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Abstract
We present a new term-structure model for commodity futures prices based on Trolle and
Schwartz (2009), whichwe extend by incorporating seasonal stochastic volatility represented
with two different sinusoidal expressions. We obtain a quasi-analytical representation of the
characteristic function of the futures log-prices and closed-form expressions for standard
European options’ prices using the fast Fourier transform algorithm. We price plain vanilla
options on the Henry Hub natural gas futures contracts, using our model and extant models.
We obtain higher accuracy levels with our model than with the extant models.
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1 Introduction

In this paper we aim at finding a suitable model for pricing commodities in the spot and
futures markets, which are characterised by stochastic prices and cost of carry, and seasonal
stochastic volatility (SSV hereafter). In this perspective, we review a great deal of literature
on spot and futures models. In Table 1 we list the models for spot and futures prices we
comment in this section in order to get a meaningful framework of the existing models and
highlight the gap in the literature we fill with our work. Within it, we indicate what stochastic
factors, volatility type and jumps they present, the number of parameters included and, in the
case of commodity assets, the underlyings in the empirical analysis. In addition, we reference
Fanelli (2020) to provide a concise survey of arbitrage pricing models for commodities.

The next classical models evolve from displaying Gaussian to non-Gaussian returns in
different ways. In Black and Scholes (1973) (BS73 hereafter) the spot price is modeled
through a geometric Brownian motion. Merton (1976) (Mer76 hereafter) defines the spot
dynamics by using a stochastic process which includes iid jumps. Heston (1993) (Hes93
hereafter) proposes a model with stochastic volatility for pricing contracts on spot prices.
And Bates (1996) (Bat96 hereafter) uses a combination of stochastic volatility and jump-
diffusion processes for modeling spot prices when jump and volatility risks are systematic
and non-diversifiable. The empirical analysis performed in these models relies on equity or
FX underlying assets.

The following theoretical models propose a time-damping structure to the volatility func-
tions. Clewlow and Strickland (1999) (CS99b hereafter) propose a one-factor model with
a time-decaying volatility of the forward prices using two parameters, and Clewlow and
Strickland (1999) (CS99a hereafter) proposes the correspondent multi-dimensional model
to CS99b. The main strength of CS99a is that it develops a framework consistent with the
market observable forward price curve as well as with the volatilities and correlations of
forward prices. Clewlow and Strickland (2000) (CS00 hereafter) add a long-term volatility
parameter to the latter.

In the remaining of this section, we present models which study different types of
commodities. Eydeland and Geman (1998) (EG98 hereafter) and Geman (2000) (Gem00
hereafter) propose similar models for spot prices which are a mean-reverting extension of
the Hes93 model; the former focuses on electricity and natural gas, the latter on crude oil.
Under the risk-neutral probability measure, Lucia and Schwartz (2002) (LS02 hereafter)
propose one- and two-factor models for electricity spot prices, and then a sinusoidal func-
tion to capture the seasonal behaviour of the futures curve directly implied in the spot price
dynamics.

In Sørensen (2002) (Sor02 hereafter), agricultural commodity prices are modeled as a
sum of a deterministic seasonal component, a non-stationary state-variable, and a stationary
state-variable. Futures prices are established by standard no-arbitrage arguments. Richter and
Sørensen (2002) (RS02 hereafter) estimate a continuous-time stochastic volatility model for
agricultural spot prices, reflecting seasonality patterns in both the spot price and the volatility.
Geman and Nguyen (2005) (GN05 hereafter) assume that agricultural spot prices are the
sum of two components: one being seasonal and deterministic and the other stochastic and
mean-reverting. By developing these two- and three-state variable models, futures prices are
obtained through the classical spot-forward price relationship.

Trolle and Schwartz (2009) (TS09 hereafter) develop a parsimonious and highly tractable
model for pricing commodity derivatives in the presence of unspanned stochastic volatility
(USV hereafter). They use two factors to model the movements of the future prices under the
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risk-neutral probability measure, the spot price and the forward cost of carry curve, and one
or two variance factors to frame their three- and four-factor model specification, namely SV1,
SV2 and SV2gen. They then obtain an affine model for futures curves and price standard
American options on crude oil.

Back et al. (2013) (BPP13 hereafter) propose one- and two-factormodels for the logarithm
of the spot price, which shows a seasonal pattern. In particular, the spot price is composed
by two stochastic components which are mean-reverting and have seasonal volatility, and
an additional seasonal component. The forward dynamics is obtained by applying the spot-
forward price relationship. Their empirical analysis is performed on crude oil, natural gas
and agriculturals. Arismendi et al. (2016) (ABP16 hereafter) model agricultural and nat-
ural gas futures price under the risk-neutral measure where the instantaneous variance of
futures returns is described through a mean-reverting square-root process, where the long-
term parameter is seasonal and follows an exponential sinusoidal form.

Fanelli et al. (2016) (FMM16 hereafter) considers a seasonal path-dependent volatility
for electricity futures returns in the trading date, which is modeled following the Heath et
al. (1992) framework, and they obtain the dynamics of futures prices. Fanelli and Schmeck
(2019) (FS19 hereafter) focuses on the seasonality found in the implied volatility of electricity
option prices in the delivery period.

Santangelo (2017) (San17 hereafter) proposes a model with mean-reversion in natural gas
spot prices and stochastic jump intensity linked to the temperature. And Brix et al. (2018)
(BLW18 hereafter) incorporate spikes in a mean-reverting specification of the natural gas
spot and forward prices with trend and seasonality.

More recently, Schneider and Tavin (2018) (ST18 hereafter) propose a multi-factor
stochastic volatility model for crude oil futures contracts, with an expiry-dependent volatility
term which is able to capture the Samuelson volatility effect. Schneider and Tavin (2021)
(ST21 hereafter) extend their previous model by incorporating a seasonal mean-reverting
level in the variance and study agricultural commodities; they propose five different expres-
sions to be followed by this seasonal component (among which there is a sinusoidal and an
exponential sinusoidal pattern). In this paper, we focus on the natural gas market.

Over the last few years, natural gas has become one of the most utilised energy sources
worldwide, second only to oil and coal, and is expected to overtake the latter by 2030. Natural
gas is used to fuel electricity power plants, as well as industrial, commercial and domestic
cooking and heating. The overall trend of the natural gas price, its periodicity, volatility and
related behavior, and term-structure correlation are driven by production fundamentals and
relationships, demand, demand elasticity and storage.

The countries with the largest production of natural gas are currently the US, Russia, Iran,
Qatar, Canada, China and Norway. All of these countries serve their domestic markets, and
export excess around the world through pipelines or as liquefied natural gas. The demand
for natural gas is very high in western Europe, north America and north Asia, where it is
satisfied through dense pipeline networks.

The foremost global trading center is the Henry Hub (HH hereafter), it is strategically
situated in the state of Louisiana (US), a major onshore production region and close to
offshore production. It is also connected to storage facilities, interstate and intrastate pipeline
systems; therefore, its production can be easily moved from supply basins and exported to
major consumptionmarkets. These featuresmake theHH the dominant global reference price
for natural gas, especially for futures contracts.

Gas production in the US is steadily increasing, while gas storage level also plays a key
role when looking at supply side. During periods of lower demand, production surplus can be
injected into storage facilities in the form of liquefied natural gas, which can later provide a
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valuable cushion tomeet demand peaks.However, liquefied natural gas storage can be utilised
to meet sudden demand increase or decrease only up to a point. Natural gas supply is always
affected by a relatively wide range of prices. Restrictions in the existing gas infrastructure
impact additional flows, rendering the supply curve very inelastic when prices are high.

Overall economic growth, weather and competing fuel prices are also significant factors
in natural gas demand. Major demand-side players include: (i) industrial organisations which
use it to produce electricity due to its low price relative to coal, and as rawmaterial to produce
fertilisers, chemicals and hydrogen; (ii) transportation consumers using liquefied natural gas
as vehicle fuel; (iii) industrial, commercial and domestic consumers using it as fuel for heating
and in some cases cooling.

Weather is the main factor in natural gas price evolution, leading to seasonal price
behaviour and stochastic volatility. During the northern hemisphere’s fall and winter sea-
sons, gas prices are higher due to increased demand for heating, and it is very volatile. In
northern spring and summer, gas demand decreases, but production continues, as excess can
be stored as liquefied natural gas, thus exhibiting less variability during this period. Consid-
ering the cyclical behaviour of natural gas prices is key to predict winter demand; therefore
winter futures typically trade at a premium compared to summer ones. Understanding the sea-
sonality in natural gas markets and the potential impact on its prices is useful for researchers
and practitioners in the field of trading strategies.

The stylised facts in the natural gas market are mean-reversion and jumps in prices,
seasonality in prices and in implied volatilities, the inverse leverage effect (ILE hereafter)
and the Samuelson effect; they are all described in detail in Sect. 3.2. In the literature, among
papers which focus on the modeling of natural gas prices, we recall EG98, BPP13, ABP16,
San17 and BLW18. Seasonal (stochastic) volatility is a well-known empirical feature for
many commodities in the literature, specially agriculturals and natural gas. Therefore, the
frameworkwe present goes beyond a particular asset, natural gas, and ourmodel is extendable
to other commodities driven by seasonality factors, such as agriculturals.

We propose a three-factormodel whichwe refer to asSYSSV1 for futures priceswith three
stochastic factors: the spot price, the cost of carry curve and the instantaneous variance. The
variance follows a mean-reverting square-root process which incorporates the seasonality in
its long-run mean-reversion level. We obtain the futures prices in the original framework and
also propose an alternative characterisation or set-up of the parameters. We price standard
European options on HH natural gas futures contracts, with maturities ranging from approx-
imately one to two months up to 1 year. Our benchmark model is the three-factor version
of TS09 (TS09-SV1 hereafter), which on average we outperform slightly. However, a more
granular analysis evidences that ourmodel clearly outperforms the benchmark for shortmatu-
rities and deep OTM (ATM and close to the ATM) options under the original (alternative)
set-up. An additional benefit provided by the alternative set-up is that the calibration is much
quicker.

The remainder of this article is structured as follows: in Sect. 2 we present a novel model
formulation based on the USV model of TS09-SV1 which we extend by introducing season-
ality in the variance, we derive the correspondent characteristic function of the futures prices
with which we price standard European options; in Sect. 3 we describe the market data, the
stylised facts, and how we perform the parameter estimation; in Sect. 4 we comment our
model’s results and those of other extant ones that are well known in the literature; and in
Sect. 5 we present our conclusions and indicate future lines of research.

