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Abstract
Although coronavirus disease 2019 (COVID-19) vaccines have been introduced, their alloca-
tion is a challenging problem.We propose a data-driven, spatially-specific vaccine allocation
framework that aims to minimize the number of COVID-19-related deaths or infections. The
framework combines a regional risk-level classification model solved by a self-organizing
map neural network, a spatially-specific disease progression model, and a vaccine alloca-
tion model that considers vaccine production capacity. We use data obtained from Wuhan
and 35 other cities in China from January 26 to February 11, 2020, to avoid the effects of
intervention. Our results suggest that, in region-wise distribution of vaccines, they should
be allocated first to the source region of the outbreak and then to the other regions in order
of decreasing risk whether the outcome measure is the number of deaths or infections. This
spatially-specific vaccine allocation policy significantly outperforms some current allocation
policies.

Keywords Data-driven decision making · COVID-19 · Spatially-specific SEIR model ·
Deep learning · Vaccine allocation

1 Introduction

Coronavirus disease 2019 (COVID-19) is an acute respiratory infectious disease and a grow-
ing public health problem. The severity of COVID-19 varies from asymptomatic infections
to mild upper respiratory tract illnesses, severe interstitial pneumonia with respiratory fail-
ure, and even death (Rothan & Byrareddy, 2020). Safe and effective COVID-19 vaccines
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are considered promising solutions to control the epidemic, although transmission mitiga-
tion strategies such as physical distance have protected countless people from being infected
(Jeyanathan et al., 2020). With the help of vaccines, herd immunity can be achieved when
70–80% of people in the group gain immunity, thereby preventing large-scale outbreaks.
People can then have normal contact and lives. Because of the severity of the COVID-19
outbreak and the scarcity of vaccines, the demand for vaccines tends to outstrip supply,
necessitating optimal allocation to ensure that they can be used most effectively.

Several allocation policies have been proposed. Proposals have been made to prioritize
medical workers, elderly people (age > 65), and those with certain serious medical condi-
tions, as well as to consider differences in ethnicity and socioeconomic status (Subbaraman,
2020). TheWorld Health Organization (WHO) suggests allocating vaccines according to the
population of each country. Although population allocation is in line with the principle of
equality, providing medical materials to severely affected regions according to international
aid practices may be more reasonable (Emanuel et al., 2020). The spread of COVID-19 has
typical characteristics of divergently spreading around the outbreak areas, and the severity of
the epidemic varies in different cities (Huang et al., 2020). It is important to distinguish the
epidemic risk level of each city and allocate vaccines according to the epidemic risk level.
Zhou et al. (2021) defined five epidemic risk levels based on herd immunity rate. We further
propose a regional risk classification model that considers the density of the newly infected
population and the migration scale of the population from the source areas of the epidemic to
each city. The regional risk classification model could identify areas with serious epidemics,
and a vaccine allocation model based on the regional risk classification could control the
epidemic in a targeted manner, reducing resource waste.

Considering the scarcity of vaccines in the context of the COVID-19 outbreak, we must
develop a rigorous decision support system for allocating vaccines by considering the trans-
mission characteristics of COVID-19. However, most of the available literature focuses on
modeling to determine how to allocate vaccine supplies based on age (Sah et al., 2018).
The risk level of each city and spatial optimization of vaccine allocation have not been fully
explored in detail. Previous methods of vaccine allocation are worthy of improvement and
expansion. This study fills such gaps with a data-driven and spatially-specific vaccine allo-
cation method for the current practice. We address the following research questions: (i) How
should the COVID-19 risk level be determined for each city? (ii) How should vaccines be
allocated to each risk-level region?

To answer these questions, we propose a data-driven, spatially-specific vaccine allocation
framework with the overall objective of minimizing infections or deaths. The framework
incorporates a regional risk-level classification model that is established by a self-organizing
map (SOM) neural network (a deep learning algorithm), a spatially-specific disease pro-
gression model that is trained by solving an inverse problem, and a vaccine allocation model
that considers vaccine production capacity. Specifically, we first introduce a clustering algo-
rithm to solve the regional risk-level classification model and partition the set of cities into
regions according to the risk that the epidemic will spread in each city. We then train the
spatially-specific susceptible-exposed-infectious-recovered (SEIR) model to predict deaths
and infections. Finally, we apply a genetic algorithm to solve the vaccine allocation problem
with vaccine capacity constraints. We investigate the vaccine allocation policy for 36 cities
in China using data from January 26 to February 11, 2020. The analysis results show that
if vaccines are distributed by region, the epidemic sources and high-risk regions should be
prioritized for vaccine allocation.

Themain contributions of this study are as follows. (i)Wepropose an integrated framework
for designing an COVID-19 vaccine allocation plan combining a regional risk classification
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model, a disease progression model, and an optimization method. (ii) We develop a hybrid
algorithm to solve these models. (iii)We conduct a simulation case study and find that limited
vaccine doses should be allocated first to the source region of the outbreak and then to other
regions in the order of decreasing risk.We further find that the region-based vaccine allocation
policy is better than the age-based policy.

