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Abstract
Firms may misreport income or fail to comply with environmental regulations. This study
contributes to the growing literature that analyzes dynamic history-dependent compliance
monitoring, under which penalties or monitoring frequency are selected on the basis of
recent compliance history. The current study develops methods for evaluating and com-
paring explicit solutions under given monitoring costs and income distributions, using a
commonplace utility-penalty scenario under which firms never comply fully with regula-
tions if statically monitored (regardless of their income distribution), but find it to their
benefit, if dynamically monitored, to comply fully when their income is sufficiently high. In
most examples tried, dynamic monitoring is superior even when constrained to monitor all
firms at rates below the optimal static rate. Themodel is applied to actual IRS 2010 tax-report
monitoring and compliance data partitioned by income bracket. This allows, in particular, to
deduce degrees of risk aversion.

Keywords Tax evasion · Compliance monitoring · CARA utility · Environmental regulation

1 Introduction

Importers must declare the contents of their containers and pay customs accordingly. Firms
are required to declare annual income and pay the appropriate tax. Polluting firms are sub-
ject to compliance regulations that impose taxes and technology expenditures. Mass transit
passengers are obligated to pay the required fare. Evasion and non-compliance may arise in
these situations and many others. Compliance monitoring authorities maintain profiling data
on firms, which may be used to determine the frequency and intensity of auditing. These
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profiles tend to include static information on the firm, but may also summarize the extent of
compliance of the firm in recent history. The current study contributes to the literature on the
merits of this dynamic, history-dependent monitoring strategy (Landsberger & Meilijson,
1982; Greenberg, 1984; Friesen, 2003; Solan & Zhao, 2021).

Static models of monitoring may suggest setting the static auditing probability p by max-
imizing E[Fiscal Revenue] − cp, where c > 0 is the authority’s auditing cost per monitored
firm. Alternatively, firmsmay be classified in terms of their compliance record, and the sever-
ity of violations may determine auditing probabilities and penalties in a dynamic manner.
Under the model to be adopted in the current study, initiated by Landsberger and Meilijson
(1982) (hereafter L&M), firms are to be dichotomously identified as type-1 or type-2 depend-
ing on full or partial compliance in the last auditing episode, a variant of what Friesen (2003)
terms “non-target” and “target” groups. Type-1 firms are audited with probability p1 and
type-2 firms with higher probability p2, and the label is re-defined at every auditing episode.
Unlike the one-period nature of expected utility under static monitoring, expected utility
under dynamic monitoring incorporates a discounted present value of future income. The
main issue under study is the extent to which future welfare considerations could motivate
improved firm compliance, without increasing the fiscal monitoring budget. Specifically, the
following research questions are addressed:

• To what extent is the advantage of dynamic over static monitoring manifested for non-
vanishing static auditing probability?

• What is the optimal compliance response of agents to dynamic monitoring?
• Can dynamic monitoring assist the authority in improving compliance behaviour and

increasing average revenue while conducting fewer inspections?

These and other pertinent questions are answered in full, by constructing a game theoretic
model between the authority and the firms under “laboratory conditions” - a particular type
of penalty function (proportional underpayment penalty) employed by the authority and a
particular family of concave utility functions (Constant Absolute Risk Aversion, CARA) to
model the risk attitude of the firms.

The proportional underpayment penalty is commonly used in practice, for example by the
U.S. IRS and U.S. Customs and Border Protection. Specifically, the regulations of the latter
state the following: “if first offense, where there is knowledge of the declaration requirements,
the undeclared articles are discovered by the Customs officers, and there are no mitigating or
aggravating factors: Three times duty...” USCBP (2004). Such penalties have also been con-
sidered in the literature for environmental applications, as in Oestreich (2015) and Oestreich
(2017). Also, to enforce the Clean Air Act Amendments, the regulatory actions of the U.S.
Environmental Protection Agency (EPA) are a function of the plant’s history of past actions
Blundell et al. (2020). Specifically, the EPA chooses dynamic enforcement because it avoids
over-fining firms before they have the chance to fix violations. It uses the threat of high fines
as an incentive for firms to make costly investments in pollution abatement.

The CARA assumption, widely applied in practice, is not too restrictive: it is reasonable to
assume that the economic attitude toward compliance with tax or environmental regulations
is relatively consistent in a homogeneous population of firms (that is, firms characterized
by a relatively narrow wealth range); in other words, log(U ′(x)) may be approximated by a
linear function, leading to constant absolute risk aversion. The penalty is B times the evaded
amount, and the utility function isU (x) = −e−γ x . The pair of parameters B > 1 and γ > 0
provides enough structure to develop policies in depth, optimizing monitoring rates in the
static and dynamic cases.
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It will be seen that under static monitoring, the firms never comply fully, and evade by an
amount that depends on the parameters of themodel (monitoring probability p, Arrow&Pratt
index of risk aversion γ (Arrow 1970, Pratt 1964), and penalty load B), but is independent
of the tax level and mechanism, as well as of the gross income and the net full-compliance
income R and its distribution. In contrast, the best response of expected-utility maximizing
firms to dynamic monitoring is to comply fully when R exceeds a certain threshold, which is
higher for type-1 than for type-2 firms. These two thresholds are sensitive to the distribution
of R and to the discount factor β as well as to other parameters of the model. It will be shown
that, generally, the expected revenue of the authority under dynamic monitoring exceeds that
under static monitoring with a smaller budget.

To support these theoretical statements, the model is applied to the monitoring and com-
pliance data in the IRS 2010 tax-report. These data allow estimation of the risk-aversion
parameters for the various homogeneous income brackets in the report. In their empirical
studies, Dubin andWilde (1988) reported, for each of six audit classes (low, middle and high
income ; business and non-business), the audit rate for the previous year and the degree of
compliance in the current year. These authors showed that while audit rates increase with
income bracket (2.5%, 4%, 10%), the degree of compliance is highest in the middle-income
bracket, and is higher for non-business than business firms throughout the income range.
This indicates that indices of risk aversion differ between audit classes. The heterogeneity of
these indices is also reported by Babcock et al. (1993). The IRS 2010 report IRS (2011) plays
a significant role, revealing the variability of the index of risk aversion across tax brackets.

As will be illustrated via the high-risk exponential loss distribution, there is no bound to
the advantage of dynamic over static monitoring when either the Arrow & Pratt index of
risk aversion (Arrow 1970, Pratt 1964) or the discount factor are allowed to vary. However,
as illustrated via the exponential gain distribution, there may be an advantage of dynamic
over static monitoring even when firms are subjected to moderate risk. Surprisingly, dynamic
monitoring can allow the authority to improve compliance behaviour and increase average
revenue with truly less inspections. That is, in some cases, there exist pairs (p1, p2) such that
0 ≤ p1 < p2 ≤ p, where p is the optimal static monitoring fraction, with smaller revenue
loss for the authority than in the case of static p. This will be illustrated using IRS data (IRS,
2011). The implication is that auditing can in some sense be counter-productive: e.g., instead
of auditing 5%of all firms (the static case), the authority can improve compliance and increase
its revenue by implementing the policy of reducing the auditing fraction to 2.5%, for firms
that were fully compliant on their last auditing occasion, while the auditing fraction for the
other firms remains the same.

