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Abstract

The widespread outbreak of a new Coronavirus (COVID-19) strain has reminded the world
of the destructive effects of pandemic and epidemic diseases. Pandemic outbreaks such as
COVID-19 are considered a type of risk to supply chains (SCs) affecting SC performance.
Healthcare SC performance can be assessed using advanced Management Science (MS)
and Operations Research (OR) approaches to improve the efficiency of existing healthcare
systems when confronted by pandemic outbreaks such as COVID-19 and Influenza. This
paper intends to develop a novel network range directional measure (RDM) approach for
evaluating the sustainability and resilience of healthcare SCs in response to the COVID-19
pandemic outbreak. First, we propose a non-radial network RDM method in the presence of
negative data. Then, the model is extended to deal with the different types of data such as
ratio, integer, undesirable, and zero in efficiency measurement of sustainable and resilient
healthcare SCs. To mitigate conditions of uncertainty in performance evaluation results,
we use chance-constrained programming (CCP) for the developed model. The proposed
approach suggests how to improve the efficiency of healthcare SCs. We present a case study,
along with managerial implications, demonstrating the applicability and usefulness of the
proposed model. The results show how well our proposed model can assess the sustainability
and resilience of healthcare supply chains in the presence of dissimilar types of data and how,
under different conditions, the efficiency of decision-making units (DMUs) changes.

Keywords COVID-19 pandemic - Healthcare supply chains - Efficiency measurement -
Sustainability and resilience - Network data envelopment analysis (NDEA)
1 Introduction

COVID-19 was first diagnosed in Wuhan, China, in December 2019 and then quickly spread
throughout the world. The subsequent unique and unprecedented COVID-19 pandemic has
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inflicted devastating damage on the world economy, people’s health, jobs, and lives, and
put the entire globe on hold for almost a year. According to official statistics, by April
2022, over 484 million COVID-19 cases and 6,152,000 deaths had been reported to World
Health Organisation (WHO). Furthermore, the COVID-19 pandemic outbreak has negatively
affected global economic growth. Estimations show that it could have reduced growth of the
world’s economy by 6.0% in 2020, despite partial improvement in 2021 and 2022, presuming
no waves of reinfection. Due to the pandemic, the risks of a global economic slump are rising
dramatically and unemployment has been rising at an unprecedented rate since the Great
Depression of the 1930s. The human and economic costs such as death, poverty, and social
unrest are only some examples of the devastation wrought by the COVID-19 pandemic.

One particularly affected area by the COVID-19 pandemic is supply chains (SCs). SCs
are experiencing unparalleled vulnerabilities and disruptions (Zahedi et al., 2021). This type
of pandemic can cause many parts of an SC to be inoperable and inefficient for an uncertain
period (Govindan et al., 2020). The spread of the COVID-19 pandemic around the globe
shows the importance and essential role of resilient SCs in supplying products and providing
services to the world. The pandemic is testing the features of resilient SCs such as flexi-
bility, robustness, and recovery (Elluru et al., 2019; Sharmin et al., 2021). Moreover, many
organisations use the opportunity of this unprecedented crisis to adopt global SCs strategies
and address sustainability in order to mitigate future challenges (Karmaker et al., 2020).
Integrating sustainable and resilient concepts into SCs—including those of healthcare—is
critical for organisations. Even so, the literature has not adequately addressed these concepts
in healthcare SCs.

Efficiency assessment of healthcare SCs in the face of pandemic outbreaks, particularly
COVID-19, can support healthcare systems to identify the existing inefficiencies. Disruptions
in healthcare SCs, due to the surge of demand, can severely affect the performance of health-
care systems, leading to a substantial increase in the number of infected people and death.
To mitigate the destructive impacts of COVID-19, different stages of healthcare SC such as
suppliers, hospitals, and pharmacies need to act efficiently and resiliently. To benefit from an
efficient healthcare system, each stage of healthcare SCs should use the available resources,
reduce waste, provide timely services, and control process costs (Gole¢ & Karadeniz, 2020;
Min et al., 2021). It should be noted that developing state-of-the-art performance evaluation
approaches can assist healthcare managers to enhance the performance of healthcare systems
in disaster management such as the COVID-19 epidemic (Md Hamzah et al., 2021).

Operating under uncertainty, resource scarcity, and demands surge are major issues for
SCs in face of pandemic outbreaks. In this regard, Operations Research (OR) approaches
and models are of huge importance (Besiou et al., 2018). Data envelopment analysis (DEA)
derived from OR is a rigorous nonparametric approach to measure efficiency in many areas
such as healthcare and humanitarian supply chains (Jola-Sanchez et al., 2016). DEA is the
most accepted method to evaluate efficiency (Emrouznejad & Yang, 2018). Since the outbreak
of COVID-19 in December 2019, the performance of healthcare SCs has been adversely
affected. Under such turbulent circumstances, it is essential to develop and apply OR advanced
methods such as network DEA to identify inefficiency sources and performance improvement
in healthcare systems.

In this paper we deal with some research questions as follows: (1) how sustainability
and resilience of healthcare supply chains can be evaluated in response to the COVID-19
pandemic outbreak? (2) how dissimilar types of data can be modeled in network structures?
(3) to what extent sustainability and resilience of healthcare supply chains are changed under
different conditions?
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The main objective of this paper is to measure the sustainability and resilience of healthcare
SCsin the face of the COVID-19 pandemic. Our proposed approach is built based on the range
directional measure (RDM) model in the network DEA context. Furthermore, the developed
model can deal with ratio data, integer data, stochastic data, negative data, undesirable data,
and zero data. In sum, and to the best of our knowledge, this study makes the following
contributions:

e To assess the sustainability and resilience of healthcare SCs, we propose a novel non-radial
RDM network model.

e Our proposed approach can address different types of data such as ratio, integer, undesir-
able, stochastic, negative, and zero, simultaneously.

e Our proposed approach recommends how to improve the efficiency of healthcare SCs.

e We have validated this approach using a case study.

The rest of this paper is organised as follows. In Sect. 2, we provide the literature review. In
Sect. 3, we present our approach, followed by the case study in Sect. 4. Finally, we conclude
and propose possible future research in Sect. 5.

2 Literature review

2.1 Pandemic outbreaks and healthcare supply chains (SCs)

Healthcare SCs play a key role in providing required medical devices and services to people
(Leite et al., 2020). After a pandemic disease, medical assistance is needed instantaneously
(Verma & Gustafsson, 2020). The COVID-19 pandemic has adversely affected healthcare
SCs. Pandemic diseases including COVID-19 and SARS are considered a specific type of risk
to SCs. In epidemic outbreaks, efficient healthcare SCs can supply not only medical equip-
ment but also mitigate disruptions (Rainisch et al., 2020). The outbreak of a pandemic disease
quickly increases the demand for medical assistance (Dolinskaya et al., 2018). Healthcare
SCs cannot be efficient when there is high uncertainty in demand (Hoyos et al., 2015). More-
over, due to the complexity of the structures of healthcare SCs, any unexpected event results
in considerable changes to the services provided to patients (Md Hamzah et al., 2021). For
example, inaccurate evaluations of needs can lead to shortages in crucial medical devices
and services. However, efficient transportation systems in healthcare SCs improve inventory
and capacity (Ruan, et al., 2014).

2.2 Efficiency measurement in healthcare SCs

The literature does address efficiency measurement somewhat in healthcare SCs. Chen et al.
(2013) examined the effect of hospital-supplier incorporation on SC efficiency. Their study
showed the effect of knowledge exchange, trust, and information technology (IT) integration
on hospital SCs. Al-Saa’da et al. (2013) evaluated different aspects of SCs such as compati-
bility, relationship with suppliers, standards, requirements, and delivery of quality healthcare
services. They demonstrated the important impact of these aspects on the quality of health-
care services. They also showed that there are no differences between SCM and the quality
of health services owing to different factors. Nyaga et al. (2015) investigated the influence
of internal and external factors on the performance of healthcare SCs. They used the data
for more than 200 hospitals in the US over several consecutive years to estimate regression
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models. They demonstrated that employing physicians and managing contracts improved the
efficiency of healthcare SCs.

Supeekit et al. (2016) used the analytic network process (ANP) for evaluating the effi-
ciency of hospital SCs. They examined the interdependencies between efficiency groups.
They demonstrated that the completeness of treatment and processing times of clinical care
is the most significant dimension of hospital SCs. Chotfi et al. (2019) presented a DEA model
to measure the efficiency of healthcare SCs in the presence of interval data. To do so, first,
they used the Latin hypercube sampling by replacement (LHSR) method for identifying a set
of deterministic data from interval data; then they used DEA models to evaluate the efficiency
of healthcare SCs. To evaluate the performance of sustainable healthcare SCs, Leksono et al.
(2019) integrated a balanced scorecard (BSC), a decision-making trial, an evaluation labo-
ratory (DEMATEL), and ANP techniques. They showed that the customer perspective is the
most significant factor in the performance evaluation of healthcare SCs. Gole¢ and Karad-
eniz (2020) presented a fuzzy model to analyse the efficiency of healthcare SCs concerning
competency-based operation assessment. They took the hierarchical structure of healthcare
SCs such as processes and sub-processes into account in their proposed method. They also
used two levels for evaluating processes and sub-processes. Gerami et al. (2020) presented
a network DEA-R model to assess the performance of healthcare SCs. They modelled rela-
tions between the different layers of healthcare SCs based on network DEA and free-link and
fixed-link assumptions. Md Hamzah et al. (2021) examined the performance of healthcare
systems in Malaysia in the face of the COVID-19 epidemic. To address this issue, they applied
a network DEA model using a secondary data. Md Hamzah et al.’s (2021) proposed network
structure for evaluating the performance of the healthcare systems consisted of three stages.
Min et al. (2021) sought to detect the sources of the success and failure of COVID-19 control
measures and to enhance public health policies aimed at decreasing COVID-19 spread. They
assessed the efficiency of different combinations of COVID-19 control measures and public
health polices in OECD countries by focusing on the country-specific factors of government
COVID-19 preventive measures in OECD countries. In doing so, they detected influential
cultural variables. Although the above studies investigated performance evaluation of health-
care SCs from different perspectives, none of them evaluated the sustainability or resilience
of healthcare SCs in response to a pandemic outbreak such as SARS and COVID-19.

