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Abstract
We consider a single-item production–inventory system under a base stock policy for inven-
tory control. We model the system as a closed Gordon–Newell network. The population size
of the network is equal to the base stock level,which is the sumof the finished goods andwork-
in-process inventory. Each exogenous demand, which follows a Poisson process, releases a
production order for a new unit and increases the amount of the work-in-process inventory.
When there are no items in the finished goods inventory available, arriving demand is lost.
The replenishment network operates with state dependent service rates, which we assume to
be increasing and concave. First, we analyze the queue length behavior of a two node system
and provide conditions under which the mean queue length at the production server is convex
in the number of customers in the system. We prove that this leads to convexity of a standard
cost function. Using Norton’s theorem, we are able to generalize our results for arbitrarily
large production–inventory systems.

Keywords Production–inventory theory · Lost sales · Second order properties · Queueing
network theory · Norton’s theorem

1 Introduction

We consider an integrated production–inventory system consisting of a finished goods inven-
tory controlled by a base stock policy and an affiliated production network which serves as a
replenishment system in a make-to-stock mode. When there is inventory, an arriving exoge-
nous demand for a produced item from the system is satisfied immediately with exactly one
item, and an order for producing a new item is instantly sent to the replenishment system.
Arriving demand that finds the inventory depleted departs immediately without fulfillment
and is lost. The control parameter for the inventory is the base stock level z ≥ 1. That
means whenever an item from stock is dispatched to an arriving demand, and the inventory
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level is below this base stock level an order for the production of a new item is sent to the
replenishment system.

We address the problem of determining a base stock level that minimizes a standard cost
function. This cost function encompasses holding costs for items in the inventory, production
costs for items in the replenishment system, and costs for unfulfilled demand (lost sales).

Due to the lost sales behavior of arriving demand, this integrated production–inventory
network can be modeled as a closed network of queues with a fixed number of customers
cycling in the system. Assuming the servers of the replenishment network to be exponential
single servers and the stream of demands to be a Poisson process, Rubio and Wein (1996)
show that the integrated system is a Gordon–Newell network (Gordon and Newell, 1967).
Using queueing theory, the corresponding problem with backordering unsatisfied demand at
integrated production–inventory systems under base stock control has already been success-
fully investigated for many years. However, almost only single replenishment servers have
been subject of the investigations.

Until now, the case of production–inventory systems under base stock control with
rejection of arriving demand due to depleted inventory has not been well understood, see
Sections 4.2 and 4.3 in Rubio and Wein (1996), where only a very simple example could
be solved analytically. We tackle this problem in the present article and consider a single
item production–inventory system with lost sales. A sale is lost when there is no inventory
available to serve an arriving demand (customer) immediately. We model our base stock sys-
tem as a Gordon Newell network where a production order is released whenever demand is
fulfilled. We analyze the cost function and focus on the queue length behavior of the system.
Via numerical experiments, Rubio and Wein (1996) have found out that the cost function
of a production–inventory system under base stock control with lost sales is in general not
convex. For a production–inventory system where all replenishment stations and the finished
goods inventory have the same traffic intensity (called “balanced system”), they prove that
the cost function is a convex function of the base stock level. For a general replenishment
network with an affiliated finished goods inventory, our main result states that if the holding
costs dominate production costs the total cost function is convex in the base stock level under
a few natural conditions.

Our paper is structured as follows: In Sect. 1.1, we provide an introduction into relevant
literature on production–inventory systems. In Sect. 2, the detailed system is described, and
the transformation into a closed network of exponential queues is given explicitly. In Sect. 3,
the case of replenishment networks that consist of only a single station is analyzed. We
demonstrate that the main technical problems can be solved by considering this fundamental
setup. In a second step, we are able to reduce the general situation to this case. Details are
presented in Sect. 4. In Sect. 5, we provide numerical evaluations for a two-station network,
and Sect. 6 contains a short conclusion. Technical lemmata and lengthy proofs are collected
in the “Appendix”.

Notation and conventions:N = {1, 2, . . . },N0 = N∪{0}; increasingmeans nondecreasing
and decreasing means nonincreasing.

1.1 Literature review

Analyzing production–inventory systems by usingmethods andmodels fromqueueing theory
dates back to at least the 1950’s, see “Queues, Inventories andMaintenance” (Morse, 1958).A
great variety of different systems have been investigated since then and the available literature
is overwhelming. We sketch a selection of such work with emphasis on papers related to our
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analysis of an inventory under base stock control with an attached production network. Since
in general the replenishment servers or the replenishment networks have limited capacity, a
base stock policy is a reasonable control scheme (Federgruen and Zipkin, 1986a, b) although
not necessarily optimal for systems without backordering unsatisfied demand (Hill, 1999).

Fundamentals of “Continuous time stochastic demandmodels”with different reorder poli-
cies for a single inventory are surveyed by Lee andNahmias (1993)[Section 5]. In Section 5.4,
base stock policies under the heading of “Order-for-order inventory policies” are described,
which are special cases of (s, S)-policies (with s = S − 1). The case of multi-stage invento-
ries under base stock policies are dealt with by Axsäter (1993)[Section 2]. As an introductory
survey of the history of “production–inventory systems”, the “Notes” in Zipkin (2000) can
be used, especially the “Notes” in Chapter 6 (p. 237) and Chapter 7 (p. 289).

Base stock policy and backordering of unsatisfied demand. Most of the queueing theory
applications that analyze inventory systems tackle problems with backordering unsatisfied
demand. Usually the early investigations consider either a single replenishment server or
assume that reorders arrive after a random lead time. The latter can bemodeled as anM/G/∞
single station replenishment facility. Kaplan (1970) derives a dynamic programming formu-
lation of the random lead time model where the outstanding orders cannot cross (lead times
are therefore strongly correlated). Karmarkar (1987) investigates the interplay of lot siz-
ing, manufacturing lead times and in-process inventories using standard queueing models to
evaluate performance of manufacturing systems. Similar investigations in the realm of Flex-
ible Manufacturing Systems (FMS) are numerous, see e.g. the survey by Karmarkar (1993).
Different aspects of optimization criteria are “cost targets” where various risk measures are
considered as foundation for management decisions in production–inventory systems and as
a measure of quality. Recent works in this direction are by Li et al. (2020) (criterion: proba-
bility of loss and expected loss), Li and Arreola-Risa (2021) (criterion: total cost conditional
value-at-risk).
Bradley and Glynn (2002) investigate the interplay of the base stock level and the capacity
of a single replenishment server using heavy-traffic analysis of queueing systems.
Analysis of simple (open tandem) networks as replenishment systems have been conducted
by Lee and Zipkin (1992, 1995). For production–inventory systemswith a general production
network of Jacksonian type (Chen and Yao, 2001)[Chapter 2] and with backordering under
base stock control, Rubio andWein (1996) prove that setting the optimal base stock resembles
decision making in the newsvendor problem. For some special cases, they have determined
structural properties of the optimal policies. These results have been extended and generalized
by de la Cruz and Daduna (2016, 2019).
A problem different from that investigated in these articles but closely related emerges when
the production servers in the replenishment system have attached local inventories. An exam-
ple with explicit stationary distribution for an open tandem supply network is provided by
Song and Zipkin (2009)[Section 3] with a modified base stock policy. In general, the joint
decision for optimal local inventory control is not analytically tractable. In their review,
Atan et al. (2017) state “…an important result for continuous-review single end product
models with multiple demand classes is the optimality of state-dependent base-stock pro-
duction/replenishment policy …”.
Production–inventory systems with unreliable replenishment server are considered by Hu
and Xiang (1993) for the case of backordering.