The remainder of the paper is organized as follows. Following a literature review, Sect. 3
introduces CARA utility functions and the proportional underpayment penalty, the optimal
firm’s compliance strategy and the optimal static rate of monitoring by the authority, which
curbs evasion, illustrated on the IRS 2010 compliance data. Section 4 extends the analysis
to dynamic monitoring, where both the distribution of income and the firm’s discount factor
(ignored under static monitoring) play a role. Section 5 presents numerical examples com-
paring static and dynamic monitoring. Section 6 extends the analysis to an environmental
setting, where it is assumed that the evading firm engenders additional societal costs that
affect the authority’s loss function.
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2 Literature review

How can a regulatory agency achieve acceptable levels of compliance with minimum cost
of enforcement? This challenge confronts regulators in areas as diverse as tax collection,
policing, customs and immigration, workplace health and safety, and natural resource man-
agement. Economists beginning with Becker (1968) have attempted to answer this question
using the rational choice framework. Individuals facing regulation will comply when the
expected benefit of doing so exceeds the expected cost, and enforcement mechanisms must
be set accordingly. Tominimize enforcement costs, economists have proposed simple random
audit regimes.

In current practice, tax authorities such as the IRS may determine whom to audit strate-
gically, such that the audit probability depends also on the past behavior of the taxpayer and
the tax authority (Cronshaw & Alm, 1995; Alm, 2019). Conditional audit regimes exploit
observable signals about firms or individuals. For example, a conditional future audit rule
may stipulate that taxpayers found to be noncompliant may be audited more frequently in
the future. L&M were the first to study a dynamic two-state policy under which firms that
discount future utility exponentially in time with discount factor β ∈ (0, 1) are classified
into type-1 and type-2 firms depending on whether they fully complied with regulations at
their previous monitoring episode. Type-i firms are sampled with probability pi , and the
pair p1, p2 (with p1 ≤ p2) is chosen optimally from among those pairs that yield a steady-
state monitoring probability equal to the value of p under static monitoring. Classification
is dynamic in the sense that it is updated at every monitoring episode. The main finding of
L&M is that as p ↓ 0, ignoring the sampling cost, the authority’s revenue under dynamic
monitoring is at least double that under static monitoring. The dynamic compliance moni-
toring model implemented in the current study goes beyond vanishing monitoring rates by
effectively taking monitoring costs into account.

Greenberg (1984) extended the two-state model of L&M by adding a third state, called
the penalty state, and showed that the three-state scheme is optimal for infinitely patient
players. Experimental methods used by Alm et al. (1993) and by Rivas (1997) revealed that
such history-dependent monitoring schemes are more effective than random audit selection
rules at deterring noncompliance. Recently, Shimshack andWard (2022) studied the optimal
punishment mechanism of two types of heterogeneous entities, frequent and infrequent vio-
lators, and showed empirically the relative importance of factors driving optimal decisions
(using data from a Clean Water Act regulatory setting).

While the above research focused on tax-evasion monitoring, dynamic auditing has also
been considered in the context of environmental protection, where agencies need to inspect
firms who generate air or water pollution; see for example Harrington (1988); Harford and
Harrington (1991); Harford (1991); Friesen (2003); Eckert (2004); Weikard and Dellink
(2014); Cason et al. (2021); Wu et al. (2022).

The literature on monitoring policies with respect to environment pollution has also con-
sidered the (competitive) interaction between firms subjected to targeted inspections. Colson
andMenapace (2012) showed that the authority can utilize the added information frommoni-
toring multiple agents to induce improved environmental compliance through the creation of
strategic interactions among firms. Weikard and Dellink (2014) studied the terms for estab-
lishing a stable international climate agreement by developing a game model where a single
agreement is proposed that can either be signed or not. The authors suggested a transfer
scheme specifically designed to increase the incentive to join the coalition. Oestreich (2017)
considered competition among firms, allowing the probability of being audited to depend
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on the relative difference between the firm’s emissions report and a reference value for the
reported emissions of other firms. So, the optimal audit mechanism is a contest that exploits
the strategic interdependence between firms. Recently, Wu et al. (2022) considered a com-
petitive firm that faces a pollution tax and may evade taxes by concealing its actual pollution
emissions. The authors developed a Nash bargaining model in order to study the effect of
wage bargaining on the environmental effectiveness of tax enforcement.

Studies on effective enforcement andmonitoring systems have employed a game theoretic
formulation, in the form of an inspection game (originally proposed by Dresher (1962) and
treated in greater generality by Maschler (1966)). Arguedas et al. (2012) studied a firm’s
compliance decisions and the inspection agency’smonitoring strategy bymeans of a signaling
game that incorporates dynamic enforcement and learning. Deutsch et al. (2019) considered
a two-stage game in which the inspector first commits to a global monitoring technology,
and then, in the second stage, an n-firm inspection game is played. Analysis of numerical
examples yielded the counterintuitive result that monitoring may encourage pollution.Varas
et al. (2020) provided insight into the effectiveness of surprise versus announced inspections.
The authors developed a dynamic model of inspections to determine the principal’s optimal
dynamic monitoring scheme. They found that unannounced inspections provided strong
incentives for compliance while announced inspections were more effective for gathering
information about the agent’s type.

Solan and Zhao (2021) studied a discounted repeated inspection game with two agents
and one principal. The goal of the principal, who is assumed to have a Stackelberg leader
advantage, is to minimize the discounted number of violations under the limitation of being
able to inspect up to one agent in each timeperiod.WhereasL&Monly considered compliance
behaviour at the previous auditing episode, these authors took into account the observed agent
actions (either adherence or violation) at all previous inspection points up to the current time
period. Optimal inspection strategies of the principal are described in two phases, the second
being a cyclical rewarding scheme in which the principal inspects with variable inspection
probabilities (some of them zero) that recur with some period d .

Most previous research assumes risk-neutral agents. Exceptions are Ravikumar and Zhang
(2012), Goumagias et al. (2018) (and to some extent, L&M). The current study hinges on
risk aversion and assumes that firms (agents) have constant absolute risk-averse preferences.
Empirical estimation of risk-aversion parameters based on tax evasion was carried out by
Goumagias et al. (2018), who applied a neural network methodology to Greek tax data as a
case study. In the current paper, based on IRS 2010 data, coefficients of absolute and relative
risk aversion are estimated, and their impact on the decisions of the agents is analyzed.

This paper is in line with the stochastic operations research (OR) literature in that it offers
explicit, detailed, mathematically derived solutions to the problem of dynamic monitoring,
under “laboratory” conditions (CARA utility functions, proportional underpayment penalty).
ThisORapproach complements the economic theory outlook of L&Mand the game theoretic
outlook of Solan and Zhao (2021). The model can be applied both to tax-evasion monitoring,
where firms may misreport income, and to an environmental setting where the evading firm
may engender additional societal costs.

3 The non-compliance andmonitoringmodel

A firm with taxable income Z has to pay t(Z) in taxes, so that the after-tax income under full
compliance is R = Z − t(Z). Under non-compliance, the firm misreports its taxable value
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with the result that the actual after-tax income, prior to a possible audit, is R + D where D
is the evaded amount. If monitoring is applied and D > 0, the authority uncovers the value
of (Z , D) and imposes on the firm a penalty or fine f = f (D, Z) > D that brings the net
income to R + D − f .

It is assumed throughout that time is discrete, in units that may be called “years”, although
in the case of an importer, these units may actually correspond to shipments or physical
containers. Taxable amounts, compliance behaviour, monitoring and penalties refer to each
year separately. Firms are modeled as risk averse with (concave) utility function U . The
expected utility of a firm is, in principle, a function of the taxable amounts Z , the full-
compliance net income R, the evaded amount D and the audit probability p,

G(R, D, p, Z) = U (R + D)(1 − p) +U (R + D − f (D, Z))p (1)

In the current study, compared with previous work that generally assumes risk neutrality,
firms are risk averse with CARA utility function U (x) = −e−γ x , where γ is the Arrow &
Pratt index of absolute risk aversion. The evasion penalty is f (D, Z) = BD with penalty
load B > 1. Expected utility is thus freed from dependence on Z .

