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Abstract
An important component of multi-criteria decision analysis (MCDA) in the public sector is
the elicitation and aggregation of preference data collected via surveys into the relative impor-
tance of the criteria for the decision at hand. These aggregated preference data, usually in the
form of mean weights on the criteria, are intended to represent the preferences of the relevant
population overall. However, random sampling is often not feasible for public-sector MCDA
for logistical reasons, including the expense involved in identifying and recruiting partici-
pants. Instead, non-random sampling methods such as convenience, purposive or snowball
sampling arewidely used.Nonetheless, provided the preference data collected are sufficiently
‘cohesive’ in terms of the extent to which the weights of the individuals belonging to the
various exogenously defined groups in the sample are similar, non-random sampling can
still produce externally valid aggregate preference data. We explain a method for measuring
cohesiveness using the Kemeny and Hellinger distance measures, which involve measuring
the ‘distance’ of participants’ weights (and the corresponding rankings of the criteria) from
each other, within and between the groups respectively. As an illustration, these distance
measures are applied to data from a MCDA to rank non-communicable diseases according
to their overall burden to society. We conclude that the method is useful for evaluating the
external validity of preference data obtained from non-random sampling.
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1 Introduction

Multi-criteria decision analysis (MCDA) is increasingly used to support decision-making in
the public sector, including in publicly-funded health systems (the focus of the illustrative
application later in the article). For reviews of MCDA in the health sector, see Thokala et al.
(2016), Marsh et al. (2017), Baltussen et al. (2019) and Hansen and Devlin (2019). An impor-
tant component of public-sector MCDA is the elicitation and aggregation of preference data
concerning the relative importance of the criteria for the decision at hand. These aggregated
preference data, usually in the form of mean weights on the criteria, are intended to represent
the preferences of the relevant population overall and are often elicited using surveys.

When recruiting survey participants, random sampling (where each individual in the pop-
ulation of interest has an equal chance of being selected) is generally considered to be the
gold standard of sampling methods because of its unbiasedness and the external validity of
its results (where, to be clear, by “external validity” we mean, as is conventional, that the
preferences data for the sample are representative of, and hence generalizable for, the relevant
population overall). However, random sampling is often not feasible for public-sectorMCDA
for logistical reasons, including the expense involved in identifying and recruiting partici-
pants. Instead, non-random sampling methods such as convenience, purposive or snowball
sampling are widely used (Etikan et al., 2016; Goodman, 1961).

Nonetheless, provided the preference data collected are sufficiently ‘cohesive’ in terms
of the extent to which the weights of the individuals belonging to the various exogenously
defined groups in the sample are similar, non-random sampling can still produce externally
valid aggregate preference data. Such exogenously defined groups could be distinguished
in terms of individuals’ observable socio-demographic characteristics or, depending on the
application, their stakeholder type–e.g. in the context of the health sector, patients versus
healthcare providers, researchers or policy-makers, etc.

With the objective of evaluating whether preference data obtained from non-random sam-
pling is likely to be externally valid (or the opposite), this article addresses the following
methodological question. When non-randomly sampled participants differ with respect to
their membership of exogenously defined groups, how do we ex-post evaluate the cohesive-
ness of their elicited weights?

The fundamental concepts for thinking about this question are illustrated in Fig. 1 via two
simple cases corresponding to the left and right plots. Each plot (case) represents the weights
on three criteria for 75 individuals who each belong to one of three groups of 25, represented
by the blue circles, red triangles and green squares.

In the left case, the within-group variation is similar across the three groups, but the groups
themselves are clearly different. In contrast, in the right case, the within-group variation for
each group is larger than in the left case, but the three groups are not obviously different.
Thus, the weights of the three groups are more cohesive in the right case than in the left case.
If a sample was being drawn from each population, the sampling method – random versus
non-random – would be less of an issue for the right than for the left case: non-random
sampling would be more likely to produce externally valid preference data for the right than
for the left case.

In this article,we explain and illustrate amethod for ex-post evaluating the external validity
of preference data (in the form of weights and the corresponding rankings of the criteria)
obtained from non-random sampling based on measuring the cohesiveness of the data from
the various exogenously defined groups in the sample. As alluded to in the illustration above,
fundamental to measuring the cohesiveness of participants’ weights (or rankings) is their
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Fig. 1 Graphical illustration of two cases of weights (non-normalized) on three criteria (axes) for 25 people
from three stakeholder groups

‘distance’ from each other, within and between the groups respectively. In the next section,
we develop specific distance measures and suggest a bootstrapping method that allows for
proper statistical testing.

