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Abstract
This paper examines the dynamic linkages of green bond with the energy and crypto market.
The S&P green bond index (RSPGB) is used as a proxy for the green bond market; S&P
global clean energy index and ISE global wind energy (RIGW) are used as proxies for the
renewable energy market, and; Bitcoin and Ethereum (RETHER) are used as the proxies of
the crypto market. The daily prices of these constituent series are collected using Bloomberg
from October 3, 2016 to February 23, 2021. We undertake an empirical analysis through
the application of three key tests, namely: dynamic conditional correlation (DCC), Diebold
and Yilmaz (Int J Forecast 28(1):57–66, 2012. 10.1016/j.ijforecast.2011.02.006), Baruník
and Křehlík (J Financ Econom 16(2):271–296, 2018. 10.1093/jjfinec/nby001) model. The
DCC reveals no dynamic linkages of volatility from the green bond to the energy and crypto
market in the short run. Referring toDiebold andYilmaz (2012), it dictates that the green bond
(RSPGB) is a net receiver while the energy market (RIGW) and cryptocurrency (RETHER)
are the largest and least contributors to the transmission of the volatility. Additionally, the
Baruník and Křehlík (2018) model confirmed that the magnitude of the total spillover is high
in more prolonged than shorter periods, suggesting reduced diversification opportunities.
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Overall, the present study exemplifies the significance of the green bond market as protection
against risk.

Keywords Dynamic linkages · Green bond · Renewable energy · Cryptocurrency

1 Introduction

Economic development for any nation has pros and cons reflected by technological upgrada-
tion and environmental degradation, where in some instances the former also contributes to
the negative climate implications. Sustainable economic development is acknowledged as a
solution to this degradation (UNESCO, 2011), which can be achieved by ‘greening’ the econ-
omy with the help of green bonds (Jin et al., 2020). Green bonds are structured instruments,
similar to traditional fixed income corporate bonds, except that proceeds are designated for
environmentally friendly projects (Reboredo & Ugolini, 2020) and are considered ideal for
diversification in the portfolios of environmentally concerned investors.

Additionally, renewable energy as an alternative to fossil fuels also supplements the carbon
emissions reduction to achieve a sustainable economy as mentioned in Paris Agreement
2015 and UN Sustainable Development Goals (Kumar et al., 2012a; b). Kyritsis and Serletis
(2019) argued that crude oil is a leading energy source for power generation and hence
examined the probable effect of its price uncertainties on renewable energy consumption.
Interestingly, involvement in crypto validation requires a high amount of power consumption
which converts into significant carbon emissions (Stoll et al., 2019). Hence, spillover between
energy market and crypto market is of major concern.

The economic development phase of any economy can be segregated as pre-
industrialization phase (scale effect), industrialization phase (composition effect), and post
industrialization phase (technique effect) (Dogan & Inglesi-lotz, 2020; Balsalobre-Lorente
et al. 2019; Shahbaz et al. 2019). Being in post-Industrialization phase, the use of cryp-
tocurrency has become a lucrative investment avenue for investors and they serve as a better
diversification option (Gil-Alana et al. 2020). Additionally, there has been much discussion
regarding the potential impact of bitcoin and other cryptocurrencies on financial markets and
transactions but the repercussions of bitcoin demand on the environment, however, have gone
unnoticed. The technological progress reflecting the economic development also comes at the
cost of environmental dilapidation. The advancement of digitization and use of cryptocurren-
cies, for example, has resulted in increased demand for energy in the form of electricity, the
high consumption of which adds significantly to the global carbon emissions. The meteoric
rise of Bitcoin and other cryptocurrencies has captivated the public’s attention in recent years
(Akyildirim et al., 2021). The global cryptocurrency market size in 2020 is valued at $1.49
billion, reaching $4.94 billion by 2030. Cryptocurrencies like Bitcoin and Ethereum have
gained massive popularity in the last decade due to high returns and use in portfolio diversi-
fication (Yan et al., 2022). On the one hand, this thriving new technology is gaining traction
in our global economy because it fosters trans-business and investment activity. At the same
time, regulators are concerned that cryptocurrencies could sponsor illicit activity (Koutmos,
2020). Another concerning issue relating to cryptocurrencies, especially bitcoin, is; that Bit-
coin is a turbulent asset, withmost transactions aimed at speculative investments (Cretarola&
Figa-Talamanca, 2021). However, investors are being compensated with premiums for their
risky investments in Bitcoin (Bouri et al., 2022). There have been numerous studies con-
ducted investigating the volatility of Bitcoin during the pandemic (Ftiti et al., 2021). Though,
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looking at the environmental aspect, electricity consumption while crypto trading and the
undertaking of calculations have been a turning point in the case of cryptocurrencies. This
is more prevalent in countries with high coal consumption for mining like China as the top
contender, as estimated by The Cambridge Bitcoin Electricity Consumption Index (CBECI),
adding to the carbon emissions in a significant way with many other nations like Denmark
andNorway (Yan et al., 2022). Regardless of other environmental penalties, Bitcoin and other
cryptocurrencies could drive global warming above 2 °C and be considered power-hungry
currencies due to high electricity consumption (Mora et al., 2018). Besides, this market is
impacted significantly by renewable energy stocks and carbon pricing to reduce the use of
conventional energy sources. Sustainable economic development and climate change have
caught the attention of global leaders for fighting the overall environmental degradation. The
United Nations 2018 included clean climate in their Sustainable Development Goals (SDG)
to fight all environmental concerns. International agreements like the Paris Agreement in
2015 and European Green Deal in 2019 have contributed significantly to achieving the given
targets of greening the economy (Naeem et al., 2021a, 2021b), however, a substantial amount
of investment is needed to unravel the issue of financing the greening process. The adoption of
green bonds has emerged as a new phenomenon in the global economy’s healing process by
developing low-carbon technological innovations to reduce carbon emissions (Laskowska,
2018; Monk & Perkins, 2020). In the case of renewable energy projects or environmental
evolutions like water projects, green bonds have come to the forefront of the realignment
toward a climate-resilient economy (Tolliver et al., 2020). The same has been considered as
output or value-added term which is integral part of operation management. In this paper,
the output is linking pin to the diversification opportunities which can be feasible in inves-
tigating the connectedness among constituent markets (Green bond, Renewable energy and
Crypto-market). It has become more and more strategic in driving all the financial aspects
due to which this paper covers the need of operation research. Generally, value of output
in operation management is measured by the prices that stakeholders (customers) pay for
goods and services and many factors affect these outputs. In consideration of these issues,
this paper answers the following research questions:

1. Is green bond connected with renewable energy and the crypto-market in various time
frequencies such as short, medium and long?

2. Is the output (diversification) accentuated from the input in the form of connectedness
amongst green bonds, renewable energy and crypto market?

