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Abstract
The operating theatre is the most crucial and costly department in a hospital due to its
expensive resources and high patient admission rate. Efficiently allocating operating theatre
resources to patients provides hospital management with better utilization and patient flow. In
this paper, we tackle both tactical and operational planning over short-term to medium-term
horizons. The main goal is to determine an allocation of blocks of time on each day to surgi-
cal specialties while also assigning each patient a day and an operating room for surgery. To
create a balance between improving patients welfare and satisfying the expectations of hos-
pital administrators, we propose six novel deterioration rates to evaluate patients total clinical
condition deterioration. Each deterioration rate is defined as a function of the clinical priori-
ties of patients, their waiting times, and their due dates. To optimize the objective functions,
we present mixed integer programming (MIP) models and two dynamic programming based
heuristics. Computational experiments have been conducted on a novel well-designed and
carefully chosen benchmark dataset, which simulates realistic-sized instances. The results
demonstrate the capability of the MIP models in finding excellent solutions (maximum
average gap of 4.71% across all instances and objective functions), though, requiring large
run-times. The heuristic algorithms provide a time-efficient alternative, where high quality
solutions can be found in under a minute. We also analyse each objective function’s abil-
ity in generating high quality solutions from different perspectives such as patients waiting
times, the number of scheduled patients, and operating rooms utilization rates. We provide
managerial insights to the decision makers in cases where their intention is to meet KPIs
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and/or maintaining trade-offs between patients and administrators expectations, more fair
assignments, or ensuring that the most urgent patients are taken care of first.

Keywords Operating theatre · Master surgical schedule · Surgical case assignment ·
Clinical condition deterioration

1 Introduction

Hospitals are typically a major health facility in a region. The operating theatre (OT) depart-
ment within hospitals typically consists of several operating rooms (ORs), and they are the
most critical and costly department because of their operational complexity as well as the
scarceness and high costs of resources (Guerriero and Guido, 2011). Among surgeries in a
hospital, approximately 60–70% are surgical cases and the OT itself accounts for more than
40% of the hospitals total expenses (Denton et al., 2007). This underlines the necessity for
developing efficient OT operations management approaches in order to reconcile supply with
demand (planning) and making time-related decisions (scheduling) (Guerriero and Guido,
2011; Samudra et al., 2016). The OT planning and scheduling process is highly complicated
due to different stakeholder interests and preferences, and involves three hierarchical stages
including strategical, tactical, and operational stages (Rachuba andWerners, 2017). The hier-
archical stages are entirely dependent on each other and decisions made in each stage can
significantly affect the subsequent stages (Guerriero and Guido, 2011).

Strategic planning (known as the case mix planning problem (CMPP) deals with making
long-term decisions on the total OT capacity that can be assigned to each surgical group
(so-called surgical specialty) and the ideal composition and volume of patients that can
be operated upon (Wagner, 1975). The second stage is tactical planning which follows the
hospital’s strategic decisions to determine the allocation of OT time to specialties while
still not considering individual patients (Koppka et al., 2018). At this stage, the capacity
of ORs in terms of time blocks is shared between surgeons/surgical specialties to generate
a cyclic timetable, known as master surgical schedule problem (MSSP), over a medium-
term planning horizon (Beliën and Demeulemeester, 2008). The operational stage is mainly
concerned with assigning patients to ORs and making time-related decisions (Koppka et al.,
2018). The operational planning problem is split into two main sub-problems including the
surgical case assignment problem (SCAP) and the surgical case sequencing problem (SCSP).
While the SCAP assigns patients to ORs and determines a particular surgery day and OR
for each patient, the SCSP focuses on timing aspects and sequencing the patients in the ORs
(Aringhieri et al., 2015).

The COVID-19 pandemic has resulted in elective surgeries being put on hold repeatedly
during lock-downs in Australia and in other countries around the world. This has resulted
in long waiting lists that need to be processed (Arab Momeni et al., 2022). To reduce these
waiting lists, it is essential to make the best use of the scarce resources available to hospitals,
particularly the OT resources. This paper considers the combined problem of developing
master surgical scheduling (MSS) at tactical stage and the operational case assignment prob-
lem, namely MSS-SCAP, in order to produce more efficient schedules. The ultimate goal of
the MSS-SCAP is to create a timetable of surgical specialties allocation to time blocks and
identify every patient a particular surgery day and OR.

123



Annals of Operations Research (2023) 328:821–857 823

When hospital administrations assign time blocks to surgical specialties, they typically
consider criteria based on equity and fairness, which leads to priorities being assigned to
patients (Samudra et al., 2016). When patients are assigned to ORs, those with higher pri-
orities (most critical clinical conditions) will be operated on as early as possible.In order
to cope with the MSS-SCAP challenges, improve patients welfare and satisfy administra-
tors expectations, we quantify the deterioration of patients clinical condition by introducing
six new deterioration rates, each as a function of patients clinical priorities, waiting times,
and their due dates. We further discuss each deterioration rate’s capability in providing high
quality solutions in terms of fair patient assignment, lower waiting times, larger number of
accepted patients, providing timely care to most urgent patients, and larger OT utilization
rates. We note that while some of these quality measures could be incorporated directly in
the optimisation, most of them are about the longer term effectiveness over multiple planning
periods. To test this, we examine the outcomes when the objectives are employed in a rolling
horizon method.

Beliën and Demeulemeester proved that the MSSP is an NP-hard problem. They achieved
this by reduction from 3-Partition problem which is a generic version of the classic bin-
packing problem (Beliën and Demeulemeester, 2004) (see also Tànfani and Testi (2010)).
Freeman et al. showed that the SCAP is an NP-hard problem through a reduction of traveling
salesman problem (Freeman et al., 2016). Since both MSSP and SCAP are NP-hard prob-
lems, therefore their integrated problem, i.e. MSS-SCAP, is also an NP-hard problem (see
Aringhieri et al. (2015)).

To hedge against the complexity of the MSS-SCAP and minimize patients total clinical
condition deterioration, we develop a MIP model and two dynamic programming based
heuristics, called DPH1 and DPH2. The MIP model provides a framework to quantify the
solution quality while the heuristic algorithms aim to find high quality solutions in short
time-frames. While there exists a large body of literature on OT planning and scheduling
problems, most of them have carried out their computational studies based on real-world
case studies and hence, the disclosure of their datasets is almost nonexistent (largely due to
data confidentiality). Thus, another novel aspect of this study is to develop a comprehensive
dataset (inspired by previous studies), which provides real-size instances that serve as a
benchmark and can be utilized by researchers in future for their computational studies. The
major contributions of our study can be summarized as follows:

• Proposing novel objective functions to ensure effective OT scheduling, by penalising the
patients’ potential clinical condition deterioration.

• Introducing a well-structured benchmark dataset to the domain of OT planning and
scheduling problems.

• Presenting a novel MIP model and two dynamic based heuristics to minimize patients’
total clinical condition deterioration.

The remainder of this paper is organised as follows. In Sect. 2, we discuss the relevant litera-
ture in the OT planning and scheduling domain. In Sect. 3, problem definition, assumptions,
and the MIP model are provided. Section4 reports splitting the main problem into several
knapsack sub-problems, which are handled by the two dynamic programming based heuris-
tics. In Sect. 5, the benchmark instances are discussed and computational results of running
the MIP model and heuristic algorithms on the benchmark instances are provided. Finally,
Sect. 6 concludes the paper and provides suggestions for future research.
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2 Literature review

In the past two decades, many researchers have investigated the OT planning and scheduling
problems. Thorough surveys on the OT planning and scheduling literature and its challenges
have been provided in Guerriero and Guido (2011), Samudra et al. (2016), May et al. (2011),
Hof et al. (2017), Zhu et al. (2019). Intending to decrease the complexity and better char-
acterization of the overall problem, much of literature has studied just one planning stage
at a time. However, investigating multiple stages simultaneously may result in having more
integrated, stable and efficient planning that is more likely to succeed (Hashemi et al., 2016).
In this section, we first review the related literature addressing more than one stage of the
planning process, in Sect. 2.1. Then in Sect. 2.2, we review the literature focusing on patients
prioritization and their clinical condition deterioration. At the end, we discuss our motivation
and contributions to the literature.