2.3 Data envelopment analysis (DEA)

DEA has been recognised as the most rigorous and accepted method for measuring the relative
efficiency of a set of decision-making units (DMUs). DEA forms an efficient combination of
inputs and outputs to make an efficient frontier (Ayanso & Mokaya, 2013; Troutt et al., 2000).
A DMU is efficient if it lies on the efficiency frontier; otherwise, it is inefficient. Charnes
et al. (1978) (CCR) and Banker et al. (1984) (BCC) are two basic DEA models. Because of
the advantages of DEA, it has been used in many areas over the last decades (Emrouznejad &
Yang, 2018). However, there are some issues with standard DEA models. Firstly, there might
be ratio data in performance evaluations. To deal with the ratio data, some approaches have
been developed by scholars (e.g., Emrouznejad & Amin, 2009; Hatami-Marbini & Toloo,
2019; Henriques et al., 2020; Hollingsworth & Smith, 2003). Furthermore, the traditional
DEA models assume that all the values are real numbers. Nevertheless, in many real-world
applications, there might be integer inputs and outputs. To address this issue, Lozano and
Villa (2006) were the first to propose integer-valued DEA. Matin and Kuosmanen (2009)
improved the model proposed by Lozano and Villa (2006). Over the last few years, there has
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been some research in the field of DEA and integer data (Azadi & Farzipoor Saen, 2014; Chen
et al., 2012; Khoveyni et al., 2019; Kordrostami et al., 2019; Wu & Zhou, 2015). Moreover,
the conventional DEA models assume that the inputs and outputs are positive, while there
might be negative and zero data. Our literature survey shows that over the last few years, some
scholars have endeavoured to tackle this issue (e.g., Allahyar & Rostamy-Malkhalifeh, 2015;
Charnes et al., 1985; Chen & Liang, 2011; Cheng et al., 2013; Emrouznejad et al., 2010;
Izadikhah & Farzipoor Saen, 2016; Khoveyni et al., 2017; Lee & Zhu, 2012; Lin & Chen,
2018; Portela et al., 2004; Tavana et al., 2018; Tavassoli et al., 2015). Indeed, a weakness of
standard DEA models is their inability to address uncertainty in data. To deal with stochastic
data, some research has been conducted by Land et al. (1993), Olesen and Petersen (1995),
Azadi and Farzipoor Saen (2011), and Izadikhah et al. (2020).

On the other hand, traditional DEA models deal with black box DMUs and ignore the
internal components of DMUs. It is argued that ignoring the internal structure of DMUSs may
lead to misleading results (Mirhedayatian et al., 2014). For the first time, Fare and Grosskopf
(1996) developed the network DEA. Since then, network DEA has been used in many areas
(e.g., Azadi et al., 2014; Izadikhah et al., 2019; Kao & Hwang, 2010; Lewis & Sexton,
2004; Matin et al., 2022; Samavati et al., 2020). Recently, network DEA has been applied
successfully to measure sustainable, resilient SCs (see Izadikhah et al., 2019; Matin et al.,
2022; Goodarzian et al., 2021).

2.4 Research gaps

Despite the importance of evaluating healthcare SCs, our literature review shows that little
research has been done, particularly in the face of a pandemic outbreak. On the other hand, the
current approaches do not take both the sustainability and resilience aspects into account in the
efficiency assessment of healthcare SCs. This is while addressing sustainability and resilience
aspects in performance evaluation of SCs in other areas has been a hot topic for scholars and
managers. In addition, many current approaches are not suitable for uncertain situations such
as epidemic outbreaks in which there are unexpected and extreme disruptions in SCs. It
should be noted that uncertainty in SCs is a specific type of risk management. Moreover,
none of the existing approaches can deal with different types of data, including ratio, integer,
stochastic, negative, and zero in efficiency measurement of DMUs. To address these gaps in
the literature we propose a new network DEA for evaluating the sustainability and resilience
of healthcare SCs in response to the COVID-19 pandemic outbreak.

3 Proposed method

In this section, we develop our new model to evaluate the sustainability and resilience of
healthcare SCs in response to the COVID-19 pandemic outbreak. Table 1 depicts the used
notation.

Izadikhah and Farzipoor Saen (2016) developed a network RDM model in the presence of
negative data. They dealt with negative data as absolute values. Tavana et al. (2018) proposed
a dynamic network RDM model in the presence of desirable and undesirable carry-overs as
well as negative data. In this paper, given the models proposed by Izadikhah and Farzipoor
Saen (2016) and Tavana et al. (2018), a novel network RDM model based on the non-radial
directional distance function is developed. Moreover, the novel model takes into account
the non-radial changes by which all the inefficiencies in inputs, outputs, and intermediate
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Table 1 The notations

j The jth DMU

i the ith input

r The rth output

f The fth intermediate

F Total number of intermediate products, F = F1 U F;

1 Total number of inputs,/ = I1 U I U I3

R Total number of outputs,R = Ry U Ry U R3

Fq Subsets of intermediate products with integer values

Fy Subsets of intermediate products with stochastic values

Iy The inputs of stage 1 with real data

Iy The inputs of stage 2 with real data

I3 The inputs of stage 3 with integer data

Ry The undesirable outputs of stage 2 with integer data

Ry The outputs of stage 2 with integer data

R3 The outputs of stage 3 with real data

P Probability

o The acceptable error of stochastic numbers

DMU, The DMU under evaluation

Xio The ith input of DMU,,

Yro The rth output of DMU,,

by ilj The ith input of DMU; for stage 1

sz/ The ith input of DMU; for stage 2

xi] 0 The ith input of DMU,, for stage 1

xl.zo The ith input of DMU,, for stage 2

yf i The rth output of DMU; for stage 2

y,20 The rth output of DMU,, for stage 2

2fj The fth intermediate factor of DMU; for f € Fy with integer values

Efj The fth intermediate factor of DMUj for f € F; with stochastic values
Zfo The fth intermediate factor of DMU, for f € F; with integer values
Zfo The fth intermediate factor of DMU, for f € F, with stochastic values
Zfj The mean of Z¢; for f € F»

Zfo The mean of 7z, for f € F

(0] ;Zo The bound of intermediate measures f € Fj for stage 1

ﬁlfzo The random variable of bounds for intermediate measures, f € F; for stage 1
Q?fo The bound of intermediate measures, f € Fj for stage 2

ﬁffzo The random variable of bounds for intermediate measures, f € F; for stage 2
F?zo The bound average of random intermediate measures, f € F; for stage 2
f}zo The bound average of random intermediate measures, f € F for stage 1
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Table 1 (continued)

)»} The jth intensity variable of stage 1

)»3 The jth intensity variable of stage 2

l} The integer output of stage 1 for f € F|

tg The integer output of stage 2 forr € R

s% The integer output of stage 2 forr € Ry

ai2 The integer input of stage 2 for i € I3

P The objective function value

Ril;‘ The bound of the input for stage 1

Rizlf The bound of the external input of stage 2

ng' The bound of the output of stage 2,r € R3 U Ry

G%’OV The bound of the output of stage 2,r € R

Bi Lx The nonnegative variable for reducing the input of stage 1

Bi 2x The nonnegative variable for reducing the external input of stage 2

r'%z The nonnegative slack for reducing the input of stage 2 (Intermediate measures) for
feR

Ty 2 The nonnegative slack for reducing the input of stage 2 (Intermediate measures) for
feFr

y }Z The nonnegative surplus for increasing the output of stage 1 (Intermediate
measures) for f € Fp

vr Iz The nonnegative surplus for increasing the output of stage 1 (Intermediate
measures) for f € F|

83" ' The nonnegative variable for decreasing the undesirable output of stage 2, € R

82 The nonnegative variable for increasing integer and deterministic outputs of stage
2,r € Ry UR3

E The expected random variable

Var The variance of random variable

o ! The inverse of cumulative distribution function

551.] g The ith improved input of DMU, for stage 1

5512; The ith improved input of DMU,, for stage 2

37,23 The rth improved output of DMU,, for stage 2

’z\lfzo The fth improved intermediate measure of DMU, as output of stage 1

??fo The fth improved intermediate measure of DMU, as input of stage 2

S A random variable
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Fig. 1 A two-stage network

i
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i ; 2
ij Stage 1 . Stage 2 LA

measures are considered. Furthermore, the intermediate measures as outputs of the first stage
and inputs of the second stage are discussed from different aspects. More importantly, our
proposed model can simultaneously deal with stochastic data, integer data, zero data, negative
data, ratio data, and undesirable outputs.

Assume that the stochastic factors are normally distributed. In the classical DEA
approaches, the ratio data are converted to the fractions, and the numerator is considered
as output and the denominator is considered as input. Despite the classical DEA approaches,
here, the ratio data are dealt with directly. For the ratio inputs, the reduced inputs should be
less than or equal to 100%. However, since the inputs should be reduced, no need to add a
constraint to ensure that the reduced inputs should be less than or equal to 100%.