According toMarkowitz’sModern Portfolio Theory byMarkowitz (1952, 1991), investors
shouldmake sure to diversify their security holdings by investing in a variety of economically
varied industries. Other theories that are connected to diversification investment strategies
include the behavioural finance theory (BFT), efficient market hypothesis (EMH), and capital
asset pricing model (CAPM) (Letho et al., 2022). The CAPM suggests that an investor
chooses a higher future value of an investment over a lower future value (Sharpe, 1964).
From a psychological and sociological standpoint, the BFT evaluates the financial markets
and investors (Malkiel, 2015; Subrahmanyam, 2007). Hence, it is imperative to investigate the
interconnectedness of various financial markets and crypto market for providing the valuable
insights to investors keeping in mind the sustainability as important factor. Going through the
extant literature, it can be inferred that sustainable energy stocks and the use of green bonds for
diversifying the investor’s asset allocation have been emphasized in many studies focussing
primarily on volatility studies. However, dynamic linkages of green bonds and renewable
energy with cryptocurrencies and their impact on the environment are not robustly studied.
Likewise, because the mechanisms of return and volatility linkages may diverge, both may
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provide value—relevant information to investors. Furthermore, the connectivity may vary
over time, which must be estimated using an appropriate model. An optimal decision making
with financial modelling and risk management techniques has been playing a key role in
the analysis and understanding of financial market dynamics (Board et al., 2003) through
operation research, while the tools and techniques of predictive modelling and quantitative
forecasting from operations research/management are used for real time analysis. Hence,
the present study utilises different econometric models for quantitative forecasting (Fildes,
1985) of the time and frequency linkages of green bond, with renewable energy and crypto
market. As a result, this study will use a Diebold and Yilmaz (2012) and Baruník and Křehlík
(2018) model which is an optimal estimator of time-variation in parameters, to analyze the
time-varying connectedness of Bitcoin, Etherium, clean energy, and green bond prices in
return and volatility. Although, International agreements like the Paris Agreement in 2015
andEuropeanGreenDeal in 2019 have contributed significantly in achieving the given targets
of greening the economy (Naeem et al., 2021a, 2021b). However, a substantial amount of
investment is needed to unravel the issue of financing the greening process.

With this backdrop, the current study attempts to unravel the dynamic linkages between
green bond, clean energy market and the crypto market. Here, S&P green bond index
(RSPGB), S&P global clean energy index (RSPCE), ISE global wind energy (RIGW), Bit-
coin (RBIT), and Ethereum (RETHER) represent the green bond, renewable energy, and
crypto-market respectively. The reason behind choosing Bitcoin is that it has become one of
the most traded assets in recent years, piquing interest in both industry and academia (Deng
et al., 2021). On a similar note, Cai et al. (2021) found the effect of price explosivity on the
returns of Bitcoin. We apply dynamic conditional correlation (DCC), Diebold and Yilmaz
(2012), Baruník and Křehlík (2018) model based on daily data. We inferred that there are
no dynamic linkages of volatility from the green bond to the energy and crypto market in
the short run. Further, Diebold and Yilmaz (2012) reveal that the green bond (RSPGB) is a
net receiver while the energy market (RIGW) and cryptocurrency (RETHER) are the largest
and least contributors to the transmission of the volatility. Finally, application of Baruník
and Křehlík’s (2018) model demonstrates that the magnitude of the total spillover is higher
in the long run than in the short run. The study’s findings align with (Chai et al., 2022)
who confirmed the interconnectedness of green bonds and clean energy stocks. This paper
contributes to existing studies in fourfold: First, we demonstrated statistically that the energy
market (RIGW) and cryptocurrency (RETHER) are the largest and smallest contributors to
the volatility transmission respectively. Second, unlike earlier research, we have quantified
the dynamic and time-varying connectivity between distinct clean energy indexes, green
bonds, and cryptocurrencies. Third, the study discovered that, total connectedness amongst
five series (green bonds, clean energy, wind energy, Bitcoin and Ethereum) is observed to be
higher in the long-run than in the short run, thus suggesting reduced diversification opportuni-
ties for the investors in the long run. Hence, investors who invest in these constituent markets
can diversify their portfolio and mitigate risk in the shorter term but not in the long-term.
Fourth, our findings provide recommendations and implications for regulators and policy-
makers, as well as cryptocurrency inventors, in developing the foundation for deeper financial
integration and supporting a greener business, and eventually society.

The paper is organized into six sections: Sect. 2 describes a concise literature review
highlighting the interconnectedness among green bonds, energy markets and cryptocurren-
cies. Section 3 discusses time-series data and empirical models to be used in the research.
Section 4 confers the observed outcomes, Sect. 5 presents the conclusion and Sect. 6 discusses
the implications and limitations of study.
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2 Review of past studies

The asset allocation tactics of investors are linked with the interconnectedness amongst the
financial assets, and they frame strategies for diversification (Le et al., 2021). In other words,
the different markets worldwide are integrated and have cross-market influences; based on
this, investors frame their investment strategies. Research has shown that gold and crude oil
have dynamic linkages with other financial assets among varied asset classes. Ciner et al.
(2013) concluded that gold could be a secure and the best investment alternative for equities
and bonds. The studies also confirm the dynamic relationship with other commodities, such
as natural gas and crude oil (Singhal &Ghosh, 2016). Naeem et al., (2021a, 2021b) prove that
gold and silver are inextricably linked to the rest of the financial markets. In terms of portfolio
diversification in Industry 4.0, fintech and cryptocurrencies and alternative investment, green
bonds, are gaining traction among investors. Hence, the literature for such linkages is in three
aspects.

First, Fintech companies have arisen as start-ups providing an alternate basis of finan-
cial services for lenders, such as crowdfunding, supplier finance, and peer-to-peer lending.
These application-based businesses have increased rivalry and competencies and are eventu-
ally earning additional profits than conventional financial services (Le et al., 2021). Second,
another set of studies focussed on the connectedness of cryptocurrencies with other financial,
commodities and energymarkets and how this digital platform can be used as a hedging strat-
egy for investment. A recent study by Le et al. (2021) examined the dynamic linkages and
frequency domain connectedness between cryptocurrencies and different commodities and
energy markets. The study confirms that holding such assets for a longer tenure will lessen
the risk. Interestingly, Bitcoin transactions consume high power, which raises environmen-
tal and sustainable issues for economies, and therefore policymakers have raised concerns
about a resilient economy. Henceforth Naeem andKarim (2021) examined the connectedness
between cryptocurrency and the green market and confirmed that clean energy is a valuable
hedge for bitcoin. Similarly, Guidici and Polinesi (2021) investigated the effect of price infor-
mation is transmitted amongst the bitcoin markets and found the strong correlations between
different bitcoin prices.

With themounting gravity of sustainable development goals (SDGs), the policymakers and
academicians attempted to explore its nexus in every domain of management and science.
It is relatively visible that research on the green bond has gained consideration (Naeem
et al., 2021a, 2021b). However, there are two sets of bodies on green finance research. First,
research on the carbon emission in economy and its various drivers (Ahmed & Jahazeb,
2021;Qin et al., 2021). Further, Flammer (2021) demonstrated that green bonds are efficient at
enhancing the sustainable financial performance of organizations. Second, Financial analysts
and researchers are constantly on the lookout for assets that can serve as a haven and the
best diversification strategy during distress. Various authors have studied green bonds as a
financial asset as to how they receive or transmit shocks from multiple other markets, their
dynamic linkages, and their connectedness with other financial and commodities markets
(Le et al., 2021; Naeem et al., 2021a, 2021b; Roboredo, 2018; Roboredo and Ugolin, 2020;
Tiwari et al., 2022).