2.1 The integrated problems

Despite the strong dependency between the three planning stages, much of the literature has
only studied a single stage (Guerriero and Guido, 2011). Testi et al. dealt with the three
stages of the OT planning and scheduling problem by developing a three-phase approach
(Testi et al., 2007). First, they developed an integer linear programming (ILP) model to solve
the CMPP and then taking the results as resource constraints, they generated a weekly MSS.
Given the MSS, a simulation model is suggested to address SCAP and SCSP at the third
phase. A few researchers have considered both MSSP and SCAP concurrently to address the
tactical and operational planning problems. Testi et al. also investigated the MSS-SCAP and
proposed an ILP model and an algorithm for patients prioritization and assigning them to the
ORs (Testi and Tànfani, 2008). To handle the same problem, Tanfàni et al. developed an ILP
model and a three-step heuristic algorithm. Several constraints contributed to the complexity
of their study such as expected patients length of stays, resource availability, and hospital
budget constraints (Tànfani and Testi, 2010).

Adan et al. also studied theMSS-SCAP and provided aMIPmodel and a genetic algorithm
to plan surgeries and specialties taking into account several resource constraints such as the
OT capacity, nursing hours, and the capacity of downstream resources (Adan et al., 2011).
Agnetis et al. discussed the effect of allowing MSS flexibility on the quality of the surgical
plans and assignment of patients to ORs (Agnetis et al., 2012). First they propose an ILP
model to treat patients within their advised due dates over a one-week planning horizon.
Next, system behaviour is simulated over one year planning horizon. They extended their
study and proposed a two-phase decomposition approach to handle the MSS-SCAP (Agnetis
et al., 2014). Aringhieri et al. also investigated the MSS-SCAP and suggested a MIP model
and a hybrid metaheuristic algorithm combining tabu search, local search, and a few greedy
constructive algorithms (Aringhieri et al., 2015).

In addition, Spratt andKozan suggested amixed integer nonlinear programmingmodel and
combined simulated annealing and reducedvariable neighborhood search to address theMSS-
SCAP (Spratt and Kozan, 2016). They formulated the strategic decisions and uncertainty of
surgery durations as model constraints. In Guido and Conforti (2017), authors proposed a
hybrid genetic algorithm to create an MSS and assign patients to days and time blocks.
Anjomshoa et al. studied the MSS-SCAP and developed a MIP model to optimize a multi-
criteria objective function (Anjomshoa et al., 2018). Mashkani et al. also investigated the
MSS-SCAP aiming to minimize the total patients welfare loss resulted by their excessive
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waiting times and proposed a MIP model, two heuristic algorithms and one iterated local
search. They interpreted the assignment of patients to each time block as single knapsack
problems and solved them using dynamic programming. The heuristic solutions are used as
initial solution for the iterated local search (Mashkani et al., 2020).

The MSSP, SCAP, and SCSP are investigated all-together in Roshanaei et al. (2017)
where patients, surgeons, and ORs are collaboratively shared amongst a coalition of hos-
pitals. The authors proposed a mixed-integer dual resource constrained model as well as a
logic-based benders decomposition, which decomposes the overall problem into an alloca-
tion master problem and sequencing sub-problems. Furthermore, a game theoretic approach
is proposed to ensure the fairness of collaborative schedules. Burdett and Kozan studied
improving patients flow from admission to discharge in one integrated problem of MSSP,
SCAP, and SCSP (Burdett and Kozan, 2018). They model the problem as a flexible job-shop
scheduling problem with blocking and no-wait constraints which patients, beds, wards and
treatment activities are considered as jobs, single machines, parallel machines and opera-
tions, respectively. To solve the problem, constructive algorithms and hybrid metaheuristics
are developed.

ArabMomeni et al. investigated theMSS-SCAP to assign operating rooms to the COVID-
19 and non-COVID-19 patients during pandemic of the Coronavirus in a cardiovascular
department (Arab Momeni et al., 2022). They developed a MIP model and a stochastic
robust optimization approach taking into account the uncertainty of elective and emergency
patients surgery durations. They analysed the MIP model for different values of the robust
parameters and concluded that hospital managers could select a solution to better balance
the cost, constraints violation levels as well as utilization rates of hospital facilities based on
their risk-averse level.

2.2 Patients prioritization

Prioritizing patients is highly complicated in that it determines the position of a patient on the
waiting list against other patients and the severity of their clinical condition (Abbasgholizadeh
Rahimi et al., 2016). Excessive patients waiting times may lead to negative consequences
and deterioration of their clinical conditions. Despite the importance of patients prioritization
in the planning and scheduling process, only a few researchers have taken this criteria into
consideration. In 2002, the Italian Ministry of Health defined five urgency-related groups
(URGs) associatedwith patients recommendedmaximum time before treatment (MTBT) and
based on two criteria including (a) progression of disease; and (b) level of pain, dysfunction or
disability. The five URGs have been used later in other health care systems such as Australia
to prioritize patients on the waiting list (Testi et al., 2007; Valente et al., 2009).

In Testi et al. (2007), a performance criteria, known as need-adjusted-waiting day
(NAWD), is introduced based on patients waiting times and MTBTs to measure the effi-
ciency and equity of patients schedules. The NAWD evolves equally for all the patients in
the same urgency category. Testi et al. proposed an objective function to quantify patients
total welfare loss or in the other words patients total clinical condition deterioration (Testi
and Tànfani, 2008). The deterioration is defined as a linear function of patients waiting time
and priorities. This function later has been used by Aringhieri et al. (2015), Tànfani and Testi
(2010) and Agnetis et al. (2014) to minimize patients total clinical condition deterioration.
Min and Yih also minimized the cost of postponing surgeries using a static priority score
recommended by clinical physicians at the time of patient admission (Min and Yih, 2010).
Guido et al. focused on maximizing the OT utilization and the total priorities of scheduled
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patients at the same time (Guido and Conforti, 2017). Duràn et al. prioritized patients based
on their NAWD (defined in Testi et al. (2007)) to take patients urgency and priority into
account while maximizing the OT utilization (Duràn et al., 2017). Furthermore, Rahimi et al.
reviewed the patients prioritization systems and proposed an assessment framework consid-
ering delay in patients treatment, risk criteria, and a profile matrix to reflect evolving patients
clinical condition (Abbasgholizadeh Rahimi et al., 2016). The proposed framework helps
with prioritization but not with the planning and scheduling process.

Oliveira et al. also proposed a patients prioritization system to optimize an aggregate
function of maximizing total priority of assigned patients, surgeons preferences, and the
ORs utilization (Oliveira et al., 2020). Mashkani et al. considered the importance of patients
due dates into the clinical condition deterioration to make sure patients with severe health
condition will get on time treatment and create a trade-off between the cost of accepting a
surgery or postponing it Mashkani et al. (2020). If a patient is not scheduled in the current
planning horizon, i.e. patient is not accepted, they will be either postponed to be treated in
the next planning horizons or if their clinical condition is severe, they must be transferred to
another hospital to get the required treatment in a timely fashion.

Doulabi and Pourazari consideredweekly operating room planning problemwith an expo-
nential number of scenarios to minimize the sum of the fixed opening cost of operating rooms
and the expected overtime costs taking into account the due dates of patients (Hashemi
Doulabi and Khalilpourazari, 2022). Although they considered patient due dates, their model
does not consider patient priorities for the order in which patients are treated. All patients
are assumed to be scheduled, potentially incurring significant amounts of overtime.

2.3 Motivation and contributions

As discussed, despite the strong dependency between different stages of the OT planning
and scheduling process, much of the literature has only studied a single stage (Guerriero and
Guido, 2011). Some studies have considered more than one stage at a time, though the pro-
posed methodologies are not universal and generalizable to real-world surgical departments
without extensive customization (Samudra et al., 2016). Nonetheless investigating multiple
stages simultaneously may result in having more integrated, stable, and efficient schedules
that are more likely to succeed (Hashemi et al., 2016). The main goal of this study is to
provide thorough solution approaches to generate an MSS (which allocates specialties to
time blocks) and cope with the SCAP (which assigns each patients to a day and a time block)
all-at-once.