1 SYSSV stands for Stochastic cost of carry curve Y (t, T ) and Seasonal Stochastic Volatility vt .
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Table 1 Factors and features per model

Model Dim. Stochastic factors Seasonality Jumps Param. Cmdty.
S M St y(t, T ) F(t, T ) vt Price Vols. SSV Price Count Asset

BS73 � � 1 –

Mer76 � � � 4 –

Hes93 � � � 4 –

Bat96 � � � � 7 –

EG98 � � � 6 G,E

Gem00 � � � 7 O

CS99a � � 2 –

CS99b � � 2 –

CS00 � � 3 –

LS02 � � � 13 E

Sor02 � � � 6 A

RS02 � � � � � � 10 A

GN05 � � � � � � 17 A

TS09-SV1 � � � � � 9(7) O

BPP13 � � � � 7,8 O,G,A

ABP16 � � � � � 5 G,A

FMM16 � � � 36 E

San17 � � � 19 G

BLW18 � � � � � 11 G

FS19 � � � � 15 E

ST18 � � � 5 O

ST21 � � � � � 6 A

SYSSV � � � � � � � 10,11(8,9) G

For each model mentioned in Sect. 1, this table enumerates the factors considered, the type of seasonality, the
jumps and the parameter count. ColumnDim. accounts for the dimensional setting of themodel (S for single,M
formultiple). The acronymswherebywe refer to themodels can be found in Sect. 1. In thosemodels presenting
alternative characterisation of the parameters (as defined in Sect. 2.1.2) and in the columns for the stochastic
factors, F(t, T ) replaces St and y(t, T ); this is indicated with the symbol � and the correspondent parameter
count appears in brackets. The commodity assets on which the articles perform their applied exercise are
indicated by the following acronyms: A refers to agriculturals, E to electricity, G to natural gas, O to oil (crude
or heating). The parameter count for GN05 corresponds to its two-state variable model; for LS02 corresponds
to its one factor model. We refer to our model as SYSSV

2 A new three-factor model for futures prices on commodities

In this work we derive a futures-based model which can exactly match any given futures
curve by specifying the futures initial values without incorporating any of the other model
parameters. It fits the initial futures curve by construction, which means that the seasonality
in prices is already incorporated as can be observed in Fig. 1a. Moreover, our model is term-
structured, presenting a seasonality pattern in the dynamics of the futures variance. This new
element affects the option pricing but not the expression followed by the expected value of
the futures prices.

In this sectionwe formalise the dynamics of the futures prices in our novelmodel specifica-
tion, compute the corresponding characteristic function, and indicate the technical conditions
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Fig. 1 Seasonality in the term-structure-31/08/2018. Notes: This figure presents a cross-sectional analysis of
the seasonality in the natural gas market as of 31/08/2018. a Shows the term-structure of futures prices for
contracts maturing during the following four years (M1 to M48, that is, 22/09/2018 to 20/08/2022). b Shows
the term-structure of implied volatilities for contracts maturing during the closer months (M2 to M18, that is,
22/10/2018 to 22/02/2020). We compute implied volatilities employing the standard model of Black (1976)

under which the dynamics of the variance factor are defined. Let St denote the time-t spot
price of the commodity, and let y(t, T ) denote the time-t instantaneous forward cost of carry
maturing at time T , with y(t, t) = yt the time-t instantaneous spot cost of carry. We model
the evolution of the entire futures curve by specifying one process for St and another process
for y(t, T ). Also, let vt denote the instantaneous variance, which follows a mean-reverting
process as in Cox et al. (1985).

2.1 Themodel under the risk-neutral measureQ

Consider the following three-factor model. Let (�,F ,Q) be a probability space on which
three Brownian motion processes, WS

t ,W y
t and W v

t , are defined for all 0 ≤ t ≤ T . Let F
be the filtration generated by these Brownian motions. The absence of arbitrage implies the
existence of a risk-neutral or equivalent martingale measure Q under which the processes
followed by St , y(t, T ) and vt are governed by the following dynamics

dSt
St

= ytdt + σS
√

vt dW
S
t , (2.1)

dy(t, T ) = μy(t, T )dt + σy(t, T )
√

vt dW
y
t , (2.2)

dvt = κ (θt − vt ) dt + σv
√

vt dW
v
t , (2.3)

with St , vt > 0, and allowingWS
t ,W y

t andW v
t to be correlated with ρSy, ρSv and ρyv , which

denote pairwise correlations. We do not impose any type of structure to the drift term of the
cost of carry curve μy(t, T ).

This novel model formulation consists of an expansion of the three-factor model specifica-
tion of TS09 (that is, TS09-SV1) with SSV. This seasonality is captured in the deterministic
expression followed by θt , the time-varying long-run mean-reversion variance level, which
particular form we address in Sect. 2.1.1. The volatility of the spot price St is represented by
σS , the volatility of the variance vt is represented byσv , and the volatility of the forward cost of
carry curve y(t, T ), which we assume that follows a time-dampening form, is represented by
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Fig. 2 Stylised facts in the variance. Notes: This figure presents two stylised facts in the natural gas market.
a Shows the Samuelson effect of the implied volatilities of futures options grouped by contract (that is, from
closest to maturity to more distant ones), with R2 = 97.19%. b Shows the seasonal pattern of the implied
volatilities of futures options grouped by trade month, with R2 = 53.93%. Observe that this results is almost
identical to that in Table 6c with t0 = 10/12 (end of October) and single sub-specification (S). The seasonal
volatility pattern is approximated by the trigonometric function following expression in (2.5). For both sub-
figures, the period considered spans from 01/2011 to 12/2020 (monthly observations), and only ATM options
are considered. We compute implied volatilities employing the standard model of Black (1976)

σy(t, T ) ≡ αe−γ (T−t), (2.4)

with parameters σS, σv, κ, θt , α and γ > 0. The volatility in expression (2.4) reflects the so-
called Samuelson effect, which describes an empirical observation of the variations in futures
prices increasing as the expiration date gets closer (see also Samuelson (1965)).2 Figure 2a
shows the time dependency for the implied volatilities in the HH natural gas market. These
volatilities are grouped by the contracts’ maturity month and then averaged. An inverse time-
dependent pattern can be clearly observed in the data, providing evidence of the Samuelson
effect in this market.

2.1.1 Seasonality specifications

In Hylleberg (1992), the seasonality is defined as “…the systematic, although not necessarily
regular, intra-year movement caused by the changes of the weather, the calendar, and timing
of decisions, directly or indirectly through the production and consumption decisions made
by agents of the economy. These decisions are influenced by endowments, the expectations
and preferences of the agents, and the production techniques available in the economy.”
Several models incorporate SSV in the trading date t such as RS02, GN05, ABP16, FMM16
and ST21. The first two are spot models which explicitly present seasonality in prices and
variance; the last three are term-structure models which implicitly incorporate it in prices,
explicitly in the variance. Other models such as FS19 explicitly present it in the variance in
the delivery period rather than in the trade date, which is reasonable in electricity markets.

2 This applies for a fixed maturity. Similarly, this effect can be seen in the futures variations which are, on a
fixed date, higher for those contracts with longer maturities. When t approaches T , the term converges to 1
and the full volatility enters the dynamics. On the contrary, the volatility decreases when the time to maturity
increases. This approach is typically captured with a term-structure alteration in the diffusion of the futures
dynamics of the form followed by σy(t, T ) in expression (2.4).

123



1096 Annals of Operations Research (2024) 336:1089–1131

As indicated in BPR13, implied volatilities in option prices reflect howmarket participants
assess the future volatility pattern. In Fig. 2bwe show the seasonality for the quoted volatilities
in the HH natural gas market. These volatilities are grouped by the options’ trade month and
then averaged. A trigonometric function describes the seasonal pattern in implied volatilities
with reasonable accuracy. Thuswe present two seasonality functions for θt that can be used as
parametric forms to model seasonal variations of futures prices’s volatility. These functions
are deterministic andworkwith the following parameters: aθ > 0; bθ , cθ �= 0 and t0 ∈ [0, 1[.
The parameter aθ determines the basic volatility level, bθ and cθ govern the magnitude of
the seasonality pattern, and t0 refers to the time of the year when the volatility reaches its
maximum. The simple (S) and multiple or mixed (M) harmonic expressions are defined as
follows

θ S
t ≡ aθ + bθ cos

(
2π(t − t0)

)
, (2.5)

θM
t ≡ aθ + bθ cos

(
2π(t − t0)

)+cθ sin
(
2π(t − t0)

)
, (2.6)

which are continuous functions, differentiable everywhere and spend the same amount of
time low and high.

The form followed by the simple seasonality pattern S is inspired in the work of FS19 and
ST21. Using the property of complementary angles, adapting the expression followed by θ S

t
in (2.5) is straightforward in terms of using the sinus instead of the cosinus of the angle.3

With regards to the combined harmonic expression, the expression followed by θM
t in (2.6)

is inspired in Rogel-Salazar and Sapsford (2014).
The specification followed by the variance dynamics can only guarantee the positiveness

of the factor at all times if the Feller condition is met.4 In our model, the sufficient condition
to enforce the positivity of the variance is 2κ(aθ − bθ ) > σ 2

v for the simple harmonic
expression.5

In Fig. 3 we can observe futures prices and options volatilities for seven HH natural gas
contracts labeledM2-M8, spanning from January 2011 to December 2020: Fig. 3a represents
the time series for futures prices, Fig. 3b represents the ATM call option volatilities. In Fig. 4
we refer to the same futures contracts previously described: in Fig. 4a we plot the futures’
returns, in Fig. 4b we represent the histogram of frequencies assigned to these returns, in
Fig. 4c we display the correspondent QQ plot. From them we can observe the presence of
fat tails in their distribution and conclude that returns are non-iid. Directly related to what
we can observe in this figure, Table 2 provides complementary evidence of the non-Gaussian
returns by rejecting the null hypothesis of normal price returns by means of the Jarque–Bera
test, applicable to each contract individually and all contracts taken together.

In the natural gas market, where price returns are non-Gaussian, there are different pos-
sibilities to address an appropriate modeling strategy. Apart from the cyclical pattern driven
by the supply side, we empirically observe the existence of shocks in prices, positive and
negative. The ILE links large positive returns with increasing periods in the variance, but
we also observe negative jumps. In this work, we decide to focus only on the seasonality,
capturing it in an effective manner. Since the presence of the ILE justifies the presence of
positive jumps, indirectly our model accounts for them. We do not introduce negative jumps
in this research but their inclusion can be a natural future extension of this work.

3 By adding 3/12 to the value of t0.
4 In Heston (1993), the parameters obey that 2κθ > σ 2

v , which is when the values of vt are strictly positive.
We also consider this restriction is met in all other multi-factor models analysed in this work.
5 For the multiple harmonic expression, the condition depends on the minimum value achieved by a combi-
nation of the sinus and cosinus functions, reaching their minimum in different points.
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Fig. 3 Futures prices and ATM options volatilitites—monthly data. Notes: a presents the prices of the futures
contracts labeledM2–M8. b presents the volatilities of quotedATMcall options on the futures labeledM2-M8.
All values correspond to monthly observations

2.1.2 Futures dynamics

In this section we present a novel formulation for the futures’ dynamics, which consists of an
extension of TS09-SV1 that includes SSV. Let F(t, T ) denote the time-t price of a futures
contract that matures at time T . By definition we have that
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Fig. 4 Futures returns—monthly data. Notes: a presents the returns of the futures contracts labeled M2-M8.
In b we can see in blue the correspondent histogram to the returns in a, the curve in red represents the
equivalent PDF of a normal distribution with the same mean and standard deviation. In c we can see in blue
the correspondent QQ plot to the returns, the red line represents the normal distribution and the blue points
represent our sample returns. All values correspond to monthly observations

F(t, T ) ≡ St exp

{∫ T

t
y(t, u)du

}
= St e

Y (t,T ) (2.7)

with dynamics of St and y(t, T ) as in Eqs. (2.1) and (2.2). In absence of arbitrage opportuni-
ties, the process followed by F(t, T ) must be a martingale under the risk-neutral measureQ
(see Duffie (2001)). We define f (t, T ) ≡ ln F(t, T ), with F(0, T ) > 0, f (0, T ) �= 0. From
applying Itô’s Lemma to the futures price in Eq. (2.7) and imposing the martingale condition
(that is, setting the drift to zero), it follows that the dynamics of F(t, T ) and f (t, T ) are
given by

dF(t, T )

F(t, T )
= √

vt

(
σSdW

S
t + σY (t, T )dW y

t

)
, (2.8)
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d f (t, T ) = √
vt