Related models are production–inventory systems under base stock control where the
time to dispatch an item to the arriving demand is positive (usually random), for surveys see
Krishnamoorthy et al. (2011) and Krishnamoorthy et al. (2021).
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Base stock policy and lost sales of unsatisfied demand. Compared with the case of backo-
rdering unsatisfied demand, the lost sales behavior of demand that is not immediately fulfilled
has found only limited interest. The first analysis of the topic seems to be by Karush (1957)
who investigates an inventory in continuous time controlled by a base stock policy with ran-
dom lead times (independent, identically distributed) for reorders. This can be considered as
an M/M/∞-replenishment server. Karush proves convexity of stock-out probability in the
base stock level.
Related but different models are investigated e.g. in case of periodic review of inventory
level (Janakiraman and Roundy, 2004) and in discrete time (Zipkin, 2008). Janakiraman
and Roundy (2004) prove for the case of stochastic lead times which do not cross (i.e.
an M/M/∞-replenishment server with strongly correlated service times) convexity of the
expected discounted sum of holding and lost sales costs in the base stock level. Zipkin (2008)
proves structural properties of several (“plausible”) policies and evaluates numerically some
of the plausible policies. Johansen (2013) considers the counterexample of Hill (1999) and
modifies the pure base stock policy in lost sales systems by introducing a lower bound on
the time between placing replenishment orders.
The main reference of the system analyzed in this article is Rubio and Wein (1996) where an
inventory under backordering and under lost sales for unsatisfied demand are considered. The
replenishment system in both cases is a complex network of exponential service stations with
random routing (processing networks in the terminology of Zipkin (2000)[Section 7.3.6]).
In case of a tandem supply system under lost sales, Song and Zipkin (2009) show that for
the case of a normal and an emergency supply source (node) the stationary distribution is
accessible via generalized Gordon–Newell network models.
For general exponential networks with lost sales in the context of stock-out under base
stock control, Rubio and Wein (1996) prove convexity of the cost function in the base stock
level when the inventory and processing network is totally symmetric (“balanced” in their
terminology). Thus far, more results similar to those for backordering by Rubio and Wein
(1996), and de la Cruz and Daduna (2016, 2019) seem to be not available for the lost sales
case.
Production–inventory systems with unreliable replenishment server are considered in Liu
and Cao (1997) for the case of lost sales.
For production–inventory systems with positive service time, early results with product form
steady state (similar to Rubio andWein (1996) and the present article) are derived in Schwarz
et al. (2006), Schwarz et al. (2007), and more recently in Krishnamoorthy and Viswanath
(2013) andOtten et al. (2016). Toktay et al. (2000) illustrate a practical application of a closed
queueing network to model a remanufacturing system with lost sales.
A comparison of different reorder policies, including base stock policy, for systems under
lost sales are provided by Bijvank and Vis (2011, 2012).

2 Themodel

The production–inventory system in this article consists of a replenishment network of K
service stations, indexed by {1, 2, . . . , K }, and the finished goods inventory, indexed by
K + 1. The base stock level is denoted by z ≥ 1. An arriving demand that finds finished
goods available at the inventory takes one item, triggers an order for production of a new unit
in the replenishment network and leaves the system. If the inventory is depleted, an arriving
demand will depart immediately without obtaining an item (lost sales).
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Fig. 1 Structure of the production–inventory system

To model the entire production–inventory system, we use a Gordon Newell network with
z ≥ 1 customers and K + 1 exponential single server stations J = {1, . . . , K , K + 1}.
Stations j = 1, . . . , K represent the (replenishment-)production system, and the finished
goods inventory is represented by station K + 1. Service intensities at nodes j = 1, . . . , K
are allowed to be queue length dependent μ j (n) > 0, n = 1, . . . , z. The population size z
equals the base stock level. Routing of customers is governed by an irreducible stochastic
matrix R = (r(i, j) : i, j ∈ {1, . . . , K + 1}): With probability r(K + 1, j), a new order for
production of an unit is sent to station j ∈ {1, . . . , K }. An order served at station j is sent to
station i ∈ {1, . . . , K } with probability r( j, i), and with probability r( j, K + 1) it is sent as
finished good to the inventory at station K + 1.

Along their paths through the network, the customers of the Gordon–Newell network
therefore take different identities with respect to the production–inventory system. Customers
at station K + 1 are items of the finished goods in stock. When leaving station K + 1
(triggered by an arrival of demand), a customer is transformed into an order which passes
through the replenishment subsystem according to the routing matrix R and is processed at
some subsequent stations out of 1, . . . , K . When reentering station K + 1, the customer is
converted to a new finished goods item (see Fig. 1).

The lost sales property of the external demand, which arrives in a Poisson-λ stream,
implies that an arrival that finds no customer at K +1 ( = stock-out) does not change the state
of the network. An arrival that finds positive queue length at K + 1 (= finished goods stock
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> 0) takes one item (= customer) from the queue, departs from the system, and triggers a
replenishment order.

Hence by construction and the lost sales property, customers present at K + 1 leave
that node with exponential-λ interdeparture times (= service times) as long as customers
are present there. Therefore, station K + 1 operates with a state independent service rate
μK+1(n) =: μK+1 = λ, n ≥ 1.

Note that whenever the total population of the network resides in the finished goods station
K + 1 there is no ongoing replenishment activity in the production sub-system {1, . . . , K },
and if there are fewer than z “customers” present at K + 1 there are ongoing production
processes at some of the stations 1, . . . , K .

Imposing the usual (conditional) independence assumptions on the stochastic behavior of
the systems implies that the joint queue length vector for the system is a continuous time
ergodic Markov process X = ((X j (t), j = 1, ..., K + 1) : t ≥ 0) on state space

S(z, J ) := {(n1, . . . , nK+1) ∈ N
K+1
0 : n1 + · · · + nK+1 = z}. (1)

Here, XK+1(t) is the size of the on-hand inventory, while X j (t) is the number of replenish-
ment orders waiting or in service at station j at time t ≥ 0, j ∈ {1, . . . , K }. The dynamics
of the system is governed by the transition intensity matrix Q = (q(x, y) : x, y ∈ S(z, J ))

as follows. For a generic state (n1, . . . ni , . . . n j , . . . nK+1) ∈ S(z, J ), we have:

q((n1, . . . ni , . . . n j , . . . nK+1), (n1, . . . ni − 1, . . . n j + 1, . . . nK+1)

= μi (ni ) · r(i, j), ni > 0,

q((n1, . . . n j , . . . nK+1), (n1, . . . n j + 1, . . . nK+1 − 1)

= λ · r(K + 1, j), nK+1 > 0,

q((n1, . . . n j , . . . nK+1), (n1, . . . n j − 1, . . . nK+1 + 1)

= μ j (n j ) · r( j, K + 1), n j > 0.