Sustainable energy stocks and the use of green bonds for diversifying the investor’s
asset allocation have been emphasized in many studies, however, dynamic linkages of green
bonds and renewable energy with cryptocurrencies and their impact on the environment are
not robustly studied. In a recent study by Syed et al. (2022) authors examined the asymmetric
relationship between economic policy uncertainty, green bonds, and cryptocurrencies, and
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using NARDL approach authors confirm the existence of an asymmetric association between
green bonds, bitcoins, and crypto. Kamal and Hasan (2022) investigated the impact of the
popularity of cryptocurrency on clean energy and green assets using quantile-based regres-
sion, and quantile connectedness and confirmed the positive effect of cryptocurrency on
equity stocks while in the significant relationship with clean energy stocks and green assets.
Using a similar methodology of quantile connectedness (Khalfaoui et al., 2022) examined
the connectedness between Bitcoins, green markets and economic ambiguity and discov-
ered that global carbon acts as a net receiver of information spillover whereas green assets
are the net transmitter of risk. On a similar note, Cai et al. (2021) found the effect of price
explosivity on the returns of Bitcoin. Tiwari et al. (2022) investigated the interconnectedness
between green bonds and energy markets, confirming that clean energy governs the remain-
ing markets and spreads shocks throughout the system. Additionally, it is found that green
bonds and active global wind emerging are the primary receivers of shocks. Polat and Gunay
(2021) examined the volatility connectedness between major cryptocurrencies based on mar-
ket capitalization. The results discovered that connectedness between cryptocurrencies was
strong during the crisis. A shred of empirical evidence provided by Braga and Grass (2021a;
b) states that policymakers can reduce the risk in green investments by issuing government
green bonds compared to private green bonds that exhibit higher volatility in the market. The
time-varying spillover between global energymarkets was studied using (Baruník &Křehlík,
2018) and the wavelet coherence method by Mensi, Naeem et al. (2021a; b). The authors
concluded that spillovers are agile and receptive. Pham (2021) conducted another study on
the relationship concerning green bonds and green equity under different market scenarios.
Green bonds and green equity have weak connectedness in steady market conditions but
strong connectedness during extreme market conditions, according to frequency connect-
edness and cross-quantilogram methods. The author discovered that the consequences of
spillover between green bonds and green equity are transient due to the extent of connected-
ness fading over moderate and longer timelines.

Similarly, Le et al. (2021) studied the time-varying linkages of green energy with tech-
nology markets in industry 4.0, where authors discovered that connectedness between these
markets and common is exceptionally high. High risk in the short-run period than in the
long-run period indicated the probable losses in the volatile economy. Subsequently, A wide
range of studies has been conducted to investigate the relationship betweenclean energy stock
with oil prices (Henriques, 2008; Kumar et al., 2012a, b; Ahmad, 2017). These studies con-
firmed the more considerable impact of technology stocks, in contrast, to clean energy stocks
on clean energy markets. Soaring US dollar value enhances the diversification opportunity
of green bond investments for market participants in the financial, energy, and commod-
ity markets. Therefore, green and conventional bonds have a stronger association than green
bonds, and energy commodities and stockmarkets have aweak correlation (Reboredo, 2018).
Furthermore, various key studies in this area are mentioned in Table 1.

The literature on investment diversification emphasizing the dynamic linkages of sus-
tainable assets with traditional financial assets, energy, and stock markets reported erratic
spillover effects from the conventional bond market to the green bond market (Pham, 2016a,
2016b). Broadstock and Cheng (2019) investigated the dynamic linkages between green and
black bonds using dynamic model averaging (DMA). They concluded that these markets are
susceptive to financial marketmotility, economic apprehensions, and investors’ spirit towards
green bonds. On the other hand, Reboredo et al. (2020) applied structural vector autoregres-
sive (VAR) to the connectedness between varied financial markets and green bonds. The
authors concluded a strong connection between currency and fixed income markets and the
green bond market, while the relationship is not the same as the stock market. Based on the
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Table 1 Key studies on volatility connectedness. Source: Author(s) compilation

Source Objective of Study Variables Methods used Findings

Mzoughi
et al.
(2022)

Examined the risk
transmission
between green
assets and energy
commodities

Green Bonds and
energy
commodity

FIGARCH Model Green assets are
affected by price
spillovers from
energy
commodities

Ren et al.
(2022)

Examined
relationship
between carbon
futures and green
bonds

carbon futures and
green bond index

Maximum overlap
discrete wavelet
transforms
(MODWT)

Carbon price mostly
positively affects
green bonds

Attarzadeh
and
Balcilar
(2022)

Connectedenss
between among
clean energy,
Bitcoin, stock
market and crude
oil

S&P 500, Bitcoin,
The Wilder Hill
Clean energy
index and WTI
crude oil prices

TVP-VAR and
Diebold and Yilaz
(2014)

Connectnedness
strengthens during
the crisis period

Ren et al.
(2022)

Examining the role
of clean assets
against two
distinct
cryptocurrencies

Bitcoin, Ethereum,
Bitcoin cash,
Ethereum classic,
Litcoin as dirty
cryptocurrencies
and Cardano,
Ripple, IOTA,
Stellar, and Nano

DCC-GARCH
Model Diebold
Yilmaz (2012)

Dirty
cryptocurrencies
may find a safe
harbour in clean
energy

Afzal and
Sajeev
(2022)

Interconnection
between
cryptocurrencies
and energy
market

Bitcoin, Bitcoin
Cash, Ethereum,
Ripple XRP and
Litecoin’sNifty
Energy Index,
S&P 500 Energy
Index, S&P/TSX
Canadian Energy
Index and
Shanghai Stock
Exchange Energy
Index

Granger Causality
and
DCC-MGARCH

Overall, there is a
modest and poor
time-varying link
between
cryptocurrencies
and energy
markets

Naeem et al.
(2022)

to determine
whether bond
markets provide
hedging for
cryptocurrency
uncertainty
indexes

three bond markets
(BBGT, SPGB
and SKUK) for
three uncertainty
indexes of
cryptocurrencies
(UCRPR,
UCRPO and
ICEA)

AGDCC-GARCH Except for SKUK,
which is a safe
haven investment
for cryptocurrency
indexes, bond
markets are
neither hedges nor
safe havens
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Table 1 (continued)

Source Objective of Study Variables Methods used Findings

Le et al.
(2021)

Connectedness
between Fintech,
Green bond and
cryptocurrency

Fintech, Green
bond and
cryptocurrency

Diebold Yilmaz
(2012) and
Baruník and
Křehlík (2018)

Traditional assets
and modern are
good hedgers
while fintech
stocks are not

Hung (2021) Investigates the
interdependence
of green bonds
and traditional
asset classes

Bitcoin price, S&P
500, Clean
Energy Index,
and Goldman
Sachs
Commodity
Index (GSCI)

DCC GARCH
model

Green bonds and
other assets are
subject to
conditional
time-varying
reliance, which is
low

Huynh et al.
(2020)

Examine the
connectedness
between role of
AI in green bond
and
crytocurrencies

Artifical
Intelligence,
Green Bond and
Bitcoin

Generalized
Forecast Error
Variance
Decomposition

Bitcoin and Gold
are important
assets for hedging

above extant literature, it can be inferred that green bonds are firmly linked to fluctuations
in the traditional bond market. The majority of preceding studies indicate a link between
green bonds and financial markets, such as conventional bonds, stock markets and energy
markets. However, no research has been conducted to explore the volatility spillover amongst
green bonds, energy markets, and cryptocurrency. The current study attempts to add value
to the literature by examining volatility spillover in the green bond, energy markets, and
cryptocurrency.

