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Abstract
The need for a study of project portfolio optimization in pharmaceutical R&D has become
all the more urgent with the outbreak of COVID-19. This study examines a new model
for optimizing R&D project portfolios under a decentralized decision-making structure in a
pharmaceutical holding company. Specifically, two levels of decision makers hierarchically
decide on budget allocation and project portfolio selection-scheduling to maximize their
profit, and we formulate the problem as a bi-level multi-follower mixed-integer optimization
model. At the upper level, the investment company has complete knowledge of the sub-
sidiaries’ response, acts first, and decides on the best budget allocation. At the lower level,
each subsidiary responds to the allocated budget and decides on its portfolio scheduling.
Since the lower level represents several mixed-integer programming problems, solving the
resulting bi-level model is challenging. Therefore, we propose an efficient hybrid solution
approach based on parametric optimization and convert the bi-level model into a single-level
mixed-integer model. To validate it, we solve a case and discuss the optimal strategy of each
actor. The experimental results show that the planned project portfolio for each subsidiary of
the holding company is drastically affected by the allocated budget and its decisions.

Keywords R&D project portfolio · New product development · Budget allocation · Bi-level
multi-follower modeling · Pharmaceutical holding company

1 Introduction

In today’s ever-changing competitive world, R&D plays a critical role in the success of
organizations. Managing and optimizing the portfolio of projects in various industries is a
critical factor that significantly affects the companies’ activities and their success in fulfilling
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their missions. Given the costly projects, limited resources, high-risk phases, and unique
supply requirements, the pharmaceutical industry presents the most complex problem in
terms of optimizing R&D planning. Statistics show that the percentage of pharmaceutical
R&D projects that reach the final stage is meager (Gemici-Ozkan et al., 2010). However,
R&D in the industry is necessary because it has a critical impact on human and public health
through the development of new drugs and vaccines, the production of generic drugs, and the
design of the specific supply chain associated with them (Ahmadi et al., 2018). The trend in
R&D spending in the United States shows skyrocketing growth from 1980 (Fig. 1), when the
allocated amount was two billion dollars, to eighty-three billion dollars in 2019. According
to the U.S. Food and Drug Administration (FDA) reports, pharmaceutical companies have
invested more than half a trillion dollars in R&D over the past decade, and more than 350
approved newdrugs have been launched (Benmelech et al., 2021). TheCoronavirus pandemic
of 2020–2021 has spurred many top holdings to develop vaccines and produce related drugs
to stop the spread of COVID-19. In addition to private sector investment in R&D, the U.S.
federal government has supported the private sector in developing vaccines and effective
medicines to combat the pandemic and related diseases (Snyder et al., 2020). A popular
project portfolio planning approach in a pharmaceutical holding is through a centralized
systembased onmarket demand.However, there are problemswith budget allocation between
subsidiaries and the preferences and competencies of subsidiaries. For business owners in
holding companies, budget allocation to subsidiaries and the utilization of the subsidiaries’
competencies have becomemore important. It becomes evenmore challengingwhen different
entities make the decisions about budgeting and selection-scheduling.

According to the above explanation, project portfolio planning in a holding is traditionally
managed in a centralizedmanner. In otherwords, decision-making authority is concentrated in
a single office, with a single decision maker making both budgeting and selection-scheduling
decisions. However, such a system needs to be rethought under the new planning configura-
tion. Today, the project portfolio in leading holding companies is managed by a decentralized
system inwhich the investment company focuses on budgeting. The subsidiaries, on the other
hand, take care of project selection and scheduling of projects. In such a decentralized sys-
tem, the decision-making process involves two levels of decision makers. Moreover, each
level makes a subset of decisions to optimize its own (local) objective while influencing and

Fig. 1 Total U.S. pharmaceutical industry R&D expenditure from 1995 to 2021 (in billion U.S. dollars)
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being influenced by the decisions of the other level. For example, in a real-world case, an
investment company that is part of Pfizer, a well-known pharmaceutical holding company,
set $600 million in 2018 to be shared among the holding company’s subsidiaries to access
internal Pfizer expertise in transformative therapeutics.

This paper addresses the project portfolio planning problem in a pharmaceutical holding
under a decentralized decision-making structure. The main objectives of project portfolio
management in the holding company are optimized budget allocation and the lucrative selec-
tion and scheduling of projects in each subsidiary. However, it is not optimal to plan a project
portfolio in such a centralized way without considering the subsidiaries’ preferences and
competencies. Therefore, to meet the requirements of the holding company, it is impor-
tant to gain insight into the budget allocation between subsidiaries and the project portfolio
selection-scheduling in each subsidiary in relation to its area of expertise. In this way, appro-
priate budget allocation and profitable project portfolio planning in each subsidiary become
an inevitable part of project portfolio management in a holding company. Following tradi-
tional research, (Hesarsorkh et al., 2021) studied a project portfolio optimization problem
in a pharmaceutical company with a centralized decision-making structure. In their study,
the company is considered a development company, and the initial investment is defined
as a parameter, as well as external resources, in the budget constraint optimization model.
However, subsidiaries are unable to play a significant role due to this financing approach.
The competence of some subsidiaries may be neglected, while others may be overburdened
and suffer losses. However, these challenges become even more complicated when bud-
get allocation and selection-scheduling decisions are decentralized among different levels.
Despite the importance of “decentralization” in project portfolio management, the question
of how to optimize the conflicting interests of decision makers for project portfolio planning
in a hierarchical, game-based situation still needs to be supported by portfolio management
professionals and researchers.

To address these challenges, we propose a bi-level multi-follower project portfolio plan-
ningproblem in apharmaceutical holding company,where the investment company’s problem
belongs to the upper-level optimization model, and the subsidiaries’ problems belong to the
lower level. In this paper, we consider an investment company responsible for allocating
budget to subsidiaries in a holding structure and providing them with the budget to select
and plan their own project portfolio within a predefined time period. A management sys-
tem determines the R&D budget allocated for planning development projects in a holding
company. Thus, an optimal portfolio of projects should be selected and scheduled. However,
centralized decision-making may result in a holding company’s project portfolio not match-
ing the preferences of individual subsidiaries due to neglected competencies. The investment
company, which is in charge, makes budget allocation decisions to maximize the holding
company’s profit. At the inner level, with the subsidiaries acting as followers, each sub-
sidiary makes the selection-scheduling decisions to maximize its own profit, also taking into
account the budget allocated by the investment company. Along with the allocated budget,
each subsidiary has a credit budget from outside resources, which can be used to create a
profitable portfolio based on the company’s competencies. The decisions of each level affect
and are affected by the decisions of the other level. For instance, the selection and execution
of more projects favor the investment company as it means a higher profit for the holding
company. However, it may not meet the objectives of some subsidiaries seeking a profitable
portfolio based on their competencies. Hence, ignoring the stated game may result in losses
for some subsidiaries and missed opportunities for the holding company.
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In this context, our proposed bi-level multi-follower model aims to find the preferred
budget allocation of the investment company (leader) based on the best portfolio selection-
scheduling of each subsidiary (follower), to maximize the benefit of the holding company,
while ensuring that each subsidiarymeets its highest objective amount.More importantly, our
framework allows us to determine the best budget allocation among subsidiaries in a holding
environment while considering the optimal project selection configuration and scheduling of
the selected projects by each subsidiary.