The remainder of this paper is organized as follows. Section 2 reviews the literature and
highlights this study’s main contributions. In Sect. 3, we propose a framework for allocating
vaccines to minimize the number of deaths or infections. In Sect. 4, we analyze the results
of a simulation case study and verify the framework’s effectiveness. Section 5 concludes the
paper and discusses future research.

2 Literature review

This study is closely related to two research streams—COVID-19 epidemic prediction based
on compartmental models, and the usage of mathematical models to solve the vaccine allo-
cation problem. Thus, we review studies relevant to each stream and highlight the differences
between this study and the existing studies.

2.1 COVID-19 epidemic prediction by compartmental models

Compartmental models have been used to predict the transmission of COVID-19 since the
outbreak of the disease, and they have proven superior to other models, such as the regres-
sion model (Pandey et al., 2020). Compartmental models divide individuals into different
compartments according to their epidemiological states, such as susceptible, infected, and
recovered states, and the shifting relationships between different epidemiological states are
represented by differential equations (Allen, 2017). Kozio et al. (2020) proposed a fractional-
order SIR (susceptible-infected-recovered) epidemic model to predict the number of infected
individuals and estimated the optimal parameters of the fractional-order SIR epidemic model
using theMonteCarlomethod.Okuonghae andOmame (2020) formulated an improved SEIR
model with an asymptomatic infectious class, a symptomatic infectious class, and a detected
infectious class to examine the effects of various non-pharmaceutical interventions (such as
common social distancing, the use of face masks, and case detection) on the dynamic trans-
mission of COVID-19 in Lagos. He et al. (2020) extended the SEIR model by considering
quarantine and treatment and used a particle swarm optimization (PSO) algorithm to esti-
mate the parameters of the model. However, few studies have considered the infectivity of
subclinical and pre-symptomatic patients, as well as a subclinical class that carries the virus
but remains asymptomatic from infection to recovery. These are also important features of
COVID-19.

In addition to extending the SIR model from the perspective of the states of the model,
some scholars also considered the differences in the population by dividing the population
into subgroups according to age or location, and further improved the infectious disease
prediction models. Mwalili et al. (2020) proposed an age-structured SEIR model to show
different epidemic peaks of COVID-19 for various age structures, and examined the influence
of age and social contact structures onmitigation strategies. Aràndiga et al. (2020) formulated
a spatial–temporal suspected asymptomatic infected retired model to analyze the effect of
mobility on the evolution of COVID-19 after an isolation period by modeling the flow of
people between different regions. These improved SEIRmodels consider the structure of age
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or spatial location. We further consider the specificity of the epidemic risk level, which can
accurately reflect the characteristics of epidemic transmission and is worth considering in
the prediction model.

According to the transmission characteristics of COVID-19, the improved SEIR model
proposed in this study considers epidemic risk-level subgroups, examines the transmissibility
of asymptomatic patients, and is trained using real data. Specifically, the model distinguishes
the epidemic situation at each risk level and considers the epidemic situation in each region.
In addition, this model examines not only the transmissibility of infected people, but also the
transmissibility of asymptomatic individualswho are pre-symptomatic and subclinical. In this
study, we improved the prediction accuracy by training a region-specific SEIR model using
real data. The improved SEIR model in this study is conducive to developing better disease
mitigation plans based on the characteristics of COVID-19 and evaluating the effectiveness
of disease intervention strategies.

2.2 Vaccine allocation based onmathematical models

Vaccination is an important strategy for disease intervention. Some studies have focused
on modeling to determine how to allocate vaccine doses based on age, and few studies
have considered vaccine allocation according to region. Mylius et al. (2008) investigated the
effect of estimated infectious contact patterns within and among age groups, and the timing
of vaccination on the effectiveness of vaccine allocation programs for various risk groups.
Medlock and Galvani (2009) set up a compartmental model that included age structure and
vaccination status. They developed a mathematical program to allocate influenza vaccine
based on age to minimize the total number of infections, total number of deaths, years of life
lost, contingent valuation, and total cost. The optimization problem was solved numerically
using a nonlinear simplex method. Ndeffo Mbah et al. (2014) developed an age-specific
compartmental model to consider human demography, four dengue stereotypes, and various
profiles of dengue hemorrhagic fever (DHF) in different countries. They also compared the
effect of an age-targeted policy with that of an infection-history-targeted policy on reducing
the incidence over five years.