The literature on investment diversification by considering the dynamic linkage between
green bonds and traditional bonds, share, and energy markets (Pham, 2016a, 2016b) reported
changeable spillover effects of the conventional bond market to the sustainable bond market.
A piece of thought was revealed by Broadstock and Cheng (2019), who applied dynamic
model averaging (DMA) to study the linkage between green and black bonds, and it was
discovered that these are delicate to fluctuations in financial market instability, economic
policy ambiguity, oil prices, and investors’ sentiment towards green bonds (Reboredo et al.,
2020).Using the structural vector autoregressive (VAR)model to figure out the connectedness
between financial markets such as sustainable bond markets confirms the strong connection
between the financial market and green bond market. At the same time, the relationship is
not the same with the stock market. Hence, with the above string of literature, it can be easily
understood that green bonds are firmly linked to fluctuations in the traditional bond market.
Nevertheless, they are poorly associated with risky energy commodities and stock markets.
The above research findings do not present substantial evidence of volatility amongst the
green bond, energy market, and cryptocurrency.

The majority of preceding studies indicated robust evidence of the interconnectedness of
green bonds with financial markets, such as traditional bonds, stock markets and energy mar-
kets. One set of literature examines the interconnectedness between the green bond and other
commodities, while another strand of literature covers the association of green bond with
renewable energy stock. However, there is a dearth of studies exploring the volatility spillover
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amongst the green bonds, energy markets, and technology markets such as cryptocurrency.
The research literature on cryptocurrencies is still in its early stages, but rapidly expand-
ing (Giudici & Polinesi, 2021). Hence, this study attempts to bridge the gap by examining
volatility spill over from green bond to energy and crypto market.

3 Data and econometrics

3.1 Data

This paper attempts to unravel the dynamic linkages of green bond with energy and crypto
market. To measure the green bond, S&P green bond index (RSPGB) is considered, while
S&P global clean energy index (RSPCE) and ISE global wind energy (RIGW) signifythe
renewable energy market. Further, Bitcoin (RBIT) and Ethereum (RETHER) are taken as
proxies of crypto market. These proxies are used in Tiwari et al. (2022), Naeem et al.
(2021a; b), Abakah et al. (2021). We collect the daily prices of these constituent series
from Bloomberg, extending from October 3, 2016 to February 23, 2021. Each series is con-
verted into a log return differencing the log of the concerned series. Table 2 encapsulates the
data description of the series considered under examination. To check the pattern, we report
the graphical depiction of raw and log return series in Figs. 1 and 2.

Figure 1 exhibits the intense fluctuations in raw series, especially under green bonds
throughout the period. Fascinatingly, there has been tremendous momentum seen in all vari-
ables, exclusively in Bitcoin and renewable energy, during the recent years, which is the
period of the COVID-19 outbreak. Further, Fig. 2 exhibits the multiple volatility clusters for
all series during the study period.

Table 2 Data description of the constituent markets. Source: Author’s own presentation

Asset/index Proxy Abbreviation Description

Green bond S&P Green bond index RSPGB Tracks and measures the
effectiveness of labeled green
bonds

Energy market S&P global clean energy
index

RSPCE Evaluates the efficiency of
businesses in international clean
energy in emerging and
established economies

ISE global wind energy
index

RIGW Tracks performance of companies
that are involved in the wind
industry

Cryptocurrency Bitcoin RBIT It decentralized digital currency
without the need for any
intermediaries

Ethereum RETHER Decentralized open-source digital
currency, second after Bitcoin in
terms of market capitalization
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Fig. 1 Time series plot-raw series. Source: Author(s) calculations

Fig. 2 Time series plot-return series. Source: Author(s) calculations

3.2 Econometric models

The dynamic conditional correlation (DCC), Diebold and Yilmaz (2012), and Baruník and
Krehlik (2018) models are employed to investigate the dynamic linkages of green bonds with
the energy and crypto markets. The details of these models are discussed below:

3.2.1 Dynamic conditional correlation (DCC)

We employ the DCC-GARCH model pioneered by Engle (2002) to test the time-varying
correlations/dynamic linkages of green bond with renewable energy and the crypto market.
This model is highly preferred for several reasons; first, it identifies dynamic investor behav-
ior against current news and events by detecting possible changes in conditional correlations
over time (Celik, 2012). Second, Due to increased dimensionality in the assets and increased
volatility, constant correlations arise, which is the basic assumption of the basic GARCH
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model; therefore, this DCC-GARCH model relaxes this assumption and provides for time-
varying correlations (Singhal & Ghosh, 2016). Third, The DCC-GARCH model calculates
correlation coefficients from standardised residuals and accounts for heteroskedasticity (Chi-
ang et al., 2007). This model corrects the correlations for time-varying volatility, making it
the only correlation measure (Cho & Parhizgari, 2008). The DCC-GARCH model is com-
puted in two stages: (1) estimation of the univariate GARCH modeland (2) the conditional
correlations.

The multivariate DCC-GARCH model is expressed mathematically:

Xt = ut + H1/2
t εt (1)

⎧
⎪⎪⎨

⎪⎪⎩

Ht = Dt Rt Dt

Rt = (diag(Qt ))
1/2Qt (Diag(Qt ))

−1/2

Dt = diag
(√

h11,t ,
√
h22,t , . . . ,

√
hNN ,t

)

⎫
⎪⎪⎬

⎪⎪⎭

(2)

where Xt = (X1t , X2t , X3t , . . . XNt ) is the vector of previous observations Ht is the multi-
variate conditional variance. The vector of conditional returns is ut = (u1t , u2t , u3t , . . . uN ,t )

and the vector of standardized results is εt = (ε1t , ε2t , . . . εNt ) and Dt is a diagonal matrix of
conditional standard deviation for Rt is an return series NXN symmetric dynamic correlations
matrix, derived from univariate GARCH model with

√
hii,t , i = 1, 2,…N diagonals.

The DCC specification is as follows:

Qt = (1 − ψ − ζ )Q + ζQt−1 + ψδi,t−1δ j,t−1

Rt = Q∗−1
t Qt Q

∗−1
t (3)

where (Qt ) = ∣
∣qi j,t

∣
∣ is (NXN) time varying covariance normalised residual matrix of

(
δi t = εi t√

hit

)
, Q is the unconditional correlations of δi,t , δ j,t and ψ, ς are non-negative

scalar parameters that satisfies ψ + ς(1.Q∗
t =

[
q∗
i i,t

]
= √

qii,t is a diagonal matrix contain-

ing square root of the ith diagonal element of Qt on its ith diagonal position.
As a result, the conditional correlation at time t for a set of markets i and jis defined below:

ρi j,t = (1 − ψ − ς)qi j + ψδi,t−1δ j,t−1 + ςqi j,t−1
[
(1 − ψ − ς)q

ii
+ ψδ2i,t−1 + ςqii,t−1

]1/2[
(1 − ψ − ς)q j j + ψδ2j,t−1 + ςq j j,t−1

]1/2

(4)

where qij is the element on the ith line and jth column of thematrix Qt, Bollerslev et al. (1992)
devised the quasi-maximum likelihood technique (QMLE) for estimating the parameters.