Finally, considering review papers such as those (Vahid Mohagheghi et al., 2019; Saiz
et al., 2022), optimizing a game-based project portfolio problem with multiple complex
subproblems such as budget allocation and multiple project portfolio selection-scheduling
(PPSS) with realistic features such as the limited available budget for allocation, the credit
limit for each follower, the limited number of resources, and interdependence among projects,
we propose a mixed-integer bi-level multi-follower model that is very difficult to solve. Due
to their NP-hard nature, bi-level optimization models have posed a challenge to researchers
for many years (Sinha et al., 2018). This becomes even more challenging when the model
consists of integer variables since it would be impossible to apply well-known approaches
such as KKT to such a model. Therefore, this study presents a hybrid solution method for
solving the programmed bi-level multi-follower model, which addresses the specific char-
acteristics of this model, including its multi-follower nature and binary variables (Dempe &
Kue, 2017). Our proposed solution method involves reformulation and parametric optimiza-
tion. The parametric optimization model of each follower is solved using the B&B algorithm
in our proposed solutionmethod.Based on the solutions obtained fromeach follower’smodel,
the proposed bi-level model is converted into a single-level mixed integer model and solved
based on classic algorithms. In addition, the proposed mathematical programming has been
examined using a professional dataset for a pharmaceutical holding company. These are the
results of this study, which hopefully contribute to the development of the relevant literature.

The rest of the paper is organized as follows. Section 2 reviews the related literature. In
Sect. 3, we describe the structure of the holding company and formulate the proposed bi-
level multi-follower problem. In Sect. 4, we develop and illustrate the solution approach. In
Sect. 5, we turn to numerical experiments and applications. Finally, in Sect. 6, we conclude
and suggest ideas for future studies.

2 Literature review

Budgeting, selection, and scheduling, as three strategic and operational functions, play a
key role in project portfolio planning, the optimization of which can significantly improve
management performance. Recently, the problem of project portfolio selection-scheduling
(PPSS) has received considerable attention in both academic research and industry practice.
However, decentralized decision-making in project portfolio planning is rarely discussed in
the literature on the subject. This section reviews the existing literature on our framework.
The relevant studies are presented and classified from different points of view.

From the review of relevant literature, it can be concluded that studies on project portfolio
planning have been classified into five groups: benefit measurement methods, mathematical
optimization models, cognitive emulation approaches, heuristic methods, and simulation
(Vahid Mohagheghi et al., 2019).

Regarding the category of mathematical optimization to which the present study con-
tributes, the majority of existing works have focused on simplified and traditional models
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that involve the selection of projects considering the return on investment, budget constraint,
resource allocation (Carazo et al., 2010; Farid et al., 2021; Fliedner & Liesiö, 2016; Rogers
et al., 2002; Wang & Hwang, 2007) and project interactions (Alvarez-Garc & Fernández-
Castro, 2018; Arratia et al., 2016). Hierarchical optimizationmodels have also been gradually
developed, in which the selection and scheduling of projects are hierarchical (Hans et al.,
2007; Vazhayil & Balasubramanian, 2012). The challenges of suboptimality and the infeasi-
bility of hierarchicalmodels have encouraged researchers to configure integrated optimization
models that consider scheduling as an integral part of the project selection process. However,
a few researchers have developed integrated optimization models with simultaneous project
selection and scheduling. The addition of scheduling as an essential concept to the mathe-
matical models of project portfolio planning has changed the structure of the models due to
the feasible regions and objective functions involved. Table 1 provides an overview of the
existing literature on integrated optimization models. Different criteria are used to describe
and classify the relevant studies.

From Table 1, we can infer that the majority of scholars studying PPSS have focused on
traditional optimizationmodels by considering various factors in their studies, such as project
task planning (Rafiee et al., 2014), project interdependencies (Kumar et al., 2018), success
risk (Mohagheghi et al., 2017), and the vague nature of the problem (Pérez et al., 2018).
In particular, very few works on PPSS have addressed some rather complicated planning
configurations, such as multistage projects (Hassanzadeh et al., 2014; Hesarsorkh et al.,
2021) and dynamic budgeting (Shafahi & Haghani, 2018), where the allocated budget can
be saved and carried over to subsequent periods. Moreover, none of the PPSS studies on
budget allocation mentioned above has dealt with a real-world investment scenario such as
that of holding companies.

The importance of pharmaceutical PPSS and the essence of this concept have been
explained succinctly and summarized by (Antonijevic, 2015). As shown in Table 1, few
works in mathematical programming have addressed the integrated problem in the pharma-
ceutical industry. (Schmidt & Grossmann, 1996) The first related work developed a MILP
model for testing task sequencing. (Jain & Grossmann, 1999) extended the previous study
by considering resource constraints. (Colvin & Maravelias, 2008) developed a multistage
stochastic mixed-integer optimization model with endogenous uncertainty in clinical tri-
als. Another paper (Colvin & Maravelias, 2009) addressed outsourcing. (George & Farid,
2008) proposed a multi-objective optimization model considering expected NPV and project
interdependencies, which were both modeled in their study. (Rogers et al., 2002) extended
stochastic programming to optimize the project selection model using real options theory.
They also implemented theirmodel on a case. (Wang&Hwang, 2007) studied amixed-integer
optimization model with binary variables. They also used a fuzzy set approach to deal with
uncertainty in the pharmaceutical industry. (Hassanzadeh et al., 2014) is one of the valuable
integrated works that propose a mixed-integer mathematical optimization model for project
selection and scheduling. They drew on the robust optimization theory to overcome uncer-
tainty. (Hesarsorkh et al., 2021), recent work in the field of project portfolio management
proposed a comprehensive, robust optimization model for project selection and scheduling,
addressing outsourcing.