Parenthetically, if the proportional underpayment penalty is applied to risk-neutral firms,
then unless pB ≥ 1 (inwhich case full compliance is dominant), expected-utilitymaximizing
firms should evade by infinite amounts.Whether B is 1.5, 2 or 3, sampling the large proportion
p = 1

B is too costly in practice. Hence, analysis of the commonly applied proportional
underpayment penalty relies on risk aversion by firms.

3.1 The authority’s loss under static monitoring

The authority’s loss (with respect to full compliance) from a firm that chooses to evade by
amount D and is audited with probability p is

L(D, p) = cp + (1 − ξ)(mD − p f (D)) (2)

where c > 0 is the cost of monitoring a firm, ξ is the proportion of firms that comply
unconditionally with the regulations, and m ≥ 1 is a multiplier that reflects the monetary
cost to the authority or society as a result of the firm’s evasion: the excess proportion m − 1
corresponds to the additional cost to society associated with the evaded amount D. The loss
excluding the cost of monitoring is given by ̂L(D, p) = L(D, p) − cp.

While m = 1 is typical for income tax and customs duties, m > 1 could be more
appropriate for emissions taxes: due to the “tragedy of the commons” and externalities (Mas-
Colell et al., 1995, Chapter 11), the firm’s evaded amount inflicts additional damages on the
environment and society. Although this additional cost may not be linear in real settings, the
linear relationship assumed by this model captures parsimoniously the co-monotonicity of D
and the cost to society. The objective of the authority is tominimize the sum of themonitoring
cost and the expected unpaid tax. The authority is naturally expected to foot at least some of
the bill for the damage inflicted on society; for example, the authority’s national healthcare
and/or health insurance program would incur the cost of illnesses caused by pollution.

It is reasonable to take the societal expenditure or loss into account in the design of
monitoring strategies and penalties, by properly calibrating the multiplier m. Yet, to keep
mathematical derivations as transparent as possible, this multiplier will be set at m = 1 and
the unconditional full-compliance proportion will be set at ξ = 0 for the remainder of the
paper, except in a special section at the end dedicated to the case m > 1. A non-zero ξ can
be treated as though ξ = 0 by recalibrating c to the higher cost c

1−ξ
.
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Fig. 1 The Markov chain in
state-dependent
monitoring (Landsberger &
Meilijson, 1982) 1 2

p1P (R /∈ R1)

p2P (R ∈ R2)

1 − p1P (R /∈ R1) 1 − p2P (R ∈ R2)

In the same vein, a possible generalization to heterogeneously risk-averse firms (with a
distribution of γ values in the population of firms), will not be considered, and the authority’s
monitoring policy will be designed with respect to fixed γ . Firms differ in terms of their
after-tax income, shipment values or emissions, and in theory, the input data should include
a probability model for the variability in this parameter, in particular the distribution of the
full-compliance after-tax income R. In the absence of such information, particular Gaussian
or exponential full-compliance net income scenarios will be used as illustrations.

3.2 Introduction to dynamic state-dependent compliancemonitoring

Firms are labeled as either type-1 or type-2 every time the firm is monitored. Type-i firms are
monitored with frequency pi , satisfying 0 < p1 ≤ p2 ≤ 1

B . The full-compliance net income
R is assumed to be i.i.d. across firms and years, with some distribution assumed to be common
knowledge. Labels and monitoring frequencies are assumed to be common knowledge too.
Two eventsR1 andR2 are singled out, and type-i firms comply fully with regulations during
years with R ∈ Ri , underpaying taxes otherwise. The state of the firm is a Markov chain
with states 1 and 2 and transition matrix with diagonal entries 1 − p1 + p1P(R ∈ R1) and
1 − p2 + p2(1 − P(R ∈ R2)), as depicted in Fig. 1. The stationary probability μ1 of state
1 is

μ1 = p2P(R ∈ R2)

p2P(R ∈ R2) + p1(1 − P(R ∈ R1))
(3)

and the mean monitoring proportion in the dynamic model is p̄ = μ1 p1 + (1 − μ1)p2.
It is assumed that the firms know the monitoring rates p1 and p2, and determine the

two events Ri as a best response to (p1, p2) in the sense of the maximal discounted sum
of expected utilities across time. As will be seen, under CARA utility and a proportional
underpayment penalty, firms monitored at rate pi that choose to underpay taxes (an event
with probability 1− P(R ∈ Ri )) underpay by an amount D (see (8)) that depends on pi , B
and γ , but is independent of R, whether monitoring is static or dynamic. Hence, the authority
is indifferent to the choice of event Ri with given probability P(R ∈ Ri ). The choice of
events is a prerogative of the firm. It will be seen that it is in the firm’s interest to comply
fully in high-income years; i.e.,Ri is the P(R ∈ Ri )-upper quantile of the distribution of R
(possibly randomized if R has atoms with positive probability).

The authority determines the pair (p1, p2) under this assumption, taking into account
monitoring costs, so as to minimize expected total loss (underpayment plus monitoring cost
minus collected penalties),

L(p1, p2) = μ1(D(p1)P(R1 /∈ R1) − p1( f (D(p1)P(R1 /∈ R1)) − c))

+ (1 − μ1)(D(p2)P(R2 /∈ R2) − p2(E[ f (D(p2)P(R2 /∈ R2)) − c))
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= μ1(D(p1)P(R1 /∈ R1) − p1 f (D(p1)P(R1 /∈ R1)))

+ (1 − μ1)(D(p2)P(R2 /∈ R2) − p2 f (D(p2)P(R2 /∈ R2))) + p̄c (4)

which generalizes the expected loss for static monitoring (p1 = p2 = p) shown in (2) to the
case of dynamic monitoring (p1 < p2).

As the static loss function (2), the loss function in (4) can also be extended to model
societal costs using the parameter m, which will be considered in Sect. 6. First, the best
response of firms to a given monitoring rate is analyzed, the results of which are relevant to
both the static and dynamic models. Subsequently, static monitoring will be studied in detail,
followed by dynamic monitoring.

3.3 The response of firms tomonitoring rate p

Evidently, for a given p, G(R, D, p) in (1) is maximized by D that satisfies

f ′
D(D, ·) = 1

p
− 1 − p

p

[

1 − U ′(R + D)

U ′(R + D − f (D, ·))
]

<
1

p
(5)

As explained earlier, for proportional underpayment penalty f (D) = BD with penalty load
B > 1, evading can only occur if p < 1

B . The ratio
U ′(R+D)

U ′(R+D− f (D,·)) can be approximated as

elog(U
′(R+D))−log(U ′(R+D− f (D,·))) ≈ e

− f (D,·) −U ′′(R+D− f (D,·))
U ′(R+D− f (D,·))

= e− f (D,·)IAP (R+D− f (D,·)) (6)

Thus, firms do not necessarily comply with regulations, and as expected, the extent of non-
compliance is dictated by the Arrow-Pratt (Arrow 1970, Pratt 1964) index of absolute risk
aversion IAP (·) = −U ′′(·)

U ′(·) .