The estimator log-likelihood under the Gaussian assumption is:

L(ϑ) = −1

2

T∑

t=1

[(
(n log 2π) + log|dt |2 + ε

′
t D

−1
t D−1

t εt

)
+

(
log|Rt | + δ

′
t R

−1
t δtδ

′
tδt

)]

(5)

where n = the no. of equations, T = no. of observations, and ϑ = vector of parameters to be
estimated.
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3.2.2 Diebold and Yilmaz (2012) model

To refine the dynamic linkages, Diebold and Yilmaz (2012) Model is employed, which is
based on the dynamic forecast error variance decomposition within the vector autoregressive
(VAR) framework (Koop et al., 1996). This technique is highly preferred over the previous
spillover techniques because, first, because this technique ignoresthe VAR’SCholesky factor
identification, the findings are unaffected byorder of the variables (Naeem et al., 2021a; b).
Second, it consents to trace the connectedness at different levels (Le et al., 2021). As a result,
it overcomes the problem of time variation by becoming a dynamic spillover model. The goal
of this model is to examine the spillover contributions of “TO” and “FROM” other variables
in the model using the VAR model’s comprehensive and intuitive forecast error variance
decomposition (Abbas et al., 2019). Moreover, this model also captures the net transmission
or receiver at a specific stretch of time. The specification of model consider period, t = 1,…
T , structured VAR(p) with n-variate method Xt,1,…Xt,n presented below:

ϒ(L)xt = εt (6)

where ϒ(L) = ∑

h
ϒh Lh denotes a n × m coefficient matrix t by means of an infinity-length

lag polynomial. Consequently, the FEVD, is consistent alongsideDiebold andYilmaz (2012),
and is shown below:

(θH ) j,k =
σ−1
kk

∑H
h=0(h

∑
)(∅h ∑

)(h
∑

) j,k)2
∑H

h

(
h

∑


′
h

)

j j

(7)

where σkk = (∈)k,k. and ∅h signifies a n × mmatrix having lagh.(θH ) j,k elucidates that kth
variable is responsible for tremors to the variation of some other parameter forecast error, j.
On computing, the sum of each row of (θ_H) (j, k) does not approximate unity. As a result,
the row’s sum is utilised to segregate the specific constituent of the decomposition matrix for
normalisation. Mathematically, it can be stated as:

(
θH

)

j,k = [θH ] j,k
∑H

k=1(θH ) j,k
(8)

with
∑H

k=1(θH ) j,k = 1 and
∑H

j,k=1(θH ) j,k = N.As a result, according to DY (2012), the
degree of spillover is a part of the combined elements in the off-diagonal total matrix, as
under:

CH =
∑

j �=k

(
θH

)

j,k
∑(

θH
)

j,k

× 100 =
(

1 − Tr
{
θH

}

∑(
θH

)

j,k

)

100 (9)

whereCH represents the network’s overall spillover, restricted as the proportionate contributor
to predicting variances from the residual series in the network, the trace operator stands as
Tr{.} The directional spillover acknowledged by a specific parameter, j, to other variables k
in the network can be projected for a more definitive spillover parameter:

(CH ) j→ = 100 × 1

n

∑

j �=k,k

(
θH

)

j,k (10)

(CH ) j← = 100 × 1

n

∑

j �=k,k

(
θH

)

j,k (11)
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where (CH ) j→ and (CH ) j← stands for “TO spillover” and “FROM spillover” correspond-
ingly.

Further, net spillover in case of variable j is calculated here as "FROM spillover” deducted
from "To spillover" which is mathematically presented as below:

(CH ) j,net = (CH ) j→ − (CH ) j← (12)

Through a positive net spillover value,(CH ) j,net , infers that the variable j depicts the net
shock transmitter. Variable j is a shock recipient if the coefficient is lower (negative).

3.2.3 Baruník and Křehlík (2018) model

In their mathematical framework for spillover, Baruník and Křehlík (2018) demonstrates the
interconnectedness of variables that fluctuate at various wavelengths by modifying the DY
spillover framework (2012). Based upon that affirmation in Eq. (4), which implies that the
impulse function h is time-varying, another approach assumes the impulse function term
reflecting the bandwidth. In crux, the frequency response function converts to 

(
e−iw

) =
∑

h
e−iwh∅h , obtained from  capturing the coefficients of the fourier transform, with i =

√−1. The generalised causation spectrum across the identified frequencies ω = ∈ (− π, π)
is expressed as follows:

( f (ω)) j,k ≡
σ−1
kk

∣
∣
∣
(
(e−iw

) ∑
j,k

∣
∣
∣2

(


(
e−iw

)) ∑
 ′(e+iw

)

j j

(13)

where ∅(
e−iw

)
represents the impulse response’s frontier transform ∅.( f (ω)) j,k represents-

the proportion of the jth variable’s spectrum at frequency ω, induced by shocks in the kth
variable. ( f (ω)) j,k is understood as a measure of within-frequency causation. As a result,
of Baruník and Křehlík (2018), the generalized FEVD (GFEVD) on a particular frequency
bandwidth d is here figured as under:

(θd) j,k = 1

2π

d∫ϒ j (ω)( f (ω)) j,kdω (14)

Theweighing function is denoted byϒ j (ω). Considering the spatial depiction of theGFEVD,
the frequency-based interconnectedness on the frequency wavelength is described as:

CF
d = 100

(∑
j �=k

(
θd

)
j, k

∑(
θ∞

)

j,k

− Tr
{
θd

}

∑(
θ∞

)

j .k

)

(15)

As a result, the total spillover is calculated as follows:

Cw
d = 100

(

1 − Tr
{
θd

}

∑(
θd

)

j,k

)

(16)

Directional spillovers, like time-domain spillovers, indeed be estimated at diverse wave-
lengths. "TO," "FROM," and "net" spillover now be computed in Eqs. (12)–(14), which are
corresponding to Eqs. (5) and (7).

(CF
d ) j→ = 100 ×

⎛

⎝
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(17)
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(CF
d ) j← = 100 ×

⎛

⎝
∑
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(
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)

j,k

⎞

⎠

∑(
θd

)

j,k
∑(

θ∞
)

j,k

(18)

(CF
d ) j,net = (CF

d ) j→ − (CF
d ) j← (19)

A positive value of (CF
d ) j,net means that variable under question isa net transceiver of dis-

ruptions to other parameterswhile a negative value signifies a net recipient.

4 Empirical results and discussion

In this section, we discuss the results obtained from summary statistics, unit root, dynamic
conditional correlation (DCC-GARCH),Diebold andYilmaz (2012) andBaruník andKřehlík
(2018), which examines the return transmission mechanism of green bond with energy and
crypto-market.