All of the works focused on the central decisions of PPSS. However, in many real-world
situations, budgeting decisions for the R&D project portfolio and selection-scheduling deci-
sions are made by different entities as part of a decentralized decision-making process.
Bi-level optimization, as an analytical tool for hierarchical decentralized decision-making
problems, still needs to be analyzed and supported by PPSS researchers; (Aghababaei et al.,
2021) in which the authors proposed a bi-level optimization model for managing scarce drug

123



336 Annals of Operations Research (2023) 323:331–360

Ta
bl
e
1
Su

m
m
ar
y
of

re
la
te
d
PP

SS
st
ud
ie
s

A
ut
ho

r(
s)

D
ec
en
tr
al
iz
ed

se
tti
ng

Ph
ar
m
ac
eu
tic

al
in
du

st
ry

O
bj
ec
tiv

e
Jo
b

sc
he
du

lin
g

Pr
oj
ec
t

Sc
he
du

lin
g

Pr
oj
ec
t

in
te
rd
ep
en
de
nc
ie
s

In
ve
st
m
en
t

de
ci
si
on

s
M
ul
ti

st
ag
e

pr
oj
ec
ts

N
ew

so
lu
tio

n
m
et
ho

d

O
th
er

fe
at
ur
es

Pr
ofi

t
C
os
t

R
is
k

(G
ha
se
m
za
de
h

et
al
.,
19

99
)

–
–

✓
–

–
–

✓
✓

–
–

–
–

Su
n
an
d
M
a,

(2
00

5)
–

–
✓

–
–

–
✓

–
–

–
–

C
as
e
st
ud

y

(Z
ul
ua
ga

et
al
.,

20
07

)
–

–
✓

–
–

–
✓

✓
✓

–
–

Pr
oj
ec
tt
im

e
fr
am

e

So
la
k
et
al
.,

(2
01

0)
–

✓
–

✓
–

✓
✓

✓
✓

E
xa
ct

H
as
sa
nz
ad
eh

et
al
.,
(2
01

2)
–

✓
✓

–
–

–
✓

–
–

✓
–

Fu
zz
y

pr
og

ra
m
m
in
g

R
afi

ee
et
al
.,

(2
01

4)
–

–
✓

–
–

✓
✓

–
–

✓
H
eu
ri
st
ic

St
oc
ha
st
ic

op
tim

iz
at
io
n

H
as
sa
nz
ad
eh

et
al
.,
(2
01

4)
–

✓
✓

–
–

–
✓

✓
✓

✓
–

R
ob
us
t

op
tim

iz
at
io
n

M
on

ta
ja
bi
ha

et
al
.,
(2
01

7)
–

✓
✓

–
✓

✓
✓

–
✓

E
xa
ct

R
ob
us
t

op
tim

iz
at
io
n

Sh
ar
ia
tm

ad
ar
i

et
al
.,
(2
01

7)
–

–
✓

✓
✓

✓
–

–
H
eu
ri
st
ic

G
SA

al
go

ri
th
m

123



Annals of Operations Research (2023) 323:331–360 337

Ta
bl
e
1
(c
on

tin
ue
d)

A
ut
ho

r(
s)

D
ec
en
tr
al
iz
ed

se
tti
ng

Ph
ar
m
ac
eu
tic

al
in
du

st
ry

O
bj
ec
tiv

e
Jo
b

sc
he
du

lin
g

Pr
oj
ec
t

Sc
he
du

lin
g

Pr
oj
ec
t

in
te
rd
ep
en
de
nc
ie
s

In
ve
st
m
en
t

de
ci
si
on

s
M
ul
ti

st
ag
e

pr
oj
ec
ts

N
ew

so
lu
tio

n
m
et
ho

d

O
th
er

fe
at
ur
es

Pr
ofi

t
C
os
t

R
is
k

M
oh

ag
he
gh

i
et
al
.,
(2
01

7)
–

–
✓

–
✓

–
✓

✓
✓

–
–

Ty
pe
-2

fu
zz
y

op
tim

iz
at
io
n

Pé
re
z
et
al
.,

(2
01

8)
–

–
✓

–
–

–
✓

✓
–

–
H
eu
ri
st
ic

Fu
zz
y

co
ns
tr
ai
nt
s

K
um

ar
et
al
.,

(2
01

8)
–

–
✓

–
–

–
✓

✓
–

–
M
et
a

he
ur
is
-

tic

H
yb

ri
d
so
lu
tio

n
m
et
ho

d

A
m
ir
ia
n
an
d

Sa
hr
ae
ia
n,

(2
01

8)

–
–

✓
✓

–
–

✓
–

–
–

H
eu
ri
st
ic

Fu
zz
y
go

al
pr
og

ra
m
m
in
g

Z
ha
ng

et
al
.,

(2
01

9)
–

–
✓

–
–

–
✓

✓
–

–
M
et
a

he
ur
is
-

tic

Fu
zz
y

pr
og

ra
m
m
in
g

H
es
ar
so
rk
h

et
al
.,
(2
02

1)
–

✓
✓

–
–

–
✓

✓
✓

✓
–

R
ob
us
t

op
tim

iz
at
io
n

R
an
jb
ar

et
al
.,

(2
02

1)
–

–
✓

✓
–

–
✓

✓
–

–
–

M
ul
ti-
m
od

e
pr
oj
ec
ts

Pr
es
en
ts
tu
dy

✓
✓

✓
–

–
–

✓
✓

✓
✓

H
eu
ri
st
ic

M
ul
ti-
le
ve
l

m
od

el

123



338 Annals of Operations Research (2023) 323:331–360

supply and rationing in emergency situations. The model didn’t investigate project selec-
tion. (Ma, 2016) proposed a bi-level project portfolio selection model in a project portfolio
management environment but studied a very simple and unrealistic system in terms of mar-
keting constraints. Moreover, it used a metaheuristic algorithm to solve the leader–follower
optimization model.

2.1 Summing up the literature

We have reviewed almost all major works on project portfolio planning and related opti-
mization models. We have also reviewed key works on project portfolio management for the
pharmaceutical industry.

In this paper, we extend a new comprehensive optimization model that adds the following
features to the previous studies on the project portfolio planning problem:

• This work, with regard to new product development and R&D project portfolio optimiza-
tion, presents a bi-level multi-followermix integer optimizationmodel for project portfolio
optimization.

• As a novelty of the model, the existing Stackelberg game between the investment and
operational sides of a holding company is considered for the defined problem.