Some researchers have examined the problem of vaccine allocation by city (Araz et al.,
2012). However, their geospatial models may not be suitable for targeted vaccine allocation
among a large number of areas, because the specific policies of each city are considered,which
is not feasible, and the calculations are too complicated. Other scholars have partitioned cities
by geographical location and then performed vaccine allocation (Teytelman&Larson, 2013).
This partitioning method is not optimal because it does not consider the city specificity of the
epidemic. In particular, the severity of outbreaks may vary between cities within the same
geographical area while being similar in cities in different areas.

With the development of COVID-19 vaccines, studies on their allocation have emerged.
According to the literature, most COVID-19 vaccine allocation policies are based on age
(Bubar et al., 2021; Matrajt et al., 2020). Foy et al. (2021) investigated the interaction of
COVID-19 vaccine allocation policies in different age groups with non-pharmacological
interventions, namely, social distancing, mandatory mask wearing, and blockade. Spatial
characteristics, which are an important factor in the spread of COVID-19 and should be
considered in vaccine allocation, are rarely considered in the vaccine allocation problem.

This study fills these research gaps by developing a data-driven and region-specific
COVID-19 vaccine-allocation framework. In the first step, the proposed framework parti-
tions cities into several regions according to the spread of the epidemic in each city, which
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could identify the areas with serious epidemics and help control the epidemic in a targeted
manner without wasting resources. In addition, the framework combines a machine learn-
ing technique, spatially-specific SEIR, and an optimization model that complements vaccine
allocation methods, enriches the application of big data in vaccine allocation, and provides
an effective vaccine allocation plan. The proposed vaccine allocation framework can solve
existing problems in the spatial allocation of vaccines.

3 A spatially-specific vaccine allocation framework

In this section, we propose a data-driven, spatially-specific, vaccine allocation framework to
derive spatial allocation policies using a regional risk level classification model, a spatially-
specific disease progression model, and a vaccine allocation model (Fig. 1). In Sect. 3.1, we
propose a regional risk classification model driven by regional epidemic data and migration
data using a self-organizing map (SOM) neural network to solve the model. In Sect. 3.2, we
train a spatially-specificdisease progressionmodel by solving an inverse problem. InSect. 3.3,
we formulate a vaccine allocation model that considers vaccine production capacity, and a
genetic solution algorithm is presented. In Sect. 3.4, we summarize the algorithms used in
this framework.

3.1 Regional risk classificationmodel

A regional risk-level classification model, solved by a clustering method, is used to classify
the risk levels of the cities. Clustering methods can be combined with frontier estimation
techniques to identify objects with similar characteristics (Dai & Kuosmanen, 2014). We
categorize cities into K risk levels. The first risk level (cluster) includes all cities where the
epidemic first appeared. For example, at the start of the sample period for the 36 Chinese
cities, the epidemic was only in Wuhan, so the first cluster only includes Wuhan. Using a
deep learning algorithm, that is, the self-organizing map algorithm, other cities are grouped
into (K-1) clusters, according to the density of their newly infected population (Di ) and the
migration scale of the population from the source areas of the epidemic to each city (PMi ).
These two features reflect the speed of disease progression (Xiang and Wang, 2020) and are
formulated as follows:

Fig. 1 Data-driven spatially-specific vaccine allocation framework

123



Annals of Operations Research

Di � I ′
i (N ) − I ′

i (0)

I ′
i (0)Ai

, and PMi �
N∑

t�0

1000Pi (t)Fi (t).

where I ′
i (0) and I ′

i (N ) denote the total number of historical infections in city i at the initial
and final moments, respectively, covered by the available data.Ai is the population size of
city i, Pi (t) is the migration index, and Fi (t) denotes the proportion of the population that
migrated from the source cities of the epidemic to city i to the total migrant population from
the outbreak cities.

The self-organizing map (SOM) neural network is essentially a neural network with only
an input layer and a hidden layer; the latter is used to cluster data. A node in the hidden layer
represents a class that must be clustered. The method of “competitive learning” is adopted
during training, and each input example finds a node that best matches it in the hidden
layer; that node is called the winning neuron. Then, the stochastic gradient descent method
is used to update the parameters of the winning neuron. Meanwhile, the points close to the
winning neuron also update their parameters appropriately, according to their distance from
the winning neuron (Vesanto et al., 2000). Clustering using a self-organizing map neural
network has advantageous features. First, the SOM is an unsupervised network that does
not distinguish between training and test sets. Then, the function of “near excitation and
far inhibition” in the nervous system of the brain is realized through competition between
neurons, and it has the ability to map high-dimensional input to low-dimensional output.
Comparedwith clusteringmethods, such as k-means, the SOMneural network is less affected
by the initial value, can achieve more stable clustering results, and is less susceptible to noise.

3.2 Spatially-specific COVID-19 SEIRmodels

3.2.1 COVID-19 SEIR model

Weuse a disease progressionmodel, together with the transmission probability and death rate
prediction model, to estimate the fraction of people in different health stages in each city.
The transmission probabilities of symptomatic patients (βE ), asymptomatic patients (βI ),
and death rate (v) are used to reflect the contagiousness of the disease (Hou et al., 2020; Yang
et al., 2020). An inverse problem is appropriate for predicting these parameters (Libotte et al.,
2020).