The stationary distribution πz of X exists and is the (unique) probability solution of the global
balance equation π · Q = 0 with

πz(n1, . . . , nK+1)

=
K∏

j=1

⎛

⎝
n j∏

k j=1

η j

μ j (k j )

⎞

⎠
(

ηK+1

μK+1

)nK+1

G(z, J )−1, (n1, . . . , nK+1) ∈ S(z, J ), (2)

where G(z, J ) is the normalization constant and η = (η j : j = 1, . . . , K + 1) is the
probability solution of the traffic equation η = η · R.
We denote henceforth by (X j , j = 1, ..., K + 1) a random vector distributed according to
the stationary distribution (2) of X .

The stationary throughput of the network with z customers, i.e. the mean total number of
departures per time unit over all nodes 1, . . . , K + 1 is T H(z) = G(z − 1, J )/G(z, J ), see
Chen and Yao (2001)[(2.14) in Section 2.5]. Therefore, the mean total number of departures
per time unit from node j (throughput at j) is T Hj (z) = η j · T H(z) .

The cost structure of our problem is as follows: Work-in-process (WIP) cost per item is
c (per time unit), finished goods inventory cost per item is h (per time unit), and cost � is
incurred for every lost sale. It follows from the definition of the throughput that the steady
state mean number of lost sales per time unit under base stock level z is

λ − T HK+1(z). (3)
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The global steady state cost function is (with Ez(·) the expectation under base stock level z)

C(z) = hEz[XK+1] + c
K∑

j=1

Ez[X j ] + � (λ − T HK+1(z)) . (4)

For the companion problem with backordering in Rubio and Wein (1996), it is proved that
the optimal base stock z∗ can be computed explicitly and the solution is of the form of the
news-vendor problem’s solution. A similar procedure seems not possible for the lost sales
system considered here. Rubio and Wein notice that the cost function is convex if h = c.
For the “balanced” case in which all K + 1 single server stations have state independent
service rates μ j (n j ) = μ j , n j = 1, . . . , z and the same utilization ρ j = η j/μ j = ρ for
j = 1, . . . , K + 1, they deliver a closed form expression for the cost-optimal z (Rubio and
Wein, 1996)[Formula (14)]. Moreover, they state that for h ≥ c the total cost function is
in general not convex, see Rubio and Wein (1996)[Section 4.2]. We therefore will disclose
structural properties of the cost function (4) and prove that under some natural conditions it
is indeed convex if h ≥ c.

3 Single station replenishment network, K = 1

We start our analysis with the simplest case: an inventory with a replenishment network that
consists of only one station.A similar setting has alreadybeendealtwith byKarush (1957), but
with a somewhat different replenishment station. As shown in Rubio and Wein (1996)[4.2],
this is a two-station Gordon–Newell network. We consider a slightly more general network
which will enable us to approach the case of a general processing network in the next section.

In this section, we study the queue length behavior of a Gordon–Newell network with two
nodes J := {1, 2}where the service rate of node 1, which represents the processing network,
has queue length dependent service rates.

There are in total z > 0 customers cycling in the network. Node j = 1 has state dependent
service intensities μ1(n), n ≤ z, which are increasing and concave in n. Node j = 2 has
exponential service times with rate μ2. (Recall that in the production–inventory system
represented by this Gordon–Newell network holds μ2 := λ.)

The routing matrix R = (r(i, j) : i, j ∈ {1, 2}) is determined by r(2, 1) = 1 and
r(1, 2) = 1 − p for p ∈ [0, 1). This indicates that an order is sent immediately to the
replenishment server and that production of an item needs rework with probability r(1, 1) =
p.

The cost function for this system is:

C(z) = cEz[X1] + hEz[X2] + � (λ − η2 · T H(z))

= hz + (c − h)Ez[X1] + � (λ − η2 · T H(z)) (5)

The following theorem presents the main result of Section 3:

Theorem 1 In the production–inventory system with a single replenishment station, the cost
function (5) is convex in the base stock level if the following holds:
(i) The service rate function μ1(·) is increasing and concave on {1,2,…}.
(ii) It holds

η1

μ1(1)
≤ η2

μ2
. (6)

(iii) The costs rates fulfill h ≥ c.
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Proof For a Gordon–Newell network with local service rates that are increasing and concave
in the local queue lengths, the throughput T H(z) is increasing and concave in the population
size z (Shanthikumar and Yao, 1988). Hence, it suffices to show that Ez[X1] is concave in z
which is the result of Proposition 1 below. �	

Some comments on Theorem 1 and the natural conditions imposed on the production–
inventory system are in order here. (a) The natural conditions (i) and (ii) constitute a setting
which guarantees that the cost function iswell-behaved. The interpretation of these conditions
is as follows: The result in Shanthikumar and Yao (1988) indicates that (i) is a minimal
condition. It means that higher load enforces the production controller to provide more
production capacity until the capacity limit is reached. The meaning of condition (ii) is best
understood in case of no rework in the production system (no feedback in queueing network
terms), because then η1 = η2 = 1/2 holds. In this case, condition (ii) is simply μ2 ≤ μ1(1)
and states that the service capacity of the production system is adapted to the arrival stream
such that on average there is enough capacity to satisfy the arriving demand of intensity
λ = μ2. The lost sales are then due to second order effects: the variability of inter arrival
times and service times. In terms of closed network theory: for state-independent service
rates at node 1, condition (6) indicates that node 2 is the bottleneck of the system. This
interpretation also applies to the general case when using an intuitive but more complex
definition of a bottleneck.

(b) Holding costs include all costs involved in storing unused inventory, such as costs for
warehouse space and also insurance and opportunity costs. Condition (iii) states that holding
costs dominate production costs. This property is discussed inRubio andWein (1996)[Section
4.2, p. 266]. Under this condition, they conjecture that for production networks with state-
independent service rates μ j the cost function is quasi-convex, but not convex in general for
h ≥ c. In case of h = c, they propose that C(z) is convex.

The result of the next proposition is purely queueing-theoretical because it relies only
on the conditions (i) and (ii). Moreover, it seems to be of independent interest because it
provides second order properties for the mean queue lengths in a two-station network.