(
σSdW

S
t + σY (t, T )dW y

t

)
−vt

2

(
σ 2
S + σ 2

Y (t, T ) + 2ρSyσSσY (t, T )
)
dt,

(2.9)

with the accumulated volatility of y(t, T ) being

σY (t, T ) ≡
∫ T

t
σy(t, u)du = α

γ

(
1 − e−γ (T−t)

)
, (2.10)

and the drift term in Eq. (2.2) given by

μy(t, T ) = −
(
σSρSy + σY (t, T )

)
σy(t, T )vt . (2.11)

The proof can be found in Trolle & Schwartz (2009, Appendix A).
We define the futures dynamics based on firstly describing the dynamics of the spot price

and the forward cost of carry curve, to then modify the diffusion term in the futures dynamics
accordingly by introducing the accumulated volatility expression instead; that is, σY (t, T )

in expression (2.10). Our model for futures prices is then defined by Eqs. (2.8) and (2.3)
Rewriting the dynamics in Eqs. (2.8) and (2.9) in their integral form time 0 up to time t ≤ T
lets us see the evolution of futures prices and log-prices

F(t, T ) = F(0, T ) exp

{∫ t

0

√
vu

(
σSdW

S
u + σY (u, T )dW y

u

)
− 1

2

∫ t

0
vu

(
σSdW

S
u + σY (u, T )dW y

u

)2}
,

(2.12)

f (t, T ) = f (0, T ) +
∫ t

0

√
vu

(
σSdW

S
u + σY (u, T )dW y

u

)
− 1

2

∫ t

0
vu

(
σSdW

S
u + σY (u, T )dW y

u

)2
,

(2.13)

with
(
σSdW

S
u + σY (u, T )dW y

u

)2 =
(
σ 2
S + σ 2

Y (u, T ) + σSσY (u, T )ρSy

)
du.

Following Crosby & Frau (2022, Sec. 3), we refer to this set-up as the original charac-
terisation of the parameters, where the expressions are defined in terms of St and y(t, T )

(σS, σY (t, T ), ρSy, ρSv, ρvy).

Alternative Characterisation of the Parameters
Evidence supports considering that the volatility of the futures σ f (t, T ) follows a time-
dampening form such as

σ f (t, T ) = α0 + αe−γ (T−t). (2.14)

Therefore, the expression which describes the volatility of the futures dynamics is

σF (t, T ) ≡
∫ T

t
σ f (t, u)du = α0(T − t) + α

γ

(
1 − e−γ (T−t)

)
. (2.15)

This leads to more compact expressions defining the dynamics of the futures prices and
log-prices

dF(t, T )

F(t, T )
= √

vtσF (t, T )dW F
t , (2.16)

d f (t, T ) = √
vtσF (t, T )dW F

t − 1

2
vtσ

2
F (t, T )dt, (2.17)
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Table 2 Futures returns and Jarque–Bera test

Contract Min. (%) Max. (%) Mean (%) Std. Dev. (%) Skew. Kurt. JB Stat. p-value Test

(a) Monthly observations

M2 −43.82 40.02 −0.35 10.61 −0.2939 6.4480 5.929 0.0442 R

M3 −40.29 29.69 −0.34 9.77 −0.4977 5.7563 6.329 0.0396 R

M4 −22.97 20.21 −0.35 7.98 0.0011 3.3583 6.915 0.0331 R

M5 −20.31 19.83 −0.40 7.35 0.0527 3.1785 7.865 0.0258 R

M6 −18.99 25.15 −0.45 7.29 0.1753 3.4847 9.167 0.0190 R

M7 −18.90 32.80 −0.48 8.19 0.7649 5.9847 10.527 0.0142 R

M8 −19.50 17.25 −0.37 5.97 0.0752 4.3030 11.064 0.0127 R

ALL −43.82 40.02 −0.39 8.27 −0.0700 6.0021 1567.737 0.0010 R

(b) Daily observations

M2 −20.21 17.13 −0.02 2.43 0.1865 9.0481 119.964 0.0010 R

M3 −37.70 26.79 −0.02 2.34 −0.8969 38.3860 128.552 0.0010 R

M4 −10.11 22.96 −0.02 1.97 0.6833 11.7360 143.408 0.0010 R

M5 −13.87 14.89 −0.02 1.85 0.0712 8.9002 175.663 0.0010 R

M6 −11.32 13.26 −0.03 1.74 0.1228 8.6686 213.328 0.0010 R

M7 −12.80 14.00 −0.03 1.65 −0.1090 9.0187 228.004 0.0010 R

M8 −14.84 9.21 −0.02 1.85 −0.7251 10.2528 227.048 0.0010 R

ALL −37.70 26.79 −0.02 1.96 −0.1119 18.9926 33600.777 0.0010 R

JB accounts for the Jarque–Bera normality test. The null hypothesis refers to the normal distribution of futures
returns. The critical value associated to a significance level of 0.05 is 5.991. When the value of Test is R (CR),
we reject (cannot reject) the null hypothesis at 95%

with WF
t a Brownian motion defined for all 0 ≤ t ≤ T . Rewriting the dynamics in (2.16)-

(2.17) in their integral form from time 0 up to time t ≤ T lets us see the evolution of futures
prices and log-prices

F(t, T ) = F(0, T ) exp

{∫ t

0

√
vuσF (u, T )dW F

u − 1

2

∫ t

0
vuσ

2
F (u, T )du

}
, (2.18)

f (t, T ) = f (0, T ) +
∫ t

0

√
vuσF (u, T )dW F

u − 1

2

∫ t

0
vuσ

2
F (u, T )du. (2.19)

Following Crosby & Frau (2022, Sec. 3), we refer to this set-up as the alternative character-
isation of the parameters, where the expressions are defined in terms of F(t, T ). TS09-SV1
needs only 7 parameters instead of the original 9, whereas our model needs up to 8–9 instead
of the original 10–11, depending on the expression chosen for θt . Therefore, our model is
capable of replicating values generated with the original set-up using two parameters less,
which makes calibration much quicker as can be observed in Table 8.

2.2 Deriving the characteristic function

Options on natural gas expire (TOpt ) one business day before the expiration date of the
underlying futures contract T , that is, TOpt = T−1/252. The Fourier transform for the time-t
standard European option price can be expressed in terms of the characteristic function (CF
hereafter)ψ(iu; t, TOpt , T ), so it can be obtained by applying the Fourier inversion theorem.
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To price options on futures we introduce the transform

ψ(iu; t, TOpt , T ) ≡ EQ
t [eiu f (TOpt ,T )], (2.20)

with futures log-price dynamics as in Eq. (2.9) for the original set-up or (2.17) for the
alternative one. We define τ ≡ TOpt − t . The transform (2.20) has an exponential affine
solution as demonstrated in the following proposition:

Proposition 1 The Fourier transform in Eq. (2.20) is given by

ψ(iu; t, TOpt , T ) = eA(τ )+B(τ )vt+iu f (t,T ). (2.21)

A(τ ) and B(τ ) solve the following system of ODEs

∂A(τ )

∂τ
= B(τ )κθt , (2.22)

∂B(τ )

∂τ
= b0 + b1B(τ ) + b2B

2(τ ), (2.23)

subject to the initial conditions A(0) = B(0) = 0, θt as in (2.5) or (2.6). The expressions
followed by the terms b0, b1 and b2 conditional to the original set-up (left column) and the
alternative set-up (right column) are

b0 = −1

2
(u2 + iu)

(
σ 2
S + σ 2

Y (t, T ) + 2ρSyσSσY (t, T )
)
, b0 = −1

2
(u2 + iu)σ 2

F (t, T ),

b1 = −κ + iuσv

(
ρSvσS + ρyvσY (t, T )

)
, b1 = −κ + iuσvρFvσF (t, T ),

b2 = σ 2
v

2
, b2 = σ 2

v

2
.

(2.24)

Proof See Appendix A.1 for proof. ��
The analytic expression followed by B(τ ) in Eq. (2.21) is not affected by θt and reads

B(τ ) = 2γ

σ 2
v

(
β + μz + z

g′(z)
g(z)

)
, (2.25)

and the expressions followed by β,μ, z, g(z) and g′(z) can be found in Appendix B.1.
The following two propositions provide the analytic expressions followed by A(τ ) in

Eq. (2.21).

Proposition 2 When θt follows a single sinusoidal form as in expression (2.5), ODE (2.22)
has a quasi-analytical solution which is given by

A(τ ) = m
(
A1(τ ) + A2(τ ) + A3(τ ) + A4(τ ) + k3

)
, (2.26)

with

A1(τ ) = aθ
(
βτ − μz + ln g(z)

γ

)
,

A2(τ ) = −bθ β ysτ
2π

,

A3(τ ) = bθμz
ycτ − 2πγ ysτ
4π2 + γ 2 ,

A4(τ ) = bθ τ

ω

(
yc0g

′(ω−1) − τ

2

(
g′(ω−1)

(
yc0ζ1 − 2π ys0

) + yc0ζ2
))

,

(2.27)
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with a, b, β, μ, z, g(z) and g(z) as defined in Appendix B.1, with

m = 2κγ

σ 2
v

,

ycτ = cos (2π (T0 − τ − t0)) , yc0 = cos (2π (T0 − t0)) ,

ysτ = sin (2π (T0 − τ − t0)) , ys0 = sin (2π (T0 − t0)) ,

ζ1 = γ (1 + k1n1 + k2n2), ζ2 = γ (k1n3 + k2n4),

(2.28)

and

n1 = (a − b)
(
M(a − 1, b, ω−1) − M(a, b, ω−1)

)+M(a, b, ω−1)ω−1,

n2 = a
(
U (a, b, ω−1) + (b − a − 1)U (a + 1, b, ω−1)

)
,

n3 = a

b

(
(a − b)

(
M(a + 1, b + 1, ω−1) − M(a, b + 1, ω−1)

)+M(a + 1, b + 1, ω−1)ω−1
)
,

n4 = a
(
U (a, b, ω−1) +

(
b − ω−1

)
U (a + 1, b + 1, ω−1)

)
.

(2.29)
M and U are Kummer’s and Tricomi’s hypergeometric functions, as defined in Appendix
B.1.

In particular, if the initial condition is A(0) = 0, we have that

k3 = x0 + xs0 y
s
0 + xc0 y

c
0,

x0 = aθ μ

ω
,

xs0 = bθ

(
β

2π
− 2πμ

ω(4π2 + γ 2)

)
,

xc0 = −bθ μγ

ω(4π2 + γ 2)
.

(2.30)

Proof See Appendix A.2 proof. ��

Proposition 3 When θt follows a mixed sinusoidal form as in expression (2.6), ODE (2.22)
has a quasi-analytical solution which is given by

A(τ ) = m
(
A1(τ ) + A2(τ ) + A3(τ ) + A4(τ ) + A5(τ ) + A6(τ ) + A7(τ ) + k3

)
, (2.31)

with A1(τ ), A2(τ ), A3(τ ) and A4(τ ) as in Proposition 2, with

A5(τ ) = cθβ
ycτ
2π

,

A6(τ ) = cθμz
2π ysτ − γ ycτ
4π2 + γ 2 ,

A7(τ ) = cθ τ

ω

(
ys0g

′(ω−1) − τ

2

(
g′(ω−1)

(
ys0ζ1 + 2π yc0

) + ys0ζ2
))

,

(2.32)

with β,μ, z, g(z) and g(z) as defined in Appendix B.1; m, ycτ , y
c
0, y

s
τ , y

s
0, ζ1 and ζ2 as in

expression (2.28).
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In particular, if the initial condition is A(0) = 0, we have that

k3 = x0 + xs0 y
s
0 + xc0 y

c
0,

x0 = aθ μ

ω
,

xs0 = bθ

(
β

2π
+ 2πμ

ω(4π2 + γ 2)

)
−cθ μγ

ω(4π2 + γ 2)
,

xc0 = −bθ μγ

ω(4π2 + γ 2)
+ cθ

(
β

2π
+ 2πμ

ω(4π2 + γ 2)

)
.