In spite of the efforts in the literature, the current patient prioritization tools overlook the
importance of patients due dates and the impact of excessive delay on the clinical condition
of patients. The prioritization should provide sufficiently robust rankings to hedge against
the dynamic nature of their health condition overtime. In this study, we propose different
deterioration rates to address the above-mentioned drawbacks, balance the advantages of
scheduling patients based on their priority, their risk of not being accepted and their risk
of surgery postponement. We extend the work of Mashkani et al. (2020) by presenting
more sophisticated formulations for patients ranking and quantifying their health condition
overtime. In the work of Mashkani et al. (2020) the welfare loss of patients is defined as a
linear function of patients priority and their waiting times (inspired from Testi and Tànfani
(2008), Tànfani and Testi (2010), Aringhieri et al. (2015)). Here, the deterioration rates are
defined based on available information of patient waiting times, due dates, and their clinical
priorities at the time of admission. The six rates can be beneficial from different aspects such
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as (a) measuring the impacts of acceptance, postponement, or rejection of patients based
on their health condition; and (b) providing decision-making tools to assess the quality and
efficiency of patients assignment to the ORs from different stakeholders perspectives.

Table 1 summarizes the literature related to this study. In this table, the columns OT K P Is
show the objective functions focusing on the OT performance criteria such as OT related
costs and utilization. The columns PatientsK P I s illustrate the studies focused on criteria
related to patients. As illustrated in Table 1, just a few studies have focused on the clinical
condition deterioration of patients, and solving the OT planning and scheduling problems at
both tactical and operational levels. This highlights negligence of patients welfare in hospital
administration and OT management decision making process.

Another motivation for conducting this study is to fill the gap of a well-designed and
realistic-size benchmark dataset for OT planning and scheduling problems. Due to the con-
fidentiality of patients health records, the disclosure of hospital data is almost impossible.
Indeed, there is almost no open access dataset that could reflect the real hospital settings and
be a basis for researchers to compare their methodologies (Mashkani et al., 2020). Hence,
we propose a comprehensive and well-structured benchmark with 1080 instances motivated
from the literature such as Testi et al. (2007), Fei et al. (2010), Spratt andKozan (2016), which
also provides other researchers with a dataset to perform their computational experiments.
The benchmark suggests input values for the main parameters in a general OT planning and
scheduling problem such as the scale of a typical OT department, length of planning horizon,
number of surgical specialties, and patients characteristics including their MTBTs, priority
scores, andwaiting times. This benchmark dataset is used to thoroughly analyse our proposed
solution methodologies in this study.

3 Problem statement andMIPmodel

In the MSS-SCAP, there is a set of s specialties, s ∈ {1, . . . , S}, to perform surgeries of P
elective patients. Each specialty s has a set of Ps patients, where P = P1

⋃
P2

⋃
...

⋃
PS and

for any s and s′, Ps
⋂

Ps′ = ∅ meaning each patient p belongs to exactly one specialty. The
surgery duration of patient p is denoted by L p which is measured in minutes. All patients
release dates are at the beginning of the horizon, i.e. equal to zero. All surgeries of each
specialty can be performed by any surgeon of that specialty and all ORs are sufficiently well-
equipped thus usable by any specialty. The planning horizon consists of D days, indexed
by d ∈ {1, 2, . . . , D}. On each day d , a set of T operating rooms are accessible, where
t ∈ {1, 2, . . . , T }. Each OR capacity is divided into several time blocks b ∈ {1, 2, . . . , B}.
The length of each time block b in day d is given and denoted by τ(d,b) and the total processing
time of the patients assigned to a time block cannot exceed it’s capacity. To assign patients
and specialties to time blocks, we apply a block scheduling policy, where each time block b
is assigned to at most one specialty and cannot be shared amongst different specialties.

Each patient p is given a maximum time before treatment MT BTp based on their URG.
The MTBTs are used to recommend each patient p a priority score prp indicating severity
of their clinical condition at the time of their admission (Testi et al., 2007; Testi and Tànfani,
2008). Hence, a patient’s priority score is an indicator of how their health condition has
already deteriorated and their urgency for an early surgery. At the beginning of the planning
horizon, it is known that each patient p has already spent Wp days on the waiting list and
their surgery will be due in Dlp days, where Dlp = MT BTp − Wp .

123



828 Annals of Operations Research (2023) 328:821–857

Ta
bl
e
1

T
he

re
la
te
d
lit
er
at
ur
e
on

th
e
M
SS

-S
C
A
P
w
ith

th
ei
r
pe
rf
or
m
an
ce

cr
ite
ri
a

Pa
pe
r

Pr
ob
le
m
s

O
T
K
PI
s

Pa
tie
nt
s’
K
PI
s

R
el
at
ed

co
st
s
U
til
iz
at
io
n
W
ai
tin

g
tim

es
Pl
an
ne
d
pa
tie
nt
s
Ta
rd
in
es
s
E
ar
lin

es
s
U
rg
en
cy

W
el
fa
re

lo
ss

Te
st
ie
ta
l.
(2
00

7)
C
M
PP

M
SS

P
SC

A
P
SC

SP
�

�
Te
st
ia
nd

T
àn
fa
ni

(2
00

8)
M
SS

P
SC

A
P

�
T
àn
fa
ni

an
d
Te
st
i(
20

10
)

M
SS

P
SC

A
P

�
M
in

an
d
Y
ih

(2
01

0)
SC

A
P

�
A
da
n
et
al
.(
20

11
)

M
SS

P
SC

A
P

�
A
gn
et
is
et
al
.(
20

12
)

M
SS

P
SC

A
P

�
�

A
gn
et
is
et
al
.(
20

14
)

M
SS

P
SC

A
P

�
A
ri
ng
hi
er
ie
ta
l.
(2
01

5)
M
SS

P
SC

A
P

�
Sp

ra
tt
an
d
K
oz
an

(2
01

6)
M
SS

P
SC

A
P

�
D
ur
àn

et
al
.(
20

17
)

SC
A
P

�
�

G
ui
do

an
d
C
on

fo
rt
i(
20

17
)

C
M
PP

M
SS

P
SC

A
P

�
�

R
os
ha
na
ei
et
al
.(
20

17
)

M
SS

P
SC

A
P
SC

SP
�

�
B
ur
de
tt
an
d
K
oz
an

(2
01

8)
M
SS

P
SC

A
P
SC

SP

A
nj
om

sh
oa

et
al
.(
20

18
)

M
SS

P
SC

A
P

�
�

M
as
hk
an
ie
ta
l.
(2
02

0)
M
SS

P
SC

A
P

�
O
liv

ei
ra

et
al
.(
20

20
)

SC
A
P

�
A
ra
b
M
om

en
ie
ta
l.
(2
02

2)
M
SS

P
SC

A
P

�
�

H
as
he
m
iD

ou
la
bi

an
d
K
ha
lil
po

ur
az
ar
i(
20

22
)
SC

A
P

�
�

123



Annals of Operations Research (2023) 328:821–857 829

The available capacity of all ORs over the planning horizon is generally insufficient, which
means that it will not be possible to schedule all patients. Hence, a patient p is either to be
operated on or rejected/transferred to another hospital. If patient p with due date within the
planning horizon (Dlp ≤ D) cannot be scheduled in time, they will be transferred to another
hospital for timely treatment.

Although a patient’s clinical condition is dynamic and changes over time, in this study
we consider single snapshot of time with the aim of devising plans based on a patient’s
current status. We introduce six different deterioration rates (denoted by R(i)(p, d), i ∈ O =
{1, ..., 6}), each as a function of patients waiting times, priority scores, due dates, and the
day of surgery to measure their clinical condition deterioration. These functions take day d
as input variable and prp , MT BTp , Wp are given parameters. When patient p with waiting
time Wp and due date Dlp is accepted for surgery on day d , then their clinical condition
deteriorates at most by d + Wp days. However, if patient p is rejected, then their clinical
condition deteriorates depending on their due date. If the rejected patient’s due date is within
the planning horizon (Dlp ≤ D), then the patient must be transferred to another hospital to
get on time treatment and their condition worsens by at least Dlp + 1 days. If the rejected
patient’s due date is beyond the planning horizon (Dlp > D), then they have to wait for
treatment in the next planning horizons and their clinical condition gets worse at least by
D + 1 days. The six deterioration rates are shown in Eqs. (1) to (6).