Absolute and relative indices of risk aversion. It seems to be challenging to pinpoint IAP (·),
as can be evidenced from the high variability reported by Babcock et al. (1993). The index
may vary from firm to firm and even from application to application, since the rationale in
Sect. 1 for its constancy is only local. A discussion on whether the absolute risk aversion
(ARA) index IAP (x) or the relative risk aversion (RRA) index x IAP (x) should be considered
globally constant, is deferred to Sect. 3.5. Throughout this paper, a constant ARA is denoted
by γ . A constant RRA is denoted by λ in Sect. 3.5, in the context of the IRS 2010 data (IRS,
2011).

CARA utility and proportional underpayment penalty. For CARA (constant absolute risk-
averse) firms, with utility function U (x) = −e−γ x defined by the Arrow-Pratt index of risk
aversion γ > 0, approximation (6) is an equality, and the firm’s expected utility may be
expressed in terms of a function S(p, D), which evidently does not depend on R

G(R, D, p) = U (R + D)(1 − p) +U (R + D − f (D))p

= −e−γ R
(

(1 − p)e−γ D + pe−γ (D− f (D))
)

= −e−γ RS(p, D) (7)

Thus, a best-response D for given (fixed) p is a minimizer of S(p, ·), which does not depend
on R.

Full compliancewould occur only if p ≥ 1
f ′(0) . For lowermonitoring rates, firms adhering

to the expected-utility maximization paradigm never comply, and evade by a fixed amount
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D. Under the assumed penalty scenario f (D) = BD with B > 1, for p < p̂ ≡ 1
B , S(p, ·)

is convex and the evaded amount D that maximizes (7) can be expressed in closed form as

D(p) = 1

Bγ
log

( 1 − p

(B − 1)p

)

(8)

Since γ and B are fixed, the dependence of the function D(p) on these two parameters is
left tacit. The minimal expected utility multiplier

S(p, D(p)) =
(

p

p̂

) p̂

(
1 − p

1 − p̂
)1− p̂ = e−KLD( p̂,p) (9)

depends only on B and p, free of γ , expressed in terms of the Kullback-Leibler divergence
KLD(q, p) of the dichotomous distributionwith probabilities (p, 1− p) from the distribution
with probabilities (q, 1 − q), which shows the increasing function S of p to be zero at zero
and one at p̂.

D (in (8)) and S (in (9)) clearly define the roles of risk aversion, penalty and monitoring
frequency in determining underpayment. Static compliance monitoring shows its pitfalls:
there is no “tomorrow” and there is no role for the distribution of R. As will be shown
in the next section, a properly designed history-dependent compliance monitoring policy
takes advantage of these extra features and can motivate the firm to drastically improve its
compliance behavior.

To crisply see the effect of history-dependent (p1, p2) compliance monitoring, let R ≡ 0
be deterministic. If type-1 firms underpay taxes by D(p1) and type-2 firms comply fully
rather than underpaying taxes by D(p2), firms will comply fully a fraction p1

p1+p2
of the time

(the stationary probability of being a type-2 firm).
To achieve this, the authority should compute pairs p1 < p2 that equate the expected

utilities under (p1, p2)-dynamic and p2-static monitoring, satisfying

S(p1, D(p1))p2 + p1
p1 + p2

= S(p2, D(p2))

and then apply pairs with a slightly smaller p1 and slightly larger p2.

3.4 The authority’s optimal choice of p in static monitoring

The response of CARAfirms to proportional penalty is to underpay taxes by the fixed amount
D(p) given by (8). The working assumptions of CARA utility function with given γ and
proportional penalty with globally-set B are meant only as a tractable mathematical basis
for analysis, not as real-world knowledge of the authority about the firms’ behavior. As
such, these assumptions lead to the clear-cut solution presented by the next theorem, easy to
interpret and to serve as benchmark for the performance assessment of dynamic monitoring.

Theorem 1 Expected-utility optimizing C ARA firms with Arrow & Pratt index of risk aver-
sion γ , statically monitored at rate p and subjected to evasion penalty load B > 1, underpay

taxes by the amount D(p) = 1
Bγ

log
(

1−p
(B−1)p

)

given by (8). The authority sets themonitoring

rate p = p∗, the unique root of the equation

cγ − 1 − pB

B(1 − p)p
− log

( 1 − p

(B − 1)p

)

= 0
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Proof The authority’s revenue loss with respect to full compliance by firms, given by (8), is

L(p) = L(D(p), p) = cp + D(p) − pBD(p)

Since D(·, γ, B) is a decreasing function of p, and p should not exceed p̂ = 1
B , differentiation

yields

L′(p) = c − BD(p) + D′(p)(1 − pB) < c − BD(p) (10)

As previously observed, optimal monitoring expenditure exceeds collected penalties. Since
firms observe the authority’s monitoring rate p and respond by evading in the amount D, (8)
can be substituted into (10) and the optimal value p∗ of p must be a solution of

γL′(p) = cγ − 1 − pB

B(1 − p)p
− log

( 1 − p

(B − 1)p

)

= 0 (11)

The function L′ is continuous on the interval (0, 1/B) and its derivative
L′′(p) = (1/p + B − 2)/(γ B(1 − p)2 p) is positive throughout this interval for all B > 1,
implying that L is strictly convex and that γL′ increases in p. Since it increases from −∞
to γ c > 0, (0, 1/B) must contain the root of (11), the unique minimizer of L(p). ��
In numerical experiments, the unique solution p∗ of of (11), referred to in Theorem 1, is
determined by straightforward bisection over the interval (0, 1/B).

3.5 Empirical illustration: The IRS 2010 compliance data

The US Internal Revenue Service divides firms into disjoint income brackets, and for each
bracket, reports the audit proportion p and data from which it is possible to extract the mean
underpayment D of firms that did not fully comply with regulations. For a menu of three
penalty loads B (1.75, 2, 2.25), Table 1 displays, by tax bracket and penalty load, the values
of p and D, as well as the Arrow-Pratt index of ARA γ derived from (8), assuming that D
maximizes the expected CARA utility in response to static audit proportion p. The table also
displays the Arrow-Pratt index of relative risk aversion RRA λ = wγ . The central wealth
level w of the i’th income bracket has been (reasonably but arbitrarily) taken as the left
endpoint of the bracket divided by 1+ i−2

20 , to represent net income as minimal gross income
gradually adjusted from an excess of 5% to a deduction of 35%.

Since the dimension of γ is 1
money while λ is dimension-free, the relative stability of λ

across income brackets lends credence to the analysis. However, the values of λ, in the tens,
are higher than the single-digit values commonly reported for investors. This suggests that
either firms’ aversion to evasion risk is stronger than their standard risk aversion, or that the
actual value of D is higher than the value that is derived from these data, or a combination
of the two.

Let D be the underpayment dichotomous random variable with values D and −(B −
1)D. Observe that (8), (9) and (11) remain unchanged if the utility function U (R + D) =
−e−γ (R+D) is generalized to a utility function of the form U (R,D) = −V (R)e−γD . In
particular, V (R) could be e−γ1R , where the ARA index γ1 conforms with more standard risk
aversion levels.

Looking ahead and providing motivation for the following sections, Table 1 also displays
the response of firms to a reduction by a factor of two in the monitoring frequency of type-1
firms (those found to comply fully on their last audit) relative to the audit rate under static
monitoring. The immediate observation is that static monitoring can be counter-productive:
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Table 2 Analysis of the IRS 2010 data: Evaded amount D and static sampling frequency p for each income
bracket.