Considering the unique characteristics of COVID-19, such as the long incubation period,
presence of subclinical patients, and infectiousness in asymptomatic patients, we establish
a SEIR model using a system of differential equations that contains five epidemiological
states: susceptible, asymptomatic (subdivided into subclinical and pre-symptomatic), symp-
tomatic, recovered, and dead states. Figure 2 illustrates the shifting relationships between the
different epidemiological states. Let S[t], E1[t], E2[t], I [t], R[t], and D[t] be the numbers
of susceptible, subclinical, pre-symptomatic, symptomatic, recovered, and dead individuals,
respectively. The force of infection (λ) is given by the contact rate (ϕ), transmission proba-
bility given contact by an asymptomatic patient (βE ), transmission probability given contact
with a symptomatic patient (βI ), and the total number of people in each state. The progress
rate from the pre-symptomatic state to the symptomatic state is τ , whereas that from the
subclinical state to recovery is ς , the recovery rate is γ , and the COVID-19-induced death
rate is ν. Our COVID-19 SEIR model is given by:

dS

dt
� −λS, (1)

123



Annals of Operations Research

Fig. 2 Model diagram (solid lines indicate individual transitions to different states, and dashed lines represent
the transmission routes)

dE

dt
� λS − τ E2 − ςE1, (2)

d I

dt
� τ E2 − v I − γ I , (3)

dR

dt
� γ I + ςE1, (4)

dD

dt
� v I , (5)

whereλ � ϕβE E+ϕβI I
S+E+I+R .

In the above, Eqs. (1)–(5) represent the changes in the number of susceptible people, latent
people, infected people, recovered people, and dead people per unit of time, respectively.
Specifically, Eq. (2) indicates that the change in the latent population per time unit is the
number of susceptible people converting to a latent population minus the number of latent
people converting to recovered or infected people. Equation (3) shows that the change in the
infected population per time unit is the number of latent people converted to the infected
population minus the number of infected people converted to recovered or dead people.

Subsequently, model parameters describing the characteristics of a particular infectious
disease must be determined. Key parameters such as ϕβE , ϕβI , and v are obtained by solving
the inverse problem formulated inEq. (6),which is similar to the equation proposed byLibotte
et al. (2020). The inverse problem arises from the requirement to determine the parameters of
a theoretical model such that it can be employed to simulate the behavior of the system under
different operating conditions (Libotte et al., 2020). The probability of transmission given
contact by a symptomatic patient may be higher than that of an asymptomatic patient (Hou
et al., 2020) (constraint 7). The actual numbers of infections and deaths are I a(t) and Da(t),
while I e(t) and De(t) denote the estimated numbers of infections and deaths, respectively.
Parameter N is the total number of periods (e.g., days in our numerical example) in the
dataset.

min
ϕβE ,ϕβI ,ν

∑N
t�0

[
I a(t) − I e(t)

]2
∑N

t�0
[I a(t)]2

N

+

∑N
t�0

[
Da(t) − De(t)

]2
∑N

t�0
[Da(t)]2

N

(6)

Subject to βE < βI (7)

We use the linear approximation (COBYLA) algorithm to solve the problem above and
used R-squared to test the fitting effect under the optimal parameters (Ogut & Bishop, 2010).
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3.2.2 Spatially-specific SEIR model

We develop a spatially-specific SEIR model by extending the basic model. For notational
convenience, we use subscript k to refer to a region, k � 1, 2, …, K . The mortality rate (vk)
and force of infection (λk) are key parameters for vaccine allocation decisions. The force of
infection (λk) is given by the contact rate per person in region k with individuals in region
κ (ϕkκ ), contact rate per person in region κ with individuals in region k (ϕκk), transmission
probability given contact by an asymptomatic patient (βE ), transmission probability given
contact by a symptomatic patient (βI ), and total number of people in each region at various
stages (Medlock&Galvani, 2009). Parameters such as vk , βE , and βI are obtained by solving
an inverse problem. The spatially-specific SEIR model is given by:

dSk
dt

� −λk Sk,

dEk

dt
� λk Sk − τ E2k − ςE1k,

d Ik
dt

� τ E2k − vk Ik − γ Ik,

dRk

dt
� γ Ik + ςE1k,

dDk

dt
� vk Ik,

λk �
K∑

κ�1

βI Iκ + βE Eκ

2

(
ϕkκ

Sκ + Eκ + Iκ + Rκ

+
ϕκk

Sk + Ek + Ik + Rk

)
,

S(t) �
K∑

k�1

Sk(t),

E(t) �
K∑

k�1

E2k(t) +
K∑

k�1

E1k(t),

I (t) �
K∑

k�1

Ik(t), and

R(t) �
K∑

k�1

Rk(t).