(2.33)

Proof See Appendix A.3 for proof. ��
In Proposition 2, if bθ = 0 we then have that θt = aθ , A2(τ ) = A3(τ ) = A4(τ ) = 0,

and A(τ ) = A1(τ ). In Proposition 3, if bθ = cθ = 0 we have that θt = aθ , A2(τ ) =
A3(τ ) = A4(τ ) = A5(τ ) = A6(τ ) = A7(τ ) = 0, and therefore A(τ ) = A1(τ ). Under
either situation, our model is equivalent to TS09-SV1 and A(τ ) reads

A(τ ) = m(A1(τ ) + kT S
3 ),

kT S
3 = x0 = aθ μ

ω
.

(2.34)

Independently of the harmonic expression chosen and based on evidence, we assume that
in the long-run mean-reverting parameter θt there is only one peak per year.

2.2.1 Extant models

The naturally nested model respective to ours is TS09-SV1. Additionally, we also consider
other extant models such as Mer76, Hes93 and Bat96. We compare the performance of our
model to jump-diffusion models to avoid misinterpreting cycles in prices as jumps. We also
include ST18 and ST21 in the list of extant models, the latter presenting SSV.6

Modeling the futures dynamics using jumps and stochastic volatility results in the futures
prices having non-Gaussian returns—a stylised fact in the energy markets. In Table 2 we
present the values for the four first moments of the distribution, and we perform the Jarque–
Bera normality test on monthly data. We reject the null hypothesis of normality in returns
for each of the labeled contracts M2-M8, and all contracts taken together. This implies that
some source of structure in the variance such as stochastic volatility is required, providing
skewness and/or kurtosis to the distribution of returns.Many earliermodels include stochastic
volatility in their specification.

We consider one-, two- and three-factor extant models, a mix of spot-based and term-
structure models. To compare them from a commodity perspective, we transform the original
spot-based specification in Mer76, Hes93 and Bat96 to their corresponding futures prices
dynamics.7 Hereafter we will refer to their futures-equivalent specification, but naming them
in their original form. In this work we consider a panel of six extant models plus ours; in
Sect. 4 we compare their pricing performances.

6 In this work, we consider the one-dimensional specification of both models (that is, i = 1). Following
this restriction and only in the case that we impose the constant term α = 0 to the original specifications of
TS09-SV1 and our model SYSSV, we have that TS09-SV1 and SYSSV are quite similar to ST18 and ST21,
respectively; they only differ in the expression followed by the future’s volatility term—for the first, it is an
accumulated form of that of the latter.
7 Option prices for commodities’s futures are quoted in the markets using Black (1976).
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Table 3 Models dynamics

Model Dynamics Volatility

BS73 dSt
St

= ydt + σSdW
S
t σS constant

dF(t,T )
F(t,T )

= σFdW
F
t σS constant

Mer76 dSt
St

=(
y−λEQ

t

[
eJS −1

] )
dt+σSdW

S
t +

(
eJS−1

)
dNt σS constant

dF(t,T )
F(t,T )

=−λEQ
t

[
eJF −1

]
dt+σFdW

F
t +

(
eJF −1

)
dNt σF constant

Hes93 dSt
St

= ydt + √
vt dW S

t σS = 1

dvt = κ (θ − vt ) dt + σv
√

vt dW v
t σv constant

dF(t,T )
F(t,T )

= σF
√

vt dW F
t σF constant

Bat96 dSt
St

=(
y−λEQ

t

[
eJS −1

] )
dt+√

vt dW S
t +

(
eJS −1

)
dNt σS =1

dvt = κ (θ − vt ) dt + σv
√

vt dW v
t σv constant

dF(t,T )
F(t,T )

=−λEQ
t

[
eJF −1

]
dt+√

vt dW F
t +

(
eJF −1

)
dNt σF constant

TS09-SV1 dSt
St

= yt dt + σS
√

vt dW S
t σS constant

dy(t, T ) = μy(t, T )dt + σy(t, T )
√

vt dW
y
t σy(t, T ) = αe−γ (T−t)

dvt = κ (θ − vt ) dt + σv
√

vt dW v
t σv constant

dF(t,T )
F(t,T )

=√
vt

(
σSdW

S
t +σY (t, T )dW y

t
)

σY (t, T )=∫ T
t σy(t, u)du

TS09-SV1� dF(t,T )
F(t,T )

= σF (t, T )
√

vt dW F
t σ f (t, T ) = α0 + αe−γ (T−t), α = 1

σF (t, T ) = ∫ T
t σ f (t, u)du

ST18 dF(t,T )
F(t,T )

= ∑n
i=1 σFi (t, T )

√
vi,t dW

Fi
t σFi (t, T ) = e−γi (T−t), αi = 1

dvi,t = κi
(
θi − vi,t

)
dt + σvi

√
vi,t dW

vi
t σvi constant

ST21 dF(t,T )
F(t,T )

= ∑n
i=1 σFi (t, T )

√
vi,t dW

Fi
t σFi (t, T ) = e−γi (T−t), αi = 1

dvi,t = κi
(
θt − vi,t

)
dt + σvi

√
vi,t dW

vi
t σvi constant

θt = aθ + bθ cos(2π(t + t0))

SYSSV dSt
St

= yt dt + σS
√

vt dW S
t σS constant

dy(t, T ) = μy(t, T )dt + σy(t, T )
√

vt dW
y
t σy(t, T ) = αe−γ (T−t), α = 1

dvt = κ (θt − vt ) dt + σv
√

vt dW v
t σv constant

θ St = aθ + bθ cos(2π(t + t0))

θMt = aθ + bθ cos(2π(t + t0)) + cθ sin(2π(t + t0))
dF(t,T )
F(t,T )

= √
vt

(
σSdW

S
t + σY (t, T )dW y

t
)

σY (t, T ) = ∫ T
t σy(t, u)du

SYSSV� dF(t,T )
F(t,T )

= σF (t, T )
√

vt dW F
t σ f (t, T ) = α0 + αe−γ (T−t), α = 1

σF (t, T ) = ∫ T
t σ f (t, u)du

This table presents the model dynamics and their correspondent volatility expressions for the models described
in Sect. 2.2.1 and our model SYSSV. St denotes the time-t spot price of the commodity; y(t, T ) denotes the
time-t instantaneous forward cost of carry maturing at time T , with y(t, t) = yt the time-t instantaneous spot
cost of carry; vt denotes the instantaneous variance. For the first four models, the last equation refers to their
corresponding futures’ price dynamics. Those models presenting an alternative set-up of the parameters (i.e.,
TS09-SV1 and SYSSV) appear with the symbol �
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Fig. 5 Diagram of extant models. Notes: In this figure we represent in a visual manner the factors affecting
each of the considered models in this work, the existence of the type of seasonal effect and/or jumps. This
figure complements the information in Sect. 2.2.1 and Table 3

For each model, next we describe the components of the Fourier transform described in
Eq. (2.21). BS73 models the spot prices requiring only the independent term A(τ ); Mer76
extends BS73 incorporating iid jumps in the spot price, the jump-related terms are included in
A(τ ); Hes93 extends BS73 with stochastic variance, it uses A(τ ) and the stochastic variance-
related term B(τ ); Bat96 extends Hes93 with iid jumps in the spot price, it uses A(τ ) and
B(τ ); TS09-SV1, ST18, ST21 and ourmodel are term-structuremodelswith stochastic prices
and variances, which require both terms A(τ ) and B(τ ). For instance, ST21 and our model
incorporate seasonality in the variance, whereas TS09-SV1 and ST18 do not. Both TS09-SV1
and our model describe the dynamics of the spot price and the cost of carry before obtaining
the futures’ dynamics.

In Table 3 we present the dynamics followed by the models in the above list as well as
ours. This table is complemented by Fig. 5, which visually represents the links between the
different models in terms of factors, seasonality and jumps. The expressions followed by the
dynamics of A(τ ) and B(τ ) in Eq. (2.21) and their solutions can be found in Tables 4 and 5,
respectively.

Key advantages of the most recent models encompassing ours include improved approx-
imation to the real price behaviour and better description of the implied volatility surface.
In our case, adding up to three seasonality-related parameters provides more flexibility to
replicate the volatility surface quoted in the market, allowing for a wider range of possible
shapes (e.g., the Samuelson effect and the seasonal temperatures affecting the natural gas
demand). The implementation is not straightforward; it does not require the addition of new
terms to the CF in TS09-SV1, but the variance-related term B(τ ) must be modified due to
the seasonal component introduced.

2.3 Pricing of standard European options

In this section we price standard European options on futures contracts using the CF pre-
viously computed. Let C(t, TOpt , T , K ) and P(t, TOpt , T , K ) denote the time-t prices of
a standard European call (hereafter, call) and a standard European put (hereafter, put)
option expiring at time TOpt with strike K on a futures contract expiring at time T , with
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Table 4 Fourier transforms—ODEs and parameters

(a) ODEs
Model ∂A(τ )/∂τ ∂B(τ )/∂τ

BS73 b0 −
Mer76 b0 + (nJ − iumJ ) −
Hes93 B(τ )κθ b0 + b1B(τ ) + b2B

2(τ )

Bat96 B(τ )κθ + (nJ − iumJ ) b0 + b1B(τ ) + b2B
2(τ )

TS09-SV1 B(τ )κθ b0 + b1B(τ ) + b2B
2(τ )

ST18 B(τ )κθ b0 + b1B(τ ) + b2B
2(τ )

ST21 B(τ )κθt b0 + b1B(τ ) + b2B
2(τ )

SYSSV B(τ )κθt b0 + b1B(τ ) + b2B
2(τ )

(b) Parameters

Model b0 b1 b2

BS73 − σ2
S
2 − −

Mer76 − σ2
S
2 − −

Hes93 − 1
2 (u2 + iu) −κ + iuσvρSv

σ2
v
2

Bat96 − 1
2 (u2 + iu) −κ + iuσvρSv

σ2
v
2

TS09-SV1� − 1
2 (u2 + iu)(σ 2

S + σ 2
Y (t, T ) + 2ρSyσSσY (t, T )) −κ + iuσv(ρSvσS + ρyvσY (t, T ))

σ2
v
2

TS09-SV1� − 1
2 (u2 + iu)σ 2

F (t, T ) −κ + iuσvρFvσF (t, T )
σ2
v
2

ST18 − 1
2 (u2 + iu)σ 2

F (t, T ) −κ + iuσvρFvσF (t, T )
σ2
v
2

ST21 − 1
2 (u2 + iu)σ 2

F (t, T ) −κ + iuσvρFvσF (t, T )
σ2
v
2

SYSSV� − 1
2 (u2 + iu)(σ 2

S + σ 2
Y (t, T ) + 2ρSyσSσY (t, T )) −κ + iuσv(ρSvσS + ρyvσY (t, T ))

σ2
v
2

SYSSV� − 1
2 (u2 + iu)σ 2

F (t, T ) −κ + iuσvρFvσF (t, T )
σ2
v
2

This table presents the expressions followed by the ODEs for the models described in Sect. 2.2.1 and our
model SYSSV. Observe that BS73, Mer76, Hes93 and Bat96 are expressed in terms of the futures prices. The
expression followed by σF (t, T ) in each model can be found in Table 3. The expressions followed by the
jump terms are

nJ = eiuμJ− 1
2 σ2

J u
2 − 1, mJ = eμJ+ 1

2 σ2
J − 1, (2.35)

with μJ and σ 2
J corresponding to the mean and the variance of the jump in the price, respectively

0 < t < T < TOpt . This option can be priced quasi-analytically within the framework we
describe in this section. In our empirical work and from the different pricing approaches
based on the CF, we follow the fast Fourier transform (FFT) methodology.8

2.3.1 The fast Fourier transform

Carr and Madan (1999) obtain a pricing formula for options which enables a computation-
ally efficient FFT algorithm. Its popularity stems from its remarkable speed: while prior
computation approaches require N 2 operations, the FFT requires only N ln(N ) steps.