• Inner level of the bi-level programming consists of multi followers with mix-integer pro-
gramming.

• The model was applied to a pharmaceutical holding company whose market share and
public health depend heavily on R&D.

• An efficient solution approach is proposed for the resulting bi-level multi-follower mixed-
integer project portfolio optimization model, which belongs to a class of models known to
be difficult to solve.

In terms of modeling, we model the budgeting problem with mixed integer programming
as the investment company’s problem (leader’s problem). As for the subsidiaries’ problem,
we adopt realistic assumptions for PPSS as we consider credit from external resources for
each subsidiary, technical dependencies between projects, and limited technical resources.
We adopted our programming with the proposed solution approach by establishing a budget
bound for each follower’s model in order to formulate parametric mixed integer models,
and by using a binary variable in the leader’s problem to select the optimal region from
calculated regions for each follower’s model. To our knowledge, and as we demonstrated in
the literature review section, this is the first work on project portfolio planning that integrates
all these features into the same bi-level model. We address the complexity of a bi-level multi-
follower with mixed-integer models at the lower level in terms of solution and computation.
It is well known that solving such a model is challenging. Due to the NP-hard nature of
PPSS, we use an efficient solution approach based on parametric optimization and recasting
the model into a single-level mixed-integer optimization model.

3 Bi-level multi-follower programming

In the literature, bi-level programming has been applied to the study of the Stackelberg game
between determiners in different domains, such as supply chain management and resource
allocation. There are two levels in this type of model, namely the upper level of the leader(s)
and the inner level of the follower(s) that make decisions in a hierarchical and decentralized
manner. This type of programming was first introduced to economic game theory literature
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by Heinrich Stackelberg. Upper-level decision makers (leaders) initiate the first action to
optimize their objectives. Likewise, the outcome of each solution or decision they make is
dependent upon the response of lower-level entities (followers), who are also working to
achieve their objectives.

Multilevel programming is also an extended form of bi-level programming. Programming
deals with decisionsmade in hierarchical and decentralized processes.Many large-scale opti-
mization problems and decision-making processes faced by public and private organizations
are decentralized and hierarchical, with multiple decision makers at each level, referred to
as multilevel programming in the bi-level programming literature. According to a review
(Sinha et al., 2018), different bi-level optimization models have been studied for different
problems. However, there is still a gap in bi-level optimization models in project portfolio
management.

In this research, a special type of bi-level programming was used to build an appropriate
model for investment and selecting-scheduling decisions of project portfolios in holding com-
panies. The problem included a leader at the upper level and decision makers with multiple
followers at the inner level. The followers at the lower level have binary variables. There-
fore, the proposed model was categorized as a mixed-integer, bi-level, linear mathematical
programming with multiple followers. The objective function of the proposed model was
also upper level and searched for the best holding project portfolio with maximum profit
depending on the lower-level responses. In addition, each follower pursued its own target
and was empowered to select and plan its potential projects.

3.1 Structure of the problem

In the programmed model, the entities of project portfolio management consist of two types
of decision-makers, including the upper level (leader) and the lower level (followers). The
followers are considered as subsidiaries of the holding company (leader), and the investment
company as the leader can influence their decisions through strategic decisions that should be
considered by the subsidiaries (Johnson et al., 2017). Therefore, the strategic decisions of the
holding company aremade at the upper level by the leader company.However, the subsidiaries
make the technical and operational decisions, and each subsidiary has the opportunity to
pave the way for its own objectives. Thus, both levels are involved in a PPSS problem.
An investment company makes budget decisions (the most strategic decisions) and tries to
maximize the profit of thewhole holding company.On the other hand, each subsidiary focuses
on its own profit without considering other subsidiaries or the objectives of the higher level.
In a PPSS model, subsidiaries make selection and scheduling decisions for their specific
area, such as production potential and development project execution. They also have the
authority to use other resources (e.g., loans) as needed to achieve more worthwhile goals.
The structure is depicted in Fig. 2.

3.2 Suppositions and clarifications

• The holding company consists of an investment company and several subsidiaries.
• The total share of each subsidiary has been divided between the holding company and the
company’s shareholders.

• The holding company sets a budget for R&D and intends to invest it in the subsidiaries to
develop new products and execute development projects.

• The role of the investment company is to allocate the R&D budget to the subsidiaries.
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Fig. 2 Decentralized decision-making structure for PPSS in a holding company

• The subsidiaries carry out new product manufacturing and development projects in their
respective fields.

• The leader allocates the R&D budget to each follower in the first period of the planning
horizon, to be handled by the follower during the horizon.

• Each subsidiary has a pool of projects and selection-scheduling decisions made by it.
• The required budget of each subsidiary is provided by the allocated budget of the investment
company and by loans from external sources. The borrowed budget increases by a certain
percentage per period.

• Each project included in the pool of each subsidiary has multiple stages (phases) to com-
plete.

• Each stage has multiple periods to complete.
• Funds for each phase of project completion are allocated in the first period of the phase
(e.g., after completion of the previous phase).

• Revenue from a completed project is divided between the holding company and the related
subsidiary according to each side’s share of the company’s total share.

• The additional cash in each company’s account is increased by a fixed rate per period.
• The amount of loan amount is limited in each period for each subsidiary, and the maximum
amount of loan is set for each subsidiary.

• The cost of completing stages that are part of a project increases at a fixed rate if the start
is delayed, and the earning value of the project decreases exponentially if the project is
postponed.

• Different types of renewable resources are needed to complete the project phases, and their
availability is limited in each subsidiary (Tables 2, 3 and 4).