To deal with the negative data, one of the very first models mathematically formulated
in DEA is the RDM model developed by Portela et al. (2004). There exist other papers that
extended the basic RDM model. Here, the models of Portela et al. (2004) and Tavana et al.
(2018) are extended. To consider all the factors’ inefficiencies in the stages, the non-radial
changes of factors are taken into account. Note that the intermediate measures as inputs
of stage 2 are considered less than or equal to the outputs of stage 1. Also, the ranges are
determined for the undesirable outputs. Finally, the integer data and the stochastic data are
dealt with. Figure 1 shows a network with two stages.

As is seen in Fig. 1, the intermediate measure z ¢ is the output of stage 1 and the input
of stage 2. In the intermediate measures, there might be stochastic elements as denoted by
Zf,Vf € F,. The other intermediate measures are integer zs,Vf € Fy. The xil, i el
is a deterministic input of stage 1. The xiz, i € I is a deterministic input of stage 2. The
xl.z, i € I is an integer input of stage 2. Consider that /1 U I U I3 = I. Also, some outputs
of stage 2 might be undesirable y2, r € R and some might be an integer y2, r € Ry. The
rest can be deterministic and desirable outputs yrz, r € R3. Note that Ry U R, U R3 = R and
FIUF,=F.

Given Expression (1), in model (4), the ranges of inputs and outputs of stage 1 are incor-
porated. All the ranges are non-negative. The outputs of stage 1 (f € F»), the intermediate
measures, are stochastic and have a normal distribution.

RlY =x}, —min{x;I¥j}, Viel; 0
0 =max{zlVj} =250, Vf€F; R =max{iplVj}—Zs0, Vfe€Fy

Given Expression (2), in model (5), the ranges of inputs and outps of stage 2 are incorpo-
rated.

@ Springer



Annals of Operations Research (2023) 328:107-150 115

R =}, —min{x];|Vj}, Vie LUl QF =z —min{zylVj}, Vfeh

io
~ . ~ . 2y .
Ry, =%, — mm{zﬁm}, VfeF, RY= max{yrzj-Wj} —y2. VreRyURs:
2y . .
Gry =2 — mln’yrzjw}], Vr € R
(2)

Note that the range of ith input of DMU, in Expressions (1) and (2) equals the deduction
of the smallest ith input of all DMUs from the ith input of DMU,. Since consuming less
input is better, the smallest ith input is considered in Expressions (1) and (2). Also, the range
of rth output of DMU, in Expressions (1) and (2) equals the deduction of the biggest rth
output of all DMUs from the rth output of DMU,. Since more output is better, the biggest
rth output is considered in Expressions (1) and (2). Thus, there is no improvement room for
the inputs and outputs that their ranges are zero. Note that since yrz, r € Ry is an undesirable
output, its range is defined as input.

The intermediate measures can be outputs of stage 1 and inputs of stage 2. If the inter-
mediate measures are inputs, then Expression (2) is used. If the intermediate measures are
outputs, then Expression (1) is used.

Expression (3) is the modified objective function of the RDM model. Despite the clas-
sical RDM model, Expression (3) deals with the non-radial changes of inputs, outputs, and
intermediate measures. Thus, it can incorporate all the factors’ inefficiencies into the model.

Marp= YAl Y v Y Y

i€l fekr fer iehUlz
.2z 2 2
DI D ISR DI o
fer feF; reRyUR3 rery (3)

Model (4) is developed for stage 1. Constraint (b) corresponds with the non-radial reduc-
tion of ratio inputs. To deal with ratio inputs, we set the corresponding reductions in a way
that its reduced input remains between 0 and 100%. Thus, 0 < xilo — ﬂl.lxR}jf < 100 should
be added to the model. However, since the inputs are supposed to be decreased, the con-
straint is redundant and can be omitted. Constraints (c) are related to the integer outputs
of stage 1. In constraints (c), the corresponding improved factor gets integer values. Thus,
l} =Zfoty f].z Q}-Zo is considered in the model where / } € Z.Constraint (d) is associated with
the stochastic outputs of stage 1. Constraints (e) imply the variable returns to scale (VRS)
assumption and the non-negativity of the variables. Note that the objective function of model
(4) is similar to (3). The only difference is that the objective function of model (4) deals with
stage 1.
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Maxp=3 B+ ¥ yi+ ¥ 7f (@)
i€l feFR fer

S.t.

n

ZIA} L < xl, = BYRY, Viel; (b)
iz

n

1 1
E%MZ@@zqu@ﬂ, VieF (o “
n ~

P(Z zf,>zf[,+y;ZR}f;)z1—a, VieF, (d)
n

YA =LA 20,8 20,77 20,y 20,15 € ZV), Vi, Vf (o)

~.
I

Now, model (5) is developed for stage 2. The objective function of model (5) deals with
stage 2. Constraint (f) is associated with the external inputs (i € I») of stage 2, which
are reduced non-radially. Constraints (g) are related to the integer external inputs (i € I3)
of stage 2. In Constraints (g), the corresponding improved factor gets integer values. Thus,
a2 —B; 2x Rl - > where ai2 € Z is added to the model. Constraints (h) correspond to integer
intermedlate measures (F € Fy). For this constraint, the corresponding improved factor gets
integer values. Thus, 2 =2 7: Q For where 12 € Z is added to the model. Constraint
() is associated with the stochastic mtermedlate measure Constraints (p) are related to the
integer and undesirable outputs of stage 2, which are considered inputs of stage 2. Note that
according to the definition of ranges in (2), the range of undesirable outputs is similar to
the range of inputs. Constraints (q) are associated with the integer outputs of stage 2. The
corresponding improved factor gets integer values. Thus, s> = y2, + 8 R}, € Z,r € Ry is
added to the model. Constraint (t) is related to the outputs of stage 2, which can be positive,
zero, and negative. Constraints (u) and (w) imply the VRS and the non-negativity of the
variables.

Maxp= Y p¥+ Y i5+ Y 5+ ¥ 57+ L &

iehUl fer ! feF ! reRUR3 reRr;
s.t
522 2
X .

lejx,j — B R, YVielh (f)
j:

n

YA <af, @) =xi, = BRY, Viels, (g)
j=1

n

<272 12z
,; Mg <13, 15 =250 — 1707, Vf € F, (h)
P(Z A?ij <Zfo— ?‘R%) >1—a, VieFr,® 5)
j=1

n

Z )»3)’,2/ =< trzv trz = - SyGrm Vr e Rla (P)
j=1

n

Y MyE = st st =i, + 8 R, Vr € R, (q)
=
j" 2.2 2, <2 p2y

ijyrjzyo+6r Ry, Vr € Rz, (1)
j=1

n

le§ 3220, pF 2067 0.2, 52> e Z Vii,r, ()
j:

ng>0 r}Z>o §2 >0 YEr, (w)
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If the range of inputs and outputs, for each stage, is zero, then there is no room for
improvement as these already include the smallest and the largest outputs. Thus, it is clear that
there is no room for reducing the inputs and increasing the outputs. Therefore, their associated

variables ,Bilx, ))}Z, y}z, ﬂizx, TJ%Z, t'J%Z, Srzy , and Srzy are zero. To deal with stochastic data,
chance-constrained programming is one of the main methods in DEA (Cooper et al., 2002).

Lemma 1 Constraint (d) of model (4) is converted to the deterministic constraint as follows:
n
P> Mifi =2+ R | 2 1—a, Vfeh, ©)
j=1
where o shows the risk level, which is between 0 and 1. The 7 and R random variables.

Constraint (d) can be written as follows:
n
P> Migi—Zpo— ViR, 20| =1-a, Yfeh, ™
j=1

Assume that S is a random variable and d, a, ¢, and ¢ are constants. If P(S > d) = c and
e > d, then the numbers like a < ¢ can be found where P (S > ¢) = a (Hosseinzadeh Lotfi
et al., 2011). Thus, for each f, constraint (7) can be written as follows:

n
P> Mzfj—Zro— v/ RE >0 =1—a+ep, Vfeh, ®)
j=1
z 1
P> Mifi—Zf0— 7/ Rp=Ss|=1—a, Vfeh, )
j=1

n ~
Assuming Y A}ij —Zfo— )’/}-ZR}ZO = hy, we have
=1

J=

hr = E (X0 Me —Fro— 7S RE)  Sp— E(X)oi Mz — 20— 7f RY)
<

P =<
\/Var (2;'.:1 Mzg =% — v 1%}150) \/Var (2’}:1 Meg—Zp—yf 1%11;;)
=, Vf € F,
(10
Assume that D is defined as follows:
13 s 1z 5z
hy— E(Z;:l Mj2fi T 2fo nyRfo)
Dy = ., VfeP, (1)

\/Var(Z'JLl MEf =0 — 7R

Expression (10) can be rewritten as follows:

Sp— E(Zﬂél Mig =% —vf 15}2)
P| Dy < =o, VfeF,, (12)

Var(Z;zl A}ij —Zf0— )'/}-Z Ié}z{))
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The ¢ is the cumulative function of normal distribution and 7 is the average of z. The o is
the standard deviation. As discussed by Cooper et al. (2002), Expression (12) can be written
as follows:

_ P
Sy — Z?’:l )\}-ij +Zfo+ y}z szo

~ ~ 21z pl
Jrer( 18 50 74 )

Given «, the inverse of the cumulative distribution function (¢) is as follows:

—a, Vfehb, (13)