Proposition 1 Consider the two-node Gordon–Newell network with z ≥ 1 customers and
η = (η1, η2) as the solution of the traffic equation. Assume that the service rate at node 2 is
constantμ2 and that the service rateμ1(n), n ∈ N, at node 1 is increasing in n. Let (X1, X2)

be distributed according to the stationary distribution (7).
If η1/μ1(1) ≤ η2/μ2 holds, then the expected queue length Ez[X1] at station 1 is a concave
function of the population size z.

The proof is postponed to “Appendix 1”. Here, we add a remark indicating relations to
a well-known fact from queueing theory which has been already used in the literature of
production–inventory systems (Karush, 1957). To prove Proposition 1, it will be convenient
to rewrite the stationary distribution (2) of the two-station production–inventory system as
follows. The stationary distribution πz of the joint queue lengths vector (X1, X2) can be
rewritten for n1 = n, n2 = z − n, 0 ≤ n ≤ z, as

πz(n, z − n) =
(

n∏

k=1

η1

μ1(k)

) (
η2

μ2

)z−n
(

z∑

l=0

(
l∏

k=1

η1

μ1(k)

) (
η2

μ2

)z−l
)−1

=
(

n∏

k=1

μ2 · (η1/η2)

μ1(k)

)
Ḡ(z, {1, 2})−1, (7)
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with Ḡ(z, {1, 2}) = ∑z
m=0

(∏m
k=1

μ2·(η1/η2)
μ1(k)

)
. Formula (7) indicates that the stationary dis-

tribution of the two-station Gordon–Newell network equals the stationary distribution of an
exponential single server queuewith finitewaiting room z, state-dependent service ratesμ1(·)
and arrival intensity μ2 · (η1/η2) which satifies the natural condition μ2 · (η1/η2) < μ1(1).
This has been already utilized byKarush (1957) when applying Palm’s formula for evaluating
the performance of the production–inventory system.

Considering the case of state-independent service rates μ1(·) = μ1 at node 1, (6) reads

η1

μ1
≤ η2

μ2
, (8)

which means that station 2 is the bottleneck of the system.
As a result, Proposition 1 says that the expected queue length at the non-bottleneck station

1 is a concave function of the population size in the network, which is the base stock level in
our motivating system. On the other hand, we see that at the bottleneck node 2 the expected
queue length Ez[X2] = z − Ez[X1] is convex in z. Consequently, if the equality in (8) holds
the expected queue length at both stations will be the same and linear in z. This is the case of a
“balanced” production–inventory systemwhere convexity of the cost function can be derived
analytically by differentiating the cost function. Indeed, this generalizes to the multi-station
network (Rubio and Wein, 1996) [Section 4.2].

Example 1 We consider the production–inventory system where an reorder has to undergo
only a random lead time which is exponentially distributed with mean ν−1 and all lead times
are assumed to be independent. This is the first model investigated by Karush (1957) and it
can be easily seen that the replenishment network can be modeled as an infinite server queue,
i.e. μ1(n) = n · ν, n = 1, 2, . . . , z. Karush proves that the stock-out probability πz(z, 0) is
convex in z. This implies that the mean number of lost sales is convex in z. Note that μ1(·)
is increasing and concave. Thus, Theorem 1 applies to this system as well.

In a second approach, he proves that this property is maintained even under the assumption
that the replenishment lead time is a mixture of generalized Erlang distributions, which he
realizes as a network of a finite number of different branches of multistage tandem networks,
each stage containing an infinite server. As Karush indicates, the class of mixtures of gener-
alized Erlangian distributions is a very versatile class of distributions on [0,∞). Indeed, this
class is dense in the class of all distributions on [0,∞) (Schassberger, 1973)[Section I. 6].

The important observation is that the stock-out probability does not reflect the complexity
of the lead time distribution because it only depends on the mean lead time ν−1. This result
dates back to Palm (1938) and is in fact a property of M/G/z/z queues, i.e. the Erlang loss
system. Such properties are now labeled as “insensitivity properties” of queueing systems,
see e.g. König et al. (1974) and Taylor (2011). For more details on inventory systems see
Zipkin (2000)[Chapter 7].

4 Multi-station replenishment network, K ≥ 1

In this section, we consider the general production–inventory problem as described in Sect. 2
where the system is modeled as a Gordon–Newell network with node set
J := {1, ..., K + 1} and cost function (4). This problemcan be reduced to the one investigated
in Sect. 3 by exploiting the fact Ez[XK+1] = z−∑K

j=1 Ez[X j ] such that equation (4) reduces
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to

C(z) = hz + (c − h)Ez[
K∑

j=1

X j ] + � (λ − ηK+1 · T H(z)) . (9)

(Recall that in the associated production–inventory system it holds μK+1 := λ.)
The main idea is to apply Norton’s Theorem for Gordon–Newell networks (Chandy et al.,
1975) which says:
For the K + 1-node Gordon–Newell network of Sect. 2 with z customers, we can construct
a reduced two-node Gordon–Newell network consisting of

• a node K̃ + 1 which has the same service rate as the node K + 1 in the original network
(in our setting with a constant service rate μ

˜K+1 := μK+1 = λ), and

• a single “composite queue” 1̃ substituting the nodes 1, ..., K from the original network
with queue length dependent service rates φ(n), n = 0, 1, 2, . . . (to be determined below),

such that the steady state marginal distributions of the nodes K + 1 and K̃ + 1 in the two
networks are identical although the rest of the network is very different.

This transforms the cost function (9) into

C(z) = hz + (c − h) (z − Ez[XK+1])︸ ︷︷ ︸
original network

+� (λ − ηK+1 · T H(z))

= hz + (c − h) (z − Ez[X
˜K+1])︸ ︷︷ ︸

using Norton’s Theorem

+� (λ − ηK+1 · T H(z))

= hz + (c − h) Ez[X 1̃]︸ ︷︷ ︸
composite queue 1̃

+� (λ − ηK+1 · T H(z)) , (10)

which is the analog of the cost function (5).
With that, we are prepared to state and prove our main theorem:

Theorem 2 Consider the production–inventory network with base stock level z ≥ 1 and with
Poisson-λ demand process under lost sales from Sect. 2 and the associated Gordon–Newell
network with exponential single server nodes J = {1, . . . , K , K +1} and (η1, . . . , ηK+1) as
probability solution of the traffic equation. Node K + 1 has constant service rate μK+1 = λ

while the other nodes may have state dependent service rates μ j (·).
The cost function (10) is convex if the following holds:
(̃ i ) The service rate functions μ j (·), j = 1, . . . , K are increasing and concave.
( ĩ i ) It holds

K∑

j=1

η j

μ j (1)
≤ ηK+1

μK+1
. (11)

( ĩ i i ) The costs fulfill h ≥ c.

Proof The first observation is: from (̃ i ) it follows that the throughput T H(z) of the original
network in (10) is concave (Shanthikumar and Yao, 1988). Consequently, for h = c the proof
is finished. We therefore consider henceforth the case h > c.