In Sect. 3, as an illustration, we apply the developed techniques to existing preference
data from a MCDA to rank non-communicable diseases according to their overall burden to
society (Babashahi et al., 2021). The 476 participants were sampled in a non-randommanner.
Yet, there are three clearly distinct types of participants: patients and general public (group
P), researchers and policy-makers (group R), and healthcare service providers (group S). In
brief, our results may be summarized here as follows.

Although the three groups ranked the underlying criteria identically, using our method
we can conclude that based on the weights, differences in preferences between members
of group P and members of group S are not significantly different to the differences in
preferences among members in group S. For all other pairs of groups, we find significant
differences. Given that effect sizes are modest, we conclude that non-random sampling may
not have undermined external validity. If we had had statistically significant differences and
substantial effect sizes, we would have concluded the opposite regarding external validity
and have recommended the weights be re-estimated used a randomly drawn sample.

The article closes with our short discussion and conclusion. We provide substantive argu-
ments for some of the choices underpinning the measures that we develop in Sect. 2 and
offer possible (theoretically founded) tweaks to them. We also acknowledge that we are not
the first to research external validity issues caused by non-random sampling and compare
our method with the rich literature of other methods available (including cluster analysis).
Overall, we believe our method is complementary to those methods.

2 Methods

The method for quantifying the cohesiveness of participants’ preference data within and
between groups respectively is based on the Kemeny (1959) and Hellinger (1909) distance
measures, which are explained below after some basic notation is introduced.

Let there be sets of individuals N = {1, . . . , n} and criteria M = {1, . . . ,m}, with each
individual having preferences over the criteria. The preferences of each individual i are
represented ordinally by a ranking vector r i = (

r ik
)
k∈M , with r ik ∈ M and lower numbers
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indicating more preferred criteria, and cardinally by a weight vector wi = (
wi
k

)
k∈M , with

wi
k ≥ 0,

∑
k∈Mwi

k = 1 and higher weights indicating more preferred criteria.
For each pair of individuals, i and j , we can use both their rankings andweights to quantify

the extent of the dissimilarity (or, conversely, similarity) of the individuals’ preferences. One
metric based on rankings is the normalized Kemeny distance (Kemeny, 1959), defined as:

dr (i, j) = 1

2(m − 1)m

∑

k∈M

∑

l∈M

∣
∣
∣sign

(
r ik − r il

)
− sign

(
r j
k − r j

l

)∣
∣
∣

This normalized Kemeny distance is increasing in the minimum number of interchanges
of two adjacent elements (ranks) required to transform one person’s ranking into the other
person’s ranking (i.e. increase their similarity), and has aminimumof 0 if the two rankings are
identical (perfectly similar) and a maximum of 1 if they are opposite (perfectly dissimilar).
Onemetric based on weights, and that we will also use in this article, is the Hellinger distance
(Hellinger, 1909), defined as:

dw(i, j) =
√√
√
√1

2

∑

k∈M

(√
wi
k −

√
w

j
k

)2

The Hellinger distance has been developed to quantify the dissimilarity between two
probability distributions (in our context, two weight vectors) and has a minimum of 0 if the
two distributions are identical, and a maximum of 1 if the supports of the two probability
distributions are disjoint.

Let now the individuals in N be (exogenously) partitioned in different groups. For a given
group G, we define the within-group dissimilarity as the mean distance between all possible
pairs in this group:

dz(G) = 1

(|G| − 1)|G|
∑

i∈G

∑

j∈G\{i}
dz(i, j)

where z ∈ {r , w}, depending on whether the dissimilarity is based on rankings or weights.1

Further, for a pair of groups, G and H , we define the between-group dissimilarity as the
mean distance between all possible pairs of members from both groups:

dz(G, H) = 1

|G||H |
∑

i∈G

∑

j∈H
dz(i, j)

where again z refers either to rankings or weights. The within-group dissimilarity represents
the coherence of the preferences of the individuals within the group, whereas the between-
group dissimilarity represents the coherence of the individuals’ preferences between the two
groups.