R(1)(p, d) = prp (d + Wp) (1)

R(2)(p, d) = prp αp d (2)

R(3)(p, d) = prp αp βp d (3)

R(4)(p, d) = prp
Wp + d

MT BTp
d (4)

R(5)(p, d) = prp βp
Wp + d

MT BTp
d (5)

R(6)(p, d) = prp
Wp + d

MT BTp

d

MT BTp − (Wp + d) + 1
(6)

We have adapted R(1)(p, d), formulated in Eq. (1) from the literature (Testi and Tànfani,
2008; Tànfani and Testi, 2010; Aringhieri et al., 2015) and extended the context to investigate
the cost of rejection/postponement of high priority patients on the quality of schedules and
their welfare.

The Eq. (2) shows our second deterioration rate, i.e. R(2)(p, d). To develop R(2)(p, d),
we incorporated the delay ratio αp into R(1)(p, d) in order to quantify the impacts of surgery

delay in patients clinical condition where αp = Wp
MT BTp

.
The third deterioration rate is illustrated in Eq. (3). In R(3)(p, d), we added the risk of

rejection (βp) to R(2)(p, d), where βp = 1
MT BTp−Wp+1 and measures the impacts of the

rejection probability on patients health.
It is then expected that R(1)(p, d) to R(3)(p, d) schedule high priority patients first irre-

spective of their due dates since patients health condition has a linear relationship with their
priority scores and their actual waiting times on the list, i.e (d + Wp). However, When the
planning horizon is long, patients clinical condition may get worse exponentially. Therefore,
the deterioration rate will have a non-linear relationship with patients’ actual waiting times
on the waiting list.

In Eq. (4), we introduced a new deterioration rate, R(4)(p, d), where a patient’s health
condition deterioration is a simple quadratic function of their surgery day d . Then in Eq. (5),
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we incorporated a scaling factor βp to R(4)(p, d) and developed another rate as R(5)(p, d) =
βp R(4)(p, d). The scaling factor is designed in such a way that R(5)(p, Dlp) = prp for
any patient p which Dlp = MT BTp − Wp + 1. This implies that patient p’s deterioration
rate is equal to their priority score if their due date is within the planning horizon. Finally,
R(6)(p, d) in Eq. (6) is defined as R(6)(p, Dlp) = R(4)(p, Dlp) with extreme growth in the
cost (penalty) as the day of surgery approaches Dlp .

For each deterioration rate, we define an objective function OF(i), i ∈ O to measure the
total clinical condition deterioration cost of all patients at the end of the planning horizon. In
objective function OF(i), each patient p’s clinical condition deteriorates by R(i)(p, d) and the
objective function calculates the total patients welfare loss at the end of the planning horizon.
To have a clear understanding of how each objective function works, the first objective
function is discussed here. In OF(1), the clinical condition of patient p who is to be operated
on day d and block b deteriorates by prp(d +Wp). If patient p is not scheduled for surgery,
then (a) if Dlp ≤ D, they will be transferred to another hospital to get on-time treatment and
their condition will deteriorate at least by prp(Dlp + 1 + Wp); (b) otherwise they need to
wait at least another D + 1 day to get treatment and their condition will get worse at least by
prp(D + 1 + Wp). The MIP model for OF(i) is presented in equations (7aa) to (7f). In this
model, four sets of decision variables are used including:

• Xtsdb, a binary variable which is equal to 1 if time block b of operation room t is assigned
to specialty s on day d .

• Ytpdb, a binary variable which is equal to 1 if time block b of operation room t is assigned
to perform surgery of patient p on day d .

• Up , a binary variable which is equal to 1 if patient p with due date within the planning
horizon (Dlp ≤ D) being transformed to another hospital for on-time treatment.

• Z p , a binary variable which is equal to 1 if patient p with due date beyond the planning
horizon (Dlp > D) needs to wait at least another D + 1 days for surgery.

min
<

b
∑

t

∑

p

∑

d≤Dlp

∑

b

R(i)(p, d)Ytpdb +
∑

p|Dlp≤D

R(i)(p, Dlp + 1)Up

+
∑

p|Dlp>D

R(i)(p, D + 1)Z p (7a)

s.t.
∑

t

∑

d≤Dlp

∑

b

Ytpdb +Up = 1 ∀ p | Dlp ≤ D (7b)

∑

t

∑

d

∑

b

Ytpdb + Z p = 1 ∀ p | Dlp > D (7c)

∑

p∈Ps

L pYtpdb ≤ τ(d,b)Xtsdb ∀ t, s, d, b (7d)

∑

s

Xtsdb ≤ 1 ∀ t, d, b (7e)

Xtsdb, Ytpdb, Z p,Up ∈ {0, 1} ∀ s, t, p, d, b (7f)

Objective (7aa) minimizes the total clinical condition deterioration of all accepted, trans-
ferred, and rejected patients where the deterioration rate of patient p assigned to block b of
operating room t on day d is R(i)(p, d) for i ∈ O. Constraints (7b) require if the due date of
patient p is within the planning horizon (Dlp ≤ D), theymust be treatedwithin their due date
or transferred to another hospital for timely treatment. Constraints (7c) ensure that a patient
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can be accepted at most once or rejected to be considered in the next planning horizons if
their due date is beyond D, i.e Dlp > D. Constraints (7d) guarantee that a patient is assigned
to a time block b if and only if block b is assigned to the patient’s specialty and the total pro-
cessing time of all patients assigned to block b must not exceed the available capacity of the
block. Constraints (7e) ensure that time blocks are not shared between different specialties
as per the block scheduling policy.

In this study, it is assumed that a hospital has one central OT department with several
identical ORs. There is no dedicated ORwith specialized equipment, so all the available ORs
can be used to perform all types of surgeries. Hence, we do not consider the index t as part of
our equations and calculations neither in development of solutionmethodologies, benchmark
design, nor in computational experiments. However, additional or specialized equipmentmay
restrict the amount of time that can be assigned to surgical specialties and thereby require the
adaption of “suitability of the ORs constraints” into the problem, e.g. Constraints set (8) from
Spratt and Kozan (2016), which can easily be adapted by the benchmark set and solution
methodologies proposed in this paper.

4 Solutionmethod

In this section, we discuss our proposed dynamic programming based heuristics which we
refer to as DPH1 and DPH2, respectively. For the purposes of these heuristics, we convert
the objectives to maximization rather than minimization in a straightforward manner.

All the six objective functions aim to minimize the total clinical condition deterioration
of all accepted, transferred, and rejected patients on the waiting list (patients welfare loss).
From constraints (7b) and (7c), we replace the two decision variables Up and Z p by 1 −∑

d≤Dlp

∑
b Ypdb and 1−∑

d
∑

b Ypdb, respectively. For instance, the first objective function
OF(1) is re-written as:

OF(1) = min
∑

p|Dlp≤D

∑

d

∑

b

prp(Dlp + 1 − d)Ypdb

+
∑

p|Dlp>D

∑

d

∑

b

prp(D + 1 − d)Ypdb

−
∑

p|Dlp≤D

prp(Dlp + 1 + Wp) −
∑

p|Dlp>D

prp(D + 1 + Wp) (8)

Here
∑

p|Dlp≤D prp(Dlp + 1+ Wp) is a constant and represents the worst case scenario
where no patient with due date within the planning horizon (Dlp ≤ D) is accepted. The∑

p|Dlp>D prp(D + 1+Wp) is also a constant value demonstrating the worst case scenario
where all patients with Dlp > D get rejected. In the next step, we update the model to maxi-
mize the objective function by multiplying the objective function by (−1). After eliminating
the constant values, we get a maximizing function denoted by OF∗

(1):

OF∗
(1) = max

∑

p|Dlp≤D

∑

d

∑

b

prp(Dlp + 1 − d)Ypdb

+
∑

p|Dlp>D

∑

d

∑

b

prp(D + 1 − d)Ypdb (9)
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From (9), we can conclude that the deterioration rate of patient p on day d is prp(Dlp +
1 − d) if Dlp ≤ D and prp(D + 1 − d) otherwise. By applying the same argument for
the other objective functions, we will have six maximization objective functions, which
are called OF∗

(i) for i ∈ O and the deterioration rate of any patient p on day d is called
R∗

(i)(p, d). The R∗
(i)(p, d) for all the six objectives are shown in equations (10) to (15),

where θp = min{Dlp, D} + 1 and γp = Prp
MT BTp

.