Income D p γ λ ̂L(p) ̂L(p1, p2) p̄ μ1 P(R1) P(R2)

(K$) (K$) (%) ×104 (K$) (K$) (%) (%) (%) (%)

25–50 4.9 0.61 6.279 16.5 4.8 4.8 0.59 4.6 1.1 2.4

50–75 4.8 0.69 6.216 31.3 4.8 4.5 0.63 16.2 5.7 9.1

75–100 5.8 0.65 5.241 37.4 5.7 5.2 0.59 20.7 8.0 12.0

100–200 7.5 0.85 3.823 35.0 7.4 6.5 0.72 30.0 13.4 18.6

200–500 11.0 2.28 2.094 36.6 10.6 8.3 1.76 45.7 24.4 31.8

500–1000 21.2 3.62 0.963 40.1 19.8 15.4 2.73 49.0 26.6 35.3

1000–5000 32.3 8.19 0.479 38.3 27.6 16.7 5.30 70.4 50.3 59.1

5000–10000 90.1 13.55 0.136 52.2 68.7 49.6 8.95 67.9 44.9 58.2

10000+ 320.3 21.50 0.028 20.9 199.8 218.3 15.16 59.0 21.6 56.3

The loss functions ̂L exclude the monitoring cost. ARA γ and RRA λ have been derived for penalty load
B = 1.75. Type-2 firms are dynamically sampled with frequency p2 = p, type-1 (which comprise μ1 of
firms in the given tax bracket) with p1 = p

2 . The standard deviation σ of income has been set to 4% of the
midpoint of each income bracket (other than the top bracket where the midpoint is taken as 12000), and the
discount factor β is close to 1

a judicious reduction in monitoring to part of the firms can improve compliance. Sampling
costs have been ignored, but these have certainly been reduced by dynamic monitoring.
The table reports for each income bracket and a menu of underpayment penalty factors B:
the authority’s loss (D minus collected penalties) under static and dynamic monitoring; the
steady-state proportion μ1 of type-1 firms; the proportions of type-1 and type-2 firms that
fully comply with regulations in a typical year. Table 1 also displays the mean dynamic
sampling proportion p̄ = p(1 − μ1

2 ), which falls somewhere between p
2 and p depending

on the effectiveness of dynamic auditing.
A salient feature displayed in Table 1 is that under static monitoring, the authority’s loss

decreases as B increases, as this loss seems to be mostly due to the effect of the higher
penalty BD, while in contrast, under dynamic monitoring, the authority’s loss increases with
B, as the loss is more greatly affected by the increased risk aversion of firms when the same
underpayment D must be explained by a smaller value of B. Another salient feature shown
in Table 1 is that the advantage of dynamic over static monitoring, in particular the degree
of compliance, appears to increase with income. Given that Table 1 provides clear evidence
that the findings are qualitatively insensitive to the choice of B, B will henceforth be set to
1.75.

The IRS 2010 data provide no indication of the distribution of the full-compliance net
income R. Table 1 assumes that R has a shifted exponential distribution with standard devia-
tion σ that is 20% of the mid income of the bracket. Table 2 is the same as Table 1, except that
σ has been set to 4% of the mid income of the bracket. Besides illustrating the influence of
income volatility on the advantage of dynamic over static auditing, Table 2 can serve another
role: keeping σ as 20% of the mid income as in Table 1, Table 2 effectively demonstrates
the consequences of allowing the standard market-economy ARA, γ1, to be one fifth of the
evasion ARA, γ , derived from the IRS 2010 static auditing data.
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4 Dynamic, history-dependent compliancemonitoring

This section analyzes in depth the application of a history-dependent model for compli-
ance monitoring to CARA firms subjected to proportional underpayment penalties. Under
this model, firms are monitored with probability p1 > 0 if they complied fully at the last
monitoring episode (type-1 firms) and with probability p2 ≥ p1 if they were found to be
non-compliant at the previous audit (type-2 firms).
Time-additive reward utility model.Theworking paradigm for time aggregation to be adhered
to is the neoclassical growth model by Ramsey (1928), Cass (1965) and Koopmans (1965),
under which the social planner maximizes a social welfare function that consists of the
aggregated stream of exponentially discounted instantaneous utilities from consumption. In
our setting, for a discount factor 0 < β < 1, the long-run utility of the firm is the infinite
sum of period-by-period utilities, tapered geometrically with weights βn . The firm’s current
decision affects not only current welfare, but future benefits as well.

The above presentation of static, random compliance monitoring did not make explicit
reference to the distribution of the full-compliance net income R, although this distribution
acts tacitly in the background. In the dynamic case, it is essential to consider the discount
factor β and this distribution as integral parts of the model.

Delinquent firms underpay taxes by the evaded amount D defined in (8), and are fined
according to penalty load B. LetRi be the set of R values for which type-i firms fully comply
(possibly empty, possibly the whole space), and let Vi be their overall discounted reward
utility. Then the objective function of a type-i firm is the sum of three terms: current welfare
when complying fully, current welfare when failing to comply fully, and total discounted
future welfare as a result of current compliance behavior.

Wi (R) = U (R)IRi (R) + ((1 − pi )U (R + D) + piU (R + D − f (D)))(1 − IRi (R))

+ β((1 − pi )Vi + pi (IRi V1 + (1 − IRi )V2)) (12)

It is clear from (12) that if a firm fails to comply, the evaded amount D will be D(pi ),
the same as in static random compliance monitoring with p = pi and the applicable B. The
rewards Vi (for i=1,2) are the expectations of Wi (R),

Vi = E[U (R)IRi (R)] + (1 − pi )E[U (R + D(pi ))(1 − IRi (R))]
+pi E[U (R + D(pi ) − f (D(pi )))(1 − IRi (R))] + β((1 − pi )Vi

+pi (P(R ∈ Ri )V1 + (1 − P(R ∈ Ri ))V2)) (13)

For i = 1, 2, let

Ai = E[U (R)IRi (R)] + (1 − pi )E[U (R + D(pi ))(1 − IRi (R))]
+pi E[U (R + D(pi ) − f (D(pi )))(1 − IRi (R))] (14)

The Bellman equation (13) can be rewritten as

V1 − V2 = A1 − A2

1 − β + β(p1(1 − P(R ∈ R1)) + p2P(R ∈ R2))
(15)

In particular, for the 1-optimal version, substituting β = 1,

V1 − V2 = A1 − A2

p1(1 − P(R ∈ R1)) + p2P(R ∈ R2)
(16)

but formal analysis is performed for β < 1.
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Equation (15) is the starting point of a multi-state, history-dependent compliance moni-
toring study. As was seen to follow from (12), if a firm fails to comply, the evaded amount is
D(pi ), the same as in static random compliance monitoring with p = pi and the applicable
B. However, the decision as to whether to comply is affected by history. The expression
Wi (R) in (12) is higher under compliance than under failure to comply if and only if its value
of R ∈ Ri is higher than in the complement. That is,

Ri = {y|(1 − pi )U (y + D(pi )) + piU (y + D(pi ) − f (D(pi )))−U (y)<β pi (V1−V2)}
(17)

which, for the generalized CARA utility −e−γ1 ye−γD (defined in the second paragraph of
Sect. 3.5) and proportional penalty B = 1/q , takes the form

Ri = {y|1 −
(

pi
q

)q

(
1 − pi
1 − q

)1−q < β pi (V1 − V2)e
γ1 y} (18)

Without much loss of generality, henceforth γ1 is taken to be γ .
Since V1 > V2 when dynamic auditing is an improvement over static auditing, it is clear

that each Ri is a right ray (Ri ,∞), with left endpoint

Ri = 1

γ
log

(

1 − e−KLD( 1
B ,pi )

β pi (V1 − V2)

)

(19)

Iteratively applying (15) corresponds to the policy improvement method of discounted
infinite-horizon dynamic programming (DP) (Bertsekas, 2005). Since the state payoff func-
tions Ai are bounded, and V1 > V2, the control function I (R ∈ Ri ) is well defined, and
standard theory of convergence for policy improvement should yield the result that the iter-
ations (15) converge to the unique fixed point (Bertsekas, 2005). The proof of the following
theoremcontains a direct formal argument based onmore elementary finite-action, finite-state
discounted DP (see further comments in Appendix A).