_ 1z 5l
Sr =221 )\.}ij +Zfo +yf].Z szo

o (@) =
\/Var (Z?:l A}ij —Zfo— )}}Z R}Zo)
_ _ 1z Hlz
Sy X MR etV Ry
= T , Vf e,
op (A7) (14)
where
n
Var(Y 2z =2 — v RE | =0r(1,7), Vfeh, (15)
j=1
Thus, we have
l n
St+Zp0+ )}}ZRon = Zx}zﬁ +o Nwor(Al,y), Yfeh, (16)

j=1

Note that, in the optimisation models, the stochastic relations are replaced by Expression
(16). Given the o ¢ (ll, )}), it is clear that Expression (16) is quadratic. Using the following
expression, Expression (16) can be simplified as follows:

Sp+Zro+ VRS, 20, S =0, Vf e Py, (17
As a result, constraint (d) in model (4) can be written as follows:
= 1
Y orzg e @or (A7) =200+ v Ry Vf €, (18)
j=1

To calculate the variance of the outputs we have

n
o (x.7) = Var(ZAzf] Rl):Var 3 Mz - Dipe - P FRY,

j=1
j#o
i (A;)zvar@ﬁ) + ()»,1, — 1)2Var(§,f0> + (7}}1>2Var(1§}f))
=1
%o
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n n
+2c0v(2x}zﬁ, oL - 1)zfu) 2c0v(2x}zﬁ, 2 }’0)

= =
- 2COV((A Difo. 7 F Rfo), VfePR, (19)

For simplicity, the covariance is assumed to be zero and the following expression is
obtained:

P i) = Y 0DPVar(Ey)+ 0 — 1?Var (o) + (7 )Var( RE), ek
j=1
Jj#Fo

(20)

For the other stochastic constraints of stage 2, the final variance is as follows:

o}(1. 1) = 3 W3PVar(zpy) + 02— D’Var(ig) + (,}%x)zmr(kf@), VfeF
j=1
j#o

21

Using the chance-constrained programming approach, constraint (d) in model (4) and
constraints (/) and (#) in model (5) can be written as follows:

. — 1z 51
E Aij+g0 ((x)af( )2Zf0+)/}ZRfZ0, Vfekr
(22)
_ _ —=2.
E A?ij (O{)Gf( )Sng—szpZRon, VfeF

Models (4) and (5) are quadratic programming problems, and their deterministic versions
are presented in models (23) and (24).

Maxp—Zﬁ1X+ ZV + V

iel feF feR,

s.t.

n

YAl < x, = BIRY, Viel, (b)
j=1

n

];A}zf I, 1 =zp0+y 0%, Vf e Fi, (c) (23)
n

. — L1zl

Z] Zri+ o @or(AL ) = 20 + VR s Vf € Fy, (d)
/:

n

YA =120, 20,97 =0,y 20,1} € ZVji, f, (o

~.
I
-

Consider model (24) as follows:
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Maxp= Y B+ ¥ iF+ Y 5+ ¥ 57+ 2 &
iehUlz feFr fer - reRUR3 reRr;
S.t.
52,2 2
Z ijll 'B va ’ Vl € 12 (f)
j=1
n
Zl Ml <al, al =x} - B RY, Viel, (g)
iz
n
22z 2z .
24w <0 =20~ 5 O, VfeF. (h)
n
Y wZp = @op (3, 1) <Zgo — erRfo, VfeF, () (24)
=1
]" 2.2 2 2 2 2y ~2y
Z )"erl Sy R :yro_(sr}Gn})a Vr € Ry, (p)
=1
n
2
Y ahE =t 2= 487 R, Vr e Ry, (9)
Jj=1
n
Y A2y% =32+ 87 R Vr e R;, ()
j=1
n
YA =1,33=0,87 >0, r}2>0 rj%2>0 .al, 2, st €Z Vji f,

S
S
= 4
%

0,87 >0, vr, (w)

Model (25) assesses the overall efficiency of supply chains.

Maxp=3Y B+ 3 yi+ 3 7f

iel fer feR,
Z z 2 .2.

DI -ARID DR AEID S R DI - D
iehUl3 feF f feR 1 reRyUR3 reR;
S. I
Z'\,xl, <x! — BRI, Viel, ()
Z)“Zfl>lf’ I =zp0+v/ 0%, VfeF, (b)
Z Mg+ @or (M. 7) 2 20+ 7 R Vfe PR (©
n
Zl -—1)»]>0ﬂ1x>0)/f“>0}/f7>0,llfez vj.i, f, d)
=
n

2.2 2 2. 2 .
z‘fl)"jxlj n_'BXRuf’ Vielh, (e
=
3 . (25)
> My <af. af =, = BPRE, Vieh, (f)
J=
n

2 2 2 _ -2z 12z
L e Sl by =20 =10 VfeF.(g)
n

_ _ — 2522
Y. 32— ¢ @oy (A1) <%0 — TR, Vfe Py ()
j=1
jn 2 2 2 2 32y ~2y
Z}” yr]Str’ I :yr()f(sr)Grbs Vr € Ry, (p)
j=1
jn 2,2 2 2 2 2y 2y
Zlkjyrj >s2, s2=y2 +8 Ry, Vr € Ry, (q)
iz
n

2
z WV = vl 48 R, Vr € R, (t)
=
n
2 2 N .27 2

j;}‘j = 17)‘]‘ zo,ﬁix ZO,Tf Zovrf >O l l, r"r EZV] l f
52 > 0,82 >0, vr
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Theorem 1 Models (23), (24), and (25) are always feasible and bounded.

Proof Without loss of generality, assume that, except for o, for each j we have All. = 0and

A2 =0.If }\é =1, )Lg = 1, and the rest of the variables are zero, a feasible éolution is
obtained for every level of .

n n

— —_ — — 1z 5z
ZA;ij to l(a)af()“l, J/) = Zk}zﬁ/ > Zfot )/fz wa
j=1 j=l1

s iz s 26)
i— iZfj — X
)}}z < j=1 ilf/ fU’ Vf c F2

Similarly, the same approach applies to other inequalities. As a result, the solution is
bounded. Note thatif « = 0.5, then go‘l (o) = 0, and the deterministic equivalent is obtained.
Note that the data are assumed to have positive values with normal distribution. O

Theorem 2 In the optimal solution of models (23), (24), and (25), all the constraints are
binding.

Proof Assume that at least one constraint is strictly unequal (not binding). Thus, to change the
inequality to equality, there exist fewer inputs for the input constraints and more outputs for
the output constraints. As a result, the better solution violates the optimality, the assumption
is invalidated, and the theorem is proven. O

We will now discuss the changes in each factor. Without loss of generality, one of the
input’s constraints is as follows:

n ¥l — Z'f ALyl
1.1 1 Ix plx 1x io =177
D Ml < xly = BIERYL Vi Bl < RIX @7
j=1 io
Since in the optimality, every constraint has an equal sign, we have
1 n 1% .1
X — Z i1 A xlh
pilr="— 1 Y viel (28)

1x
Rio

Note that there is slack in the numerator as it is the difference between the input of
the DMU, and the efficiency frontier. Also, the denominator shows the range. The same
discussion applies to the rest of the inputs.

Since in the optimality the associated constraint has an equal sign, Expression (29) exists
for the first constraint. Note that the numerator of Expression (29) plays the role of slack
as it is the difference between the average output of DMU, and the stochastic efficiency
frontier. Also, the denominator shows the range. As demonstrated, the numerator is less than
the denominator. In Expression (29), for each r, the yr*ly indicates the associated inefficiency
of the factors.

Yoz e @ o (M) = Zp0

cxlz
yf - —Ilz
R‘fo
Yoz e @oy (M Y) =20
= - N Vf S F2
max {z;I¥j} —zro (29)
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Definition 1 Without loss of generality, consider the input constraint of Model (23). The
efficiency of the input is defined as follows:

El =1- g%, vi (30)
where
1 n 1*
Xip = 21
pre == 3D
Ry
1 Ix 1 1 1
l_ﬁ*x_l_xio—Z'}=Mj*xi,- | S = XA
! Rl x} —mm{x IVj}
xilo—min{ |Vj}—xw+zj 1)»‘* X i
= l
xl - mm{x |V]} (32)

Thus, we can write

Yoy Ajeal — min{x} V)
|- g = = 1 , Vi (33)
Xj, — mm{xl.jl‘v’j}

then

Since Z, 1 kl* 1s always less than or equal to xm,

1-B% <1, Viel (34

Consider the output of stage 1. Since 0 < y?lz < 1, the output efficiency is defined as
follows: '

L+yf=1, Vfeh (35)

The same holds for the decision variables of inputs and outputs of stages 1 and 2.

Lemma 2 If the range of inputs, outputs, and intermediate measures of DMU,, is zero, there
is no room for their improvements.

Proof The zero range implies that the associated factors have the smallest input and the
biggest output. In this case, the associated constraint is considered with an equal sign. For
instance, consider the input constraint with zero range.

n
D axl = xly = Bl = (1= B)x), > B =0 Viel (36)

The same reasoning applies to other constraints. (]

Using the objective function of model (25), the total efficiency (TE) is calculated as
follows:
TE =

1+p
_ 1
X AT T A S g T e s e 3 e v
i€l fer iehUl3 feF feR reRUR3 reRr

(37
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Using the objective function of model (23), the efficiency of stage 1 (ESy) is as follows:
1
1+Zl€1] +ZfeF1 Vf +Zfer 7
Using the objective function of model (24), the efficiency of stage 2 (ES») is as follows:
1

*2x *2y
V4D icnun B+ Zfng Tf <+ ZfeFl Tf “ D reRyURy Or " D per, Or
(39)

ES| = (38)

1z

ES; =

Theorem 3 The efficiency scores obtained from Expressions (37), (38), and (39) are as
follows:

TE<1,ES;<1,ES, <1 (40)

Proof Since the associated variables of inputs and outputs are non-negative, in optimality we
have

B =07 = 0.y = 0,8 0,17 20,17 20,67 > 0.5 >0 (41

Therefore, given Expressions (37), (38), (39), and (41), the efficiency scores are always
less than or equal to one. O

Theorem 4 In models (23), (24), and (25), given the VRS technology, the DMUs with the
smallest input and biggest output are efficient, and there is no room for improvement in the
factors.