3.3 Vaccine allocationmodel

The vaccine intervention begins at t � 0. Vaccines can directly reduce the force of infection
or indirectly affect it by reducing the number of infected individuals. The force of infection
of unvaccinated people is λ′

k , and the force of infection of vaccinated people decreases to
λ′
k(1 − ε) in region k, considering the effectiveness of the vaccine against infection (ε). As

the vaccination dose is the bottleneck of the mass vaccination policy because of the limited
vaccine production capacity, the vaccine allocation part of our technique is only subject to
the constraint of the vaccine amount (Medlock & Galvani, 2009; Ndeffo Mbah et al., 2014).
A spatially specific ring, pk , denotes the proportion of people in each vaccinated cluster. The

number of people vaccinated must meet the vaccine dose constraints,
(∑K

k�1 pk Sk(0) ≤ W
)
.
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In addition, after an outbreak of the disease, people may self-isolate; therefore, we suppose
that the vaccine may work immediately with full effectiveness. The postponement of vaccine
effectiveness affects the people in each city equally; therefore, the vaccine allocation decision
will not change. With the objective minb ∗ (Sall(0) − Sall(T )) + Sall(0) + Eall(0) + Iall(0) +
Rall(0) − Sall(T ) − Eall(T ) − Iall(T ) − Rall(T ), we minimized the number of infected
individuals or deaths (Medlock & Galvani, 2009). The spatially-specific COVID-19 vaccine
allocation model is as follows:

min
pk

b ∗ [Sall(0) − Sall(T )] + Sall(0) + Eall(0) + Iall(0)

+Rall(0) − Sall(T ) − Eall(T ) − Iall(T ) − Rall(T ),

subject to 0 ≤ pk ≤ 1,

K∑

k�1

pk Sk(0) ≤ W ,

Sall(t) �
K∑

k�1

SUk (t) +
K∑

k�1

SVk (t),

Eall(t) �
K∑

k�1

EU
k (t) +

K∑

k�1

EV
k (t),

Iall(t) �
K∑

k�1

IUk (t) +
K∑

k�1

I Vk (t),

Rall(t) �
K∑

k�1

RU
k (t) +

K∑

k�1

RV
k (t),

dSUk
dt

� −λ′
k S

U
k ,

dEU
k

dt
� λ′

k S
U
k − τ EU

2k − ςEU
1k,

d IUk
dt

� τ EU
2k − vk I

U
k − γ IUk ,

dRU
k

dt
� γ IUk + ςEU

1k,

dDU
k

dt
� vk I

U
k

dSVk
dt

� −λ′
k(1 − ε)SVk ,

dEV
k

dt
� λ′

k(1 − ε)SVk − τ EV
2k − ςEV

1k,

d I Vk
dt

� τ EV
2k − vk I

V
k − γ I Vk ,

dRV
k

dt
� γ I Vk + ςEV

1k,

dDV
k

dt
� vk I

V
k ,
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λ′
k �

K∑

κ�1

βI I Vκ + βI IUκ + βE EU
κ + βE EV

κ

2

(
ϕkκ

Sκ + Eκ + Iκ + Rκ

+
ϕκk

Sk + Ek + Ik + Rk

)
.

where SUk (t), EU
k (t), IUk (t), RU

k (t), and DU
k (t) are the numbers of unvaccinated susceptible,

asymptomatic, symptomatic, recovered, and dead individuals, respectively, whereas SVk (t),
EV
k (t), I Vk (t), RV

k (t), and DV
k (t) are defined similarly but for vaccinated people. The param-

eters Sall(t), Eall(t), Iall(t), and Rall(t) are the total number of people in these states. The
number of available vaccine doses for allocation isW . When b � 0, the outcome measure is
the total number of deaths after T ; when b � 1, the outcome measure is the total number of
infections after time T . The spatially-specific COVID-19 vaccine allocation model (combin-
ing the spatially-specific SEIR and optimizationmodels) distinguishes the epidemic situation
of each risk level by fully considering the epidemic situation in each region and predicts the
minimum number of deaths or infections to determine an effective vaccine allocation.

A complex prediction model is embedded in this allocation model with k decision vari-
ables, which makes it difficult to solve. Therefore, we use a genetic algorithm to obtain the
value of the spatially-specific ring in each zone, which is verified to be efficient in solving
vaccine distribution problems (Patel et al., 2005). Let p1, p2, …, pk−1, and pk be genes that
together form a chromosome. After the emergence of the initial population, a better approxi-
mate solution can be produced according to the principle of the survival of the fittest. In each
generation, chromosomes are selected according to their fitness, and combined crossover and
mutation are performed with the help of natural genetic operators to generate a population
representing a new solution set. The optimal chromosome in the last generation population
can be used as an approximately optimal solution to the problem after decoding (Min et al.,
2006). The computational results show that the algorithm converges efficiently and effec-
tively to the best solutions because the number of decision variables is normally not too
large.