We will apply Norton’s Theorem (Chandy et al., 1975) to the associated Gordon–Newell

network from Sect. 2 and obtain a two-node network with node set J̃ = {̃1, K̃ + 1} as

described above. The service rate at K̃ + 1 is μ
˜K+1 = μK+1 = λ and the routing matrix R̃
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is selected such that the solution of the traffic equation η̃ · R̃ = η̃ has the probability solution
η̃ = (̃η̃1, η̃˜K+1) = (1 − ηK+1, ηK+1). (This is always possible.)

The service rates φ(·) at node 1̃ are queue length dependent with φ(0) = 0 and

φ(h) =
∑

n1+···+nK=h−1
∏K

j=1

(∏n j
k j=1

η j /(1−ηK+1)

μ j (k j )

)

∑
n1+···+nK=h

∏K
j=1

(∏n j
k j=1

η j /(1−ηK+1)

μ j (k j )

) , h > 0 . (12)

According to Norton’s Theorem, the stationary distribution π̃z of the substitute network is

with normalization constant G̃(z, {̃1, K̃ + 1})

π̃z(n, z − n) =
(

ηK+1

μK+1

)n
(
z−n∏

h=1

1 − ηK+1

φ(h)

)
· G̃(z, {̃1, K̃ + 1})−1, n = 0, 1, . . . , z.(13)

With this reduction, we are now in the framework of Theorem 1. To apply this theorem, we
need to show that the following holds:
(a) The marginal steady state queue lengths at node K + 1 of the original system and node

K̃ + 1 in the Norton’s Theorem substitute are the same.
(b) (1 − ηK+1)/μ1̃(1) ≤ ηK+1/μ

˜K+1. (Analog to (ii) of Theorem 1.)
(c) The service rate function φ(·) is increasing and concave. (Analog to (i) of Theorem 1.)
If we verify (a),(b), (c), then from Proposition 1 it follows that Ez[X 1̃] = Ez[∑K

j=1 X j ] is
concave, and we conclude that C(z) in (10) and thus in (9) is convex.

Verification of (a) The marginal steady state queue length distribution π̃
˜K+1
z at node K̃ + 1

in the Norton’s Theorem substitute is π̃
˜K+1
z (n) = π̃z(n, z − n) for n ≥ 0. By using the

definition of φ(·) and simplifying the expression, we obtain from (13)

π̃
˜K+1
z (n)

=
(

n∏

�=1

ηK+1

μK+1(�)

)
(1 − ηK+1)

z−n

∑

n1+···+nK=z−n

K∏

j=1

⎛

⎝
n j∏

k j=1

η j/(1 − ηK+1)

μ j (k j )

⎞

⎠G̃(z, {̃1, K̃ + 1})−1

=
(

n∏

�=1

ηK+1

μK+1(�)

)
∑

n1+···+nK=z−n

K∏

j=1

⎛

⎝
n j∏

k j=1

η j

μ j (k j )

⎞

⎠

︸ ︷︷ ︸
(	)

G̃(z, {̃1, K̃ + 1})−1.

Because (	) is the non-normalized marginal stationary distribution of node K + 1 in the
original network, we conclude

G̃(z, {̃1, K̃ + 1}) = G(z, {1, . . . , K , K + 1}),
where G(z, {1, . . . , K , K + 1}) is the normalization constant in (2). Thus, we have proved

that the marginal distribution of the nodes K + 1 and K̃ + 1 are the same: π̃˜K+1
z = πK+1

z .
Verification of (b) By definition, we have

μ1̃(1) = φ(1) = 1
∑K

j=1
η j /(1−ηK+1)

μ j (1)

= 1 − ηK+1∑K
j=1

η j
μ j (1)

.
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So,

1 − ηK+1

φ(1)
=

K∑

j=1

η j

μ j (1)

( ĩ i )≤ ηK+1

μK+1

completes this part of the verification.
Verification of (c) According to Norton’s Theorem, the service rate function at the composite
queue 1̃ is φ(0) = 0 and for h > 0

φ(h) =
∑

n1+···+nK=h−1
∏K

j=1

(∏n j
k j=1

η j /(1−ηK+1)

μ j (k j )

)

∑
n1+···+nK=h

∏K
j=1

(∏n j
k j=1

η j /(1−ηK+1)

μ j (k j )

) .

A short reflection reveals that this is the throughput in a Gordon–Newell network with
node set {1,…,K}, a routing (which can be selected irreducible) with stationary distribu-
tion (η j/

∑K
i=1 ηi : j = 1, . . . , K ) of the routing process (solution of the relevant traffic

equation), and queue length dependent service rates μ j (·).
Because these service rate functions are by ( ĩ i ) increasing and concave, φ(·) is increasing

and concave (Shanthikumar and Yao, 1988). This verifies (c). �	
Example 2 In Example 1, we have mentioned that for the case of processing networks con-
sisting of a single ·/M/∞ system which represents independent identically distributed lead
times the result of Palm (1938) states that the stock-out probability is invariant under chang-
ing the shape of the lead time distribution as long as the mean ν−1 remains fixed. Having the
K -station replenishment now at our disposal, we can reproduce the invariance result for the
stock-out probability immediately for networks of infinite server queues and suitably defined
Markovian random routing of the reorders before the lead time expires.

5 Numerical experiments

We have performed a series of numerical experiments, mainly to investigate the structure
of cost functions of production–inventory systems which are not covered by our theoretical
results. For our computations, we only consider queueing networks without feedback, i.e.
η1 = η2 = 1/2. We also set the lost sales costs � = 30 to clearly illustrate the convexity of
the expected total costs function in the figures.

First, we consider a closed Gordon Newell network with J̄ = 1, 2 we have dealt with in
Theorem 1. Taking parameters from Rubio and Wein, we set the WIP cost per item c = 1,
and the finished goods inventory cost per item h = 2 (Rubio and Wein, 1996)[Section 3, p.
265]. The inventory (node 2) is the bottleneck of the system and generates higher costs than
production at station j = 1 does (holding costs dominate production costs). As anticipated,
the expected total costs are convex for state dependent increasing and concave service rates at
station j = 1with η1

μ1(1)
≤ η2

μ2
andh > c (seeFig. 2 for a typical behavior of the cost function).

Although the lost sales cost is rather high, the optimal base stock level is astonishingly low.
This is explicable by the fact that node 2 (the inventory) is the bottleneck of the system: On
average, there is more replenishment capacity available than demand arrives. In Fig. 3, we
can observe the concavity of the expected queue length at station j = 1 and the convexity of
the expected queue length at station j = 2, proved in Proposition 1.