Max Z = IT+1 (1)

Subject to:

It = T Bt −
∑

c∈C Bt,c, t = 1. (2)
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Table 2 Indices of sets
I Set of projects in each company, represented by i or g

C Set of subsidiaries, represented by c

M Set of resource types in each company, represented by m

K Set of stages, represented by k

T Set of periods, represented by t or j

Table 3 Parameters of the Bi-level model

T B Total amount of budget planned to inject into followers and investment in R&D projects

Nc Number of potential projects in company c

ki Duration of project i in company c in terms of stages or periods (project life)

esic Early start time of projecti in company c

tsic Tardy start time of project i in company c

ckitc Cost of performing kth stage of project i in period t that could be change by start time of
project i

I nc
ki+1,t
ic Estimated income of project i in company c if performed at the beginning of period t

(k ≤ ki )

rekim,c Amount of resource type m required to complete the kth stage of project i in company c

rt Interest rate upon a period

δ Loan repayment rate upon a period; strictly positive

αc Percentage of total share belonging to company c

LLc Loan (liability) limit for company c

REc
tm The amount of available resource type m that can be consume in period t in company c

T Length of planning span in periods

�c
ip Split between two projects i and g that arises from interdependency

SetMc Set of mandatory projects that must be selected in planning horizon

SetOc Set of ongoing projects that must be selected in first period of planning horizon

Table 4 Decision variables of the Bi-level model

Upper-level decision variables

Bt,c Amount of budget allocated to company c at the beginning of planning period

It Amount of extra cash belonging to the holding company at the beginning of period t

Inner-level decision variables

xcit Binary variable, being equal to 1 if project i initiated at the beginning of period t in company c,
and 0, otherwise

Itc Amount of extra cash in the account of company c at the beginning of period t

Ltc Borrowing amount at the beginning of period t in company c

θtc Usage of allocated budget in each period in subsidiary c
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It ≤
∑

c∈C

∑

i∈I

t−ki∑

j=esi

(1 − αc)I nc
ki+1,t
i,c xci, j + It−1(1 + r), t = 2, .., T . (3)

∑

c∈C
Bt,c ≤ T B, t = 1 (4)

Based on the traditional form of bi-level programming, the upper-level objective function
and constraints are defined in Eqs. (1–4). Equation (1) is the objective function of the problem
and the leader; it considers the maximum amount of cash in the leader’s account at the end of
the planning horizon. Equation (2) states that the amount of cash in the leader’s account in the
first period is equal to the remaining amount of the total planned R&D budget after allocation
to the subsidiaries. It illustrates the balance of cash in the first period. Equation (3) defines
the cash balance for all other periods. In it, the amount of cash in each period is determined
from the income of completed projects and inflated amount with interest rate from previous
period. Equation (4) guarantees that sum of the budget allocated to subsidiaries is less than
the total R&D budget planned to inject to subsidiaries.

The inner level of programming consists of |C| followers with respect to the holding
company. Each subsidiary schedules its project portfolio using a mathematical PPSS model
with available sources.

Max Zc = IT+1,c − LT+1,c, ∀c ∈ C (5)

Equation (5) represents the objective function of each follower. In order to achieve the
objective, the function maximizes the extra cash available in the account after covering the
liabilities.

Subject to:

∑

i∈I

min{t,tsi }∑

j=max{esi ,t−ki+1}
ct− j+1
i t,c xci j + It,c + Lt−1,c(1 + δ) ≤ . . .

∑

i∈I

t−ki∑

j=esi

αc I nc
ki+1,t
i,c xci, j + It−1,c(1 + r) + Lt,c + θt,c, ∀c ∈ C& t = 1 . . . T

(6)

Constraint (6) shows the balance of cash in each period. It establishes the cash balance
at the end of the period. The cash increases through the budget allocated by the investment
company (leader), loans, interest earned on cash saved from previous periods, and income
from completed projects. The repayment of the borrowed amount at borrowing rate δ should
be made in time period j, which is spent on the initiated phases of the project. Parameter α

is defined as the percentage of the total share in each subsidiary that leads to the distribution
of revenues from the completed project.

tsi∑

j=esi

xci j ≤ 1, ∀c ∈ C (7)

Constraint (7) guarantees that a project in each subsidiary portfolio can be selected once
during the planning horizon.

∑

i∈I

min{t,tsi }∑

j=max{esi ,t−ki+1}
ret− j+1

im,c xti j ≤ REc
tm, ∀c ∈ C& t = 1, . . . , T (8)
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Constraint (8) guarantees that the maximum available quantity of each renewable resource
(i.e., specialists and laboratories) in each period cannot be less than its used quantity.

xcpt ≤
min{tsi ,t−ki−�ig}∑

j=max{esi }
xci j ,∀c ∈ C& t = 1, . . . , T (9)

Constraint (9) shows interdependencies between projects i and g, and it guarantees that
project i cannot begin until project g is selected and scheduled. This constraint defines a
complementary relationship between the projects and technical dependencies between them.

Lc
t ≤ LLc,∀c ∈ C& t = 1, . . . , T (10)

Constraint (10) guarantees that the cash borrowed in each period does not exceed the
borrowing limit in each period for each subsidiary.

T∑

t=1

θtc ≤ B1,c,∀c ∈ C& t = 1, . . . , T (11)

Constraint (11) guarantees that the use of the budget does not exceed the total budget allo-
cated to each subsidiary by the leader.

ts∑

j=es

xci j = 1, ∀c ∈ C& i ∈ SetMc (12)

Constraint (12) guarantees that mandatory projects are selected and scheduled during the
planning horizon.

xci1 = 1, ∀c ∈ C& i ∈ SetOc (13)

Constraint (13) guarantees that ongoing projects are selected to continue in the first period.

xci j ∈ {0, 1} i = 1 . . . Nc& j = es . . . ts (14)

It,c, Lt,c, θt,c ≥ 0 (15)

It , Bt,c ≥ 0 (16)

0 ≤ B1,c ≤ T B (17)

Constraints (14) and (15) guarantee the non-negativity of the decision variables and the
range of each follower. Constraint (16) guarantees the non-negativity of the leader’s decision
variables. Constrain (17) specifies that the allocated budget for each subsidiary is bounded
between zero and the total budget. Constraint (17) is a logical constraint and established in
the model because we want to use the parametric approach.

4 Solution approach

Multilevel programming is a class of mathematical programming used to optimize decentral-
ized decision-making problems. Bi-level programming is a type of multilevel programming
that refers to mathematical optimization models that work with a hierarchical structure and
involve two decision makers: a leader and a follower (Vicente and Calamai 1994). This type
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of programming is applied to various practical problems, such as in economics (Ding et al.,
2021), supply chain management (Cao et al., 2021), logistics (Mirzaei et al., 2021), and
revenue management (Dempe & Kue, 2017). Each level in bi-level programming can have
more than one decision-maker. In other words, a problem with multiple leaders or multiple
followers can be programmed using this type of programming technique (Bard, 2013; Sinha
et al., 2018). Few studies in the literature have addressed multilevel programming.