8 See, e.g., Schmelzle (2010) for a classification of the different Fourier-based approaches.
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Table 5 Fourier transforms—solutions to ODEs

Model A(τ ) B(τ )

BS73 b0τ −
Mer76 (b0 + nJ − iumJ )τ −
Hes93 κθ

σ 2
v

(
(κ − iuσvρFv − d)τ − 2 ln 1−ge−dτ

1−g

)
κ−iuσvρFv−d

σ 2
v

( 1−e−dτ

1−ge−dτ

)

Bat96 κθ
σ 2

v

(
(κ − iuσvρFv − d)τ − 2 ln 1−ge−dτ

1−g

)+(nJ − iumJ )τ
κ−iuσvρFv−d

σ 2
v

( 1−e−dτ

1−ge−dτ

)

TS09-SV1 2κθ
σ 2

v

(
βγ τ − μz − ln g(z)

)+k3
2γ
σ 2

v

(
β + μz + z g′(z)

g(z)

)

ST18 2κθ
σ 2

v

(
βγ τ − μz − ln g(z)

)+k3
2γ
σ 2

v

(
β + μz + z g′(z)

g(z)

)

ST21 A1(τ ) + A2(τ ) + A3(τ ) + A4(τ ) + k3
2γ
σ 2

v

(
β + μz + z g′(z)

g(z)

)

SYSSV A1(τ ) + A2(τ ) + A3(τ ) + A4(τ ) + A5(τ ) + A6(τ ) + A7(τ ) + k3
2γ
σ 2

v

(
β + μz + z g′(z)

g(z)

)

A1(τ ) = maθ
(
βτ − 1

γ

(
μz + ln g(z)

))

A2(τ ) = −mbθ β
2π ysτ

A3(τ ) = mbθ μz
4π2+γ 2

(
γ ycτ − 2π ysτ

)

A4(τ ) = mbθω−1
(
τ yc0g

′(ω−1) − τ 2

2

(
g′(ω−1)

(
yc0ζ1 − 2π ys0

) + yc0ζ2
))

A5(τ ) = mcθ β
2π ycτ

A6(τ ) = mcθ μz
4π2+γ 2

(
2π ysτ − γ ycτ

)

A7(τ ) = mcθω−1
(
τ ys0g

′(ω−1) − τ 2

2

(
g′(ω−1)

(
ys0ζ1 + 2π yc0

) + ys0ζ2
))

This table presents the correspondent solution to the ODEs presented in Table 4. Observe that BS73, Mer76,
Hes93 and Bat96 are expressed in terms of the futures prices. As per our model SYSSV, these expressions
correspond to (2.22)-(2.23). The terms b0, b1 and b2 can be found in expressions (2.24). For TS09-SV1 and our
model, z, g(z), g′(z), β and μ are in Appendix B.1. For ST18 and ST21, z, g(z), g′(z), β and μ are in Appendix
B.2, m is as in expression (2.28). The expressions followed by k3 in TS09-SV1 and SYSSV can be seen in
Eqs. (2.34) and (2.30) or (2.33), correspondingly. The values for nJ ,mJ and b0, b1 and b2 can be found in Table
4. For BS73 and Mer96, observe that σY (t, T ) = 0 (equivalently, σF = σS). For Hes93 and Bat96, observe that
σS = 1 and σY = 0 (equivalently, σF = σS = 1); for these models, g and d read

g = κ−iuσvρFv+d
κ−iuσvρFv−d , d = √

(κ − iuσvρFv)2 + σ 2
v (u2 + iu) (2.36)

In the following proposition we present the expressions followed by call and a put option
prices:

Proposition 4 The time-t price of a call and a put option expiring at time TOpt with strike K
on a time-t futures contract expiring at time T is given by

C(t, TOpt , T , K ) = P(t, TOpt )
e−α ln(K )

π

∫ ∞

0
�

[
e−iu ln(K )ψt (u − i(1 + α); t, TOpt , T )

α(α + 1) − u2 + iu(1 + 2α)

]

du,

(2.37)

P(t, TOpt , T , K ) = P(t, TOpt )
e−α ln(K )

π

∫ ∞

0
�

[
e−iu ln(K )ψt (u − i(1 − α); t, TOpt , T )

α(α − 1) − u2 + iu(1 − 2α)

]

du,

(2.38)
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where P(TOpt , t) is the time-t price of a zero-coupon bond maturing at TOpt and α is the
control parameter.9

Proof The proof is in Carr and Madan (1999). ��
This approach presents two advantages: firstly, it permits the use of the computationally

efficient FFT; secondly, it only requires the evaluation of one integral, as opposed to the two
integrals required when using former perspectives as in Heston (1993) or Duffie et al. (2000).

3 Market data and parameters estimation

In this section we indicate how we perform the empirical analysis: firstly we describe the
natural gas data set we work with to perform our empirical analysis, then we discuss the
stylised facts inherent to this market, afterwards we describe the process we carry out to
perform the calibration exercise to market data, and to conclude we interpret the values of
the parameters’ estimates accordingly to the empirical observations.

3.1 Market data

Weconsider HHnatural gas futures and options traded on theNewYorkMercantile Exchange
(NYMEX),10 which we obtain from Refinitiv Eikon (formerly, Thomson-Reuters’ Datas-
tream). The data set consist of observations of closing prices (quoted in USD) for futures and
market implied volatilities for the corresponding options. There are monthly contracts listed
for the current year and the next 12 calendar years for both futures and options. For futures,
tradingmonths are the 72 consecutivemonths commencingwith the next calendarmonth, and
trading terminates three business days prior to the first calendar day of the delivery month.
For options, trading months are the 12 consecutive months plus contracts extending up to 72
months and traded in a quarterly manner, and trading terminates at the close of business on
the business day preceding the expiration of the underlying futures contract. There are 20
strike prices in increments of 0.05 USD above and below the ATM strike price in all months.
The ATM strike price is nearest to previous day’s close of the underlying futures contract.11

The 10-year period considered spans from January 3rd 2011 to December 31st 2020 and
the market data set is at monthly and daily frequency.When the data is observed on amonthly
basis, the observations correspond to the last business day of each month in the considered
period. We are considering seven futures contracts labeled M2, M3, . . . , M812 and their
correspondent ATM and OTM quoted options, call and put, for 16 degrees of moneyness
(ATM plus 15 degrees of moneyness, from the ATM level ±0.05 i USD, for i = 1 : 15
(that is, ±0, 0.05, 0.1, . . . , 0.75)), making it 32 options per contract and 224 options per
observation date. The number of monthly (daily) observations equals 120 (2,521), making it
840 (17,647) futures prices and 26,880 (564,480) options volatilities. From these volatilities,

9 α has to be chosen to ensure that it makes the modified option price square-integrable and to obtain good
numerical accuracy—a sufficient condition for the Fourier transform to exist. This parameter has to be wisely
chosen as it might produce very oscillatory arguments of the integral if too big, or it might approach a point
mass around 0 if too small.
10 See other works focusing on hubs in Europe (e.g., Jotanovic and D’Ecclesia (2021)) and on hubs in both
continents (e.g., Jana and Gosh (2022)).
11 Contract specifications for futures and options on HH natural gas can be found at CMEhome.
12 They are the second to the eighth available maturity contracts.

123

https://www.cmegroup.com/trading/energy/natural-gas/natural-gas_contract_specifications.html


Annals of Operations Research (2024) 336:1089–1131 1109

we consider 21,972 (526,142) as valid after a cleansing process, which results in 81.74%
(93.21%).

3.2 Stylised facts

In this section we discuss and provide the empirical evidence in the natural gas market. We
distinguish between stylised facts which correspond to prices and variances. When we refer
to prices, we refer either to spots or futures; whereas when we refer to variances, we also
mean volatilities. In the natural gas market, prices are mean-reverting, present seasonality
and eventually jumps; and variances are also seasonal and present an ILE. Additionally, they
exhibit USV and the Samuelson effect, the latter is described in Sect. 2.1. All these empirical
observations are incorporated in our model.

Seasonality is a well-known empirical feature for many commodities, specially for those
which depend on the natural cycle (weather or temperature) such as agriculturals and natural
gas; this seasonality affects the whole term-structure of prices and of variance (the latter can
be observed in Fig. 2b). Natural gas is driven by weather-related demand—prices rise up at
the beginning of cold months (autumn) and start declining at the beginning of warm ones
(spring); similarly occurs with volatilities. In a cross-sectional analysis, we can also find
seasonality when grouping contracts by maturity month (January, February, etc.); for prices
it can be seen in Fig. 1a; for volatilities in Fig. 1b. When grouping contracts by available
maturity (M2, M3, etc.), we find evidence of the Samuelson effect since long-dated futures
vary more than those close to maturity, as can be seen in Fig. 2a. In our model, we incorporate
seasonality in the variance by means of a deterministic θt .

A particular market exhibits USV when volatility risk cannot be fully hedged solely
using a portfolio of those assets. TS09 was the first stochastic volatility HJM-type for pricing
commodity derivatives, which remarks that the advantage of working in this particular setting
is that USV arises naturally. It is a phenomenon which they show is important in crude oil
derivatives market. In Table 8, the innovation of the volatility factor has very low correlation
with the innovation of the futures prices ρFv (for monthly returns, it is 16.5% for TS09, and
smaller than 10% for our model (both sub-specifications); for daily returns, it is around 10%
for both models), implying the large extent to which volatility is unspanned by the futures
contracts. As indicated in Chiarella et al. (2013), volatility risk of a volatility factor with null
correlation cannot be spanned by futures contracts. Therefore, we show it is also important
in the natural gas derivatives market.

In the commodity price literature, Nomikos and Andriosopoulos (2012), Kristoufek
(2014), and Baum et al. (2021) find an ILE or positive price-variance correlation coeffi-
cient ρSv or ρFv in the natural gas market (that is, volatility becomes higher when energy
returns increase). ILE arises because positive shocks have a much more pronounced effect
on futures dynamics than negative shocks. As pointed out in Benth and Vos (2013), it occurs
when the volatility tends to increase with the level of power prices because of the negative
relationship between inventories and prices: the smaller the inventories level, the higher the
price volatility.

San17 considers jumps an important feature of spot returns of the HH spot prices and
propose amodel withmean-reversion and stochastic jump intensity linked to the temperature.
According to BLW18, spikes are important for explaining forward prices in the UK natural
gas market. From Figs. 3 and 4 we can see that there are jumps in prices in both directions.
Baum et al. (2021) indicate that these shocks in prices, positive and negative, can be seen as
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a consequence of market deregulation or as a result of the financialisation of this particular
market.