Secondly, we investigate the same system in more detail when the production costs (at
station 1) dominate the holding costs at the bottleneck (the inventory). Surprisingly, in these
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Fig. 2 Expected total costs: μ1(n) = ln(n) + μ2 + 0.1, μ2 = 5, η1 = η2 = 0.5, c = 1 < h = 2, � = 30

Fig. 3 Expected queue lengths (parameters as in Fig. 2)

experiments the expected total costs are convex as long as the cost ratio c
h ismoderately higher

than 1 (see Fig. 4 with c
h ≤ 6). In these cases, the optimal base stock level z is decreasing

in c. But for large cost ratios of c
h , the expected total cost function becomes increasing and

concave in z (see Fig. 5 with c
h ≥ 20). In this situation, the optimal base stock level is z = 1

in all cases we have investigated.
For completeness, we consider an example where station 1 with state-independent repro-

duction rate μ1 < μ2 is the bottleneck and the production costs dominate the holding costs
( ch > 1). As it can be seen in Fig. 6, the expected total costs are convex for this case. Further-
more, the expected queue length at station j = 1 is convex and the expected queue length at
station j = 2 is concave (see Fig. 7). Note that this result is covered by Theorem 1 as well
(by renumbering the stations).

123



912 Annals of Operations Research (2023) 331:899–921

Fig. 4 Expected total costs: μ1(n) = ln(n) + μ2 + 0.1, μ2 = 5, η1 = η2 = 0.5, h = 1, � = 30

Fig. 5 Expected total costs: μ1(n) = ln(n) + μ2 + 0.1, μ2 = 5, η1 = η2 = 0.5, h = 1, � = 30

6 Conclusion

For a production–inventory system with a complex processing network as replenishment
system, we have proved convexity of a standard cost function. Although the system could
be transformed into a standard closed Gordon–Newell network, which is in general easy to
understand with respect to steady state distribution and expected queue lengths (first order
properties), we have demonstrated that proving the second order properties of interest is
quite challenging. Our numerical results clearly indicate that further research in the field of
replenishment systems with state dependent service rates is needed. Our ongoing research
encompasses the case of cost functions where production costs dominate holding costs and
especially proving similar properties for production–inventory systems with positive dis-
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Fig. 6 Expected total costs: μ1 = 3 < μ2 = 5, η1 = η2 = 0.5, c = 2 > h = 1, � = 30

Fig. 7 Expected queue lengths (parameters as in Fig. 6)

patching times at the inventory. The case of multi-stage inventories under base-stock policy
at every stage is another direction of our research.
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A Technical lemmata and omitted proofs

For the following calculations, we use the abbreviations μ2·(η1/η2)
μ1(n)

=: xn , n ∈ N and

Ḡ(z, {1, 2}) = ∑z
m=0

(∏m
k=1 xk

) =: Ḡ(z, 2) which yields:

πz(n, z − n) =
(

n∏

k=1

xk

)
Ḡ(z, 2)−1 (14)

Ḡ(z + �, 2) = Ḡ(z, 2) +
�∑

h=1

(
z+h∏

k=1

xk

)
(15)

1 ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ · · · > 0 (16)

Weneed twopreparatory lemmata tofinally proveProposition 1. For the proof of Proposition1
and also for the proofs of Lemma (1) and (2), we only utilize (14)-(16).

Lemma 1 and its proof

Lemma 1 For the two-node network of Theorem 1, the following inequalities are equivalent:

Ez+2[X1] + Ez[X1] ≤ 2Ez+1[X1]
z∑

i=0

Ḡ(i, 2)

(
(1 − xz+2)Ḡ(z, 2) +

z+1∏

k=1

xk

)
+

z−1∑

i=0

Ḡ(i, 2)
z+2∏

k=1

xk ≥ xz+2Ḡ(z, 2)Ḡ(z, 2)

Proof

Ez+2[X1] + Ez[X1] ≤ 2Ez+1[X1]
(14)⇐⇒

z+2∑

m=1

m

(
m∏

k=1

xk

)
Ḡ(z + 2, 2)−1 +

z∑

m=1

m

(
m∏

k=1

xk

)
Ḡ(z, 2)−1

≤ 2
z+1∑

m=1

m

(
m∏

k=1

xk

)
Ḡ(z + 1, 2)−1

⇐⇒
(

z+2∑

m=1

m

(
m∏

k=1

xk

))
Ḡ(z + 1, 2)Ḡ(z, 2) +

(
z∑

m=1

m

(
m∏

k=1

xk

))
Ḡ(z + 2, 2)Ḡ(z + 1, 2)

≤ 2

(
z+1∑

m=1

m

(
m∏

k=1

xk

))
Ḡ(z + 2, 2)Ḡ(z, 2)
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(15)⇐⇒Ḡ(z, 2)2
[
z+2∑

m=1

m

(
m∏

k=1

xk

)
+

z∑

m=1

m

(
m∏

k=1

xk

)]

+ Ḡ(z, 2)

[(
z+2∑

m=1

m

(
m∏

k=1

xk

))
z+1∏

k=1

xk +
(

z∑

m=1

m

(
m∏

k=1

xk

)) (
2
z+1∏

k=1

xk +
z+2∏

k=1

xk

)]

+
(

z∑

m=1

m

(
m∏

k=1

xk

)) (
z+1∏

k=1

xk +
z+2∏

k=1

xk

)
z+1∏

k=1

xk

≤ 2

(
z+1∑

m=1

m

(
m∏

k=1

xk

)) (
Ḡ(z, 2)2 + Ḡ(z, 2)

(
z+1∏

k=1

xk +
z+2∏

k=1

xk

))

⇐⇒Ḡ(z, 2)2
[
2

(
z+1∑

m=1

m

(
m∏

k=1

xk

))
−

z+2∑

m=1

m

(
m∏

k=1

xk

)
−

z∑

m=1

m

(
m∏

k=1

xk

)]

+ Ḡ(z, 2)

[
2

(
z+1∑

m=1

m

(
m∏

k=1

xk

)) (
z+1∏

k=1

xk +
z+2∏

k=1

xk

)
−

(
z+2∑

m=1

m

(
m∏

k=1

xk

))
z+1∏

k=1

xk

−
(

z∑

m=1

m

(
m∏

k=1

xk

)) (
2
z+1∏

k=1

xk +
z+2∏

k=1

xk

)]

−
(

z∑

m=1

m

(
m∏

k=1

xk

)) (
z+1∏

k=1

xk +
z+2∏

k=1

xk

)
z+1∏

k=1

xk ≥ 0

⇐⇒Ḡ(z, 2)2
[
z+1∑

m=1

m

(
m∏

k=1

xk

)
−

z+1∑

m=1

m

(
m∏

k=1

xk

)
− (z + 2)

z+2∏

k=1

xk

+ (z + 1)
z+1∏

k=1

xk +
z∑

m=1

m

(
m∏

k=1

xk

)
−

z∑

m=1

m

(
m∏

k=1

xk

)]

+ Ḡ(z, 2)

[
(z + 1)

z+1∏

k=1

xk

(
z+1∏

k=1

xk +
z+2∏

k=1

xk

)
+

(
z∑

m=1

m

(
m∏

k=1

xk

)) (
z+1∏

k=1

xk +
z+2∏

k=1

xk

)