R∗
(1)(p, d) = prp (θp − d) (10)

R∗
(2)(p, d) = prp αp (θp − d) (11)

R∗
(3)(p, d) = prp αp βp (θp − d) (12)

R∗
(4)(p, d) = γp ((θp + Wp) θp − (Wp + d) d) (13)

R∗
(5)(p, d) = γp βp ((θp + Wp) θp − (Wp + d) d) (14)

R∗
(6)(p, d) = γp

(
(θp + Wp) θp

MT BTp − (Wp + θp) + 1
− (Wp + d) d

MT BTp − (Wp + d) + 1

)

(15)

Now, the problem is assigning a list of patients to a set of time blocks and days with a
maximizing objective function OF∗

(i). Each time block can be allocated to just one specialty.
Thus, the assignment problem of a list of Ps patients belong to specialty s to time block
(d, b) with capacity of τ(d,b) can be interpreted as a single knapsack problem, where patients
are items and each block is a knapsack. Indeed, for each objective function OF∗

(i), the time
block (d, b) is a knapsack with capacity ofC = τ(d,b) and each patient is an itemwith weight
wp = L p and value vp = R∗

(i)(p, d). The goal is to assign patients to time block (d, b) in
order tomaximize the total value of assigned patients so that the totalweight of the assignment
does not violate the capacity restriction. To this end, the main problem is split into D × B
knapsack sub-problems. To solve each knapsack sub-problem, we implement a dynamic
programming (DP) approach with memoization. The DP utilizes a recursion function to
which the inputs are the number of patients, capacity of the time block, and patients weights
and values. The DP is underpinned by two main concepts:

• There is a list of n = |Ps | patients, p ∈ {1, 2, . . . , n}, of specialty s to be assigned to time
block (d, b) with capacity C = τ(d,b). For each patient p and all possible total weights
of assigned patients w ∈ {0, 1, . . . ,C}, the DP constructs an array V [0 . . . n, 0 . . .C]
to store solutions, where if no patient is available, then V [0, w] = 0 for 0 ≤ w ≤ C ,
and V [p, w] = −∞ if w < 0. The array V [k, w] keeps track of the maximum value
of any subset of patients {1, 2, . . . , k} with total weight w. Hence, V [n,C] contains the
maximum value of patients assigned to the time block.

• The DP decomposes the problem into recurring smaller sub-problems SPk for making
decisions on the assignment of item k to the time block. It computes the best solution of
sub-problem SPk as V [k, w] for all 0 ≤ w ≤ C using the recursive function:

V [k, w] =
{
V [k − 1, w] if wk > w

max{V [k − 1, w], V [k − 1, w − wk] + vk} otherwise
(16)

The recursive function returns the best possible assignment of patients to time block (d, b).
To describe the DP and heuristic algorithms, we use Table 2 notations in addition to the ones
we introduced previously.

Algorithm 1 illustrates the pseudo-code of the DP procedure, which is indicated by
DP(�, �, n,C). Here, there are n items (patients) to be planned, vector � is their weights
(wp = L p) and vector � shows their values, where for function i they are vp = R∗

(i)(p, d).
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Table 2 The DP and heuristic algorithms notations

Notation Description

n Number of patients to be planned

C Block capacity

� Patients weights

� Patients values

DP(�, �, n,C) The DP procedure

	[k, w] Assignment array by the DP procedure

ϕ∗ Best possible assignment of patients to a time block

σs List of all unscheduled patients of specialty s

T s
(i) Total value of assigning patients of σs to day d

s∗ Specialty with maximum T s
(i)

DP(s∗) List of patients belong to s∗ with Dlp ≥ d

In the DP algorithm, 	[k, w] is the assignment array, where 	[k, w] = 1 if patient k is
assigned to a solution with total weight w and 	[k, w] = 0 otherwise. The ϕ∗ also indicates
the best possible assignment of patients to time block (d, b).

Algorithm 1 The DP algorithm

Data: �, �, n,C
Result: The best assignment of patients to the time block
for w = 0 to C do

V [0, w] = 0
	[0, w] = 0

end
for k = 1 to n do

for w = 0 to C do
if wk ≤ w then

V [k, w] = max{V [k − 1, w], V [k − 1, w − wk ] + vk }
	[k, w] = 1

else
V [k, w] = V [k − 1, w]

end
end

end
ϕ∗ = {k : 	[k,C] = 1}
return ϕ∗

The time complexity of the DP approach for solving the Knapsack problem is of O(nC)

where n is the number of items and C is the knapsack capacity. Both DPH1 and DPH2
heuristics split the problem into single knapsack sub-problems and then search for a high
quality solution by solving these knapsack problems step by step and by deploying the DP
algorithm. Themain idea behind these algorithms is to decidewhich assignment of specialties
and patients to a time block (d, b) lead to maximum total values assigned to ORs.
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4.1 The DPH1 algorithm

The DPH1 algorithm assumes that each time block is a knapsack. It searches for the specialty
s∗ that can providemaximum total value if assigned to the time block. The assignment process
begins from the first time block of the first day, i.e. block (d, b) = (1, 1), assuming that only
this block is available for patient treatment. For each specialty s, the list of all unscheduled
patients are listed in σs . In the next step, for each specialty s, the total value of assigning all

patients of list σs to day d is calculated as T s
(i), where T s

(i) = ∑
p∈σs

R∗
(i)(p,d)

L p
for objective

function i . Since the greater value of the total clinical condition deterioration for planned
patients leads to having a lower objective function value in total, the owner of the block will
be the specialty with the maximum value, referred as s∗.

Algorithm 2 The DPH1 optimizing OF(i)

Data: Input data
for d = 1 to D do

for b = 1 to B do
for s = 1 to S do

σs = {p : p is unscheduled}

T s
(i) = ∑

p∈σs

R∗
(i)(p,d)

L p
end
s∗ = argmaxs∈S{T s

(i)}
DP(s∗) ← {p : Dlp ≥ d, p ∈ σs∗ }
n ← |DP(s∗)|
� ← {L p : p ∈ DP(s∗)}
� ← {R∗

(i)(p, d) : p ∈ DP(s∗)}
C ← τ(d, b)
ϕ∗ = DP(�, �, n,C)
Remove patients in ϕ∗ from σs∗

end
end
Compute the OF(i)

Taking into account patients due dates, the list of all patients in σs∗ with Dlp ≥ d , called
DP(s∗), is chosen as the input of the DP algorithm. Subsequently, the DP algorithm is
executed to find the best assignment of patients in list DP(s∗) to time block (d, b). Then the
σs∗ is updated by removing all assigned patients. The algorithmwill repeat all aforementioned
steps for each time block to the end of the planning horizon. The whole procedure is shown
in Algorithm 2. The DPH1 algorithm solves D× B knapsack problems, hence its complexity
is D × B × O(nC).

4.2 The DPH2 algorithm

Like DPH1, DPH2 benefits from embedded DP procedures. For every objective function
OF(i), the DPH2 starts from the first time block in the first day, i.e. (d, b) = (1, 1), and
treats each time block as a knapsack. For each specialty s with a list of unscheduled patients
σs , it solves a single knapsack problem by executing the DP algorithm. Then, it computes
the total value if assigning selected patients by DP to the time block as T s

(i), where T s
(i) =

∑
p∈ϕs

R∗
(i)(p,d)

L p
. The specialty with maximum total value, namely s∗, and associated patients
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selected by DP will be assigned to the time block (d, b). Thereby, the σs∗ will be updated by
removing these patients.