Theorem 2 Consider firms with Arrow & Pratt index of risk aversion γ that discount future
income with discount factor β, penalized if under-reporting income with penalty load B > 1.
Assume that their income is independent and identically distributed over time periods, with
E[e−γ R] < ∞. Firms dynamically monitored at rates p1 and p2 comply with regulations
in periods with full-compliance net income R exceeding the respective thresholds R1 and
R2 given by (19). For lower values of R, these firms do not comply and underpay taxes by
the respective constant amounts D(p1) and D(p2) given by (8), as in static monitoring. The
authority sets the monitoring rates p1 and p2 that maximize the objective function (4) subject
to policy constraints.

Proof Derivation (19) proves the stated property that for each type, there is a threshold income
such that agents fully comply if the full-compliance net income R exceeds this threshold;
otherwise, they evade taxes to the same extent as when subject to (static) random sampling
at the corresponding rate.

A fixed-point method for determining the firms’ response R1, R2 for an arbitrary pair
p1 < p2 is now apparent: a value DV1 = V1 − V2 substituted into (18) determines R1 and
R2, i.e., R1 and R2. This determines uniquely the expressions A1 and A2 in (14), and then
also DV2 = V1−V2 in (15). If themapping T that maps DV1 to DV2 has a unique fixed point,
this fixed point identifies the optimum. As shown next, the mapping T is a β-contraction, so
its iterates converge to the unique fixed point from an arbitrary initial value of DV1. Note
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first that the mapping T can be considered continuous. That is, even if the distribution of R
has atoms, randomization can be incorporated in (18) and (19) as quantile thresholds instead
of R-thresholds. If p1 < p2 and DV1 = 0, then DV2 > 0 = DV1. E.g., the function T
has T (0) > 0. On the other hand, T is bounded from above (so T (DV ) < DV for DV
large enough): since utility was chosen to be negative (U (x) = −e−γ x ), V1 − V2 < −V2 <
1

1−β
E[e−γ R]eγ D(p2). Hence, T has fixed points. The question is whether T has a unique fixed

point. Assuming the contrary, take an arbitrary finite set R of potential Ri values, including
the three or four values corresponding to two different fixed points of T , to be the set of
actions. There are two states, type-1 and type-2. This is a discounted dynamic programming
(DDP) problem with finitely many actions and states. The mapping from the pair (V1, V2) of
DV1 to the pair (V1, V2) of DV2 (allowing only actions Ri inR) corresponds to the Howard
improvement routine. By standard DDP arguments (Blackwell, 1962, 1965), this mapping is
a β-contraction, which, by the Banach fixed point theorem on L∞, has a unique fixed point
that attracts from every initial V1, V2. Hence, there cannot exist two different fixed points of
the transformation T .

Once the firm’s behavior has been determined for an arbitrary pair (p1, p2), these two
compliance monitoring probabilities are determined by the authority in terms of the mon-
itoring unit cost c (defined in (11)). To this end, recall (see paragraph before (3)) that the
“type” of a firm is a two-state Markov chain with stationary probability μ1 for type-1 firms,
as shown in expression (3). Since the pertinent regret revenue of the authority is p f (D)− D,
the authority loss L(p1, p2) to be minimized over the pairs (p1, p2) is given by expression
(4). This function may be minimized over all triples (p1, p2, B1) or over those constrained
by p2 ≤ p∗, B1 = B, etc. ��

Remark on indices. Indices (15) and (16) are reminiscent of the Gittins index (1989). The
1-optimal version yields a maintenance policy that is optimal in a long-run, steady-state
sense, a case that may be fitting for environmental compliance monitoring, where checkups
are carried out more frequently. It is certainly appropriate for customs duties, where the time
scale of a “year” corresponds to the authority’s monitoring of a single container imported
by the agent. Needless to say, the closer β is to 1, the greater the advantage of history-
dependent compliance monitoring over static random sampling, but for robustness purposes,
it is desirable that the mere presence of β > 0 should induce compliant behaviour, not only
values very close to 1. As will be seen, this is indeed the case.

Heterogeneous degrees of risk aversion. The Arrow-Pratt index of risk aversion may vary
from firm to firm in the population, and the expectations in (4) may be thought of as taken
with respect to the distribution of γ in the population and the conditional distribution of R
given γ , as derived above. The terms D(pi ) tacitly depend on γ . Roughly speaking, the
harmonic mean of γ can be considered to represent the global Arrow-Pratt index.

In the experimental section that follows, the unconstrained and p∗-constrained cases are
explored, corresponding, respectively, to the following optimal authority losses:

L∗ = min {L(p1, p2) | 0 ≤ p1 ≤ p2 ≤ min{1, 1/B} } and

L̄∗ = min
{L(p1, p2)

∣

∣ 0 ≤ p1 ≤ p2 ≤ p∗ }

.

To illustrate the theorem, explicit forms for the probabilities P(Ri > yi ) and expectations
E[U (Ri + b)IRi>yi ] are provided for three different settings.
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Table 3 The IRS 2010 data analyzed for B = 1.75 and σ set to 20% of the mid-income level in the top half
of the table and 4% in the bottom half.

Income ̂L p∗
1 p∗

2 p̄ c μ1 P(R1) P(R2)

(K$) (K$) (%) (%) (%) (K$) (%) (%) (%)

25–50 3.2 0.33 1.00 0.56 157.3 66.1 33.7 43.2

50–75 2.6 0.34 1.07 0.50 141.3 77.4 48.4 56.6

75–100 2.9 0.31 1.00 0.44 176.2 80.4 52.7 60.4

100–200 3.4 0.36 1.19 0.49 188.0 84.2 59.2 66.2

200–500 4.3 0.78 2.48 0.99 136.7 87.8 67.4 73.6

500–1000 8.3 1.17 3.58 1.46 196.4 87.8 68.3 74.7

1000–5000 9.4 1.57 5.14 1.79 192.4 93.6 81.0 85.2

5000–10000 32.7 2.99 8.71 3.48 431.7 91.4 77.2 82.7

10000+ 166.1 8.25 17.73 10.24 1308.3 79.0 59.1 71.4

25–50 4.5 0.23 0.82 0.69 157.3 21.6 1.8 7.6

50–75 4.2 0.33 1.03 0.77 141.3 36.9 7.7 17.0

75–100 4.9 0.32 1.01 0.73 176.2 41.0 10.4 20.0

100–200 6.0 0.45 1.33 0.90 188.0 48.9 16.2 27.0

200–500 7.7 1.22 3.31 2.06 136.7 59.8 27.0 39.9

500–1000 14.4 1.92 4.97 3.10 196.4 61.2 28.9 43.2

1000–5000 17.5 3.50 8.69 4.75 192.4 75.8 50.6 62.5

5000–10000 51.6 6.24 13.75 8.44 431.7 70.7 44.9 60.3

10000+ 186.5 12.80 22.84 17.35 1308.3 54.6 22.3 52.4

This table supplements Tables 1 and 2 by showing the optimal dynamic monitoring policy (p∗
1 , p∗

2) that
minimizesL. Here, the cost of monitoring c is inferred from applying the static model (which does not depend
on σ ) to the IRS data