3.4 Summary of the algorithms for our framework

In this framework, the regional risk classification problem is solved by SOM, the training
required in the spatially-specific diseasemodel is tackled by a linear approximation algorithm,
and the vaccine allocation problem combined with our spatially-specific disease model is
solved byour genetic algorithm.We summarize the hybrid algorithmandpresent its procedure
as follows.
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4 Case study

In this section, we explore the use of the proposed framework to allocate a limited number
of vaccine doses to different regions at the beginning of an outbreak to minimize the total
number of deaths and infections. We also compare our results with those obtained using
an age-specific vaccine allocation method to determine the effectiveness of the proposed
framework.

4.1 Data sources

In December 2019, an outbreak of COVID-19 was reported in Wuhan, and the epidemic
spread fromWuhan to neighboring cities inChina.We selected 35 citieswith a large number of
migrants fromWuhan.We collected data on deaths, infections, rehabilitation, and populations
of these 36 cities, aswell as themigration index ofWuhan and the proportion of the population
moving out of Wuhan to the other 35 cities, from January 26 to February 11, 2020. We took
the numbers of infected, recovered, dead, and latent people in 36 cities on January 26 as the
initial values. We limited our data extraction to the period from January 26 to February 11,
2020, as this was a period of disease progression without intervention. The number of latent
individuals was the total number of new infections over the next five days. The epidemic and
migration data were obtained from the websites of the National Health Commission of the
People’s Republic of China and the Health Commission of the related provinces of China,
and population data were obtained from the China National Bureau of Statistics in 2020.

4.2 Results of spatially-specific vaccine allocation

4.2.1 Classification of cities according to epidemic risk levels

In the simulation, Wuhan was the epicenter of an epidemic outbreak in China. Considering
that disease progression in Wuhan may be much faster than in other cities, Wuhan is placed
in a separate category. For the other 35 cities, population density of newly infected people
and scale of population migration to each city are calculated in a standardized way. As shown
in Fig. 3, 35 cities are divided into four clusters using the SOM algorithm. This classification
result is consistent with the result obtained by the k-means algorithm given in Appendix 3.
Therefore, we classify 36 cities into five risk levels, with risk increasing from level 1 to 5.
We classify Wuhan as the only city at risk level 5 (Fig. 4). Based on Fig. 4, we find that
the risk level is spatially dependent; being closer to the epicenter of the epidemic outbreak
corresponds to a higher risk level. This finding is consistent with the circular diffusion trend
reported for COVID-19 (Huang et al., 2020).

4.2.2 Spatially-specific SEIR training

We predict the number of infected persons and deaths in each city based on the parameter
values listed in Table 1. In the simulation, we cannot obtain the value of the force of infection
(λ′

k) because data related to the contact rates are lacking. Therefore, we used the ratio of
infections in a region to the total infections in all regions per day (μk), which includes
population contact information, to replace the force of infection (λ′

k) as a characteristic that
distinguishes each region. This replacement is reasonable and does not affect the insights
and conclusions of our model if time T is relatively short. The value of μk also remains the
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Fig. 3 Clustering for the 35 cities, excluding Wuhan

Fig. 4 Regional clustering labels for the risk levels of all 36 cities
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same when T is small. To simplify the model, we do not consider this indirect effect. The
spatially-specific COVID-19 vaccine allocation model for the data is provided in Appendix
1.

The coefficient of determination (R2) was used to test the fitting effect of the predicted
and true values (Ogut & Bishop, 2010; Teles, 2020; Ivanov & Leonenko, 2018). As shown in
Fig. 5, only the coefficient of determination of v4 was less than 0.9 (R2 � 0.67). The intuition
behind this is that there is only one city (i.e., Ezhou) in the 4th-level risk area and the number
of deaths is small; thus, the result is easily affected by the noise of the data. The average

(b)Risk-level-1 region

(c) Risk-level-2 region

R
2
=0.81

R
2
=0.87

(a) Total for 36 cities

R
2
=0.91

R
2
=0.96

(e) Risk-level-4 region

R
2
=0.98

R
2
=0.67

(d) Risk-level-3 region

R
2
=0.79

R
2
=0.93

(f) Risk-level-5 region

R
2
=0.93

R
2
=0.97

R
2
=0.71

R
2
=0.90

Fig. 5 Coefficient of determination (R2) in estimating the transmission probability and death rate
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coefficient of determination of the five clusters between the predicted and real infections was
above 0.85, which implies that it is appropriate and effective to replace λ′

k with μk in the
model.