Several studies have proposed solutions for linear bi-level mathematical models. How-
ever, mixed-integer bi-level programming is NP-hard and challenging to solve, especially
when the inner level contains discrete variables (Sinha et al., 2018). However, the methods
proposed in studies to deal with mixed-integer bi-level problems with multiple followers are
sparse. A number of studies have developed an algorithm for solving mixed-integer bi-level
programming with integer variables at the inner level (Cao et al., 2021; Dempe &Kue, 2017;
Köppe et al., 2010; Liu et al., 2021; Mitsos et al., 2008; Xu & Wang, 2014). As far as we
know, a bi-level multi-follower problem with integer variables in the inner levels needs to
be transformed into a bi-level model with one follower to fit the existing solutions. Another
approach is to reformulate the problem into a single-level problem and use classical methods
to find a solution.

In the proposed bi-level mixed integer programming (BLMIP) model, since the inner
level consisted of multiple followers, and the problems were formulated as MILP models,
it was difficult to solve them. Therefore, a novel solution approach was used in this study.
Given the nature of bi-level programming, it is known that the upper-level variables affect the
inner-level variables. The idea is to reformulate bi-level linear programming as a single-level
model through parametric programming (Sinha et al., 2018).

Parametric programming is a type of mathematical optimization in which a problem
is solved as a function of one or more parameters using a piecewise linear solution (Gal
& Greenberg, 2012). In this concept, mathematical models consisting of integer variables
(Avraamidou & Pistikopoulos, 2019; Dua & Pistikopoulos, 2000) are also studied. (Dua &
Pistikopoulos, 2000) introduced a branch-and-bound (B&B) algorithm to solve a linear mul-
tiparametric mathematical model with binary variables, where the parameters are bounded by
lower and upper bounds that exist on the right-hand side (RHS) of the constraints. (Oberdieck
et al., 2014) expanded theB&Balgorithmwhere the coefficients of the objective functions can
also vary between lower and upper bounds. As mentioned earlier, the upper-level variables
affect the inner-level problems. Accordingly, each inner level problem (here, the problem of
each subsidiary) is transformed into a multiparametric model and can be solved using the
algorithm proposed by (Oberdieck et al., 2014). Therefore, we adapted the algorithm to our
problem, and the set � is the assigned parameter space with a lower bound of zero and an
upper bound containing the total R&D budget to be allocated to the subsidiaries (constraint
17). The optimal solution to problems 5–16 for each subsidiary is a piecewise affine function
in �, for more detail see (Oberdieck et al., 2014).

In the bi-level multi-follower model proposed in this paper, the leader decides on bud-
get allocation. The leader determines the allocated budget that each follower in the PPSS
model can use to select and schedule its own portfolio. As mentioned earlier, the allocated
budget can be used as the right-hand side of Constraint (11). A parameter with a lower bound
of zero and an upper bound defined as the total budget was decided to be allocated to sub-
sidiaries [constraint (17)]. Accordingly, each follower’s problem is a specific version of a
parametric mixed-integer linear programming (P-MILP). Figure 3 shows the flowchart of the
branch-and-bound algorithm for the parametric mixed-integer linear programming (P-MILP)
optimization model. Applying the B&B algorithm yields optimal solutions in the feasible
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Fig. 3 The customized Multi-parametric Mix-integer Linear programming (MP-MILP) solution algorithm by
(Oberdieck et al., 2014)

space of upper-level variables with multiple critical regions. For clarification, the supposed
parametric problem solution for follower q is presented in rows 1 and 2 of Table 5.

It is clear that the allocated budget for each follower (e.g., follower q in Table 5) belongs to
one region among the calculated regions for the follower. Thus, only one region needs to be
selected and the optimal solution of the selected region is used as a parameter for the leader’s
problem. It is also obvious that the allocated budget is the lower bound of the selected region,
considering the interest rate on the remaining cash in the investment company’s account. In
other words, allocating more than the lower bound does not improve the leader’s objective
function value. Accordingly, it does not affect the optimal solution. Therefore, model 1–17
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can be replaced by the following model without loss of generality:

MaxZ =
∑

c∈C

∑

p∈P

ypcvpc +
⎛

⎝T B −
∑

c∈C

∑

p∈P

ypcwp,c

⎞

⎠(1 + r)T+1 (18)

Subject to:

∑

c∈C

∑

p∈P

ypcwp,c ≤ T B (19)

∑

p∈P

ypc = 1,∀c ∈ C (20)

ypc ∈ {0, 1} (21)

where P is defined as a set of calculated regions for the subsidiary c parametric problem and
ypc is a binary variable that refers to each computed region through the B&B algorithm; it
is equal to 1 if region p is selected and 0 otherwise. Parameter vpc is the value of the region
p for the holding company and parameter wpc is the lower bound of region p. Constraint
(19) guarantees that the sum of the budget allocated to subsidiaries does not exceed the R&D
budget and Constraint (20) guarantees that only one region must be selected from calculated
regions for each subsidiary problem. Therefore, the proposed bi-level model is converted
to 18–21 by considering computed solutions through the presented B&B algorithm for each
follower’s parametricmixed integermodel. Finally, Fig. 4 demonstrates the solution approach
proposed in the present study.

5 Steps of the approach:

1. Set the allocated budget parameter B1 c space for each follower’s problem 5–16. [This
step has already been done by adding constraint (17)]

2. Use the B&B algorithm and solve each follower’s parametric mixed integer model, indi-
vidually.

3. Convert problem 1–17 into problem 18–21 by considering computed solutions for each
follower.

4. Solve the mixed integer deterministic model 18–21.

6 Applying themodel

This section demonstrates the power of programming through the implementation of the
proposed model using a case study, which utilizes a pharmaceutical holding company as
a case study. In addition to five subsidiaries that develop and manufacture new products,
the holding company also distributes and markets its products. Manufacturing companies
conduct research and development and develop new drugs. Further, the project’s pool of
one distribution subsidiary is intended to facilitate the development of issues related to the
pharmaceutical industry’s distribution system, including cold chain development. For the
purpose of this study, we have used data from the holding company as a case study. During
R&D projects, two types of resources are evaluated: the need for specialists and the need for
laboratories.
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Fig. 4 Solution approach for bi-level multi follower PPSS problem

As mentioned earlier, the development of new drugs has four phases. As well as, there
are potential projects with one or two phases to complete such as ongoing projects and the
production of generic drugs. Pharmaceutical holding companies also have distribution and
marketing subsidiaries. In such subsidiaries, there is also one stage to complete that pertains
to the activities of the subsidiary. Moreover, the basket of projects in development subsidiary
companies includes someprojectswith four development phases to complete. Table 6 presents
information related to the subsidiaries of the holding company under study.