Illustration 1: The Gaussian full-compliance net income. If R = σW where
W ∼ N (0, 1) with survival function �∗, then P(R > y) = �∗( y

σ
) and

E[U (R + b)IR>y] = −E[e−γ (R+b) IR>y]
= −e−γ b+ γ 2σ2

2 �∗( y
σ

+ γ σ) (20)

Illustration 2: The shifted exponential gain full-compliance net income. R = σW where
W is exponentially distributed with mean 1. For y ≥ 0, P(R > y) = e− y

σ yields directly
P(R ∈ Ri ) = P(R > yi ). The expectations needed for the evaluation of Ai are of the form

E[U (R + b)IR>y] = −E[e−γ (R+b) IR>y]
= − 1

1 + γ σ
e−γ be−(1+γ σ)

y
σ (21)

where y ≥ 0 may be y1 or y2 and b may be D(pi , γ ) (see (8)) or −(B − 1)D(pi , γ ).
Illustration 3: The shifted exponential loss full-compliance net income. R = −σW , whereW
is exponentially distributed with mean 1 and γ σ < 1. Thus, for y ≤ 0, P(R > y) = 1− e

y
σ
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Table 4 Analysis of the IRS
2010 data: The loss functions
L = ̂L + cp (in K$) include the
monitoring costs c shown in
Table 3).

Income ̂L(
p
2 , p) + cp ̂L(p1, p2) + cp cp

̂L(p1,p2)+cp

25–50 4.21 4.08 0.22

50–75 3.35 3.31 0.21

75–100 3.76 3.68 0.21

100–200 4.40 4.32 0.21

200–500 5.75 5.65 0.24

500–1000 11.48 11.17 0.26

1000–5000 15.12 12.84 0.27

5000–10000 54.15 47.72 0.31

10000+ 304.77 300.07 0.45

The optimal loss (taken from Table 3) is only slightly lower than the loss
under ( p

2 , p), taken from Table 1. Monitoring costs constitute more than
20% of the total loss, and this percentage increases with income bracket

yields directly P(R ∈ Ri ) = P(R > yi ).

E[U (R + b)IR>y] = −E[e−γ (R+b) IR>y]
= − 1

1 − γ σ
e−γ b(1 − e(1−γ σ)

y
σ ) (22)
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Fig. 2 Exponential loss distribution with σ = 1. Penalty load B = 3, Arrow-Pratt index γ = 95% of 1
σ and

discount factor β = 0.95. All graphs are functions of the monitoring cost c, on the horizontal axis, ranging
from 0 to 20σ . Graph (d) includes the fraction μ1 of type-1 firms
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Fig. 3 Exponential loss distribution with σ = 1. Penalty load B = 3, Arrow-Pratt index γ = 95% of 1
σ and

discount factor β = 0.95. Dynamic monitoring is constrained such that the static monitoring proportion is not
exceeded

5 Numerical results

Determining L∗ and L̄∗ involves optimizing the non-smooth function L over a relatively
simple and bounded two-dimensional set. This optimization problem has been solved by
a global derivative-free pattern search method (Conn et al., 2009). Experiments have used
Matlab’s global optimization toolbox implementation of a mesh adaptive direct search algo-
rithm (Audet et al., 2006), which appears to be quite a robust and efficient method for
computing L∗ and L̄∗ in practice.

Tables 1, 2 illustrate the advantage of dynamic over staticmonitoring (ignoringmonitoring
costs) by means of actual IRS data (IRS, 2011), even without optimizing the monitoring rates
p1 and p2, but just taking p1 = p

2 and p2 = p. Dynamic losses ̂L(p1, p2) are consistently
smaller than static losses ̂L(p) (with one exception at the highest income bracket with a small
difference in losses).

The top half of Table 3 shows that the further reduction in the authority’s loss does not
appear to be overwhelming when optimizing p1 and p2 using the same data as Table 1 under
the assumption of an exponential gain distribution of income. The comparison requires some
further explanation. The sampling cost c has been determined for each income bracket from
expression (11) such that the static monitoring rate p would be optimal. Table 4 displays the
total authority loss ̂L(p1, p2) + cp for the sub-optimal dynamic pair (

p
2 , p) of Table 1 and

the optimal pair (p1, p2) of Table 3.
We now examine more closely the effects of different choices for the income distribution,

including exponential loss and exponential gain. We conduct a more extensive sensitivity
analysis that includes a wide range of choices for the difficult-to-estimate monitoring cost c.
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Fig. 4 Exponential loss distribution with σ = 1. Penalty load B = 3, Arrow-Pratt index γ = 99.5% of 1
σ and

discount factor β = 0.999. The unconstrained and constrained solutions are identical

Exponential loss distribution. Figure 2 (unconstrained) and Fig. 3 (0 ≤ p1 ≤ p2 ≤ p)
display the sensitivity analysis under a risky shifted exponential loss distribution (whatever
the shift may be) with standard deviation (without loss of generality) σ = 1, discount factor
95% and Arrow-Pratt index γ such that γ σ = 0.95 (for γ σ ≥ 1, the expected utility is
−∞). The advantage of dynamic over static monitoring is apparent: for small c, dynamic
monitoring tends to yield a smaller authority loss with a much smaller auditing budget. As
c increases, static auditing becomes ineffective in the sense that the auditing budget remains
bounded and even decreases, while the authority loss increases at high rate. The advantage
of constrained dynamic monitoring over static monitoring prevails throughout the range, and
for c ≤ 2.167, the constrained and unconstrained solutions are the same.

Figure 4 corresponds to the samemodel as Fig. 2, except that γ σ = 0.995 and β = 0.999,
meaning that the net income is very risky and the firms place equal importance on the present
and the future. The purpose of this graph is to demonstrate the possibility that dynamic
monitoring rates can be substantially lower than their static counterpart, throughout the cost
range, when no constraints are applied. The graph also exhibits the relative insensitivity of
the firms to their degree of risk aversion under static monitoring, compared to the decisive
effect of this parameter under dynamic monitoring.

It is possible to set parameters (e.g., discount factor β = 0.9 and Arrow-Pratt index
γ = 0.8) for which the unconstrained dynamic policy constitutes an improvement over static
monitoring throughout the cost range, while, for the same parameters, the best constrained
policy coincides with static monitoring for high c.

There is no bound to the advantage of dynamic over static monitoring. The values of the
expected authority loss and expected misreporting (evaded amount) in Fig. 4 under static
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Fig. 5 Exponential gain distribution with σ = 1. Penalty load B = 3, Arrow-Pratt index γ = 10 × 1
σ and

discount factor β = 0.85. Dynamic monitoring is unconstrained

monitoring are observed to be approximately 8 times those under dynamic monitoring. By
letting γ increase from 0.995 to 0.996, 0.997, 0.998, the corresponding improvement ratios
become approximately 9, 11, 14, respectively. The squares of the values of the expected
authority loss and average evaded amount decrease roughly linearly in γ , reaching 0 when
approaching the critical value γ = 1, where firms give up on evading.

Exponential gain distribution.This a very safe distribution, with a stop-loss bound. To induce
some reaction to risk, firms will be assumed to have an Arrow-Pratt index 10+ times that
of the firms subjected to exponential loss. The feature chosen for illustration is the non-
monotonicity of the monitoring rate as a function of cost, which requires the constraint
p2 ≤ p to be abolished. Figure 5 shows that p2 < p under low cost, but p2 > p for
higher cost, in a peculiar way. Figure 6 shows the effect of the constraint p2 ≤ p. The
compliance proportions R1, R2 and the type-1 fraction μ1 change rather drastically, but the
overall authority loss and evaded amounts are practically unchanged.