Proof Given Expressions (1) and (2), if the DMU, has the smallest input and the biggest
output, then its associated variable in models (23), (24), and (25) is considered zero, and
there is no room for improvement. Otherwise, if the range is non-zero, then the DMU, can
improve its performance.

1

mm{x AVj} = x — R mln{x Vj} = x ~10 =0, Vi 42)

The same holds for other ranges as defined in (1) and (2). If the DMU, has positive
changes for inputs and outputs, then it is inefficient. The more changes, the less efficiency of
DMU,. 0

The improved factors of the first stage are determined as follows:
2l Iz
if, = Zfo"')/f Rf(), VfeF
f;zo =Zfot y} RfU’ Viebk (43)
i =xl — g RIX viern

The improved factors of the second stage are determined as follows:

)2[20)6 _xm _IBZXRZZ,;Y, Vie LU
B =20 — tFRY,, Vf€ Py i =25~ 1Ry, VfEF (44)

A2 2 A2y
yrg —ym }Grm Vr € Ry; yrg :yr20+8 Rro’ Vr € Ry UR;

Theorem 5 The obtained improved factors in (43) and (44) are Pareto efficient.
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Proof Assume that an improved factor does not lie on the Pareto efficiency frontier. Thus,
the improved factor is dominated by the other dominant point. The dominant point has a
better solution in the objective function. This violates the Pareto optimality and the theorem
is proved. O

Theorem 6 The objective functions of models (23), (24), and (25) are not greater than the
DDF model.

Proof Without loss of generality, consider the input constraints in stage 1. The ﬁilx is the
non-negative variable that changes the ith input. The R};‘ is the range of the ith input of
DMU,. Given Expression (1), the range of input is as follows:

RY = x), —min{x}|Vj}, Viel 45)
The improved inputs in the DDF model are as follows:
i =xl —glxl ) vien (46)
To compare Expressions (45) and (46), we have

— BRI > x) — gyl vien (47)

Given Expression (45), it is clear that R” < X . Thus, the efficiency score of Expression
(37) is less than or equal to the DDF model O

Theorem 7 Constraints of models (23), (24), and (25) are unit invariant and translation
invariant.

Proof Without loss of generality, assume that 4, Vr € R; is added to the output of stage 2.
Thus, we have

n
.2y p2
SR (0E k) = (2, h) + i REL Ve Ry @8

Since Z};zl k? =1, we have
n

o yr,+z)\2h —Z yr,+(h)ZA2 D a3k + )
Jj=1 j=1

Jj=l1 Jj=l1
2
z(ym+h)+yrer,,,VreR3 (49)

Given Expression (2), by adding A, the ranges do not change. As a result,
.2
Zﬂyr, > Y2, + 7 RY, VreRs (50)

This proves that the model is a translation invariant. Now, assume that %, is multiplied by
the output. Thus, it is multiplied by the ranges. Therefore, we have

n
S22 xhe) = (52, < )+ 57 (R x by ) Ve Rs 1)
=1
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Expression (51) can be written as follows:

n
L2y 2
D A =, v R Vr e R (52)
j=1
Thus, constraint (¢) of model (52) is unit invariant. This procedure can be performed for
other constraints of inputs and outputs of stages 1 and 2. (]

Figure 2 represents two stages of the network. Note that both outputs of stage 1 are positive
and an output of stage 2 is negative. Figure 2 shows the non-radial changes in the negative
output.

The red line in stage 1 shows the direction of improvement for DMU K. Given Expression
(1), the outputs’ range of DMU K is (2, 4). Using model (23), DMU K is projected on
K", which lies on the efficiency frontier. For the second stage, the first output of DMU H is
negative. [f DMU H is assessed by the classical directional distance function model, it should

be projected on the efficiency frontier given the vector al), marked by the blue colour. In

Y2
A
E=(-4,5.5)
>
1,=(4.5,4.5)
i p
H=(-0.5,1) & 7 A=(4,0.5)
6=(1.5,0.5)
(0] Y1
Y2
3
M=(7,7)
Stage 1
o 1

Fig. 2 The efficiency frontiers of stages 1 and 2
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this case, the first output becomes more negative, which is worse. However, using Expression
, —

(2), it is projected on the efficiency frontier (point B) by H Iy, marked in red colour. Using

Expression (2), it is clear that [z = (4.5, 4.5). Using the classic RDM model for stage 2, we

have

*=0.67, 2 =033 (53)

Consider § as radial alterations. As a result, its radial change is 8* = 0.52. Using model
(24) the results are as follows:

w=1, B’ =0.67, p;*? =044 (54)

The average non-radial changes of outputs are p* = 0.55. As is seen in Fig. 2 of stage
2, the radial projected point B has a small difference with DMU B. However, due to the
inclusion of all inefficiencies of outputs, the non-radial efficiency score is less than the radial
efficiency score. By the non-radial change, DMU H is projected on DMU B, which is shown
by the green vector. The point B is obtained as follows.

b= 55
- 3.3 (55)

y1=-05+052x45=18 . (18
y2=10+0.52x45=33

By equal radial change, both outputs are changed with coefficient 4.5 and point B is
obtained. Now, consider the triangle H BI , which is marked in the red line. The non-radial
changes of outputs are done separately, and the outputs of DMU H are increased. The H PB
in Fig. 2 shows the increase. Given Fig. 2 of stage 2, it is clear that HP and P B have equal
edges in the triangle. The non-radial changes in the outputs are as follows:

y1 =—-0540.67x45=25 LB (2.5) (56)

yy=1+044 x45=3 3

As is seen in Fig. 2 of stage 2, by f;”' = 0.67 and p5** = 0.44, DMU H is projected on
DMU B. Given Thales’s theorem (Heilberg and Fitzpatrick, 2007) and the triangles H Bl

and HPB, we get % = f—f;. The interpretation of Fig. 2 for stage 1 is straightforward.
H

4 Case study

Iran is one of the most affected countries by COVID-19 disease, with over 726,000 total cases
and 40,000 deaths by November 2020. At the moment of writing this paper, the country was
experiencing a considerable increase in the number of COVID-19 infections and deaths.
The sustainability and resilience of the healthcare SCs have received much attention during
the course of this unprecedented pandemic. However, the efficiency of healthcare SCs in
disaster situations such as pandemics can be largely affected due to the uncertainties of some
key indicators such as increased demand, numerous SC disruptions, and shortages of vital
medical equipment (Dolinskaya et al., 2018).

In this case study, we evaluate the sustainability and resilience of the healthcare SCs in
Iran. In this study, healthcare SCs consist of suppliers (stage 1) and hospitals (stage 2). The
suppliers manufacture COVID-19 testing kits. The kits detect new Coronavirus cases and are
one of the most important medical devices. The inputs of stage 1 are raw material costs (x 11),
the rate of inferior raw material (le), environmental costs (x31), and personnel costs (xj).
The number of produced COVID-19 testing kits and the average inventory are intermediate
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Intermediate

products External Inputs

X]z XZZ ij X42 X52

Inputs Outputs

XJ——>

s ol Low

XZJ —» 8| o T ¥

. e Ak ﬁ I
Supplier Hospital

Fig. 3 The two-stage supply chain

measures, which exit from stage 1 and enter stage 2. The external inputs of stage 2 include
employees’ health and safety costs (xlz), the number of personnel (x%), personnel costs (xg),
the number of patients (xf), and the number of beds (xg). The outputs of stage 2 are the
number of errors in diagnosing COVID-19 disease (ylz), the number of discharged patients
(y%), and profit (y%). Figure 3 shows the structure of healthcare SC.

Table (9 see Appendix) summarises the indicators. In this study, several meetings were
held with managers and experts of suppliers and hospitals to identify the most important
indicators for measuring the sustainability and resilience of healthcare SCs in response to the
COVID-19 pandemic outbreak. Table (10 see Appendix) presents the dataset of 28 healthcare
SCs. The dataset is related to March to June 2020, which is extracted by observing documents

of suppliers and hospitals of healthcare SCs.!

4.1 Results and discussions

Given different « values, Table 2 reports the suppliers’ efficiencies obtained from Expression
(38). Considering Expression (38), the aim is to evaluate efficiency of the fist stage of the
network. As is seen, the higher «, the higher efficiency of DMUs. As an example, consider
DMU 1. This DMU has an efficiency value of 0.627759 for a = 0.02. As the value of error
a increases, specifically considering o = 0.04, the efficiency value of this unit is increased
and becomes 0.628231. This upward trend continued for unit number 1 until at @ = 0.1 its
efficiency value becomes 0.628949. DMUs 2, 5, 8, 9, 10, 15, 16, 20, 23, 25, and 26 have the
same behavior as DMU 1, and their efficiencies are increased by increasing a. This means
that by considering the variance of random data, different values of efficiency are obtained
for each error level. This shows the effectiveness of the random nature of the data in this
practical example. Now, consider DMU 3. This DMU has an efficiency value of 1 with all
values of o = 0.02, o = 0.04, o = 0.06, o = 0.08, and oo = 0.1. For DMUs 3, 4, 6, 7, 11,
12,13, 14, 17, 18, 19, 21, 22, 23, 24, 27, and 28, the efficiency stability is clearly shown by
the constant efficiency value of 1 due to the increase of the error level value. This means that
by increasing the error level, these DMUs maintain their unity efficiency. Also, changes of
random data and their variance have no effect on the efficiency value.

