also conduct
simulations and collect the same results as those obtained by the diffusion limit approach.
The length of all experimental simulations is set at 106 time steps, which suffices for the
simulations to converge to their corresponding numerical solutions. The simulation results
in all the figures are denoted by the points marked "Sim." x = κ and "App" indicate the
theoretical value and the approximation derived in Sect. 5.

Figures 4 and 5 illustrate the mean number of SU interruptions per one SU from arrival
to departure. FromMorozov et al. (2022) the average number of SU terminations is given by
E[Nint] as

E[Nint] = λ1

λ2

∑

n1+n2=c
n2≥1

R(n1, n2, κ). (41)

Although the effect on the value of the SUs arrival rate is small (see Fig. 5), the effect of the
PUs is significant (see Fig. 4). We also notice that the effect of the sensing rate is smaller
when λ2 is lower (see Fig. 5), and the differences between the simulations and theoretical
values become big when user arrival rates are bigger. The closer σ approaches 0, the longer
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Fig. 5 The average number of terminations against SU arrival rate (λ1 = 1)

Fig. 6 SU blocking probability against PU arrival rate (λ2 = 8)

the sensing time is. In that sense, we can regard the system as an M/M/c/c loss system with
arrival rates κ for SUs and λ1 for PUs.

Next, we consider the SU blocking probability with the change of the PU arrival rate and
the SU arrival rate when σ = 0.1, 1, 2, 32, 64 and 128. Here, blocking means that SUs are
blocked when all channels are occupied by SUs or PUs, and hence go back to the sensing
pool. Figure6 presents the SU blocking probability against λ1. We can see that the difference
between different sensing rates is not significant because the mean number of available
channels for SU is fixed for a given arrival rate of PU. Figure 7 compares the SU blocking
probability while λ1 is fixed and σ varies. The difference becomes smaller as λ2 is smaller,
and the difference is larger with larger σ , following the theoretical results.

Figure 8 depicts the proportion of the number of SU-occupied channels. We observe that
there are few channels occupied by SUs when λ2 is small. When the SU arrival rate is low,
the probability distribution is less sensitive to the sensing rate, but when λ2 is larger, the
distribution is increasingly sensitive to σ .

Figures 9 and 10 reflect the mean number of SUs in the orbit for several sensing rates,
plotted on a logarithmic scale. We use the following approximation:
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Fig. 7 SU blocking probability against SU arrival rate (λ1 = 1)

Fig. 8 The distribution of the number of SU-occupied channels (c = 5)
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Fig. 9 Log-plot of the number of SUs in the orbit against PU arrival rate (λ2 = 8)

Fig. 10 Log-plot of the number of SUs in the orbit against SU arrival rate (λ1 = 1)

Fig. 11 The transition of the normalized number of SUs in the orbit (λ1 = 1, λ2 = 8, σ = 0.1)
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Fig. 12 Comparison of the simulation and the approximation results

E[Norbit] ≈ κ

σ
.

These figures demonstrate that our estimation is more accurate as σ is closer to 0. The
difference between simulations and the approximation becomes negligible when σ is close
to 0. In addition, when the arrival rates of the two user types are larger, the approximation is
further from the simulation.

Figure11indicates the transition of the normalized number of SUs in the orbit. We note
that 100 times average expresses the average values obtained by running the simulation 100
times with different randomization seeds for each run. The simulation lines evolve around
x(τ ) over time. This figure shows that our presumption increases in accuracy as we carry out
more simulations.

In Fig. 12, we compare the simulation results with the approximation obtained for the
probability distribution of the number of SUs in the orbit. When the sensing rate is close
to 0, the accuracy is high, and the approximation is reasonable. However, for a large value
of σ , we observe a jump at the starting point in the distribution and cannot get a reliable
approximation. These observations agree with theoretical results.

123

1004 Annals of Operations Research (2023) 331:985–1006



7 Conclusion

In this paper, we considered cognitive wireless networks with the sensing time of secondary
users. Using asymptotic diffusion analysis, we obtained the diffusion process and the proba-
bility density function of the number of SUs in the orbit.We proved that the stability condition
obtained in Phung-Duc et al. (2021) is equivalent to the condition that the limit of the deriva-
tive of the normalized number of sensing SUs is negative. We also carried out numerical
experiments and showed that the approximation obtained is suitable for various parameter
settings. As a future work, we plan to compare with other methods such as level-dependent
QBD.
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