4.1 Summary statistics and unit root testing

To investigate the spillover effect between the green bond, clean energy and cryptocurrency
market, we applied the dynamic conditional correlation model. Moreover, the interconnect-
edness between the variables in different time horizons have been studied by applying the
Diebold and Yilmaz (2012) and Baruník and Křehlík (2018) model. We begin an analy-
sis presenting the outcome of descriptive statistics, which is shown in Table 3. The mean
returns for all variables are positive; the highest mean can be seen for cryptocurrencies,
RETHER (0.0017) and RBIT (0.0008), followed by clean energy markets RPSCE (0.0005),
Wind energy market RIGW (0.0003), and green bond RSPGB (0.0001). Thus, the green
bond has the lowest mean return, but it also comparatively has the lowest standard deviation.
In skewness estimates, the series are moderately left-skewed with a leptokurtic distribution,

Table 3 Summary statistics of constituent series

RSPGB RSPCE RIGW RBIT RETHER

Minimum − 0.0241 − 0.1250 − 0.1259 − 0.4973 − 0.5896

Maximum 0.0201 0.1103 0.0989 0.1774 0.2586

Mean 0.0001 0.0005 0.0003 0.0008 0.0017

SD 0.0030 0.0152 0.0113 0.0402 0.0598

Skewness − 0.6852 − 0.7934 − 1.0761 − 1.3318 − 0.6518

Kurtosis 8.4374 11.5006 17.9314 17.4085 8.9736

Jarque–Bera test 0.0000*** 0.0050*** 0.0001*** 0.0000*** 0.0030***

ADF-test 0.0000*** 0.0100** 0.0001*** 0.0000*** 0.0000***

PP Test 0.0020** 0.0000*** 0.0000*** 0.0000*** 0.0000***

ARCH Test 0.0000*** 0.0000*** 0.0100** 0.0000*** 0.0000***

** and *** Indicates the significance level at 1% and 0.01% respectively. Jarque and Bera (1980) is conducted
for checking normality of the data. Augmented Dickey et al. (1984) and Phillips–Perron test are used to check
the stationarity of the respective variables
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indicating that the series are statistically not normally distributed; the Jarque–Bera test con-
firms the same. On a final note, Augmented Dickey Fuller (ADF) test and Phillips and Perron
(PP) test signify that all series are stationary and exhibit ARCH effect at 0.01 and 0.05 level
of significance. ADF is the most widely used method for determining time-series data sta-
tionarity (Yadav et al., 2021). Hence, dynamic conditional correlation (DCC) is applied in
the next step to examine the dynamic linkages.

Furthermore, we can better comprehend how the series changed over as represented in
Figs. 1 and 2.Volatility clustering can be seen in every series,where high changes are followed
by high changes and low changes are followed by low changes.

4.2 An insight of dynamic conditional correlation

Further, spillover is then examined using dynamic conditional correlation generalized
Autoregressive conditional heteroskedasticity (DCC-GARCH) model. Bivariate dynamic
conditional correlation (DCC) GARCH, as shown in Table 4, was used for the statistical
analysis. The table consist the spillover results from green bond market (RGPGB) to global
clean energy market (RSPCE), global wind energy market (RIGW), Bitcoin (RBIT) and
Ethereum (RETHER). We report the results obtained from DCC to represent the dynamic
linkages of green bond (RSPGB) with energy market (RSPCE, RIGW) and crypto-market
(RBIT, RETHER) in Table 4(A–D), respectively. In these tables, ‘mu’ represents the overall
mean and ‘const’ represents the intercept term. Furthermore, α (ARCH) represents the effect
of previous disturbances or the error term obtained through the mean equation, whereas β

(GARCH) represents the effect of the last variance. DCC generates the results in the form
of univariate and bivariate GARCH: first, it means ARCH and GARCH terms; second, it
provides DCCa1 and DCCb1 (Sharma et al., 2021). Considering the univariate GARCH, it
is noticed that α 1 and β 1 of green bond (RSPGB) and Cryptocurrency (RBIT) remains
insignificant statistically while rest are significant. It signifies that new information is not
captured in green bond and bitcoin. Further, each series has beta 1, displaying volatility per-
sistence. The summation of alpha 1 and beta 1 is less than 1 required in univariate GARCH.
The coefficient is less than 1 refers to non-stationarity in decaying the volatility.

Regarding bivariate dynamic conditional correlation (bivariateGARCH), dcca1 and dccb1
depict the spillover or dynamic linkages of one market with another in the short and long run
respectively (Yadav et al., 2020). As per panel 4(A), dcca1 is positive and insignificant, which
implies no integration or spillover of green bond with energy market (RSPCE) in the short-
run. On the contrary, dccb1 is positive and significant, indicating spillover in the long run.
Further, in panel 4(B), dcca1 is positive and insignificant, suggesting that there is no spillover
between green bond and wind energy in the short-run. In contrast, there is spillover from
green bond to wind energy in the long-run as dccb1 is positive and insignificant. The dcca1 in
panel 4(C) is positive and insignificant, signifying no short-run spillover from green bond to
Bitcoin, whereas positive coefficient and significant p-value of dccb1 indicate spillover from
green bond to Bitcoin in long-run. Similarly, in panel 4(D) there is no short-run spillover
from green bond to Ethereum. In contrast, the positive coefficient and significant p-value of
dccb1 indicate spillover from green bond to Ethereum in the long-run.

In summary, our findings demonstrate that there are no dynamic linkages of volatility
spillover from green bond to energy and crypto market in the short run. According to the
DCC findings, investors who invest in these constituent markets can diversify their portfolio
and mitigate risk in the shorter term but not in the long-term. To be precise, the shocks
experienced by the green bond market does not affect energy and crypto-market in the short

123



Annals of Operations Research

Table 4 DCC of green bond with renewable energy and cryptocurrency

Series Coefficients Standard error T-value P value

Panel A: DCC from RSPGB to RSPCE

[RSPGB] mu 0.0001 0.0001 1.7838 0.0745

[RSPGB] const 0.0000 0.0000 0.2652 0.7908

[RSPGB] α 0.0633 0.0345 1.8341 0.0666

[RSPGB] β 0.9123 0.0331 27.5911 0.0000***

[RSPCE] mu 0.0006 0.0003 2.2249 0.0261*

[RSPCE]const 0.0000 0.0000 0.8023 0.4224

[RSPCE] α 0.1265 0.0495 2.5570 0.0106*

[RSPCE] β 0.8681 0.0467 18.6078 0.0000***

[Joint]dcca1 0.0018 0.0068 0.2571 0.7971

[Joint]dccb1 0.9503 0.0343 27.6723 0.0000***

Panel B: DCC from RSPGB to RIGW

[RSPGB]mu 0.0001 0.0001 1.9270 0.0540

[RSPGB]const 0.0000 0.0000 0.3213 0.7480

[RSPGB] α 0.0684 0.0345 1.9853 0.0471*

[RSPGB] β 0.9040 0.0333 27.1678 0.0000***

[RIGW]mu 0.0005 0.0002 2.3148 0.0206*

[RIGW]const 0.0000 0.0000 0.2287 0.8191

[RIGW] α 0.1493 0.0270 5.5376 0.0000***

[RIGW] β 0.8188 0.1355 6.0417 0.0000***

[Joint]dcca1 0.0000 0.0000 0.0000 1.0000

[Joint]dccb1 0.9149 0.1227 7.4561 0.0000***

Panel C: DCC from RSPGB to RBIT

[RSPGB]mu 0.0001 0.0001 2.0547 0.0399*

[RSPGB]const 0.0000 0.0000 0.2113 0.8327

[RSPGB] α 0.0647 0.0411 1.5756 0.1151

[RSPGB] β 0.9125 0.0388 23.5032 0.0000***

[RBIT]mu 0.0014 0.0010 1.4022 0.1609

[RBIT]const 0.0001 0.0001 2.1481 0.0317*

[RBIT]α 0.0771 0.0413 1.8674 0.0618

[RBIT] β 0.8549 0.0472 18.0940 0.0000***

[Joint]dcca1 0.0022 0.0097 0.2228 0.8237

[Joint]dccb1 0.9200 0.1143 8.0499 0.0000***

Panel D: DCC from RSPGB to RETHER

[RSPGB]mu 0.0001 0.0001 2.1029 0.0355

[RSPGB]const 0.0000 0.0000 0.2776 0.7813

[RSPGB] α 0.0671 0.0371 1.8073 0.0707

[RSPGB] β 0.9077 0.0350 25.9363 0.0000***
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Table 4 (continued)