For similar reasons as underly the infinite monkey theorem, the probability that any pair
of individuals within a group has an identical ranking over criteria is increasing in the size
of the group. As a result, both dissimilarity metrics are sensitive to group size – which, in
particular, affects metrics for rankings, and the extent to which it affects metrics for weights
depends on the resolution at which the weights can be specified. One way to correct for such

1 Though there is no gold standard, smaller values – indicating smaller distances between individuals’ pref-
erence data – indicate more cohesiveness. The within- and between-group cohesiveness reflects the extent of
agreement between participants: a higher level of agreement corresponds to more similar preferences.
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potential biases – and the route we take because it also opens the road to statistical testing –
is to use bootstrapping methods.

For bootstrapping purposes, we fix a sample size s conveniently below the minimum size
of all the groups: s < minG |G|. By frequent (t times) sampling s individuals from the
respective groups, we create distributions of our within- and between-group dissimilarities:
f r (G), f w(G), f r (G, H) and f w(G, H). We can use these distributions in three ways:
(1) to perform (in a fair manner) statistical inferences regarding differences in within-group
dissimilarities across groups, (2) to compare between-groupdifferences betweenpairs of pairs
of groups, and (3) to comparewithin- andbetween-groupdissimilarities (e.g. thewithin-group
dissimilarity of group G and the between-group dissimilarity of groups G and H ).

If within-group dissimilarities are not statistically significantly different from the between-
group dissimilarities (like the right plot in Fig. 1), we may conclude that the weights of the
groups are cohesive, and so preference data obtained from non-random sampling is likely to
be externally valid; in other words, any bias due to non-representative sampling is likely to
be modest. If, instead, between-group dissimilarities are statistically significantly larger than
within-group distances (like the left plot in Fig. 1), the sampling method used is an issue and
preference data obtained from non-random sampling may not be externally valid.

3 Application to aMCDA for ranking non-communicable diseases

As an illustration, we apply the method explained above to data from a MCDA performed in
New Zealand for ranking 19 non-communicable diseases (NCDs, e.g. arthritis, cancer and
depression) according to their overall burden to society, with the ranking available to support
decision-making about health research funding; see Babashahi et al. (2021) for details.

In brief, an online survey to elicitweights onfive criteria reflectingNCDs’ burden to society
was administered in late 2017. Participants (N = 476) were invited using convenience and
purposive sampling via the researchers’ personal and professional networks and relevant
New Zealand health organizations, with ‘snowballing’ whereby participants were asked to
forward the survey link to other eligible and interested people. The survey implemented
the PAPRIKA method – an acronym for Potentially All Pairwise RanKings of all possible
Alternatives (Hansen & Ombler, 2008) – to produce weights on the five criteria for each
participant.

Table 1 lists the five criteria, with their mean weights over the 476 participants reported in
the final column. These 476 people self-identified as belonging to one of three key stakeholder
groups: (1) 149 were patients or members of the general public (referred to as group ‘P’ in
the tables and figures), (2) 161 were health researchers or policy-makers (R), and (3) 166
were healthcare providers (e.g. doctors and nurses) (S). The mean weights for each of these
three groups (denoted P , R and S) are also reported in Table 1.

Although the mean weights for the three stakeholder groups are similar, there may still be
significant differences (or ‘dissimilarities’) in individuals’ weights within each group, and
these differences may differ significantly between the groups. We use the distance measures
explained in the previous section to quantify these within- and between-group differences
in order to evaluate the cohesiveness of participants’ weights – and ultimately, the external
validity of Babashahi et al.’s (2021) preference data.

For the criterion weights and their rankings respectively, we computed the within- and
between-group dissimilarities for 1000 random samples of 75 individuals from the three
stakeholder groups. Figure 2 shows the cumulative distributions representing the distribution
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Table 1 Criteria for ranking NCD’s burden to society and their weights, for three stakeholder groups and all
participants

Criterion Stakeholder groups All participants

P R S N

(n=149) (n=161) (n=166) (n=476)

Deaths across the population – i.e.
reduced life expectancy

0.2807 0.2748 0.2807 0.2770

Loss of quality of life across the
population – e.g. pain, disability

0.2350 0.2299 0.2280 0.2309

Cost of the disease to patients,
families and community – e.g.
unpaid family support

0.1829 0.1852 0.1892 0.1858

Cost of the disease to the health
system – i.e. publicly-funded
healthcare

0.1650 0.1822 0.1678 0.1720

Disproportionately affects
vulnerable groups – e.g. Māori,
children, poor people

0.1363 0.1279 0.1343 0.1343

of the (relevant) distances resulting from all samples, with Table 2 reporting key summary
statistics. For example, as shown in Fig. 2, bottom left plot, the between-group dissimilarity
based on rankings between groups P and R takes a value of 0.75 at 0.3842, indicating that
750 out of the 1000 samples (75%) resulted in a between-group distance of at most 0.3842.