4.2.3 Spatially-specific vaccine allocation

The vaccine allocation results are given in Fig. 6, which shows that the vaccines should be
allocated first to the source region of the epidemic and then to the others in order of decreasing
risk when the vaccine doses are limited. Our results can also help decision-makers determine
the optimal quantity of vaccines to be used in each region. For example, with 40 million
vaccine doses available, decisionmakersmay first allocate p1, p2, and p3 at 100% coverage
and then p4 at 50% coverage. Figure 7 shows the specific quantity of vaccines allocated to
each region when the available vaccine doses are 20 million, 40 million, 60 million, and 80
million. We find that the allocation plans with the targets of death and infection minimization
are the same.

Fig. 6 Proportion of each age
group vaccinated to minimize the
number of deaths or infections
(The results are the same whether
the objective is minimizing
deaths or infections)

Fig. 7 Number of vaccine doses optimally allocated to each region to minimize the number of deaths or
infections

123



Annals of Operations Research

4.3 Results of age-specific vaccine allocation

In this section, we further analyze an age-dependent model by substituting different age
groups for the risk zones considered in our model. We divide the individuals into six age
groups: 0–29, 30–39, 40–49, 50–59, 60–69, and 70+ years (Epidemiology Working Group
for NCIP epidemic response, 2020). We use μa (the ratio of infections in each age group to
the total infections per day) and da (the ratio of deaths in each age group to the total deaths
per day) to calculate the number of infections and deaths per day. Appendix 2 presents the
age-specific COVID-19 vaccine allocation model. The values of the parameters are obtained
according to the computation results and references, which are presented in Table 2.

We allocate the vaccines first to those in the 60–69 age group, followed by those in the
70+, 50–59, 40–49, 30–39, and 0–29 age groups, with the objective of minimizing the total
number of infections (Fig. 8). The elderly should receive the vaccination first, followed by the
60–69, 50–59, 40–49, 30–39, and 0–29 age groups. This is an intuitive way to minimize the
total number of deaths because elderly people have weaker immune systems and die faster
without vaccine intervention than other groups.

When the number of available vaccine doses are 20 million, 40 million, 60 million, and
80 million, we can obtain specific allocation policies for each age group (Fig. 9). When there
are 20 million available vaccine doses, the government could use different allocation plans
for two outcome measures. In contrast, when the vaccine doses are 40, 60, and 80 million,
the allocation plans for the two results are the same.

Table 2 Epidemiological parameter values and computation results in age-specific SEIR model

Parameter Value Sources

Progress rate from subclinical state to recovery ς 0.25 Hu et al. (2020)

Progress rate from pre-symptomatic state to symptomatic state τ 0.196 Lauer et al.
(2020)

Recovery rate γ 0.1 Roda et al.
(2020)

Effectiveness of the vaccine against infection ε 0.9 Callaway (2020)

ϕβE 0.21 R2 � 0.91

ϕβI 0.23 R2 � 0.91

Ratio of subclinical patients to pre-symptomatic patients E1
E2

0.41 Hu et al. (2020)

Ratio of the number of infections in each age group to the total number of
infections per day μa , a � 1, 2, 3, 4, 5, 6

0.102,
0.170,
0.192,
0.224,
0.192,
0.120

–

Ratio of number of deaths in each age group to total number of infections
per day da , a � 1, 2, 3, 4, 5, 6

0.0078
0.0176
0.0371
0.1271
0.3021
0.5083

–
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Fig. 8 Proportion of each age group vaccinated for minimization of the number of deaths or infections

Fig. 9 Number of vaccines allocated to each age group to minimize the number of deaths or infections

4.4 Comparison and analysis

In this section, the proposed framework’s results are compared with those of an age-specific
vaccine allocation model. Furthermore, the effects of both types of allocation policies (age-
based and region-based) are analyzed over time, under different vaccine dose assumptions.

Figure 10 shows how both vaccine allocation policies reduce deaths and infections, com-
paring with the situation without intervention. If T is relatively short, the reduction of deaths
is always more than the reduction of infections under these two policies (see Fig. 10). We
also analyze the reduction in the number of deaths or infections for various levels of vaccine
doses. We find that reduction in infections under the region-based policy for 20, 40, and 60
million vaccine doses increases evenly (see Fig. 11).
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Fig. 10 Reduction in the numbers of deaths and infections over time compared with no vaccination

(a) Death (b) Infection

Fig. 11 Reduction in the numbers of deaths and infections under different vaccine doses compared with no
vaccinations

Based on Figs. 10 and 11, a region-based policy reduces deaths and infections compared
to age-based vaccine allocation. Specifically, when there are 20 million doses, our regional-
priority allocation policy reduces the number of deaths and infections by more than 30 and
40%, respectively, compared to the age-priority policy. The former policy can prevent the
spread of disease in low-risk cities and control the spread of disease in high-risk cities.
Therefore, regional-priority vaccine allocation may be more appropriate when the objective
is to minimize the number of deaths or infections.