Finally, Figure 7 illustrates that the unconstrained optimal monitoring policy when firms
are less concerned about the future can be quite drastic. The parameters are the same as in
Fig. 5 except that the discount factor β has been reduced from 0.85 to 0.65. For mid to high
costs, there are almost no type-2 firms, but the few that exist are monitored heavily.

Dynamic monitoring seems very robust. As observed in all the above examples, very
different policies lead to practically the same authority loss and firms’ evaded amounts, both
of which are considerably lower than in the case of static monitoring.
The following section illustrates the extension of the model to the case where m > 1.
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Fig. 6 Exponential gain distribution with σ = 1. Penalty load B = 3, Arrow-Pratt index γ = 10 × 1
σ and

discount factor β = 0.85. Dynamic monitoring is constrained such that the static monitoring proportion is not
exceeded

6 Extending themodel to environmental regulation and taxation

As described in Sect. 1 and 3, a key feature of our model in the case of environmental
applications is a nonzero payoff structure, such that obtained by setting m > 1 in (2).

The firm’s best-response evaded amount given monitoring rate p, D(p), is unchanged by
the value of m and is given by (8). Then, for the static model, the authority’s revenue loss
incorporating m and D(p) is

L(p) = L(D(p), p) = cp + mD(p) − pBD(p)

and its derivative is

L′(p) = c − BD(p) + D′(p)(m − pB).

Substituting (8) into the above equation, the optimal value p∗ of p is 1/B if
c ≤ m−1

γ (1−1/B)
, and otherwise it is the unique root of the equation

L′(p) = c − m − pB

γ B(1 − p)p
− 1

γ
log

( 1 − p

(B − 1)p

)

= 0 (23)

Similar to the case wherem = 1, the optimal p can then be determined using bisection. In
the dynamic model, the authority loss, which generalizes (4) for
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Fig. 7 Exponential gain distribution with σ = 1. Penalty load B = 3, Arrow-Pratt index γ = 10 × 1
σ and

discount factor β = 0.65. Dynamic monitoring is unconstrained

m ≥ 1, is

L(p1, p2) = μ1(mE[D(p1)] − p1(E[ f (D(p1))] − c))

+ (1 − μ1)(mE[D(p2)]) − p2(E[ f (D(p2))] − c)

The functions E[D(·, γ, B)] and E[ f (D(·, γ, B))], and their evaluation using fixed-point
iterations, are unchanged relative to the model withm = 1 that is detailed in Sect. 4. Figure 8
displays the authority losses, evaded amounts, monitoring fractions and compliance propor-
tions for values of the monitoring cost c ranging from 0 to 20σ . It becomes evident from this
figure, when compared with Fig. 2, that asm increases, the advantage of dynamic monitoring
becomes even more evident, not only in terms of the difference in the social and authority
losses, but, in particular, with regard to the difference in the monitoring rates. It appears
that, on average, dynamic monitoring involves much less monitoring than that required for
smaller values of m, such as m = 1 in Fig. 2. Figure 8 shows a somewhat unexpected result
for the static model, different from the analysis for m = 1, where, under low monitoring
costs c and relatively high monitoring rates p, no evasion takes place. In Fig. 8, the evaded
amount is initially zero in the static model, and remains less than in the dynamic model up to
approximately c = 6, beyond which the evaded amount continues to increase rapidly under
static monitoring, while the corresponding increase under dynamic monitoring is much more
gradual.
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Fig. 8 Exponential loss distribution with σ = 1. Penalty load B = 3, evaded amount multiplier m = 4,
Arrow-Pratt index γ = 95% of 1

σ and discount factor β = 0.95. All graphs are functions of the monitoring
cost c, ranging from 0 to 20σ

7 Conclusions

Tax or environmental control authorities can classify firms into type-1 or type-2 depending
on recent tax or technology-expenditure compliance behavior. This classification gives rise
to dynamic monitoring policies, with state-dependent monitoring frequency. Assuming a
risk-neutral authority that applies a penalty proportional to the evaded amount, and CARA
(constant absolute risk averse) firms, the effects of such a dynamic policy have been analyzed
and compared to those of a static one, where firms are audited with fixed frequency.

It has been shown that, under the static policy, expected-utility maximizing firms never
comply fully, displaying myopic behaviour insensitive to income. In contrast, the dynamic
policy takes better advantage of the degree of risk aversion and the potential for future
planning, which motivates firms to comply fully in periods of higher income. Surpris-
ingly, static monitoring can be counter-productive: there are cases where the authority can
achieve improved firm compliance and higher authority revenues, with monitoring frequen-
cies steadily smaller than the optimal static monitoring frequency.

The significant advantage of two-state dynamic policy over static monitoring, shown in
earlier literature to apply in the limit of vanishing monitoring rate, has been quantified and
broadly illustrated in the current study under normal operational conditions. In particular, sub-
stantial lower bounds have been illustrated for the advantage afforded by history-dependent
incentives to comply.

The two-state dynamic policy under the dichotomous type-1, type-2 sampling schemewas
analyzed under firm homogeneity and utility-penalty assumptions that afforded a theoretical
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analysis. Future research should extend the analysis to take account of the degree of non-
compliance, based ondistributional data hitherto unavailable. Futurework should also include
monitoring policies of a more general nature, based not only on detection and punishment
but also on incentives offered by the authorities to motivate agents to comply.
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A Dynamic state-dependent compliancemonitoring as amathematical
program

Following the analysis of Sect. 4, dynamic two-state dependent compliance monitoring with
CARA utility and f (D) = BD could be considered as the mathematical program,

min μ1(p1, p2)(1 − p1B)D1 + (1 − μ1(p1, p2))(1 − p2B)D2

+ c(μ1(p1, p2)(p1 − p2) + p2)

subject to Vi = E[e−γ R IRi (R)] + (1 − pi )E[e−γ (R+Di )(1 − IRi (R))]
+ pi E[e−γ (R+(1−B)Di )(1 − IRi (R))] + β((1 − pi )Vi

+ pi (P(R ∈ Ri )V1 + (1 − P(R ∈ Ri ))V2)) i = 1, 2

0 ≤ p1 ≤ p2 ≤ 1

B
,

where

Di = 1

Bγ
log

( 1 − pi
(B − 1)pi

)

i = 1, 2

Ri = 1

γ
log

(

1 − e−KLD( 1
B ,pi )

β pi (V1 − V2)

)

i = 1, 2

Ri = (Ri ,∞) i = 1, 2

μ1(p1, p2) = p2P(R ∈ R2)

p2P(R ∈ R2) + p1(1 − P(R ∈ R1))

and the expectations in the constraints defining Vi take the form (20), (21), or (22). However,
this formulation is nonconvex and highly nonlinear. Further, both the objective and constraint
functions need not be continuously differentiable. Hence, it may not be possible to solve this
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formulation directly using general purpose nonlinear programming solvers. On the other
hand, for fixed (p1, p2), dynamic programming DP (Blackwell, 1962; Bertsekas, 2005) is a
standard and efficient approach to evaluate the value functions Vi for i = 1, 2. Optimizing
over such pairs (p1, p2), even if nonconvex and nondifferentiable, is a two-dimensional
optimization problem involving only simple linear/bound constraints, a task that can be
carried out effectively by global derivative free methods (Conn et al., 2009) using DP as a
“black box” subroutine. This is the theoretical and computational approach adopted in the
current paper.
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