With respect to thewithin-group dissimilarities–i.e. comparing the cumulative distribution
functions (CDFs) within Fig. 2’s top two plots–we find that only the CDFs of groups P and S
based onweights are not statistically distinguishable (t-test: p= 0.1119); all other differences
are statistically significant (p < 0.0001).

Though a bit harder to interpret, for the between-group dissimilarities – i.e. comparing
the CDFs within Fig. 2’s bottom two plots – we find that all differences are statistically
significant (p = 0.0011 for dw(P, S) and dw(R, S); p < 0.0001 for all others). This means,
for example, that group P stakeholders are not equally different to group R stakeholders
compared to group S stakeholders.2

Most interesting is the comparison of between-group dissimilarity of a pair of groups,
dz(G, H), with the within-group dissimilarities of each of the groups in this pair, dz(G)

and dz(H) – i.e. comparing CDFs in the bottom two plots with the corresponding CDFs in
the top two plots. For example, the statistically significant difference between dz(G) with
dz(G, H) tells us that group H stakeholders are statistically distinguishable from group G
stakeholders.

The only comparison that is not statistically significant (p = 0.2816) is between dw(P, S)
and dw(S); all other differences are significant (p < 0.0034). If we adopt amore conservative
test (in the sense of making it more difficult to reject equality) by decreasing the sample size
to s = 30, thereby increasing the variation, we can reject equality of distributions for a few
more comparisons.

2 More conservative testing is possible by reducing the sample sizes (s) or the number of samples (t). Reduc-
tions from s = 75 to s = 50 and s = 30 and from t = 1000 to t = 500 produced similar results to the ones
reported here.
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Fig. 2 Cumulative distributions of thewithin-group dissimilarities (top plots) and between-group dissimilarities
(bottom plots) based on rankings (left plots) and weights (right plots)

Table 2 Mean within- and between-group dissimilarities (standard deviations in parentheses)

Within-group Between-group

P R S Pvs.R Pvs.S Rvs.S

Rankings (dr ) 0.3707
(0.0169)

0.3826
(0.0149)

0.3783
(0.0160)

0.3766
(0.0113)

0.3726
(0.0118)

0.3799
(0.0110)

Weights (dw) 0.1641
(0.0053)

0.1693
(0.0054)

0.1637
(0.0053)

0.1670
(0.0038)

0.1635
(0.0036)

0.1664
(0.0038)

However, statistical significance is not always informative regarding effect sizes. To eval-
uate the strength of the eventual differences, for each of the latter comparisons, we compute
Cohen’s d (Cohen, 1988), defined as the absolute difference between the two means divided
by the pooled standard deviation; the resulting values are reported in Table 3.

According to Sawilowsky’s (2009) rule of thumb, effect sizes are classified according to
Cohen’s d: 0.01 = very small, 0.20 = small, 0.50 = medium, 0.80 = large, 1.20 = very
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Table 3 Effect sizes calculated using Cohen’s d

dr (P) dr (R) dr (S) dw(P) dw(R) dw(S)

dr (P, R) 0.4139 0.4529 – dw(P, R) 0.6129 0.4984 –

dr (P, S) 0.1296 – 0.4070 dw(P, S) 0.1315 – 0.0482

dr (R, S) – 0.2040 0.1215 dw(R, S) – 0.6198 0.5758

large and 2.0 = huge. Generally, the use of smaller sample sizes generates a larger (pooled)
standard deviation and is likely to under-estimate the true effect sizes.3

Based on the numbers in Table 3, we can conclude that effect sizes are medium at most
and hence participants’ preference data (rankings and weights) are cohesive. Thus, we con-
clude that the non-random sampling methods employed in Babashahi et al., (2021) produced
externally valid preference data.

4 Discussion and conclusion

Although random sampling is generally considered to be the gold standard of sampling
methods, for logistical reasons non-random sampling is often used for public-sector MCDA
surveys. With the objective of bolstering confidence in the legitimacy of MCDA’s use in the
health sector, ex-post sensitivity analysis of preference data across different stakeholders has
been recommended (e.g. Angelis & Kanavas 2017), including in the reports of the ISPOR
(International Society for Pharmacoeconomics and Outcomes Research) Emerging Good
Practices Task Force (Thokala et al., 2016; Marsh et al., 2016).