Several papers explicitly account for a mean-reversion in the gas spot price; this is the
case of, e.g., EG98, San17 and BLW18. Alternatively, and since recent studies show that
there is no significant mean-reversion in oil prices, it is not needed to explicitly model it, as it
is the case of TS09. The model we propose in our original set-up indirectly accounts for this
mean-reversion through the parameter ρSy , negative and unitary in our case: it is achieved
when prices go up due to an increase in the cost of carry (decrease in the convenience yield),
as can be observed from Eq. (2.1). However, and since we are focused on futures prices under
the Q measure, this mean-reversion in spot prices is trivial due to the martingale condition.
In case one wanted to incorporate it in the model, one would have to seek for an additional
term which cancels out the futures’ dynamics drift term. Therefore, we do not incorporate
this feature in our model.

3.3 Parameters estimation

The inputs to the calibration algorithm consist of the underlying futures prices, option strikes
and discount factors. Additionally, and as a proxy for the instantaneous variance vt , we use
squared ATM volatilities which correspond to the shortest available maturity contract (in our
case, the contracts labeled M2 or M3)—that is, a unique variance value per observation date.
We use a least-squares fitting with the objective of minimising the root mean squared error
in volatilities RMSE(σ ). With the calibrated parameters and for comparative purposes, we
also report mean absolute errors MAE(σ ) in option volatilities.

We apply Feller’s condition to all models with stochastic volatility, that is, all models
considered except Mer76. Hes93 and Bat96 assume that σS = 1; following this assumption,
we also assume that σS = 1 in TS09-SV1 and our model in the original set-up, σS = 0 in
the alternative set-up. We calibrate the parameters for the models listed in Sect. 2.2.1 and for
our model.

We define our model dynamics directly under Q, therefore the parameter estimation is
performed under this measure. Subject to the original characterisation of the parameters,
the 10 parameters in our model are � ≡ {σS, α, γ, κ, aθ , bθ , cθ , ρSy, ρSv, ρyv}, whereas
conditional to the alternative set-up, the 8 parameters are � ≡ {α0, α, γ, κ, aθ , bθ , cθ , ρFv}.
In this work we study the empirical pricing performance of themodels using the least-squares
estimation method, under which the procedure to obtain the parameter estimates�� for every
observation date t is defined as

�� = argmin
�

MAEσ
t (�) = �

arg min

1

N

N∑

i=1

∣∣σ̂t,i (�) − σt,i
∣∣, (3.1)

�� = argmin
�

RMSEσ
t (�) = �

arg min

√√√√ 1

N

N∑

i=1

(
σ̂t,i (�) − σt,i

)2
, (3.2)

where σt,i is the observed market volatility of option i out of N used for the estimation
at time t , and σ̂t,i (�) is the theoretical model volatility based on a set of parameters.
We compute implied volatilities employing the standard model of Black (1976). Param-
eters are not allowed to take values that are inconsistent with the model framework.
Disregarding the seasonality, the following restrictions are applied for the original set-
up: σS = 1;α, γ, κ, σv > 0; ρSy, ρSv, ρyv ∈ (−1, 1); for the alternative set-up: α =
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Table 6 R2 analysis

(a) R2 per peak, years 2011–2020

R2 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 12/12

S 0.66% 0.22% 2.63% 5.47% 5.95% 3.55% 0.66% 0.22% 2.63% 5.95% 5.47% 3.55%

M(bθ = 0) 5.47% 5.95% 3.55% 0.66% 0.22% 2.63% 5.47% 5.95% 3.55% 0.22% 0.66% 2.63%

M 6.15% 6.15% 6.15% 6.15% 6.15% 6.15% 6.15% 6.15% 6.15% 6.15% 6.15% 6.15%

(b) R2 per year, peak t0 = 10/12

R2 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 All

S 0.08% 58.76% 7.13% 43.48% 10.09% 1.95% 38.21% 28.73% 79.12% 0.67% 5.95%

M(bθ = 0) 9.96% 14.60% 6.84% 12.66% 41.60% 38.19% 27.74% 9.42% 6.38% 23.00% 0.22%

M 10.01% 74.89% 14.16% 58.85% 52.51% 40.48% 66.93% 38.59% 84.85% 23.53% 6.15%

(c)R2 per peak, years 2011–2020—averaged values

R2 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 12/12

S 1.78% 23.49%49.85%54.40%32.79%6.43% 1.78% 23.49%49.85%54.40%32.79%6.43%

M(bθ = 0) 54.50%32.79%6.43% 1.78% 23.49%49.85%54.50%32.79%6.43% 1.78% 23.49%49.85%

M 56.28%56.28%56.28%56.28%56.28%56.28%56.28%56.28%56.28%56.28%56.28%56.82%

These tables present the values of R2 calculatedwhen regressing the series ofATMmarket variance vt (squared
of the quoted volatility) for the shortest futures contract available (in this case, M3) in terms of a cosinus and/or
sinus functions. Sub-table (a) considers the whole sample period 2011–2020 and checks the effect of each
month as peak of the volatility series. Sub-table (b) considers each year individually in the whole sample period
and checks the effect of t0 = 10/12 as peak of the series. Sub-table (c) considers the whole sample period
and all the contracts, and checks the effect of each month as peak of the series, on variance values averaged
by trade month. With M(bθ = 0) we refer to a new simple pattern based only on the sinus. In all sub-tables
and in bold we highlight those cases which present higher R2 values for the simple sinusoidal pattern S

Table 7 MAE(σ ) analysis

MAE(σ ) 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 12/12

Ø 4.34% 4.34% 4.34% 4.34% 4.34% 4.34% 4.34% 4.34% 4.34% 4.34% 4.34% 4.34%

S 4.35% 4.33% 4.28% 4.26% 4.29% 4.34% 4.33% 4.33% 4.29% 4.26% 4.29% 4.33%

M 4.28% 4.31% 4.28% 4.25% 4.25% 4.26% 4.28% 4.31% 4.28% 4.25% 4.25% 4.26%

This table presents MAE(σ ) errors performed by our model, calculated when regressing the series of ATM
market variance vt (squared of the quoted volatility) for the shortest futures contract available (in this case,
M3) in terms of a cosinus and/or sinus functions. We use the symbol Øto identify the lack of seasonality in the
variance vt , this is equivalent to a constant θt parameter, namely the TS09-SV1 model. In bold we highlight
those cases which present smaller error values for the simple sinusoidal pattern S

1;α0, γ, κ, σv > 0; ρFv ∈ (−1, 1). Furthermore, the parameters governing the seasonal-
ity are restricted to ensure their uniqueness: aθ > 0, aθ ≥ |bθ |, aθ ≥ |cθ | and t0 ∈ [0, 1[,
with January 1st representing the time origin. We define the values t0 can get discretising the
year on a monthly basis, that is, t0 = 1/12, 2/12, . . . , 12/12. Observe that the parameter t0
is not included in the vector � since its value is assigned in advanced. A detailed description
of how we decide the value of the peak t0 can be found in Sect. 4 (paragraph “Deciding the
Value for the Seasonal Peak”), together with Tables 6 and 7.
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3.3.1 Interpretation of the parameters’ estimates

In Table 8 we present the estimated parameters, errors and computation times we obtain
by solving Eqs. (3.1) and (3.2). We perform two sets of analyses, each of which considers
different frequency in the market data—monthly and daily. Below we interpret the values
obtained for the parameters’ estimates. In line with the stylised facts in the gas market
introduced in Sects. 1 and 3.2, we provide evidence that our model accounts for a series of
properties, such asmean-reversion and jumps in prices, seasonality in prices and in volatilities,
ILE and the Samuelson effect.

We observe that the estimated correlation coefficients between prices and volatilities, ρSv

and ρFv , for each model considered (except for Bat96) are positive and quite close between
them. As we have already discussed in Sect. 3.2, and in line with Kristoufek (2014) and Baum
et al. (2021), this represents the evidence of the ILE in the natural gas market. However, this
finding is in contrast with the distribution of futures returns in Figs. 3a, b, where we can
observe increasing volatilitites coinciding also with highly negative returns. We think that
since we find an ILE but also there are negative jumps in prices, there is a justification for
the incorporation of jumps in this model for this particular market.

We find that the correlations between the remaining pairs of factors ρSy and ρyv are
negative; the first equals the unity indicating a clear mean-reversion pattern in spot prices,
and the latter, which value is quite close to that of ρSy but of contrary sign, is also in line
with this mean-reversion.

With regards to the cost of carry volatility parameters in Eq. (2.4), we highlight that the
damping factor γ is of large magnitude in the original set-up (larger than 10), and almost zero
in the alternative one—the latter is in line with the results obtained in TS09. In the alternative
set-up, we fix the scaling factor α to one, in the alternative one the calibrated value is around
1.5.

In terms of the parameters associated to the variance factor, we obtain very large values
for the speed of mean-reversion κ in the original set up (around 18 for the simple, around 20
for the multiple pattern), whereas the value is around 1.5 in the alternative case. And on the
contrary, the long-run mean-reversion level θa is larger in the alternative set-up than in the
original one, showing smaller magnitude of oscillations around this level through the effect
of the new parameters θb and θc.

4 Results

In this section we implement our novel term-structure model SSYSV described in Sects. 2
and 2.3, which displays stochastic spot prices and forward cost of carry curves (equivalent to
stochastic futures prices) as well as SSV. For a panel of models, we calibrate their parameters
for pricing ATM and OTM options, spanning different strikes and maturities, over a time
period of exactly 10 years. The results are obtained using analytical expressions for the CF of
the futures log-prices. Following Carr and Madan (1999), we use Simpson’s rule to calculate
the integral in the pricing functions (2.37) and (2.38) numerically, for which we use Matlab’s
built-in function simps. We use a standard fourth order Runge-Kutta algorithm to solve
the system of ODEs (2.22)-(2.23), for which we use Matlab’s built-in function ode45. We
consider an integral step of 1/10 and an upper bound of 60, which implies 600 evaluation
points. We set the value of the control parameter α to 0.75. The experiments are implemented
in a HP laptop computer configured with an Intel Core i7 2.60 GHz 16 GB RAM and SSD
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hard drive, runningWindows 10 64 bits, Matlab version R2020b 64 bits andMicrosoft Office
365 64 bits.

Deciding the Value for the Seasonal Peak
We fix the value of the peak parameter t0 based on the evidence of the seasonal behaviour of
the HH natural gas futures’ prices. To correctly determine its value, we consider two different
alternatives which we describe in the following paragraph. For both alternatives, we find that
the peak corresponds to t0 = 10/12, that is, end of October.

One way consists of analysing the implied ATMBlack volatility data observing the whole
sample period. We then regress a sinusoidal function depending on the 12 values t0 can get
to determine which one delivers the highest R2. Due to the Samuelson effect (see Fig. 2a,
R2 = 97.19%), we consider it is enough to select one single contract to do so, M3,13 instead
of all the contracts taken together. A detailed description of this alternative can be found
in the paragraph below, together with the information displayed in Tables 6 and 7. Another
way consists of carrying out a similar exercise, this time averaging the contracts by trading
month; this results can be observed in Fig. 2b. Per each of the 12 values of t0, we calculate an
average of all available ATM volatilities; these values correspond to the blue dots. We then
regress a sinusoidal function seeking the value for t0 which delivers the highest R2; these
values correspond to the red line.