Algorithm 3 The DPH2 optimizing OF(i)

Data: Input data
for s = 1 to S do

σs = {p : p is unscheduled}
end
for d = 1 to D do

for s = 1 to S do
DP(s) ← {p : Dlp ≥ d & p ∈ σs }
n ← |DP(s)|, � ← {L p : p ∈ DP(s)}, � ← {R∗

(i)(p, d) : p ∈ DP(s)}, C ← block capacity
ϕs = DP(�, �, n,C)

T s
(i) = ∑

p∈ϕs

R∗
(i)(p,d)

L p
end
for b = 1 to B do

Set s∗ = argmaxs∈S{T s
(i)} and remove patients in ϕs∗ from σs∗

if b < B then
s ← s∗
DP(s) ← {p : Dlp ≥ d & p ∈ σs }
n ← |DP(s)|, � ← {L p : p ∈ DP(s)}, � ← {R∗

(i)(p, d) : p ∈ DP(s)}
C ← block capacity
ϕs = {p : DP(�, �, n,C)}
T s

(i) = ∑
p∈ϕs

DR∗
(i)(p,d)

L p
end

end
end
Compute the OF(i)

For the next time block in day d , the same procedure needs to be implemented. However,
since for any objective function i , the cost does not change when assigning patient p to
any time block b or b′ on the same day d due to symmetry and equity of all time blocks in
a day. Hence, if b < B there is no need to re-run the DP algorithm for other specialties
except for specialty s∗ and as the result just σs∗ list gets updated. This speeds up the solution
time by only re-solving knapsack problems when required rather than for every block and
specialty. If time block (d, b) is the last time block in day d , i.e. b = B, then the procedure
repeats for the next day’s available time blocks. The above steps need to be taken to the last
time blocks in the planning horizon. The DPH2 algorithm, illustrated in Algorithm 3, solves
S knapsack problems for the first block on each day and then only needs to re-solve one
knapsack problem for each subsequent block. Hence, the complexity of DPH2 algorithm is
D × (S + B) × O(nC).

5 Computational experiments

The literature on theOTplanning and scheduling problems is rather vast though the disclosure
of the dataset is almost nonexistent thanks to patients data confidentiality. Indeed, there is
almost no open access dataset that could reflect the real hospital settings and be a basis for
researchers to align their methodologies, including exact and heuristic methods. To the best
of our knowledge, a comprehensive benchmark dataset for the OT planning and scheduling

123



836 Annals of Operations Research (2023) 328:821–857

problem does not exist in the literature. In Leeftink and Hans (2018), authors proposed a
benchmark dataset for the OT planning and scheduling problems though they didn’t provide
details on patients characteristics such as their waiting times, due dates, clinical priorities,
etc. Hence, we propose a comprehensive and well-structured benchmark with 1080 instances
motivated from the literature such as Testi et al. (2007), Fei et al. (2010), Spratt and Kozan
(2016), which also provides other researchers with a dataset to perform their computational
experiments. The benchmark instances are also used to thoroughly analyse our proposed
approaches.

5.1 Benchmark design

The benchmark dataset is specifically designed to investigate different characteristics of the
problem and the efficiency of the proposedmethodologies. It provides input values for param-
eters in a general OT planning and scheduling problem such as the scale of an OT department,
length of planning horizon, number of surgical specialties, and patients characteristics. In
this section, we discuss the procedure and reasons behind how we design these parameters’
values in the benchmark.

5.1.1 Scale of the OT department

The inherent uncertainty of surgical procedures affects the allocation of OT scarce resources
to patients and the availability of ORs, and as a result the scale and size of the OT department
for surgery planning. Two polices are used in allocation of ORs to emergency and elective
patients, namely dedicated and flexible policies. Whilst the dedicated policy reserves some
ORs for just emergency patients, flexible policy doesn’t secure any OR for emergencies and
both elective and emergency patients are treated in the same ORs (VanRiet and Demeule-
meester, 2015; Spratt and Kozan, 2016). Regardless of the fact that the flexible policy leads
to higher overall utilization, it may result in more overtime and patients waiting times as
well as less stable surgery schedules (VanRiet and Demeulemeester, 2015). In this study, we
implement the dedicated policy where all ORs are considered for elective surgeries and no
uncertainty contributes to the planning and scheduling process.

Moreover, some ORs may be better equipped for specific specialties and hospitals devote
them to these specialties in order to decrease the cost and time of moving valuable equipment
betweenORs. This allocation doesn’tmean that other specialties cannot use theseORs (Spratt
and Kozan, 2016). In our benchmark, all ORs have the same equipment and can be allocated
to any specialty, accordingly there is no difference between time blocks of the same capacity
belonging to different ORs in a day. In fact, due to the symmetry between the time blocks in
each day d , it can be assumed that there is just one OR with several time blocks and same
equipment in each day.

The number of time blocks can vary fromone day to another, though for the purposes of the
benchmarkwe assume that there are an equal number of B time blockswith the same capacity
in each day. To determine the number of blocks in each day and their capacity, i.e. B and τd,b,
we investigated around fifty articles with real case studies. The outcome demonstrated that
the number of blocks a day vary from one to fifteen blocks a day (for example see Koppka et
al. (2018), Anjomshoa et al. (2018), Siqueira et al. (2018), Akbarzadeh et al. (2020), Barrera
et al. (2022)). Hence, to cover real world cases, B is chosen from {4, 6, 8, 10, 12, 14} and all
the time blocks have the same capacity of five hours (300min).
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5.1.2 Length of planning horizon

One of the main stages in surgery planning is “admission planning" in which a surgery date is
determined and the hospitalisation date is communicated with the patient (Riise and Burke,
2011). While traditionally MSS admission planning is typically one to four weeks, in recent
times due to the backlog created by the COVID-19 pandemic, longer horizons have to be
considered. In addition longer horizons enable additional insight into admission planning
including allowing us to compare a rolling horizon approach with the global optimum over a
longer period (described in the Sect. 5.2.3). Moreover, a longer MSS can assist in predicting
and balancing between capacity and demand as patients clinical conditions evolve over the
time. It also provides a clear picture of patients assignment to ORs and days and as a result,
improved staff rostering.

As the MSS-SCAP concurrently deals with both tactical and operational levels covering
short to medium term planning horizons, the number of days in the planning period is chosen
from {5, 10, 15, 20, 40, 60} days, which covers one week to twelve weeks horizons. It is
notable that elective surgeries are usually planned in weekdays (i.e. Monday to Friday) and
each week contains five working days.

5.1.3 Number of surgical specialties

In an OT department, there are several surgical specialties that share a fixed number of ORs.
However, a limited number of them use waiting lists and their surgeries can be booked in
advance (Spratt and Kozan, 2016). By delving into the literature with real-world case studies,
the number of specialties (S) has been chosen in the range of {8, 12, 16}, which is consistent
with what is done in practice.

5.1.4 Patients characteristics

In this section, we discuss patients characteristics (such as surgery durations, priority scores,
and waiting times) and how we defined their values in the benchmark.
Surgery durations
Surgery durations are stochastic by their very nature and their variability can be addressed
by having good estimates (VanRiet and Demeulemeester, 2015; Meersman and Maenhout,
2022). The uncertainty in surgery durations is acknowledged by many authors while many
others disregard it in order to simplify their scheduling problems (Riise and Burke, 2011).
To cope with uncertain surgery durations the most common approach is “slack planning”,
where part of a block’s capacity is reserved as a buffer for unpredicted incidents and allows
for deterministic planning. For example, if the available capacity is six hours, then one hour
is reserved as a buffer and the rest is used for deterministic planning.

Surgeries belong to a surgical specialty are medically homogeneous and have similar
treatment durations. Strum et al. showed that lognormal distribution often results in the best
fit for surgical durations estimation (Strum et al., 1998). Here, the surgery durations are
randomly approximated using lognormal distributions (shown in Table 3) provided by Spratt
and Kozan (2016). Since the minimum time block capacity is five hours, the sampled values
are truncated at 300min to ensure each surgery fits within a block.
Patients MTBTs, priority scores, and waiting times
Following the five URGs defined in Testi and Tànfani (2008), Valente et al. (2009), namely
URG j and j ∈ {1, 2, ..., 5}, patients are categorized into five groups where their MT BT ∈
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{8, 30, 60, 180, 360} (in days), respectively. Based on a patient’s MTBT, a priority score is
assigned to them in such a way that a patient with higher priority has a lower MTBT, i.e.
prp ∈ {45, 12, 6, 2, 1}. For example, if patient p has a MT BTp = 8, then they have a
priority score of prp = 45 and belong to URG1, which means that the patient is of high
priority and must receive their required treatment as soon as possible.

Not all of the surgeries of any specialty s have the same URG. Some of them has highest
priority and need to be operated on early while some others can wait longer. To generate
patients URGs for each specialty, we scrutinized the data provided in Spratt and Kozan
(2016). They categorized patients into three groups. Therefore, to have the five urgency
groups, we divided their first two groups into two other ones. Table 3 shows the lognormal
distribution parameters and the URGs combinations per specialty.