Data of the first subsidiary’s projects are presented in Table 7 (in the supplementary
material, the data for all subsidiaries is presented). A subsidiary’s data set includes the cost to
complete each phase and the number of resources needed to complete the phases. In addition,
an early and late start year, resource requirements, loan limit in each period, and achievable
income are defined for each project.

Economic parameters, including the interest and loan repayment rates, are explicitly
defined for each industry. In the proposed decentralized structure, the total holding bud-
get for R&D is apportioned among the subsidiaries. In the problem statement, $120 million
is earmarked to go to the subsidiaries (followers) to develop new products and development
projects in the distribution company.

As explained in the previous section, each follower’s problem is reformulated with the
allocated bounded budget. Then, the parametric B&Balgorithm is used to calculate ranges for
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Table 6 Information on the holding subsidiaries under study

Subsidiaries Number of
candidate
projects

Holding
share
(percent)

Mission Loan
limit per
period ($
million)

Available
specialists
(number)

Available
laboratories
(number)

1 12 70 Product
develop-
ment

40 120 12

2 10 75 Product
develop-
ment

40 100 9

3 10 70 Product
develop-
ment

35 90 10

4 9 75 Product
develop-
ment

40 80 9

5 10 80 Distribution
and
Marketing

15 35 –

the budget. Therefore, the parameter on the right-hand side of Constraint (11) is reformulated
with a lower bound of zero and an upper bound of $120 million for each follower. Accord-
ingly, the followers’ models are transformed into a parametric model. Project selection and
scheduling are based on different budget ranges for this model. In addition, each follower
can finance itself up to the amount of its credit from external sources if this is profitable for
the company.

Macroeconomic data should be established for the followers’ problem. It is assumed that
the amount of cash in the account to be carried over to the next period is increased by a rate of
r (e.g., 4%) per period. In addition, the borrowed budget increases by a rate of δ (e.g., 10%)
per period over the planning horizon. Development costs are also assumed to grow at a rate of
λ (e.g., 2%) per year of delay beyond the current period. The values for development income
are estimated by experts per project and decrease exponentially per period for a delayed start.

The holding company owns a percentage of the total share of the subsidiaries. There-
fore, the revenues from completed projects are divided between a subsidiary and the holding
company based on their respective shares. To illustrate, in the proposed model, the hold-
ing company owns 70%, 75%, 70%, 75%, and 80% of the total share of subsidiaries 1–5,
respectively. Table 8 shows the results of the parametric linear PPSS model for subsidiary
1 and consequently the regions calculated for the bounded allocated budget parameter. It
also shows the calculated regions and their associated allocated budget and value of each
region for the holding company (by considering the holding company’s share). Finally, the
results of the parametric PPSS model (calculated regions) of each subsidiary are imported
into model 18–22 as binary variables. By considering problem 18–21, only one region needs
to be selected from each subsidiary’s calculated regions. In light of the explanation in the
previous section, the allocated budget for each subsidiary is the lower bound of the selected
region. Thus, if the first region is selected by model 18–21, projects 3, 4, and 11 are sched-
uled with zero allocated budget (lower bound of the region); it means that subsidiary 1 can
schedule projects 3, 4, and 11 without any budget allocated to it, thus it has to rely on loans.
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Table 8 Calculated solutions for P-MILP PPSS for subsidiary 1

Regions Region of the allocated
budget (parameter)

Scheduled projects in periods Allocated
budget if
region
selected

Value of
this region
for the
holding
company

1 0 ≤ B1,1 < 0.3 3(5), 4(2), 11(1) 0 335.692

2 0.3 ≤ B1,1 < 0.32 3(5), 4(1), 11(1) 0.3 401.367

3 0.32 ≤ B1,1 < 1.1 2(3), 3(4), 4(2), 11(1) 0.32 345.324

4 1.1 ≤ B1,1 < 1.9 3(4), 4(1), 11(1) 1.1 405.828

5 1.9 ≤ B1,1 < 3.53 2(4), 3(4), 4(1), 11(1) 1.9 412.254

6 3.53 ≤ B1,1 < 3.97 2(3), 3(4), 4(1), 11(1) 3.53 487.269

7 3.97 ≤ B1,1 < 4.96 3(5), 4(2), 10(3), 11(1) 3.97 489.085

8 4.96 ≤ B1,1 < 5.74 2(5), 3(1), 4(4), 5(5), 11(1) 4.96 553.705

9 5.74 ≤ B1,1 < 6.31 3(4), 4(4), 5(4), 8(1), 11(1), 12(4) 5.74 615.761

41 24.42 ≤ B1,1 < 26.93 3(3), 4(2), 5(3), 7(3), 10(4), 11(1), 12(1) 24.42 786.282

42 26.93 ≤ B1,1 < 28.45* 2(2), 3(3), 4(2), 5(3), 7(3), 10(5), 11(1), 12(1) 26.93 787.133

43 28.45 ≤ B1,1 < 29.73 2(1), 3(3), 4(2), 5(3), 7(1), 10(4), 11(1) 28.45 800.120

60 45 ≤ B1,1 < 45.55 2(4), 3(2), 4(2), 5(2), 7(5), 8(4), 10(3),11(1), 12(1) 40 874.846

61 45.55 ≤ B1,1 ≤ 120 2(2), 3(2), 4(1), 5(2),7(1), 8(4), 10(3), 11(1), 12(5) 45.55 877.523

Consequently, the selected region for subsidiary 1 is the region in row 42 of Table 8. In this
region, the allocated budget is $26.93 million and projects 2, 3, 4, 5, 7, 10, 11, and 12 are
scheduled.

According to this explanation, the holding company under study has five subsidiaries
named 1, 2, 3, 4, and 5. The basket of each subsidiary consists of 12, 10, 10, 9, and 10 projects
that can be scheduled. Figure 5 shows the final solution of the bi-level multi-follower model.
The final solution schedule for subsidiary 2 shows seven projects, 2.1, 2.3, 2.4, 2.6, 2.7, 2.8,
and 2.10. Similarly, for subsidiaries 3, 4, and 5, seven, nine, and five projects, respectively,
are scheduled in the planning horizon.