Table 6 presents the values for the coefficient R2 when regressing the market variance vt
in terms of three different sinusoidal patterns: S refers to the original simple pattern based
on the cosinus function; M(bθ = 0) refers to an alternative simple pattern based on the
sinus function; M refers to the original mixed pattern. Table 6a already considers the whole
period 2011–2020 and checks the effect in R2 for each value t0 can get. To calculate R2, we
consider all the implied variances for the contract M3 for the whole period. For S, the best
results are obtained when t0 = 10/12 (R2 = 5.95%) and, as we anticipated for M , all values
perform equally. There is a clear explanation for such a small value of R2 when considering
the whole time series, as we did not isolate other economic factors from the analysis such as
economic news or a trend in vt . Table 6b considers t0 = 10/12 as the peak and checks the
effect in R2 for each year in the sample period, and all the years taken together. To calculate
R2, we consider all the implied variances for the contract M3. The value for R2 is clearly
larger for M , which allows us to identify what years adjust best. Some years present a very
good fit, such as 2012 (R2 = 74.89%) and 2019 (R2 = 84.85%); other years display a very
poor performance, it is the case of 2011 (R2 = 10.01%) and 2013 (R2 = 14.16%). We think
that the reason behind these differences is that, in certain years and as previously indicated,
there are other facts which clearly affect the variance that are not taken into consideration.
Observe that taking all years together delivers the same values obtained in the previous sub-
table. Finally we carry out an additional analysis in Table 6c, where we average variances per
trading month, considering the whole sample period and all the contracts. We check again
the effect of each month as peak of the variance series, but following a different perspective.
Again, we find that the best performance in terms of R2 corresponds to October (54.40%
for S, 56.28% for M). In complement to this, in Fig. 2b we present these averaged values
and the correspondent regression on market variance, assuming a single harmonic pattern.
Using t0 = 10/12 and for the panel of models, the calibrated parameters and correspondent
error statistics can be found in Table 8. Additionally and following the results in Table 6b,
we perform an equivalent analysis based on the best two individual years (2019 and 2020)
for which results are reported in Table 9.

13 We have not chosen the shorter maturity contract M2 due to the lack of many ATM volatility values in the
sample period, especially during the first half of it.
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Table 7 presents the values for the error estimates MAE(σ ) in the case we perform the
calibration on each peak value, for our benchmark (Ø) and our model specifications (S, M).
Regarding our model and no matter what specification we pick, we can observe that the
smallest errors are obtained when we consider October the peak (4.26% and 4.25%, corre-
spondingly). Results in Table 7 are, then, in line with those in Table 6. These analyses are
performed using the original characterisation of the parameters. Similar results are obtained
using the alternative set-up.14

Interpreting the Pricing Errors
Based on t0 = 10/12 and for the period described in Sect. 3, our calibration results are
reported in Table 8. We perform two sets of analysis: Sub-table (a) considers monthly data,
Sub-table (b) focuses on daily data. For each model considered, we display the parameters’
estimates, the pricing errors MAE(σ ) and RMSE(σ ), and the computation times. Under the
original (alternative) set-up, the average MAE(σ ) for our model is 4.18% (4.25%), this is a
0.15% (0.09%) less than TS09-SV1,15 almost identical error values. Lastly, we carry out a
transverse analysis of the errors’ distribution between our model and TS09-SV1, seeking for
a pattern.

Next we compare model performances based on the monthly data set by means of the
MAE(σ ) estimates. In an aggregated level, the overperformance of our model compared to
the benchmark, displayed in Table 8, does not seem to be quite large. Tables 10 and 11 (12 and
13) follow the original (alternative) characterisation of the parameters and present the disag-
gregated structure of the errors. Sub-tables (a) display the errors using the benchmark model
TS09-SV1; Sub-tables (b) display the errors using our model, following sub-specifications
S and M respectively. Both models perform worst (that is, present larger errors) for shorter
maturity contracts, after which the model performance improves for both. Sub-tables (c)
display the difference in errors between both models, with larger values indicating that our
model outperforms the benchmark. In this sub-table we observe themost significant improve-
ment, specifically (i) for deeper OTM options, particularly puts in shorter maturity contracts
(i.e., M2 and M3) dealing with the original set-up; and (ii) for closer-to-the-ATM options,
particularly puts in the very short maturity contracts (i.e., M2) when we deal with the alter-
native set-up, where improvement reaches 3.5%. For longer maturity contracts, both models
display similar performance. The results we obtain for the alternative set-up deserve a closer
analysis, since the benefit of using our model is quite large, specially for shorter contracts.
We find that our model clearly outperforms the benchmark for short maturities, specially for
those options closer to the ATM level, reaching a 3.6% with the simple S pattern and a 3.5%
with the mixed M one. For M2 only, our model outperforms the benchmark on average in
1.3% and 1.9%, respectively.

In our panel we also include two very recent models on futures dynamics, one without
and one with seasonality in the variance, they are ST18 and ST21. In an aggregated level, the
improvement displayed in Table 8 does not seem to be quite large. In Table 14 we compare
the errors’ structure in ST21 with that in the alternative set-up version of our model SYSSVS ,
with identical seasonality specification (that is, the simple S one). We find that our model
clearly outperforms the benchmark for short maturities, specially for deep-OTM put options,
reaching a 3.1% for the shortest maturity contract (i.e., M2) and the deeper-OTM put options.
For M2 only and on average, our model outperforms ST21 in 0.8%.

14 The proof is available by direct request to the authors.
15 Our model consists of an extension of TS09-SV1, therefore we compare both performances.
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We had initially expected Hes93 and more clearly Mer76 to underperform compared to
our model and benchmark, given that jump models’ parameters are quite unstable.

5 Conclusions and further research

Volatility in many commodity markets follows a pronounced seasonal pattern while also fluc-
tuating stochastically. In this paper, we extend the stochastic volatility model of TS09-SV1
to allow volatility to vary with the seasonal cycle. We have developed a model that enables
deriving quasi-closed-form solutions for pricing options on futures prices. We empirically
study its performance in pricing HH natural gas standard European options. We estimate
our model using a cross-section of options prices considering a series of 10 years of futures
contracts. Results show that the SSV model we suggest increases the accuracy of pricing
options on HH natural gas. When our models follows an original set-up, accuracy increases
especially for shorter maturity contracts and deeper OTM options. We also propose an alter-
native set-up, whereby we obtain better pricing performance for shorter maturity contracts
and closer to the ATM options. An additional benefit of this alternative set-up consists of
improving the speed of calculation.

We conclude the paper by outlining areas for future research. Many commodity assets
exhibit jumps not only in prices but also in volatility, especially the natural gas. We identify
that the jump model in Bat96 slightly outperforms our model and its benchmark; we can
leverage this finding to study the inclusion of jumps in a future line of research. We also
consider modeling the jump intensity according to a seasonal function. Another research field
of interest are calendar spread options which are also common in energy markets, and their
pricing requires to know the expression followed by the joint CF for the two futures involved.
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A Appendix for proofs

A.1 Proof of Proposition 1

We find the expressions followed by the terms A(τ ) and B(τ ) similarly to Duffie et al.
(2000) and Collin-Dufresne and Goldstein (2002). The proof consists of showing that the
process ψ(t) ≡ ψ(iu; t, TOpt , T ) is a martingale under Q. To this end, we conjecture that
ψ(iu; t, TOpt , T ) is of the form in Eq. (2.21). From applying Itô’s Lemma for jump diffusion
processes to ψ(t), we obtain the following partial integro-differential equation (PIDE)

dψ(t)

ψ(t)
= −

(
∂A(TOpt − t)

∂(TOpt − t)
+ ∂B(TOpt − t)

∂(TOpt − t)
vt

)
dt + B(TOpt − t)dvt + iu

dF(t, T )

F(t, T )

+ 1

2
B2(TOpt − t)dv2t
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− 1

2
(u2 + iu)

(
dF(t, T )

F(t, T )

)2

+iuB(TOpt − t)dvt
d F(t, T )

F(t, T )
. (A.1)

For ψ(t) to be a martingale and with τ ≡ TOpt − t , it must hold that

1

dt
EQ
t

[
dψ(t)

ψ(t)

]
=

(
−∂A(τ )

∂τ
+ B(τ )κ θt

)
+

(
−∂B(τ )

∂τ
+ b0 + b1B(τ ) + b2B

2(τ )

)
vt = 0.

(A.2)

Subject to the initial condition B(0) = 0 and conditional to the original parameters set-up,
we have that

b0 = −1

2
(u2 + iu)

(
σ 2
S + σ 2

Y (t, T ) + 2ρSyσSσY (t, T )
)
, (A.3)

b1 = −κ + iuσv

(
ρSvσS + ρyvσY (t, T )

)
, (A.4)

and conditional to our alternative set-up (as defined in Sect. 2.1.2), we have that

b0 = −1

2
(u2 + iu)σ 2

F (t, T ), (A.5)

b1 = −κ + iuσvρFvσF (t, T ), (A.6)

and the constant term b2 being unconditional to the set-up

b2 = σ 2
v

2
. (A.7)

Since Eq. (A.2) holds for all t, f (t, T ) and vt then the terms in each parentheses must vanish,
reducing the problem to solving two much simpler ODEs

∂A(τ )

∂τ
= B(τ )κ θt , (A.8)

∂B(τ )

∂τ
= b0 + b1B(τ ) + b2B

2(τ ). (A.9)

Hence,ψ(t) is amartingale provided that A(τ ) and B(τ ) satisfy (A.8) and (A.9), respectively.
The expression followed by B(τ ) can be found inAppendix B.1. Depending on the functional
form followed by θt , the solution to A(τ ) can be found in Appendix A.2 (single sinusoidal
pattern) or A.3 (mixed sinusoidal pattern).

A.2 Proof of Proposition 2

With B(τ ) as in Eq. (2.25) and θt following the single sinusoidal pattern defined in expression
(2.5), Eq. (2.22) becomes16

∂A(τ )

∂τ
= B(τ )κ

(
aθ + bθ cos

(
2π(TOpt − τ − t0)

))

= 2κγ

σ 2
v

(
β + μz + z

g′(z)
g(z)

)(
aθ + bθ cos

(
2π(TOpt − τ − t0)

))

= m
(
A′
1(τ ) + A′

2(τ ) + A′
3(τ ) + A′

4(τ )
)
, (A.10)

16 Given that τ ≡ TOpt − t , we use the equality t − t0 = TOpt − τ − t0 in the expression followed by θt .
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with the constant m and each integrand being

m = 2κγ /σ 2
v ,

A′
1(τ ) = aθ

(
β + μz + z

g′(z)
g(z)

)
,

A′
2(τ ) = bθβ cos

(
2π(TOpt − τ − t0)

)
,

A′
3(τ ) = bθμ cos

(
2π(TOpt − τ − t0)

)
z,

A′
4(τ ) = bθ cos

(
2π(TOpt − τ − t0)

)
z
g′(z)
g(z)

,

(A.11)

the expressions followed by β,μ, z, g(z) and g′(z) can be found in Appendix B.1.
Equation (A.10) has a quasi-analytical solution which is given by17

A(τ ) = m
(
A1(τ ) + A2(τ ) + A3(τ ) + A4(τ ) + k3

)
. (A.12)

The proof for A1(τ ) is in Sitzia (2018), A2(τ ) is direct and A3(τ ) is calculated using inte-
gration by parts18

A1(τ ) = +aθ

(
βτ − 1

γ

(
μz + ln g(z)

)
)

, A1(0) = −aθ μ

γω
,

A2(τ ) = −bθ β ysτ
2π

, A2(0) = −bθ β ys0
2π

,

A3(τ ) = +bθ
μz

(
γ ycτ − 2π ysτ

)

4π2 + γ 2 , A3(0) = +bθμ
γ yc0 − 2π ys0
ω(4π2 + γ 2)

.