I Note that we are not allowed to disclose the names of suppliers and hospitals.
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Table 2 The stochastic efficiency of suppliers given different o values

DMUs The stochastic efficiencies given different o values

a=0.02 a=0.04 a=0.06 a=0.08 a=0.1
DMUI 0.627759 0.628231 0.628532 0.628764 0.628949
DMU2 0.589897 0.590586 0.590782 0.591365 0.591636
DMU3 1 1 1 1 1
DMU4 1 1 1 1 1
DMUS 0.37022 0.370269 0.370298 0.370325 0.370344
DMU6 1 1 1 1 1
DMU7 1 1 1 1 1
DMU8 0.587171 0.587299 0.587342 0.587443 0.587493
DMU9 0.337343 0.337371 0.337401 0.337403 0.337414
DMU10 0.59735 0.597476 0.597568 0.597619 0.597669
DMUI1 1 1 1 1 1
DMU12 1 1 1 1 1
DMUI13 1 1 1 1 1
DMU14 1 1 1 1 1
DMU15 0.364907 0.365042 0.365098 0.365195 0.365249
DMU16 0.494152 0.494405 0.494564 0.49469 0.49479
DMU17 1 1 1 1 1
DMU18 1 1 1 1 1
DMU19 1 1 1 1 1
DMU20 0.465058 0.465124 0.465156 0.4652 0.465226
Table 2 (continued)
DMUs The stochastic efficiencies given different o values

a=0.02 a=0.04 a=0.06 a=0.08 a=0.1
DMU21 1 1 1 1 1
DMU22 1 1 1 1 1
DMU23 0.373162 0.373285 0.373388 0.373424 0.373473
DMU24 1 1 1 1 1
DMU25 0.403753 0.403845 0.403879 0.40395 0.403986
DMU26 0.488223 0.488442 0.488513 0.488691 0.488777
DMU27 1 1 1 1 1
DMU28 1 1 1 1 1
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Fig. 4 Summary of the results

Figure 4 summarises the results shown in Table 2.

Given different « values, Table 3 depicts the hospitals’ efficiencies using Expression (39).
Taking into consideration Expression (39), the efficiency of the second stage is investigated.
As is seen, the higher «, the higher the efficiency of DMUs. According to Table 3, the
efficiency of DMUs are calculated considering different levels of a. As is shown in Table
3, DMUs 1, 3, 11, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, and 27, in all error levels, are
inefficient. The efficiency of these DMUSs is increased by increase in the error level. Note
that DMUs 8 and 28 are inefficient in o = 0.02 and a = 0.04. By increasing the error level
to o = 0.06, o = 0.08, and o = 0.1, their efficiencies become 1. DMUs 2, 4,5, 6,7, 9, 10,
12, 14, 20, and 25 are efficient in all levels of errors. It means these DMUSs have excellent
performance in different error levels

Given different « values, Table 4 shows the TE of supply chains using Expression (37).
Taking into account Expression (37), the efficiency of the entire network is calculated. Note
that in Expression (37), the network is not evaluated as a black box and interactions among
stages are considered. As is seen, the higher «, the higher efficiency of DMUs. In Table 4,
the whole network efficiency is reported. DMUs 4, 6, 7, 12, and 14 are evaluated as efficient.
However, DMUs 1, 2, 3,5, 8,9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and
27 are inefficient. The efficiency values are increased by considering different error levels.
Note that DMU 28 is inefficient in a = 0.02 and a = 0.04 and is efficient in oo = 0.06, o =
0.08, and o = 0.1.

By comparing Tables 2, 3, and 4, we find out that DMUs 4, 6, 7, 12, and 14 are efficient
in the two stages and entire network. As is seen in Table 4, the total efficient supply chains
are those supply chains efficient in both stages. Now, improved factors are introduced. For
the sake of brevity, the improved factors are introduced just for « = 0.1. To this end, Table
5 reports the optimal values of decision variables associated with the inputs and outputs of
suppliers given o = 0.1. Note that the optimal values for efficient DMUs are zero.
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Table 3 The stochastic efficiency of hospitals given different v values

DMUs The stochastic efficiencies given different o values

a=0.02 a=0.04 a=0.06 a=0.08 a=0.1
DMUI 0.2698326 0.2698581 0.269874 0.2698869 0.2698969
DMU2 1 1 1 1 1
DMU3 0.2606178 0.2606487 0.260669 0.2606837 0.2606959
DMU4 1 1 1 1 1
DMUS 1 1 1 1 1
DMU6 1 1 1 1 1
DMU7 1 1 1 1 1
DMU8 0.9999999 0.9999999 1 1 1
DMU9 1 1 1 1 1
DMU10 1 1 1 1 1
DMU11 0.2553692 0.2553936 0.255409 0.2554213 0.2554309
DMU12 1 1 1 1 1
DMUI13 0.2422501 0.2422878 0.242312 0.2423306 0.2423461
DMU14 1 1 1 1 1
DMU15 0.1067912 0.1067985 0.106803 0.1068068 0.1068097
DMU16 0.9999999 1 1 1 1
DMU17 0.3428785 0.3429677 0.343025 0.3430686 0.3431037
DMU18 0.2589658 0.2589825 0.258993 0.2590014 0.259008
DMU19 0.339317 0.3394024 0.339457 0.339499 0.3395326
DMU20 1 1 1 1 1
DMU21 0.1922634 0.1922849 0.192299 0.1923092 0.1923176
Table 3 (continued)
DMUs The stochastic efficiencies given different « values

a=0.02 a=0.04 a=0.06 a=0.08 a=0.1
DMU22 0.1871395 0.1871595 0.187172 0.1871821 0.1871899
DMU23 0.1358884 0.1358939 0.135898 0.1359002 0.1359024
DMU24 0.2328609 0.2329552 0.233016 0.2330621 0.2331002
DMU25 1 1 1 1 1
DMU26 0.0662731 0.0662757 0.0662774 0.0662786 0.0662797
DMU27 0.4715435 0.4718461 0.47204 0.4721888 0.4723081
DMU28 0.9999999 0.9999999 1 1 1
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Table 4 The stochastic TE of supply chains given different « values
DMUs The stochastic TE given different « values

a=0.02 a=0.04 a=0.06 a=0.08 a=0.1
DMUI 0.23261388 0.23269756 0.23275109 0.2327921 0.232825
DMU2 0.589897 0.590586 0.590782 0.5913647 0.591636
DMU3 0.2606178 0.2606487 0.2606685 0.2606837 0.260696
DMU4 1 1 1 1 1
DMUS 0.37022 0.3702691 0.3702981 0.3703246 0.370344
DMUG6 1 1 1 1 1
DMU7 1 1 1 1 1
DMU8 0.58717107 0.58729847 0.58734207 0.5874426 0.587493
DMU9 0.3373431 0.3373713 0.3374013 0.3374031 0.337414
DMU10 0.5973496 0.5974759 0.597568 0.5976188 0.597669
DMUI1 0.2553692 0.2553936 0.2554092 0.2554213 0.255431
DMU12 1 1 1 1 1
DMUI13 0.2422501 0.2422878 0.242312 0.2423306 0.242346
DMU14 1 1 1 1 1
DMU15 0.09005362 0.09006706 0.09007381 0.0900823 0.090088
DMU16 0.49415198 0.4944047 0.4945641 0.4946903 0.49479
DMU17 0.3428785 0.3429677 0.3430247 0.3430686 0.343104
DMU18 0.2589658 0.2589825 0.2589932 0.2590014 0.259008
DMU19 0.339317 0.3394024 0.339457 0.339499 0.339533
DMU20 0.4650577 0.4651244 0.4651564 0.4651999 0.465226
DMU21 0.1922634 0.1922849 0.1922986 0.1923092 0.192318
Table 4 (continued)
DMUs The stochastic TE given different « values

a=0.02 a=0.04 a=0.06 a=0.08 a=0.1
DMU22 0.1871395 0.1871595 0.1871722 0.1871821 0.18719
DMU23 0.11063438 0.11064883 0.11066023 0.1106652 0.110671
DMU24 0.2328609 0.2329552 0.2330162 0.2330621 0.2331
DMU25 0.4037529 0.4038452 0.4038785 0.4039498 0.403986
DMU26 0.06196817 0.06197396 0.06197654 0.0619805 0.061983
DMU27 0.4715435 0.4718461 0.4720397 0.4721888 0.472308
DMU28 0.9999999 0.9999999 1 1 1
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Table 5 The optimal values of the supplier decision variables