For each patient p, the waiting time is generated based on their MTBT and sampled
uniformly in [1, MT BTp] and their due date is also generated by deducting the patient’s
waiting time from MTBT, i.e. Dlp = MT BTp − Wp .
Number of patients
Since the scale and size of the OT department impacts the number of patients that can be
admitted, here we generate the number of patients as a function of available capacity over
the planning horizon. In Table [2] of Spratt and Kozan (2016), we can see that some of the
specialties have a higher admission rate than others. For instance, in 2012, just one surgery
in gynaecology (GYN) was performed while this number for neurosurgery (NSUR) is 610
surgeries. Then, by analysis their data, we defined the percentage of patients belonging to
each specialty that have been admitted on the waiting list. In Table 3, λS

s is percentage of
patients for S ∈ {8, 12, 16}. Next, we followed a step by step procedure to generate the
number of patients belonging to each specialty s (described in below). Using this procedure,
the number of patients in the benchmark varies in the range between 64 to 2358. Finally, 10
instances with different seeds per combination of S, D, and B are generated, in total 1080
instances.

Procedure for generating the number of patients
Step 1: Set S ← 8.
Step 2: Randomly generate 1000 surgery durations per each specialty s using truncated
lognormal distributions described in Table 3, where the upper bound and lower bound are
a = 1 and b = 300 minutes, respectively. Put the generated surgery durations of each
specialty s in a list called Ls .

Step 3: Calculate the average surgery duration for each specialty s as μ̄s :=
∑

p Ls

1000×λs (S)
.

Step 4: Compute weighted average surgery duration of all specialties as μ̄ :=
∑

s λs (S)μ̄s∑
s λs (S)

.

Step 5: The average number of patients that can be assigned to a block of capacity τ would
be P := � τ

μ̄
�.

Step 6: The average number of patients belonging to specialty s that may be treated over the
horizon is calculated as Ps = P × λs(S).
Step 7: The average maximum number of patients belonging to S specialties that can be
admitted to thewaiting list over the horizonofD days, B blocks a day,wouldbe P(S, D, B) =∑

s,d,b P .
Step 8: Set S ← S + 4 and go back to Step 1.
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Fig. 1 The six deterioration rates when prp = 45, MT BTp = 64 and Wp = 4

5.2 Experimental results analysis

To investigate the performance of proposedMIPmodel and heuristic algorithms, we carry out
a thorough computational experiments using the benchmark instances on a virtual machine
equipped with Intel(R) Xeon(R) processors, @2.70GHz CPU, and 176GB RAM under the
Linux operating system. The MIP models were implemented via Gurobi 9.0.1 in Python
3.7 and the heuristics are also implemented in Python 3.7. In initial experimentation, we
identified that after 30min run-time, the gap provided by Gurobi does not improve much.
Hence, the MIP models were run for a maximum of 30min.

In this section, first we discuss the solution quality and effectiveness of the six objective
functions from different perspectives such as reduction in patients waiting times, increasing
ORs utilization, equity and fairness of the schedules, and balancing patients and hospital
administrators expectations, etc. Then, we analyse the computational efficiency of the MIP
models and heuristic algorithms in terms of “optimality gap” and “run-time” across the six
objective functions. At the end, we discuss solving the MSS-SCAP using “rolling horizons
(RH)” approach in order to tackle the dynamic inherent of patients clinical condition and
investigate the advantages/disadvantages of generating longer MSS plans.

5.2.1 Effectiveness of objective functions

We quantify the deterioration of patients clinical condition by introducing six different dete-
rioration rates as a function of their clinical priorities, waiting times, and due dates. Figure1
shows the six deterioration rates for a patient with priority score prp = 45, Wp = 4, and
MT BTp = 64 over a planning horizon of 60 days.

Among the six deterioration rates, objectives OF(4) to and OF(6) have a non-linear
relationshipwith patients surgery day (total waiting times), whichmay result in better approx-
imation of real-world situation, especially considering large instances. In fact, with a larger
planning horizon, linear functions may not be able to provide practically viable solutions.

Several factors can reflect the quality of the resulting solutions such as patients average
waiting times, ORs average utilization, and the number of accepted, transferred, or rejected
patients in each urgency category. Generally, patients desire to wait less and be treated more
quickly. Figure2 shows the averagewaiting times of acceptedpatients and timeblocks average
utilization resulted by the MIP models across the six objective functions. The waiting time
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Fig. 2 Patients average waiting times and time blocks utilization resulted by MIP models

here includes the time that a patient p already spent on the waiting list plus their waiting time
on the planning horizon before their surgery day (i.e. d + Wp). We see that with the OF(1),
accepted patients have minimum average waiting times in that the OF(1) is a linear function
of patients surgery day, priority scores and waiting times.

As patients priorities and waiting times are input parameters, the only variable part in
OF(1) is patients surgery day, i.e d . Therefore, to minimize the whole function, it is better to
perform each surgery as soon as possible which equals to minimizing patients total weighted
completion times. Hence, it can be concluded that OF(1) serves patients more quickly and
does not consider if patients with higher priorities wait longer. If each patient’s surgery
duration is equal to time block capacity, then OF(1) is the best in the sense that the total
completion times of patients isminimized and the number of scheduled patients ismaximized.
However, it provides the least utilization rate on average (Fig. 2).

After OF(1), OF(2) and OF(4) have the lowest patients average waiting times and serves
patientsmore quickly. Furthermore, they have the next least average utilization rates and don’t
utilize the time blocks as good as the other three functions i ∈ {3, 5, 6}. Indeed, from patients
point of view, the objective functions {3, 5, 6} are not satisfactory and they are more attractive
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Fig. 3 Average number of accepted patients

to the hospital administrators. In summary, we can say that if the objective functionminimizes
the patients average waiting times, then it would provide the hospital administrations with
less utilization rates. For example, although OF(6) has the largest average utilization rate
amongst all the six functions, it doesn’t provide patients with least average waiting times.

Figure 3 illustrates the average number of accepted patients for large size instances with
D ∈ {40, 60} and B ∈ {10, 12, 14} across all the objectives. As expected, OF(1) has the
minimum average number of accepted patients. We also compared the number of accepted
patients in each URG to determine which objective function focuses on patients with higher
priorities. The number of accepted patients in URG1 per objective is displayed in Fig. 4. As
shown, OF(1) provides minimum average waiting times for patients in URG1 but accept
minimum number of patients from this urgency category. By contrast, OF(3) with largest
average waiting times takes better care of the most urgent patients and provides better quality
solutions in terms of fairness and equity.

To support above argument, we further investigate the standard deviation of the waiting
times of accepted patients (ST D(i)) per each objective i . Within an urgency category, a larger
ST D(i) implies that the objective function i schedules more patients with dissimilar waiting
times and thereby higher differentiate priorities. Indeed, a lower ST D(i) (close to zero)means
that patients have quite similar waiting times.

Figure 5 illustrates the standard deviation of waiting times for the accepted patients in
URG1 and URG2. As it shown, among all objectives, OF(i) for i ∈ {3, 5, 6} have largest
ST D(i) and thus aremore fair against high priority patients, but OF(1) with smallest ST D for
URG1 and URG2 is more suitable for minimizing patients average waiting times (Fig. 5).
Hence, the objective functions OF(i) for i ∈ {3, 5, 6} aremore attractive to the administrators
and provide more stable schedules in that they generate solutions with less stress of being
close to patients due dates.