Series Coefficients Standard error T-value P value

[RETHER]mu 0.0010 0.0013 0.7327 0.4637

[RETHER]const 0.0003 0.0001 3.0798 0.0021**

[RETHER] α 0.1663 0.0395 4.2072 0.0000

[RETHER] β 0.7568 0.0437 17.3268 0.0000***

[Joint]dcca1 0.0054 0.0113 0.4794 0.6316

[Joint]dccb1 0.9040 0.0509 17.7574 0.0000***

RSPGBsignifies the S&PGreen bond index,RSPCE signifies S&Pglobal clean energymarket, RIGWsignifies
global wind energy, RBIT signifies Bitcoin and RETHER signifies Ethereum
dcca1 signifies the spillover in the short-run, dccb1 signifies spillover in long-run
*, ** and *** Indicate the significance level at 5%, 1% and 0.01% respectively

Table 5 Connectedness using Diebold Yilmaz (2012)

Series RSPGB RSPCE RIGW RBIT RETHER FROM

RSPGB 99.22 0.23 0.09 0.23 0.24 0.16

RSPCE 0.38 88.61 10.67 0.30 0.04 2.28

RIGW 0.35 8.30 91.15 0.10 0.10 1.77

RBIT 0.20 0.19 0.14 99.26 0.22 0.15

RETHER 0.08 0.03 0.05 0.16 99.69 0.06

TO 0.20 1.75 2.19 0.16 0.12 4.42

Net − 0.04 0.53 − 0.42 − 0.01 − 0.06

This table displays the result obtained from DY approach, considering volatility spillover of various markets
considered under examination. The values in the ith row of the jth column indicate the strength of the spillover
effect from the ith market to the jth market

run while it may affect in the long run. Our findings are similar to Roeredo and Ugolini
(2020), Pham (2016a, 2016b). Further, Fig. 3 displays the graphical representation of the
time-varying correlation of green bond market with the constituent market. We observe that
correlation is dynamic and not constant as they vary according to time.

4.3 Evidence of dynamic linkages using Diebold andYilmaz (2012)

We document the result of Diebold and Yilmaz (2012) for dynamic linkage of green bond
with energy and crypto-market in Table 5. It is noticed that DCC shows the spillover in the
short and long run, but it does not provide its magnitude. To overcome this, Diebold and
Yilmaz (2012) model is employed amongst these markets. In this table, within and cross-
market dynamic linkages are presented by the diagonal and off-diagonal elements of the
matrix. Similarly, ‘From’ is the average value of connections or connectedness derived from
constituent markets while “To” shows the average value of connectedness contributed to
other markets.

Regarding volatility transmission received from other markets, we observe that one of
the energy market indexes (RSPCE) has the highest linkages derived fromgreen bond and
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Fig. 3 Time varying correlation among constituent series

cryptocurrency followedbyother index of the energymarket (RIGW) that is 2.28%and1.77%
respectively. Similarly, cryptocurrency (RETHER) derives the least volatility spillover (0.06)
from other constituent markets. Further, the energy market itself (RIGW) and cryptocurrency
(RETHER) are largest and least contributors to the transmission of the volatility. On this
note, it can be observed that the energy market is a quick responder of the shocks in terms
of both recipient and transmission. Next, we compute the net directional dynamic linkage
differentiating between “From” and “To” spillover. It helps to detect which market receives
more spillover than it transmits and vice versa (Tiwari et al., 2022). Referring to the net
directional dynamic linkage, it is found that green bond, one index of energy market (RIGW)
and cryptocurrency (both Bitcoin and Etherum) are net receivers of the shocks with − 0.4,
− 0.42, − 0.01 and − 0.06 respectively. It is S&P global clean energy index (RSPCE) which
is only transmitter of shocks, hence, it dominates the rest of the constituent assets class.

Additionally, we document the own variable shocks diagonally in the same table and
observe that 99.22% of green bond, 88.61% of energy market (RSPCE), 91.5% of energy
market (RIGW), 99.26% of cryptocurrency (RBIT), 99.69% of cryptocurrency (RETHER)
are propelled by its shocks. On this note, it is witnessed that 11.39%movement in the energy
market (RSPCE) is affected by its network connection which is high comparatively. To sum
up, we find that green bond (RSPGB) is a net receiver, though the contribution from other
markets is less, hence, it can be said that it is marginally connected with energy and crypto
market. This weak dynamic linkage appears because of lower degree of competition (Naeem
et al., 2021a, 2021b). This evidence is in the similar line with the findings of Roeredo and
Ugolini (2020), Pham (2016a, 2016b) and different from Tiwari et al. (2022).

Figure 4 displays the graphical representation of overall spillover, from spillover to
spillover employingDiebold andYilmaz (2012). Considering the time aspect, the observation
number 0, 200, 400, 600, 800, 1000, 1200 and 1400 denote March 10, 2016, December 21,
2016, September 27, 2017, July 6, 2018, April 16, 2019, January 21, 2020, October 27, 2020
and October 15, 2021 respectively. From this figure, we notice that connectedness among the
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Fig. 4 Overall, to and from spillover amongst various markets

various markets is varying; however, during the end of 2019, high connectedness is seen in
each market except cryptocurrency (RETHER).

4.4 Dynamic linkages using Baruník and Krehlík (2018) model

The dynamic connectedness amongst the market varies over the period because of their
pattern and stochastic nature. Hence, we employ the Baruník and Křehlík (2018) model to
refine the connectedness in various time horizons. The result is obtained considering 1 day
to 4 days (short term frequency connectedness), 4 days to 10 days (medium-term frequency
connectedness) and 10 days to infinite days (long term frequency connectedness); the same
is presented in Table 6(A–C) respectively. In these tables, the terminologies like “WTH”
signifies within, “ABS ” signifies absolute, “FROM” refers to spillover received from other
asset classes and “TO” illustrates spillover contributions to markets. Referring to the Table
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Table 6 Application of the Baruník and Krehlík (2018)

RSPGB RSPCE RIGW RBIT RETHER FROM_ABS FROM_WITH

(A)

RSPGB 65.99 0.21 0.04 0.22 0.09 0.11 0.16

RSPCE 0.28 60.92 4.41 0.26 0.01 0.99 1.41

RIGW 0.13 4.94 61.29 0.10 0.10 1.05 1.50

RBIT 0.12 0.16 0.07 76.34 0.22 0.11 0.16

RETHER 0.07 0.01 0.03 0.05 75.42 0.03 0.05

TO_ABS 0.12 1.07 0.91 0.13 0.08 2.30

TO_WTH 0.17 1.52 1.29 0.18 0.12 3.28

(B)