For the purpose of ex-post evaluating the external validity of preference data obtained from
non-random sampling, we developed and illustratedmethods for measuring and assessing the
cohesiveness of the weights and rankings within and between various exogenously defined
groups included in the sample.

We used the Kemeny distance and the Hellinger distance as building blocks for evaluating
the cohesiveness of preference data for rankings and weights. However, we could potentially
have used other measures instead. Well-known possible and equally valid alternatives for
the Kemeny distance include (the closely related) Kendall’s W, Goodman-Kruskal’s gamma,
Pearson and Spearman correlation coefficients, some of which have been applied in related
literature assessing cohesiveness in preference data (Sałabun & Urbaniak, 2020). Alterna-
tives for the Hellinger distance include the Jensen-Shannon and Kullback-Leibler divergence
measures.

One notable advantage of theKemeny andHellinger distances is that, unlike the alternative
options, they do not violate the triangle inequality – i.e. for any three objects a, b and c the
distance from object a to c through object b is at least as great as the distance from a to c
directly (Bossert et al., 2016). Also, Kemeny distance allows the measurement of preference
distances (i.e. disagreement) more accurately based on both strict and weak (or partial)
rankings (Can & Storcken, 2018; Kemeny, 1959).

3 It may be tempting to try to prevent under-estimating potential differences by choosing a larger sample
size. However, a ‘too large’ sample eliminates all variation and results in even the smallest effect size being
classified as huge.
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Weacknowledge that in the process of reducing the dimensionality of the data, by assigning
a single number (representing the distance or dissimilarity) to a pair of informationally
rich objects (i.e. herein rankings or weight vectors), there is the risk of possibly valuable
information being lost. In this respect, the methods are capable of only partially identifying
potential external validity problems. Nonetheless, we believe they are fit for purpose as a
screening tool as they can discover serious issues (e.g. when the between-group distances
are far above the within-group distances – like in the left situation in Fig. 1).

To allow for statistical testing,while correcting for biases caused by differences in observa-
tions across groups, we used bootstrapping techniques. This requires two choices: the sample
size and the number of replications. In our illustrative application, we opted for a sample size
of half the smallest number of observations for the groups and 1000 replications. Typically,
statistical significance of differences is easier to obtain with larger sample sizes and is harder
to obtain if sample sizes are too small. Optimal bootstrapping design is beyond the scope of
this article and the optimal design may be context-dependent; it may, for example, depend
on the number of criteria. In any case, the use of different sample sizes may reveal insights
with respect to the robustness of observed differences.

As already acknowledged in the introduction, we are not the first to research external valid-
ity issues caused by non-random sampling. A common alternative approach for analyzing
preference data is via cluster analysis (e.g.Kaltoft et al., 2015). First, groups (‘clusters’) of sur-
vey participants with similar patterns of weights or rankings are identified. By construction,
these groups exhibit a high degree of within-group similarities and between-group dissimilar-
ities. Second, the extent to which these clusters are related to participants’ socio-demographic
and background characteristics is investigated. During this second step, potential inaccura-
cies stemming from the first step are ignored, such that the errors produced in both steps
compound, which may produce false positives as well as false negatives. An advantage of
our distance-based method is that it only involves one layer of statistical testing, and hence
errors cannot compound.

In short, with external validation performed via cluster analysis, groups (clusters) are
first identified based on preference similarities and then similarities across these groups
are assessed based on exogenous variation in individual characteristics. Instead, we form
groups based on exogenous variation in individual characteristics and then assess similarities
across preferences. Notwithstanding these fundamental differences, measures and methods
developed in the clustering literature, including in pattern recognition, are of interest in the
context of our method and are potentially worthwhile areas for future research.

Most of the multicriteria clustering literature is concerned with the categorization (rank-
ing and sorting) of alternatives based on their scores for different criteria (Zopounidis &
Doumpos, 2002; De Smet & Montano Guzmán, 2004; Meyer & Olteanu, 2013; Sarrazin
et al., 2018). In the context of our method, these techniques are of most interest after indi-
vidual preferences have been aggregated. Prior to aggregation, we advise using our method
to validate elicited individual preferences if non-random sampling methods have been used
in the elicitation process. Measures developed to assess (external) cluster validity are very
similar to the measures we develop. For instance, the intra- and inter-heterogeneity measures
developed in Rosenfeld et al., (2021) are fully in line with our within-group and between-
group similarity measures. Given this methodological accordance, we believe our suggested
bootstrapping techniques in support of statistical inference have the potential to contribute
to this literature.
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