Figures 6 and 7 show the obtained cash flow of subsidiary 1 as the first follower of the
proposed bi-level model. In the first period, the budget added by the leader is shown. Thus, in
the optimal solution, $23 million is used to schedule projects 11 and 12. Also, $3.93 million
is saved and carried over to the next period. In addition, in periods 2, 3, 4, and 5, the company
must borrow from external funds to schedule new projects. The maximum loan amount for
subsidiary 1 accrues in period 3, i.e., $39.99million. In addition, the revenues from completed
projects are added to the cash flow of period six, and the additional cash of each period is
carried over to the next period through inflation. It is quite clear: there is no need to borrow
if the company has a positive amount in the account for one period. As a result, the objective
function value of the first follower is $255.916 million, which corresponds to an inflated
amount of cash in the account in period 20. Similar to Fig. 6, the cash flows of followers 2–5
are shown in Fig. 8, 9, 10 and 11.

As explained earlier, each follower is influenced by the leader’s decision, as well as vice
versa, and seeks to maximize profits. Therefore, Table 9 compares the optimal amount of the
budget allocated to each follower and the resulting optimal profits for the holding company
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Fig. 5 Obtained solution for PPSS problem in the studied pharmaceutical holding company
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Fig. 7 Cash flow diagram for subsidiary 1
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and subsidiaries for different amounts of the R&D budget. As shown in the table above,
increasing the total budget increases the capital employed for each follower and leads to a
better objective function for the players. However, increasing the total budget from 120 to
200 does not significantly impact the objective functions because the other resources are
limited.

The financial and technical data of a pharmaceutical company with five subsidiaries were
collected for implementation. The data included each subsidiary’s project portfolio, projected
cash flow, credit availability, and other resource requirements. The data were cleaned and
prepared using Microsoft Excel 2016. The validity of the data was then verified with the
management teams of each subsidiary. The final data was then fed into the proposed model.
A hybrid approach was adopted to apply the model. The main algorithmwas coded in Python
and integrated with Gurobi solver to implement the solution approach shown in Fig. 5. A
Windows 10-based LENOVO flex 5 with Intel Core i7 2.7 GHz and 16-GB RAM was used
for the solution process, which was completed in 292 s. The optimal solution for the bi-level
model was 4559.83, which is the maximum amount of cash in the account belonging to the
holding company.

7 Conclusions and suggestions for further studies

This study first discussed the specific structure of holding companies. The subsidiaries of
the holding company and the different structures between them and the upper-level decision
makers were considered such that each subsidiary was affected by some strategic decisions of
the upper level. However, the inner level companies had to make their own board decisions
and tactical and operational decisions. The study also considered pharmaceutical holding
companies, i.e., holding companies that develop new drugs, distribute pharmaceutical prod-
ucts, and perform other related functions. Pharmaceutical R&D is essential to healthcare
delivery, and effective decisions can vastly improve a company’s position both socially and
financially. Not for nothing has the need for pharmaceutical R&D increased since 2019 with
the outbreak of the COVID -19 pandemic and related diseases.

The structure of the proposed pharmaceutical holding company is to have two levels of
decision makers. The first level is the leader (investment company), which decides on the
strategic variables. Here, the leader decides how to allocate the R&D budget among the
subsidiaries. The second level consists of several followers (subsidiaries) that decide on
tactical and operational variables. Accordingly, the PPSS model was implemented for each
follower, which is influenced by the leader’s decisions.

The proposed decentralized optimization model employs a bi-level approach and amixed-
integer follower model in order to design the network. In the bi-level programming model,
upper-level variables include the amount of cash in the holding company’s account and
budgeting, i.e., the amount of budget allocated to each follower, which is determined by the
leader. Budgeting is the most strategic decision in the proposed structure for the problem
under study. The rest of the decisions are up to the followers after the allocated budgets are
determined. These decisions depend on the leader’s decisions and are influenced by upper-
level variables that are parameters in the inner level problem. Given the structure of the
proposed bi-level model and the literature on such NP-hard problems, a hybrid approach was
developed tofind the solution. In this approach, the budget assigned by the leaderwas assumed
to be the bounded parameter for the followers’ problem, and the exact parametric mixed-
integer linear programming algorithm was used within the range of the budget assigned by
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the leader; therefore, the selected projects were also determined within the calculated range.
Accordingly, multiple ranges were calculated for each follower. The leader’s problem was
then converted to a single level mixed integer model such that the lower bound of each range
was the item’s weight and the income of chosen projects was the item’s value, since only one
could be selected among multiple ranges for each follower. By reviewing the information of
a pharmaceutical company that includes five subsidiaries, the values of the parameters for
each project were determined.

The decentralized decision-making structure of holding companies has resulted in chal-
lenges between strategic and operational decision-makers. This study supports managers
when making strategic and operational decisions in accordance with real-world features of
holding companies. An analysis of this study sheds light on the alignment horizon between
strategic decisions and operational decisions formanagers of holding companies.Whilemak-
ing strategic decisions in accordance with the holding’s interests, subsidiaries’ interests are
also taken into account when making operational decisions.

Suggestions for further studies can be made from two different aspects. In the first section
are the proposed aspects, assumptions, and solutions. The second aspect concerns the study
of similar studies on the selection and scheduling of project portfolios with other structures,
i.e., a meta-analysis. These two aspects are described respectively. The first proposal refers to
mathematical techniques to add uncertainty to the proposed model. Robust methods can be
used in fuzzy programming. However, new solutions to cope with the complexity of bi-level
programming are essential. The first suggestion deals with the structured problem, which can
be viewed as a group effort. Collaboration in the structured problem is another possibility.
Logically, the subsidiaries in a group can collaborate in different ways. The literature on plan-
ning bi-level models for such situations discusses various types of collaboration, including
semi-cooperative and reference cooperative models.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s10479-022-05052-0.

References

Aghababaei, B., Pishvaee, M. S., & Barzinpour, F. (2021). A fuzzy bi-level programming approach to scarce
drugs supply and ration planning problem under risk. Fuzzy Sets and Systems. https://doi.org/10.1016/j.
fss.2021.02.021

Ahmadi, A., Mousazadeh, M., Torabi, S. A., & Pishvaee, M. S. (2018). OR applications in pharmaceutical
supply chainmanagement. International Series inOperationsResearch andManagement Science. https://
doi.org/10.1007/978-3-319-65455-3_18

Alvarez-Garcia, B., & Fernández-Castro, A. S. (2018). A comprehensive approach for the selection of a port-
folio of interdependent projects. An application to subsidized projects in Spain. Computers & Industrial
Engineering, 118, 153–159.

Amirian, H., & Sahraeian, R. (2018). A hybrid integer grey programming for an integrated problem of project
selection and scheduling with interval data. Journal of Industrial and Production Engineering, 35(4),
199–213.

Antonijevic, Z. (2015). Optimization of Pharmaceutical R&D Programs and Portfolios.
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