DMUs ﬂl*lx ,32*“ ,33*1"‘ ,34*1" T-l*lz rz*lz
DMU1 0.106 0.382 0.102 0.000 0.000 0.000
DMU2 0.000 0.573 0.036 0.000 0.081 0.000
DMU3 0.000 0.000 0.000 0.000 0.000 0.000
DMU4 0.000 0.000 0.000 0.000 0.000 0.000
DMU5S 0.595 0.286 0.129 0.274 0.000 0.371
DMU6 0.000 0.000 0.000 0.000 0.000 0.000
DMU7 0.000 0.000 0.000 0.000 0.000 0.000
DMU8 0.196 0.453 0.006 0.000 0.000 0.044
DMU9 0.636 0.386 0.143 0.489 0.000 0.302
DMU10 0.000 0.118 0.000 0.158 0.000 0.325
DMU11 0.000 0.000 0.000 0.000 0.000 0.000
DMUI12 0.000 0.000 0.000 0.000 0.000 0.000
DMU13 0.000 0.000 0.000 0.000 0.000 0.000
DMU14 0.000 0.000 0.000 0.000 0.000 0.000
DMUI5 0.247 0.454 0.167 0.000 0.185 0.622
DMU16 0.039 0.078 0.117 0.003 0.784 0.000
DMU17 0.000 0.000 0.000 0.000 0.000 0.000
DMU18 0.000 0.000 0.000 0.000 0.000 0.000
DMU19 0.000 0.000 0.000 0.000 0.000 0.000
DMU20 0.335 0.240 0.000 0.129 0.000 0.423
DMU21 0.000 0.000 0.000 0.000 0.000 0.000
DMU22 0.000 0.000 0.000 0.000 0.000 0.000
DMU23 0.162 0.509 0.002 0.000 0.267 0.741
DMU24 0.000 0.000 0.000 0.000 0.000 0.000
DMU25 0.000 0.648 0.000 0.077 0.480 0.260
DMU26 0.035 0.067 0.592 0.319 0.030 0.000
DMU27 0.000 0.000 0.000 0.000 0.000 0.000
DMU28 0.000 0.000 0.000 0.000 0.000 0.000

Given o = 0.1, Table 6 depicts the improved supplier factors. For inefficient DMUSs, the
inputs are reduced and the outputs are increased.

According to the initial inputs and outputs of the first stage in o = 0.1, and the improved
data presented in Table 6, it can be said that the sum of inputs of DMUs is improved by an
average of 0.94. Also, the total outputs of the first stage are improved by an average of 1.02.
Given a = 0.1, Table 7 reports the optimal values of decision variables associated with the
inputs and outputs of hospitals.

Given a = 0.1, Table 8 depicts the improved hospital factors of. For inefficient DMUs,
the inputs are reduced and the outputs are increased.

According to the initial inputs and outputs of the first stage in o = 0.1 and the improved
data presented in Table 8, it can be said that the sum of inputs of DMUs is improved by an
average of 0.93. It can also be said that according to the initial inputs and outputs of the first
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Table 6 The improved supplier factors
DMUs Improved factors

T o T T 7 25
DMUI 4,965,322,794.00 3.86%  224,637,655.82  1,890,000,000.00  233,270.00 9.20
DMU2 3,293,000,000.00 2.43% 172,593,039.13 1,113,000,000.00 160,815.00 5.56
DMU3 4,976,000,000.00 3.00% 152,130,000.00 1,452,000,000.00 186,453.00 9.40
DMU4 1,537,000,000.00 8.00% 74,935,000.00 612,735,000.00 62,590.00 4.92
DMUS5 2,633,213,835.60 7.00%  107,859,664.27 979,263,670.38  151,815.00 7.96
DMU6 6,158,000,000.00 7.00%  212,650,000.00  2,527,000,000.00  255,740.00  11.54
DMU7 3,525,000,000.00 5.00%  135,412,000.00  1,255,000,000.00  175,153.00 9.23
DMUS 2,700,496,091.20 6.92% 110,304,627.84 952,580,000.00 153,625.00 7.88
DMU9 2,641,234,978.00 6.30% 118,080,972.96 636,794,678.26 148,755.00 7.20
DMU10 3,159,000,000.00 6.41% 140,875,000.00 972,651,868.68 169,452.00 8.93
DMUIl  5,489,000,000.00 4.00%  315,260,000.00  2,350,000,000.00  247,390.00 9.45
DMUI2  4,268,000,000.00 3.00%  137,582,000.00  1,273,000,000.00  147,439.00 6.79
DMUI13  5,781,000,000.00 9.00%  294,500,000.00  2,754,000,000.00  259,716.00 8.48
DMUI14  2,189,000,000.00 7.00% 99,156,000.00 901,270,000.00 137,411.00 7.86
DMUI5 3,681,058,700.80 5.82% 190,191,426.47 1,183,000,000.00 190,840.00 11.66
DMUI16  5,894,382,870.25 4.77% 223,314,617.82 2,375,980,399.20 253,986.00 9.83
DMU17  3,281,000,000.00 7.00%  120,552,000.00  1,093,000,000.00  172,820.00 8.07
DMUI8  3,725,000,000.00 6.00%  198,340,000.00  1,412,000,000.00  195,473.00 1291
DMUI9  5,568,000,000.00 2.00%  236,520,000.00  2,189,000,000.00  251,815.00 7.69
DMU20 3,492,053,024.60 5.04% 137,781,000.00 1,057,812,726.38 173,520.00 8.65
DMU21 5,172,000,000.00 11.00% 255,728,000.00 1,974,000,000.00 246,826.00 9.76
DMU22 3,529,000,000.00 7.00% 165,782,000.00 1,729,000,000.00 192,150.00 7.80
DMU23 3,706,778,423.60 5.93% 194,959,997.66 1,317,000,000.00 193,551.00 12.39
DMU24  2,366,000,000.00 6.00%  114,870,000.00  1,260,000,000.00  146,750.00 6.53
DMU25  5,082,000,000.00 3.05%  226,451,019.45  1,984,098,656.22  236,957.00 9.08
DMU26  2,705,576,623.41 6.66% 132,512,860.40 1,073,035,059.27 156,938.00 9.57
DMU27 3,482,000,000.00 5.00% 153,265,000.00 145,100,000.00 169,845.00 5.94
DMU28 3,152,000,000.00 2.00% 175,359,000.00 1,192,000,000.00 157,190.00 5.05

stage in o = 0.1, and the improved data presented in Table 8, the sum of absolute value of
the outputs of DMUs is improved by an average of 1.83.

4.2 Managerial implications

The proposed method provides different implications for healthcare SC managers and deci-
sion makers. Healthcare SC efficiency in response to pandemics such as COVID-19 and
SARS can be broken down into SC stages, and our use of the network RDM method can
then enable managers to detect and trace inefficient resources. Thus, healthcare SC managers
and decision makers can identify bottlenecks and take remedial measures. Another feature

@ Springer



Annals of Operations Research (2023) 328:107-150

134

£5609°0 €1S87°0 000000 000000 0rLTO' T 908190 LELLEO 66L8¢°0 o LY¥19°0 TnNa
299890 IT6LS°0 £€860°0 000000 YLELEO [LY1S0 Y0€0¥°0 08050 0000¥°0 S19¢€9°0 ITNINd
00000°0 000000 000000 000000 000000 00000°0 000000 000000 000000 000000 0cnNa
¥690¥°0 68¢EY0 LTy20'0 00001°0 000000 ey o 0LY1TO 08¢yC0 000000 17600 61NNA
1LES8°0 6L09C°0 8CL60°0 000€0°0 1LL6TO 00000°0 8€000°0 (44214} 082950 6Cres 0 SINNA
£8095°0 SL8Y0°0 L9800 000000 9€€Cs 0 00000°0 06€20°0 8Tl0 w9or8¢0 96LST0 LINNA
00000°0 000000 000000 000000 000000 00000°0 000000 000000 000000 000000 9INNA
96690 0LS€0°0 rs0e 0 000000 00008°S Y9811°0 [ 34880 81v€C0 6S0LY'0 ¥898S°0 SINNA
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 PINNA
00LLY'0 6CT8E0 290L0°0 000€0°0 176CL°0 01€0t°0 €6961°0 CI10€°0 619LY°0 0L680°0 CINNd
00000°0 000000 000000 000000 000000 00000°0 000000 000000 000000 000000 cINNa
YrLOL O 695€Y°0 L1000°0 000000 008¥C°0 000S€°0 €6LE1°0 16¥€€°0 £€ees0 9L9T°0 ITANd
00000°0 000000 000000 000000 000000 00000°0 000000 000000 000000 000000 0INNa
00000°0 000000 000000 000000 000000 00000°0 000000 000000 000000 000000 6NINd
00000°0 000000 000000 000000 000000 00000°0 000000 000000 000000 000000 8NINA
00000°0 000000 000000 000000 000000 00000°0 000000 000000 000000 000000 LONd
00000°0 000000 000000 000000 000000 00000°0 000000 000000 000000 000000 9NNd
00000°0 000000 000000 000000 000000 00000°0 000000 000000 000000 000000 SNNA
00000°0 000000 000000 000000 000000 00000°0 000000 000000 000000 000000 YONA
LLYOL O 9L981°0 L2000°0 000€0°0 L8L6LO 000¥1°0 00€90°0 STrIT'0 YS19¥°0 €VL9€E°0 ENNA
00000°0 000000 000000 000000 000000 000000 000000 000000 000000 000000 NNd
0192L°0 Y1y o 610000 000100 695900 6L0LE0 886CC0 8C0LT0 861€9°0 L1200°0 INNd