RSPGB 20.53 0.01 0.03 0.01 0.09 0.03 0.15

RSPCE 0.08 16.51 3.38 0.02 0.02 0.70 3.86

RIGW 0.12 1.90 17.79 0.00 0.00 0.41 2.24

RBIT 0.05 0.01 0.04 14.52 0.00 0.02 0.11

RETHER 0.01 0.01 0.01 0.06 15.35 0.02 0.09

TO_ABS 0.05 0.39 0.69 0.02 0.02 1.17

TO_WTH 0.28 2.14 3.82 0.11 0.11 6.46

(C)

RSPGB 12.69 0.00 0.02 0.00 0.06 0.02 0.15

RSPCE 0.02 11.18 2.89 0.01 0.02 0.59 5.06

RIGW 0.10 1.45 12.06 0.00 0.00 0.31 2.69

RBIT 0.04 0.01 0.03 8.40 0.00 0.02 0.14

RETHER 0.00 0.01 0.01 0.04 8.92 0.01 0.10

TO_ABS 0.03 0.29 0.59 0.01 0.02 0.94

TO_WTH 0.27 2.54 5.08 0.10 0.14 8.13

(A) 1–4 days (band 3.14–0.79), (B) 4–10 days (band 0.79–0.31), (C) 10 days to inf days (band 0.31–0). Source:
Author(s) calculations

6(A), we conjecture that the energy market (ISE global wind energy index-RIGW) derives
highest spillover from other series (1.50%) followed by another index of energymarket (S&P
global clean energy index-RSPCE)with 1.41% in short-run. Furthermore, in themedium run,
clean energy market is the highest receiver of spillover from other series (3.86%) followed by
wind energy (2.24%). Interestingly, wind energy is the highest contributor (3.82%) followed
by clean energy (2.14) in the medium-term horizon. Moreover, in the long-run clean energy
obtains highest spillover (5.09%) followed by wind energy (2.69%), and in divergent case
wind energy is the highest receiver of the spillover from other series. From Baruník and
Křehlík (2018) frequency-domain result, total connectedness of the five series is observed
to be higher in the long-run than in the short run, thus suggesting reduced diversification
opportunities in the long run.

The primary reason for the high spillover in the long run, is that it takes time for any
event to reflect its impact. Furthermore, long-term investors are concerned about the energy-
efficient green bond markets to provide investment alternatives for investors. Due to this,a
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demand and supply mismatch problem occurs, and its impact can be seen in the long run
(Sharma et al., 2021; Naeem et al., 2021a, 2021b).

5 Conclusion

Past studies confirmed that using cryptocurrency in a portfolio together with traditional assets
has the advantage of increasing diversification (Moreno et al., 2022). Sustainable economic
development and climate change have caught the attention of global leaders for fighting over-
all environmental degradation and the adoption of green bonds. Similarly, renewable energy,
which includes water, biomass, wind, solar, and wave energy, provides an alternative to fossil
fuels to reduce carbon emissions for a healthy economy. Regardless of other environmental
penalties, Bitcoin and other cryptocurrencies could drive global warming above 2 °C (Mora
et al., 2018). All these three assets class are seen as proper consideration by investors and
other stakeholders for diversification and hedging against risk, and our study set out to explore
the dynamic linkages of green bonds with renewable energy and the crypto market as set out
in our research questions, RQ1 and RQ2.

To achieve the objective, dynamic conditional correlation (DCC), Diebold and Yilmaz
(2012) and Baruník and Křehlík (2018) models were applied to multiple time series of daily
prices for key market indexes. Namely, the S&P green bond index (RSPGB) as a proxy
for green bond; the S&P global clean energy index (RSPCE) and ISE global wind energy
(RIGW)as proxies for the renewable energy market, and; Bitcoin (RBIT) and Ethereum
(RETHER) as proxies for the crypto market. The daily prices of these constituent series
are considered from October 3, 2016, to February 23, 2021. For brevity, we summarize the
results as follows. The summation of the coefficients ofDCCa andDCCb are less than 1which
ensures stationarity. Second, the application of Diebold and Yilmaz (2012) reveals that green
bond (RSPGB) is a net receiver of volatility. The dynamic conditional correlation (DCC)
dictates that there is no dynamic linkages of volatility spillover from green bond to energy
and crypto market in the short run. In contrast, energy market (RIGW) and cryptocurrency
(RETHER) are the largest and least contributors to the volatility transmission, respectively.
As green bond net receiver of the volatility, it confirms that it is marginally connected with
energy and crypto market. This weak dynamic linkage appears because of lower degree of
competition (Naeem et al., 2021a, 2021b). Third, as regards Baruník and Křehlík (2018)
model, we notice that the magnitude of the total spillover is higher in the long-term than
in the immediate term. In exploring RQ1 and RQ2, this evidence supports the findings of
Reboeredo and Ugolini (2020), Pham (2021) but does not corroborate that of Tiwari et al.
(2022).

6 Implications and limitations of the study

Despite the fact that there is a wealth of information on diversification, there is little informa-
tion in the literature about cryptocurrencies and their benefits for diversification, particularly
with respect to the sustainability aspect. The findings from this paper lend the credence to
market participants, investors, portfolio diversification and policymakers. Due to themarginal
connectedness or dynamic linkage of green bonds with energy and the crypto market, green
bonds help investors hedge the risks generated from aforesaid markets. By analysing the
expected returns and risks of cryptocurrencies, alternative investments, and sustainable assets,
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this study adds to the MPT by demonstrating that expected returns in relation to risks need
to be taken into account when investing assets in a portfolio. Additionally, by demonstrating
that cryptocurrencies boost an investment portfolio’s risk-adjusted returns, this study meets
the MPT’s requirement that investors assess an investment portfolio’s diversification using
economically diverse assets and maximise expected return relative to the risk of the portfolio.
The information on investment portfolios, cryptocurrencies, and investment diversification
is improved by this study. Furthermore, this study has ramifications for financial institutions
and investment firms because it highlights the need to take cryptocurrencies into account as
diversity assets in their investment portfolios.

In addition, for investors, a wise investment decision will be in holding all these assets
class in the short run only as there is no dynamic linkages in the short run, which mitigates
investors’ risk. Further, it also furnishes an insight into the belief of policymakers as green
bonds are considered one of the feasible ways to obtain sustainability goals in an environment
that proves worthy market in attracting the attention of investors. On this note, policymakers
are encouraged to implement viable strategies to support the green bond market and make it
more robust to exogenous shocks. As time passes, the magnitude of the spillover increases,
hence, it will be pertinent for the investors to diversify the risk for portfolio composition
encompassing green bonds, renewable energy, and cryptocurrency.Moreover, the green bond
issuer is also recommended to use this green bond to achieve low-carbon investment goals
and avoid financial market turbulence.

The findings obtained from this paper are subject to two major limitations. First, the
sample for cryptocurrencies is small as we have included only two series namely, Bitcoin
and Ethereum. Second, the present study has not incorporated the volatility connectedness
in crisis situations like the current Russia-Ukraine war. Future studies may consider the
portfolio weight and hedge ratio amongst green bonds, renewable energy and crypto-market
for optimal portfolio diversification. Our advancement of the application ofmultiple tests also
opens a new avenue for further work employing wavelet analysis, counterfactual analysis and
quantile regression to examine the connectedness between specific asset classes. In addition,
out-of-sample forecasting for volatility can also be considered in future.
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