(A.13)

with ycτ , y
c
0, y

s
τ , y

s
0 and m as in (2.28). Since A′

4(τ ) is not integrable, we cannot directly
obtain an analytic expression for A4(τ ) but, alternatively, we can approximate A′

4(τ ) as a
polynomial around τ = 0 using a second order Taylor expansion.19 We compute the integral
of each polynomial and we get

A4,1(τ ) = +bθ τ
ω yc0g

′ (ω−1
)

, A4,1(0) = 0,

A4,2(τ ) = −bθ τ2

2ω

(
g′ (ω−1

)(
−2π ys0 + γ yc0

(
1 + k1n1 + k2n2

))+γ yc0
(
k1n3 + k2n4

))
, A4,1(0) = 0,

A4(τ ) = A4,1(τ ) + A4,2(τ ), A4(0) = 0,
(A.14)

with n1, n2, n3 and n4 as in (2.29).
In particular, if the initial condition is A(0) = 0 and given (2.26), we have that

k3 = −(A1(0) + A2(0) + A3(0) + A4(0)) = x0 + xs0 y
s
0 + xc0 y

c
0, (A.15)

where
x0 = aθ μ

γω
,

xs0 = bθ

(
β

2π
+ 2πμ

ω(4π2 + γ 2)

)
,

xc0 = −bθ μγ

ω(4π2 + γ 2)
.

(A.16)

17 We say that it is quasi-analytical due to expression followed by the term A4(τ ).
18 The proof is available by direct request to the authors.
19 This closed-form expression is found thanks to Matlab’s Symbolic Maths Toobox.

123



Annals of Operations Research (2024) 336:1089–1131 1127

A.3 Proof of Proposition 3

With B(τ ) as in Eq. (2.25) and θt following the multiple sinusoidal pattern defined in expres-
sion (2.6), Eq. (2.22) becomes (see footnote 16)

∂A(τ )

∂τ
= B(τ )κ

(
aθ + bθ cos

(
2π(TOpt − τ − t0)

)+cθ sin
(
2π(TOpt − τ − t0)

)
)

= 2κγ

σ 2
v

(
β + μz + z

g′(z)
g(z)

)(
aθ + bθ cos

(
2π(TOpt − τ − t0)

)+cθ sin
(
2π(TOpt − τ − t0)

)
)

= m
(
A′
1(τ ) + A′

2(τ ) + A′
3(τ ) + A′

4(τ ) + A′
5(τ ) + A′

6(τ ) + A′
7(τ )

)
, (A.17)

the expressions followed by β,μ, z, g(z) and g′(z) can be found in Appendix B.1, each
integrand being

A′
5(τ ) = cθ sin

(
2π(TOpt − τ − t0)

)
β,

A′
6(τ ) = cθ sin

(
2π(TOpt − τ − t0)

)
μz,

A′
7(τ ) = cθ sin

(
2π(TOpt − τ − t0)

)
z
g′(z)
g(z)

.

(A.18)

Equation (A.17) has a quasi-analytical solution which is given by20

A(τ ) = m
(
A1(τ ) + A2(τ ) + A3(τ ) + A4(τ ) + A5(τ ) + A6(τ ) + A7(τ ) + k3

)
. (A.19)

The expressions followed by A′
1(τ )-A′

4(τ ) and A1(τ )-A4(τ ) are the same as in Appendix
A.2, A5(τ ) is direct and A6(τ ) is calculated using integration by parts (see footnote 18)

A5(τ ) = cθ β ycτ
2π , A5(0) = cθ β yc0

2π ,

A6(τ ) = cθ μz
(
2π ysτ +γ ycτ

)

4π2+γ 2 , A6(0) = cθ μ(2π yc0+γ ys0)
ω(4π2+γ 2)

,
(A.20)

with ycτ , y
c
0, y

s
τ , y

s
0 and m as in expressions (2.28). Similarly to what occurred with A′

4(τ ),
A′
7(τ ) is not integrable, and we approximate it using a second order Taylor expansion around

τ = 0 (see footnote 19).We compute the integral of each polynomial andwe get the following
expressions

A7,1(τ ) = +cθ
τ

ω
ys0g

′ (ω−1
)

, A7,1(0) = 0,

A7,2(τ ) = −cθ
τ2

2ω

(
g′ (ω−1

) (
2π yc0 + γ ys0

(
1 + k1n1 + k2n2

))+γ yS0
(
k1n3 + k2n4

))
, A7,2(0) = 0,

A7(τ ) = A7,1(τ ) + A7,2(τ ), A7(0) = 0,
(A.21)

with n1, n2, n3 and n4 as in (2.29).
In particular, if the initial condition is A(0) = 0 and given (A.19), we have that

k3 = −(A1(0) + A2(0) + A3(0) + A4(0) + A5(0) + A6(0) + A7(0))

= x0 + xs0 y
s
0 + xc0 y

c
0, (A.22)

20 We say that it is quasi-analytical due to expressions followed by the terms A4(τ ) and A7(τ ).
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where
x0 = aθ μ

γω
,

xs0 = −cθ μ γ

ω(4π2 + γ 2)
+ bθ

(
β

2π
+ 2πμ

ω(4π2 + γ 2)

)
,

xc0 = −bθ μ γ

ω(4π2 + γ 2)
+ cθ

(
β

2π
+ 2πμ

ω(4π2 + γ 2)

)
,

(A.23)

and with A1(0)-A4(0) as in Appendix A.2.

B Appendix for analytic expressions

B.1 Analytic expression for B(�)

Equation (2.23) has an analytical solution which is given by

B(τ ) = 2γ

σ 2
v

(
β + μz + z

g′(z)
g(z)

)
, (B.1)

where the function g(z) is a linear combination of Kummer’s (M) and Tricomi’s (U) hyper-
geometric functions, whilst k1 and k2 are constants determined by the initial conditions of
the differential equation

g(z) = k1M(a, b, z) + k2U (a, b, z), (B.2)

g′(z) = a

b
k1M(a + 1, b + 1, z) − ak2U (a + 1, b + 1, z), (B.3)

with

a = −
(
μb + βc1

ω

γ
+ d1

ω

γ 2

)
, μ = −1

2

(
1 + c1ω

γ

)
, (B.4)

b = 1 + 2β + c0
γ

, β =
−c0 ±

√
c20 − 4d0

2γ
, (B.5)

ω = ± γ
√
c21 − 4d2

, z = e−γ τ

ω
. (B.6)

From the pair of possible values for β and ω, we choose ± = + for β and ± = − for ω.
In particular, if the initial condition is B(0) = 0, we have the following constants

k1 =
a
U (a+1,b+1, 1

ω
)

U (a,b, 1
ω

)
− βω − μ

a
b M(a + 1, b + 1, 1

ω
) + aM(a, b, 1

ω
)
U (a+1,b+1, 1

ω
)

U (a,b, 1
ω

)

, (B.7)

k2 = 1 − k1M(a, b, 1
ω
)

U (a, b, 1
ω
)

. (B.8)

We apply the change of variable B(τ ) = − y′(τ )
y(τ )b2

to equation (2.23) and we get

(
y′(τ )

y(τ )

)2 1

b2
− y′′(τ )

y(τ )

1

b2
= b0 + y′(τ )

y(τ )

b1
b2

+
(
y′(τ )

y(τ )

)2 1

b2
, (B.9)
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which leads to the following homogeneous second order ODE with no constant coefficients

y′′(τ ) − (
c0 + c1e

−γ τ
)
y′(τ ) + (

d0 + d1e
−γ τ + d2e

−2γ τ
)
y(τ ) = 0. (B.10)

Conditional to the original (alternative) characterisation,21 b0, b1 and b2 are as in the left
(right) column in expressions (2.24).22 Conditional to the original set-up, the coefficients in
g(z) and g′(z) are

c0 = −κ + iuσv

(
σSρSv + ρyv

α
γ

)
, d0 = −(u2 + iu)

q2
2

(
σ 2
S + α2

γ 2 + 2ρSyσS
α
γ

)
,

c1 = −iuσvρyv
α
γ
e−γ (T−TOpt ), d1 = q2(u2 + iu) α

γ

(
α
γ

+ ρSyσS

)
e−γ (T−TOpt ),

d2 = −(u2 + iu)
q2
2

α2

γ 2 e
−2γ (T−TOpt ).

(B.11)
Alternatively, and conditional to the alternative set-up, the coefficients in g(z) and g′(z) are

c0 = −κ + iuσvρFv
α
γ
, d0 = −(u2 + iu)

q2
2

α2

γ 2 ,

c1 = −iuσvρFv
α
γ
e−γ (T−TOpt ), d1 = q2(u2 + iu) α2

γ 2 e
−γ (T−TOpt ),

d2 = −(u2 + iu)
q2
2

α2

γ 2 e
−2γ (T−TOpt ).

(B.12)

In the case of the original set-up, the proof is in Sitzia (2018). In the alternative set-up, we
have followed the steps described in that work to obtain the correspondent expressions.18

B.2 Solutions to ST18 and ST21

For both models, the CF in expression (2.20) is given by the Fourier transform in equation
(2.21). In ST18 and ST21, B(τ ) solves the ODE in (2.23), with b0, b1 and b2 as in expressions
(2.24), right column (alternative set-up). Following the methodology described in Sitzia
(2018), we apply the change of variable B(τ ) = − y′(τ )

y(τ )b2
to equation (2.23), so that it

becomes
(
− y′(τ )

y(τ )b2

)′ = b0(τ ) + b1(τ )
(
− y′(τ )

y(τ )b2

)
+b2

(
− y′(τ )

y(τ )b2

)2
. (B.13)

Grouping constant parameters and exponentials, we get to the following second order ODE23

y′′(τ ) − (
c0 + c1(τ )αe−λτ

)
y′(τ ) + c2(τ )

(
αe−λτ

)2
y(τ ) = 0, (B.14)

with coefficients
c0 = −κ,

c1 = −iuσvρFvαe
−λ(T−TOpt ),

c2 = −σ 2
v (u2 + iu)

4

(
αe−λ(T−TOpt )

)2
.

(B.15)

Nowwe apply a last substitution using some parametersω, β andμwhichwill be determined
in order to simplify the above equation into a confluent hypergeometric equation g(z). These

21 As defined in Sect. 2.1.2.
22 Observe that the expression followed by b2 is unconditional to the set-up.
23 See that c2 is d2 in Sitzia (2018).
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parameters are given by

μ = −1

2

(
1 + c1ω

λ

)
, β = −c0

λ
,

ω = γ
√
c21 − 4d2

, z = e−λτ

ω
.

(B.16)

The function g(z) is a linear combination ofKummer’s (M) andTricomi’s (U) hypergeometric
functions

g(z) = k1M(a, b, z) + k2U (a, b, z), (B.17)

g′(z) = a

b
k1M(a + 1, b + 1, z) − ak2U (a + 1, b + 1, z), (B.18)

with parameters

a = −μb + ω
c0c1
2λ

, b = 1 − β. (B.19)

The expressions followed by k1, k2 and B(τ ) are the same as in TS09-SV1 and our model,
they can be found in Appendix B.1. In ST18, A(τ ) solves the same ODE as in TS09-SV1.
The integral is direct, its analytical solution and k3 are given by equations (2.34). In ST21,
A(τ ) solves the same ODE (2.22) as in our model. While A(τ ) depends on the specification
of θt , in this work we only focus on their sinusoidal pattern, defined in equation (2.5). The
integral of A(τ ) is not direct any more.We provide it in Proposition 2 with proof in Appendix
A.2.
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