−
(

z∑

m=1

m

(
m∏

k=1

xk

)) (
z+1∏

k=1

xk +
z+2∏

k=1

xk

)
−

(
z∑

m=1

m

(
m∏

k=1

xk

))
z+1∏

k=1

xk

+
(

z+1∑

m=1

m

(
m∏

k=1

xk

))
z+1∏

k=1

xk −
(

z+1∑

m=1

m

(
m∏

k=1

xk

))
z+1∏

k=1

xk

− (z + 2)
z+1∏

k=1

xk

z+2∏

k=1

xk +
(

z+1∑

m=1

m

(
m∏

k=1

xk

))
z+2∏

k=1

xk

]

−
(

z∑

m=1

m

(
m∏

k=1

xk

)) (
z+1∏

k=1

xk +
z+2∏

k=1

xk

)
z+1∏

k=1

xk ≥ 0

⇐⇒Ḡ(z, 2)

[
Ḡ(z, 2)

(
(z + 1)

z+1∏

k=1

xk − (z + 2)
z+2∏

k=1

xk

)
+ (z + 1)

z+1∏

k=1

xk

(
z+1∏

k=1

xk +
z+2∏

k=1

xk

)

−
(

z∑

m=1

m

(
m∏

k=1

xk

))
z+1∏

k=1

xk +
(

z∑

m=1

m

(
m∏

k=1

xk

))
z+2∏

k=1

xk −
z+1∏

k=1

xk

z+2∏

k=1

xk

]
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−
(

z∑

m=1

m

(
m∏

k=1

xk

)) (
z+1∏

k=1

xk +
z+2∏

k=1

xk

)
z+1∏

k=1

xk

︸ ︷︷ ︸
>0 by (16)

≥ 0

⇐⇒Ḡ(z, 2)

[
Ḡ(z, 2) (z + 1 − (z + 2)xz+2) + (z + 1)

z+1∏

k=1

xk + z
z+2∏

k=1

xk −
z∑

m=1

m

(
m∏

k=1

xk

)

+
z∑

m=1

m

(
m∏

k=1

xk

)
xz+2

]
−

(
z∑

m=1

m

(
m∏

k=1

xk

)) (
z+1∏

k=1

xk +
z+2∏

k=1

xk

)
≥ 0

⇐⇒Ḡ(z, 2)

[
Ḡ(z, 2) ((1 − xz+2)(z + 1) − xz+2) +

z+1∏

k=1

xk −
(

z∑

m=1

m

(
m∏

k=1

xk

))
(1 − xz+2)

]

+
(
zḠ(z, 2) −

z∑

m=1

m

(
m∏

k=1

xk

))(
z+1∏

k=1

xk +
z+2∏

k=1

xk

)
≥ 0

⇐⇒Ḡ(z, 2)Ḡ(z, 2)(1 − xz+2)(z + 1) + Ḡ(z, 2)
z+1∏

k=1

xk + zḠ(z, 2)
z+1∏

k=1

xk

−
(

z∑

m=1

m

(
m∏

k=1

xk

))
(1 − xz+2)Ḡ(z, 2) −

(
z∑

m=1

m

(
m∏

k=1

xk

))
z+1∏

k=1

xk

+
(
zḠ(z, 2) −

z∑

m=1

m

(
m∏

k=1

xk

))
z+2∏

k=1

xk − xz+2Ḡ(z, 2)Ḡ(z, 2) ≥ 0

⇐⇒
(

(z + 1)Ḡ(z, 2) −
z∑

m=1

m

(
m∏

k=1

xk

)) (
(1 − xz+2)Ḡ(z, 2) +

z+1∏

k=1

xk

)

+
(
zḠ(z, 2) −

z∑

m=1

m

(
m∏

k=1

xk

))
z+2∏

k=1

xk − xz+2Ḡ(z, 2)Ḡ(z, 2) ≥ 0

⇐⇒
(
Ḡ(z, 2) + z

z∑

m=0

(
m∏

k=1

xk

)
−

z∑

m=0

m

(
m∏

k=1

xk

)) (
(1 − xz+2)Ḡ(z, 2) +

z+1∏

k=1

xk

)

+
(
z

z∑

m=0

(
m∏

k=1

xk

)
−

z∑

m=0

m

(
m∏

k=1

xk

))
z+2∏

k=1

xk − xz+2Ḡ(z, 2)Ḡ(z, 2) ≥ 0

⇐⇒
(
Ḡ(z, 2) +

z∑

m=0

(z − m)

(
m∏

k=1

xk

)) (
(1 − xz+2)Ḡ(z, 2) +

z+1∏

k=1

xk

)

+
(

z∑

m=0

(z − m)

(
m∏

k=1

xk

))
z+2∏

k=1

xk − xz+2Ḡ(z, 2)Ḡ(z, 2) ≥ 0

⇐⇒
(
Ḡ(z, 2) +

z−1∑

i=0

i∑

m=0

(
m∏

k=1

xk

)) (
(1 − xz+2)Ḡ(z, 2) +

z+1∏

k=1

xk

)

+
(
z−1∑

i=0

i∑

m=0

(
m∏

k=1

xk

))
z+2∏

k=1

xk − xz+2Ḡ(z, 2)Ḡ(z, 2) ≥ 0
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⇐⇒
z∑

i=0

Ḡ(i, 2)

(
(1 − xz+2)Ḡ(z, 2) +

z+1∏

k=1

xk

)
+

z−1∑

i=0

Ḡ(i, 2)
z+2∏

k=1

xk − xz+2Ḡ(z, 2)Ḡ(z, 2) ≥ 0

�	

Lemma 2 and its proof

Lemma 2 It holds for z ∈ N:

Ḡ(z, 2)Ḡ(z − 1, 2) =
z−1∑

j=0

Ḡ( j, 2)

⎡

⎣
j+1∏

k=1

xk +
j∏

k=1

xk

⎤

⎦ (17)

Proof The proof is by induction with A(z) denoting the statement (17).
Base case (A(1)):

Ḡ(1, 2)Ḡ(0, 2) =
(

1∑

m=0

(
m∏

k=1

xk

))
1 = (1 + x1)1 =

0∑

j=0

Ḡ( j, 2)

⎡

⎣
j+1∏

k=1

xk +
j∏

k=1

xk

⎤

⎦

Thus, A(1) is true.
Induction step (A(z) ⇒ A(z + 1)): For z + 1 ∈ N holds

Ḡ(z + 1, 2)Ḡ(z, 2) = Ḡ(z, 2)

[
Ḡ(z − 1, 2) +

z∏

k=1

xk +
z+1∏

k=1

xk

]

= Ḡ(z, 2)

[
z∏

k=1

xk +
z+1∏

k=1

xk

]
+ Ḡ(z, 2)Ḡ(z − 1, 2)

A(z)= Ḡ(z, 2)

[
z∏

k=1

xk +
z+1∏

k=1

xk

]
+

z−1∑

j=0

Ḡ( j, 2)