NN*NA 27 % ,Aw*mw am*mw £7* lo X7 sd km*wﬂ X7 &g %N*Nn X7 g SNINA

Jo so[qerIeA UOISIOp [ejidsoy jo sonjea rewmndo oy, / ajqel

pringer

As



135

Annals of Operations Research (2023) 328:107-150

00000°0 000000 000000 000000 000000 00000°0 000000 000000 000000 000000 8CNINA
r600°0 9€080°0 96501°0 000000 000000 619L¥°0 8¥90°0 601S1°0 o 56000 LTNNA
S00¥L 0 ¢6200°0 SS100°0 000000 LLOETTT 8ILLSO GECSTO £859¢°0 w9180 1€2€S0 9CNINA
00000°0 000000 000000 000000 000000 00000°0 000000 000000 000000 000000 STNINA
S0£6£°0 LT€00°0 81€S0°0 000000 606061 096¢£°0 L861T0 YeLITO 000000 16L60°0 YeNINd
CIv8L0 081000 6861710 000000 06sEr'e S168S°0 Y0ST10 s861°0 LS8TY'0 €CSY9°0 €CNNA

NN%NAﬁ 27 4 ,AN*mw am*mw Lg* Ie X s km*vﬂ xXqk &y .«N*Nn xXqk g SONA

(panunuoo) 7 ajqey

pringer

Qs



Annals of Operations Research (2023) 328:107-150

136

€' 00°0TS'€LI 00:000000°92L°8  00'SPLE  00'81T  00'S81  00T81F  000000°000°L6SS  00LE  00000°S686E1  0ZNNG
879 00'11L°691 0OV P6I 0P T 009087 00'IFI 0091 00'9L8E  OL'OSS'OPLTZOS  00FF  09°80STHO9El  61NINA
6 00°618°091 OLSEEEHYPYTT  00TI9E  00F61  000SI  O0T6LE  OU'€9THLTIONS 001y €060E9II801  8INNA
619 00'97+°L91 BEL6E'PRIGOET 00168 00°SET  O0°EPl  000S6E  OI'OIF'6L8'89S'S 00Tk SOLILGOS6II  LINNG
£8°6 000SI'EET  00°000°00002LT  00°908%  O0LET  00°8IT  O0°EPIS  00000°000°69€'L  00°6S  00°000°S0S'SEl  9ININA
619 00:81Z°1L1 09'P8ETOSTIEE'T  00L66E  0090F  00'8FI  00966€  O00TIZE'L09'STOS  00Er  0£T00'60CTZI  SINNG
98'L 00 11H°LE] 0000009611 00°S6LE  00°S61  000LI  OOLIEE  000000°000920°S  00FE  0000000TSLOI  $INNG
699 00'9E 81 SOOP'00ELSH T 00908F  00°€9T  O0°ELI  00°09Tk  00°'800°P89'8S6'S  00'S  STSKTI09KI  €1NNd
6L9 00°6E1°LY1 00°000°000€9T°T  007TI9€  00FST  00IEl  007TL6E  00°000°0008SE'S  O0°'LE  00°000SZS'SIT  TIANA
019 10'7£8°991 06'PLSOSIISTT  00°SI8E  00T61  00'8F1  00'8Y6E  O8PIL'S69LTSS 001y OSEEHEr6'sll  11ANA
0L 00°ZSH'691 00°000°000°ST8  00'6IZE  00°S8 00TPl  00T6SE  000000°00046T°S  000F  007000°T8'66 01ANa
wy 00'SSL'SFT  00000°698° TS —  00°96¥€  006El  00°STI  O00'6SLE  00°000°000°08L°S  00°'IS  00°000°9€S'SE! 6NINa
'L 00°ST9'€S1 00'000°LS'69L  00°S98T  00°€ST  00F¥I  00TSIE  000000°000°ST6'F  00LE  001000°STS'ES 8NINA
€76 00°€S1°SLI 00:000000'880°T  00'€6YE 00101 00'6El  00'9TLE  00°000°0007T89°S  00FF  001000°6SL'SOI LONa
PSTL 000PL'SST  00°000°000°98F°T  00'8SIF  0098C  000EC  0069TS  00°000°000°9T8L 009 00°000°SOIIZI 9nNa
b0’ 00°SI8°IST 00°000°000°856  00TIOE 000691  00°SOI  00°SSTE  000000°0009Z°S  00Er  007000°891°S6 snma
W6t 00°065°T9 00000000000 00°€6PI  00LIL 0096 00ELIT  000000°000TSIE  00SE  00°000°STHOS pANG
019 00°0ZE°€91 LOTOTIE6OLY' T 00'S6LE  00°L9T  00'6El 00088 OSTLETOTO9H'S 0014  6£9L6'SETHII €nNa
9¢° 00°8€1°ZS1 000000009611 00°ST6T 0098 00TIT 00619 000000°000°IFI'S  00'6€  00°000°SE1'68 nna
$6' 00°5L8°T91 6VTE0'S80T06T  00°'S6LE  00'8ST  007TST  00°'S08E  06°TOSTEEIIF'S  00TF  LI'OZI0ILOTI 1NNa
22 2 s s s el X wx x wx
s10108y paroxduy SNINA

Jo s1030e} [eyrdsoy paroidwr oyy, g ajqel

pringer

As



137

Annals of Operations Research (2023) 328:107-150

S0' 00°061°LS1 00'000°0ST°S9F  00'8SYE  00°€6 0091 00LPOE  00°000°000°01SS 008 00000°0KT6FI  8ZNING
£6° 00922191 08'90K'T69°T€9T 00119 00SIT  000FI  00'69LE  O060T6TLILSE'S 001y 969SSTLTEIl LI
86' 00°F9H'€S1 TTSLO'991'006  00°'SL8E  0061F  006SI  O0'SLPE  OS'E68°9LS'E6T'S  00TH  SE'SS6'SER0El  9TNINA
€LL 00086'SIT 000000007891 00°€6F9 00981 00'0ST  00°S88F  00°000°000TSL9  00°IS 00000001461  STNNA
8 00°SLF'OP1 0TTLS'6IT9ES  00°STOE  00°9SE  00°€91  O0'8YEE  OTI9LL80'60T'S 006 SITIEPPIPEl  $ZNNG
909 00°€82°691 PTOTEEPS'SET'T  00LIGE  00'18E  00'6PI  00IS6E  00'6LOTI6TOOS  00Th  09°L8LOVHYTI €20
6 00'962°621 19°002°L9T°8IL  00'S6YE  00°88T  00'ISI  00'8IST  O009L'LESSILT 001y 9618LL989I1  TZNNA
0€'9 00°€ET0Y1 8E'E08 IHO8S8  00'6L6E  00HTT  00T91  00LSOE  OLT8YTE88I6T  00°€h  99°ELS'RIE9Z 12NN
22 2 s s s el X x x wx
s10108y paroxduy SNINA

(panunuoo) g ajqey

pringer

Qs



138 Annals of Operations Research (2023) 328:107-150

of our proposed approach is its consideration of sustainability and resilience in measuring
healthcare SC efficiency. Due to the pressures of social media, high competition, and pub-
lic awareness, managers should integrate sustainability and resilience into their decisions.
The proposed approach provides managers with a tool to deal with the sustainability and
resilience issues in the face of disasters.

The proposed approach also deals with different types of data. These can help managers
avoid making wrong the decisions leading to potential losses. Uncertainty in decision-making
is another key challenge for managers in the face of disasters. To mitigate the risks, managers
should not only apply appropriate approaches, they should also consider stochastic changes.
The proposed method in this paper is a suitable tool for dealing with uncertainty. The obtained
results show how the efficiency of healthcare SCs changes according to different Alpha
values. This, in turn, assists healthcare managers and decision makers with better planning
and resource allocation.

5 Conclusions and future research

The recent outbreak of Coronavirus resulting in an unprecedented crisis has negatively
affected countries all over the world. Healthcare systems play a key role in facing such
crises. Assessing the efficiency of healthcare SCs in disasters such as COVID-19 is critical.
However, doing so, particularly in the face of uncertainty, is a major challenge for managers.

Jomthanachai et al. (2021) and Matin et al. (2022) measured supply chain resilience using
DEA. Similarly, Kalantary and Farzipoor Saen (2022), Fathi and Farzipoor Saen (2021),
Mohtashami et al. (2021), Dey et al. (2021), Malesios et al. (2020), and Wang et al. (2020)
used DEA to measure supply chain sustainability. In all the cited papers, they used resilience
and sustainability factors in DEA. Then, the efficiency scores obtained from DEA were
interpreted as sustainability and resilience. In this paper, we proposed a new network RDM
model to measure the sustainability and resilience of healthcare SCs. The developed model
can deal with different types of data such as ratio, integer, stochastic, zero, and undesirable,
simultaneously. Furthermore, we used the CCP approach to deal with stochastic data. Finally,
we provided a case study to validate the proposed models. In sum, the study makes the
following contributions: (1) proposing a novel network non-radial RDM model to evaluate the
sustainability and resilience of healthcare SCs, (2) addressing different types of data such as
ratio, integer, undesirable, stochastic, negative, and zero, simultaneously, (3) recommending
how to enhance the inefficiency of healthcare SCs, (4) presenting a case study.

The results demonstrated how well our proposed method can evaluate the sustainability
and resilience of healthcare SCs in view of different types of data. In addition, the results
showed that under different conditions, the efficiency of healthcare SCs changes. Another
contribution of this study is that it can support healthcare managers and decision makers
in identifying and tracing inefficient resources. This allows them to then concentrate on
bottlenecks and take remedial measures to improve the performance of sustainable-resilient
healthcare SCs.

Owing to limitations in gathering data in this study, we identified 14 indicators for
evaluating sustainable-resilient healthcare SCs. Nevertheless, other indicators that could
be applied to assess sustainable-resilient healthcare SCs. Using the proposed method, we
suggest researchers study translation invariance property in network DEA and measure the
performance of healthcare SCs.
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