123



Annals of Operations Research

5 Discussion and conclusion

Selecting vaccine allocation policies for infectious diseases is a critical administrative issue.
Vaccine allocation policies influence the severity of the subsequent epidemic development,
especially for malignant, infectious diseases such as COVID-19, with high infectivity, long
incubation period, rapid spread, and a wide range of susceptible populations. We propose
a data-driven and spatially-specific vaccine allocation framework that can allocate COVID-
19 vaccine supplies to minimize the total number of infections or deaths. In particular, we
provide a data-driven method for COVID-19 vaccine allocation by combining a regional
risk classification model, spatially-specific disease progress model, and vaccine allocation
model. Clustering cities based on a self-organizing map (SOM) neural network minimizes
the computational burden of the allocation process and improves the efficiency of vaccine
allocation. Training the SEIR model with real data improves the accuracy of the vaccine
allocation policies.

We verified the applicability and effectiveness of the framework by simulating the vaccine
allocation during the COVID-19 pandemic in China. The results show that vaccines should
be allocated first to the source region of the outbreak and then to the other regions, in the
order of decreasing risk. This method of priority allocation yields the best performance in
limiting epidemic transmission and controlling the epidemic. In addition, our framework
significantly outperforms the age-based vaccine allocation framework currently in use for
COVID-19 vaccine allocation, and has been widely discussed in the literature. We developed
region-specific allocation policies based on the spatial transmission trend of COVID-19
to minimize the ineffective use of vaccines. These findings support vaccine allocation for
COVID-19 and other epidemics, and contribute to research on policies for spatial vaccine
allocation.

It will be interesting to consider related topics in the future. First, the single-level hetero-
geneity model in the proposed framework could be extended to a multilevel heterogeneity
model. For instance, a two-level heterogeneity model of age and regional grouping could
be integrated into our data-driven vaccine allocation framework. Second, infectious diseases
usually last for a long time and vaccines may be distributed in multiple phases. In this case,
the optimal allocation policies for each region in each period must be studied to minimize
long-term social losses. Third, the proposed vaccine allocation framework can be used to
study other epidemics.
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Appendix 1: The spatially-specific COVID-19 vaccine allocationmodel
of data

The spatially-specific COVID-19 vaccine allocation model used currently in practice is
slightly different from the spatially-specific COVID-19 vaccine allocation model specified in
our framework owing to the transformation of a feature. Specifically, the ratio of infections
in a region to the total infections in all regions per day (μk), which includes the population
contact information, replaces the force of infection (λ

′
k) as a characteristic that distinguishes

each region. The spatially-specific COVID-19 vaccine allocation model of data is shown
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below.

min
pk

b ∗ [Sall(0) − Sall(T )] + Sall(0) + Eall(0) + Iall(0)

+Rall(0) − Sall(T ) − Eall(T ) − Iall(T ) − Rall(T ),
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5∑

k�1

pk Sk(0) ≤ W ,

Sall(t) �
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Appendix 2: The age-specific COVID-19 vaccine allocationmodel

Our age-specific COVID-19 vaccine allocation model resembles our spatially-specific
COVID-19 vaccine allocation model. The ratio of infections in each age group to the total
infections per dayμa and the ratio of deaths in each age group to the total deaths per day da are
used to calculate the numbers of infections and deaths per day, respectively. The age-specific
COVID-19 vaccine allocation model is shown below.

min
pa

b ∗ [
S′
all(0) − S′

all(T )
]
+ S′

all(0) + E ′
all(0) + I ′

all(0)

+R′
all(0) − S′

all(T ) − E ′
all(T ) − I ′

all(T ) − R′
all(T ),

subject to 0 ≤ pa ≤ 1,

6∑

a�1

pa Sa(0) ≤ W ,
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all(t) �
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a�1

SUa (t) +
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SVa (t),

E ′
all(t) �

6∑

a�1
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a (t) +

6∑
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I ′
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a�1

IUa (t) +
6∑

a�1
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a�1

RU
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a�1
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a (t),

dSUa
dt
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Sa
SUa ,

dEU
a

dt
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Sa
SUa − τ EU

2a − ςEU
1a,

d IUa
dt
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IUa − γ IUa ,
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a
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a

dt
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Appendix 3: The classification results obtained by the k-means
algorithm

The number of clusters is the key parameter of the k-means algorithm, and the sum of
squared errors (SSE) and silhouette coefficient techniques are used to determine it. The
optimal number of clusters obtained by two methods is the same in the case study, which is
4. So 35 cities (the sample excluding Wuhan) should be divided into four clusters (Fig. 12).
Next, we can get the optimal clustering results (Fig. 13) byminimizing the sum of the squared
error densities of the four clusters.

Fig. 12 K-1 with respect to SSE (the value of K-1 corresponding to the elbow is appropriate) and silhouette
coefficient (the value of K-1 corresponding to a larger coefficient is appropriate)

Fig. 13 Four clusters for 35 cities of the sample (excluding Wuhan)
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