⎡

⎣
j+1∏

k=1

xk +
j∏

k=1

xk

⎤

⎦

=
z∑

j=0

Ḡ( j, 2)

⎡

⎣
j+1∏

k=1

xk +
j∏

k=1

xk

⎤

⎦ �	

Proof of Proposition 1

The expected queue length at station 1 is concave if Ez+2[X1] + Ez[X1] ≤ 2Ez+1[X1]. By
Lemma 1, it suffices to show that the relation B(z) :⇐⇒

z∑

i=0

Ḡ(i, 2)

(
(1 − xz+2)Ḡ(z, 2) +

z+1∏

k=1

xk

)
+

z−1∑

i=0

Ḡ(i, 2)
z+2∏

k=1

xk ≥ xz+2Ḡ(z, 2)Ḡ(z, 2)

(18)

holds for z ∈ N0. The proof is by induction.
Base case (B(0)): Since we have 1 ≥ x1 ≥ x2, it holds (1 − x2) + x1 ≥ x2. Thus, B(0) is
true.
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Induction step (B(z) ⇒ (B(z+1)): Using Lemma 2 and the induction hypothesis, it follows
for the left side of B(z + 1):

z+1∑

i=0

Ḡ(i, 2)

(
(1 − xz+3)Ḡ(z + 1, 2) +

z+2∏

k=1

xk

)
+

z∑

i=0

Ḡ(i, 2)
z+3∏

k=1

xk

=
z+1∑

i=0

Ḡ(i, 2)(1 − xz+3)Ḡ(z + 1, 2) +
z+1∑

i=0

Ḡ(i, 2)

(
z+2∏

k=1

xk

)
+

z∑

i=0

Ḡ(i, 2)
z+3∏

k=1

xk

=
z∑

i=0

Ḡ(i, 2)(1 − xz+3)Ḡ(z + 1, 2) + Ḡ(z + 1, 2)Ḡ(z + 1, 2)(1 − xz+3)

+
z−1∑

i=0

Ḡ(i, 2)

(
z+2∏

k=1

xk

)
+ (Ḡ(z, 2) + Ḡ(z + 1, 2))

(
z+2∏

k=1

xk

)
+

z∑

i=0

Ḡ(i, 2)
z+3∏

k=1

xk

=
z∑

i=0

Ḡ(i, 2)

(
(1 − xz+3)Ḡ(z, 2) + (1 − xz+3)

(
z+1∏

k=1

xk

))
+ Ḡ(z + 1, 2)Ḡ(z + 1, 2)(1 − xz+3)

+
z−1∑

i=0

Ḡ(i, 2)

(
z+2∏

k=1

xk

)
+ (Ḡ(z, 2) + Ḡ(z + 1, 2))

(
z+2∏

k=1

xk

)
+

z∑

i=0

Ḡ(i, 2)
z+3∏

k=1

xk

=
z∑

i=0

Ḡ(i, 2)

⎛

⎜⎝(1 − xz+3)︸ ︷︷ ︸
≥1−xz+2

Ḡ(z, 2) +
z+1∏

k=1

xk

⎞

⎟⎠ − xz+3

(
z+1∏

k=1

xk

)
z∑

i=0

Ḡ(i, 2)

+ Ḡ(z + 1, 2)Ḡ(z + 1, 2)(1 − xz+3)

+
z−1∑

i=0

Ḡ(i, 2)

(
z+2∏

k=1

xk

)
+ (Ḡ(z, 2) + Ḡ(z + 1, 2))

(
z+2∏

k=1

xk

)
+

z∑

i=0

Ḡ(i, 2)
z+3∏

k=1

xk

≥
z∑

i=0

Ḡ(i, 2)

(
(1 − xz+2)Ḡ(z, 2) +

z+1∏

k=1

xk

)
+

z−1∑

i=0

Ḡ(i, 2)

(
z+2∏

k=1

xk

)

︸ ︷︷ ︸
left side of B(z)

−xz+3

(
z+1∏

k=1

xk

)
z∑

i=0

Ḡ(i, 2)

+ Ḡ(z + 1, 2)Ḡ(z + 1, 2)(1 − xz+3) + (Ḡ(z, 2) + Ḡ(z + 1, 2))

(
z+2∏

k=1

xk

)
+

z∑

i=0

Ḡ(i, 2)
z+3∏

k=1

xk

≥
≥xz+3︷︸︸︷
xz+2 Ḡ(z, 2)Ḡ(z, 2)︸ ︷︷ ︸

right side of B(z)

+(Ḡ(z, 2) + Ḡ(z + 1, 2))

⎛

⎝
≥xz+3︷︸︸︷
xz+2

z+1∏

k=1

xk

⎞

⎠ − xz+3

(
z+1∏

k=1

xk

)
z∑

i=0

Ḡ(i, 2)

+ Ḡ(z + 1, 2)Ḡ(z + 1, 2)(1 − xz+3) +
z∑

i=0

Ḡ(i, 2)
z+3∏

k=1

xk

≥ xz+3Ḡ(z, 2)Ḡ(z, 2) + (Ḡ(z, 2) + Ḡ(z + 1, 2))

(
xz+3

z+1∏

k=1

xk

)

+
⎛

⎜⎝

(
z+1∏

k=1

xk

)
Ḡ(z + 1, 2) + Ḡ(z, 2)Ḡ(z + 1, 2)︸ ︷︷ ︸

apply Lemma 2

⎞

⎟⎠ (1 − xz+3)
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− xz+3

(
z+1∏

k=1

xk

)
z∑

i=0

Ḡ(i, 2)(1 − xz+2)

= xz+3

(
Ḡ(z, 2)Ḡ(z + 1, 2) +

(
z+1∏

k=1

xk

)
Ḡ(z + 1, 2)

)

+
((

z+1∏

k=1

xk

)
Ḡ(z + 1, 2) +

z∑

i=0

Ḡ(i, 2)

(
i+1∏

k=1

xk +
i∏

k=1

xk

))
(1 − xz+3)

− xz+3

(
z+1∏

k=1

xk

)
z∑

i=0

Ḡ(i, 2)(1 − xz+2)

= xz+3Ḡ(z + 1, 2)Ḡ(z + 1, 2)

+

⎛

⎜⎜⎜⎜⎜⎝

z+1∑

i=0

Ḡ(i, 2)

(
i∏

k=1

xk

)
+

z∑

i=0

Ḡ(i, 2)

(
i+1∏

k=1

xk

)

︸ ︷︷ ︸
(	)

⎞

⎟⎟⎟⎟⎟⎠
(1 − xz+3)

− xz+3

(
z+1∏

k=1

xk

)
z∑

i=0

Ḡ(i, 2)

︸ ︷︷ ︸
(		)

(1 − xz+2)
(	)≥(		)≥ xz+3Ḡ(z + 1, 2)Ḡ(z + 1, 2)

This proves B(z+1) and thus the expected queue length at node 1 is concave in the population
size z. �	
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