Figure 6 shows the trade-off between two criteria including the average utilization of
the blocks and accepted patients total average waiting times (

∑
p∈A

Wp+d
MT BTp

, where A is
the list of accepted patients) across the six objective functions. We see that if the goal is
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Fig. 4 Average number of accepted patients in URG1 and their average waiting times

to minimize patients total waiting times, then OF(1) is the best. The OF(4) provides the
best trade-off between patients and administrators expectations. Moreover, if the goal is
having high utilization rate, then OF(6) is a good option. Figure6 also indicates that the
solutions from OF(2) and OF(3) are not Pareto-optimal for the objectives of maximising
utilization and minimising waiting time being dominated by OF(4) and OF(5), respectively.
However, as will be shown in Sect. 5.2.3, when embedded in a rolling-horizon approach with
a short look-ahead period, these dominated methods actually perform better in the dynamic
environment, perhaps precisely because they do not pack the schedule too tightly in the short
term. In conclusion, selecting between the objective functions depends on how the decision
maker benefits, specifically, between patients or hospital administrators. From managerial
perspective, OF(i) for i ∈ {3, 5, 6} provide more stable schedules but they may result in
more patients waiting times. On the other hand, if they tend to generate schedules with
lower waiting times, the OF(1) is the best. And if a balance between patient or administrator
expectations is sought, OF(4) and OF(6) are more useful, respectively.
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Fig. 5 Standard deviation of accepted patients’ waiting times

Fig. 6 Trade-off between the blocks utilization and patients total waited time
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Fig. 7 The MIP gap and run-time across all six objective functions

5.2.2 Efficiency of proposed methodologies

Tables 4, 5 and 6 show the optimality gap of the MIP model, DPH1, and DPH2 all the six
objective functions inclusive. The columns S, D and B indicate the number of specialties,
number of days, and number of time blocks a day, respectively. The columns MI P(G) show
the optimality gap of the MIP models. The final gap associated with a solve of MIP model
for objective function i is calculated as UB(i)−LB(i)

LB(i)
, where UB(i) and LB(i) are the upper

bound the lower bound for i ∈ O.
The results demonstrate the ability of theMIP models in finding excellent solutions (max-

imum average gap of 4.71% across all instances and objective functions), but requires large
run-times. Additionally, the DPH1(G) and DPH2(G) columns indicate the average gap of
DPH1 and DPH2 to the MIP model’s lower bound, respectively. For objective function i , the

heuristics gap are calculated as
(H∗

(i)−LB(i))

LB(i)
, where H∗

(i) is the heuristic’s best solution. All
the optimality gaps are reported in percentages.

As reported in Tables 4, 5 and 6, for all the six objective functions and across all instances,
theMIPmodels gap increase when the number of time blocks and days increase. It means that
increasing the OT size requires more run-time for the MIP models (see Fig. 7). The reason is
because a larger number of time blocks and days requires the solver to create a large number
of branches to ensure the best assignment of patients to every time block is achieved, thereby
requiring a much larger computational effort and declining in the MIPs performance.
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Fig. 8 The DPH1 gap and run-time

Figure 7 illustrates the trends onMIPs average optimality gap and their run-time in terms of
the OT planning problem scale, i.e. number of days and blocks over the planning horizon. As
it shown,while OF(1) has the smallestMIP average gap, the average gap for OF(6) drastically
increases when the OT size grows. The OF(1) has a linear relationship with patients surgery
day d and thus in 30min, solutions with this objective are found with lower gaps than the
other objective functions, especially OF(6).

From Tables 4, 5 and 6, we can also conclude that the number of specialties does not
have a significant effect on any of the methods in terms of run-time or optimality gap. The
same pattern appears in the run-time and gaps of the DPH1 and DPH2 algorithms for all
the six objective functions. Figure8 highlights a distinct advantage provided by the DPH1
algorithm, which solves all problem instances in less than 60s. However, the DPH2 algorithm
dominates the DPH1 algorithm by providing less than 25% optimality gap for all objective
functions except for OF(6) as seen in Fig. 9.
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Fig. 9 The DPH2 gap and run-times

5.2.3 Rolling horizon approach

We also solve the MSS-SCAP using a rolling horizon approach to see how the schedules
can benefit from a longer MSS plan. In this approach, we solve a number of smaller MIPs
by only considering certain time points within the original MIP. In other words, our time-
dependent MIP model is solved repeatedly by shifting the planning intervals forward in time
until the end of the horizon. Specifically, starting from the first day, the MIP model is solved
for NRH intervals consisting of length L. At the end of each rolling interval, the first R days
scheduling is fixed and new patients arrive. Hence, the subsequent interval has an overlap of
L− R days with the current one. Essentially, the planning horizon of D days is divided into
[D/R] overlapping intervals, each shifted R days forward.
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Fig. 10 The gap of the objective functions to the minimum value

Using the RH approach to solve the MSS-SCAP can be beneficial from two points of
view: (i) although the RH solution is not guaranteed to be optimal, it enables us to compare
the solution quality between a longMSS and repeating a short-length MSS over the planning
horizon; and (ii) the waiting list changes over time and more high priority patients will arrive,
where the RH allows admission of those patients.

Algorithm 4 The RH approach for planning interval of L
Data: Input data
NRH = D

R
σ = {p | p not scheduled}
ϕ∗ = ∅
for i = 1 to NRH do

AC ← FRH (MI P, d,L, σ )
ϕ∗ ← ϕ∗ ⋃

AC
σ = σ − {p /∈ AC}
σ = σ

⋃
P

′
d ← d + R

end

Algorithm 4 outlines the main steps of the RH approach for the objective function OF(i)

with rolling interval L. In this procedure, the FRH (MI P, d,L, σ ) is a function indicating
the list of accepted patients by solving the MIP model for a list of σ patients over a planning
horizon of L days starting from day d . In addition, P

′
is the list of new arrived patients (with

Wp = 0), where P
′
is a function of the available OT capacity for one week.

We solve problem instances with maximum number of specialties and days, S = 16
specialties and D = 60 days with B = 4 blocks a day. The instances are solved for rolling
intervals of L ∈ {10, 15, 20} and in each rolling interval, the MIP is allowed 900s of wall-
clock time. Figure10 shows the average gap of the objective functions, where for objective

function i the gap is calculated as
(OF∗

(i)−minOF∗
(i)

)

minOF∗
(i)

in percentage.We see thatwhenwegenerate

a longer MSS and look further ahead, we generate schedules with lower penalties in terms
of patients total clinical condition deterioration across all the six objective functions. The
increase for a rolling length of 20 with objective function OF(3) is an artefact of the inability
of the solver to get an optimal solution within the time limit.
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6 Conclusion

This paper deals with the synchronizing problem of both tactical and operational planning
in operating theatres, namely MSS-SCAP, and presents six new objective functions. Each
of the six objectives measures the total deterioration in patients clinical condition through
a function (linear or non-linear) of their clinical priorities, waiting times, and due dates.
To allocate blocks of time to surgical specialties, assign each patient a day for surgery,
and minimize the objective functions, a general MIP model and two dynamic programming
based heuristic algorithms are proposed. The MIP models provide a framework to quantify
the solution quality and examine each objective function’s capability in satisfying different
expectations considering all stakeholders. For the first time we propose a novel and well-
designed benchmark with 1080 real-life based instances, inspired by previous studies, which
provide researchers with a ideal platform to carry out their own computational experiments.

We have conducted numerical studies on the benchmark instances, which examine how
the proposed model scales. The main outcome is that a larger number of days and time blocks
in a day will lead to bigger optimality gaps and run-times, while the number of specialties
does not seem to be a factor that has an affect. In addition, the results accurately reflect
different impacts of choosing the objective function on the quality of solutions, capturing
the most important aspects of the OT planning. We also analysed the solutions in terms of
utilization rate across all the six objective functions and realize that the objectives OF(i)

(i ∈ {3, 5, 6}) get the most satisfaction of the available capacity of operating rooms. The
objectives also take care of most urgent patients by accepting as many as them that possible
in a timely fashion. However, OF(1) is outstanding in terms of yielding minimum patients
average waiting times and serves patients faster. Finally, OF(2) and OF(4) are the best if the
goal is to balance hospital productivity and quality of service.

Future work will extend current models by taking the uncertainty of surgical cases into
account. In addition, the proposed RH approach takes just the arrival of elective patients
into account. However, the current patients condition and their priorities changes over the
time and need to be re-assessed. Thereby, another direction can include weekly planning,
where patients clinical priorities are re-assessed in a master problem that is solved over a
rolling horizon of 7-days. Moreover, further research can be conducted to develop other
exact and incomplete solution approaches, for example, employing decomposition meth-
ods such as Dantzig–Wolfe decomposition and/or column generation approaches. Although
the proposed heuristic algorithms provide a feasible solution in less than 60s for the six
objective functions, their corresponding optimality gaps are still large and in some cases can
be improved significantly, especially for OF(6). Therefore, from a methodological point of
view, the proposed heuristic approaches can be further extended to be more sophisticated,
for example, by combining them with mathematical models leading to matheuritics.
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