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Abstract
Managing organ transplant networks is a complex task. It intertwines between locating the
organ procurement and distribution organization (OPDO) (long-term decision) and allocating
organs to the suitable destination (short-term decision). The literature lacks deliberation on
the effect of those long-term decisions on short-term ones under the influence of clinical
and non-clinical factors. This paper addresses this gap using a k-sum model for locational
choice, and a discrete simulation approach for the allocation procedure for a real-life case
study from a developing economy perspective. The study explores the trade-off between
efficiency (distance-centric models) and equity (the result of time-centric allocation models).
Our analysis of the efficiency of locational models and equity of the allocation policies reveal
strong inter-dependence of both these decisions, a significant finding of this research. These
findings offer an integrated model for high-level decision-makers, which can be used during
the locational planning stage and provide input to design standard operating procedures for
transplantation schemes.
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1 Introduction

Humans are no longer worried about famine and plague, as longevity has improved over
time through medical advancements in knowledge and technology. Nevertheless, deaths due
to organ failures are significantly reported across the globe (TCSM, 2019). Organ trans-
plantation remains the most preferred option to treat organ failures (Barker & Markmann,
2013). The process involves harvesting a healthy organ from a donor and transplanting it
to a matching recipient selected through an allocation policy that meets key operational
factors such as time and distance. Thus, it is imperative to consider the limited shelf life
of the explanted organ, which is referred to as Cold Ischemia Time (CIT), before it must
be distributed and transplanted to a recipient. Owing to this significant control factor, the
distribution of explanted organs is limited to a maximum coverage distance in each region,
depending on the topography. Thus, it is essential to save human life through controlled
distribution measures and replace failed organs within the stipulated time. This scenario is
especially true for kidneys, the organ of interest in this paper.

In this context, it is imperative to look at the stages of the overall decision-making process
leading to kidney organ transplantations. Two stages of this decision-making process stand
out. First, the Organ Procurement Development Organisation (OPDO) location stage is an
irreversible long-term decision (Belien et al., 2013). The policy entails OPDOs to procure
kidneys for transplantation, and organs cannot be transported from one Transplant Center
(TC) to another. Second is the recipient matching stage, in which explanted organs from
deceased donors procured by the OPDOs are assigned to a suitable recipient (Bruni et al.,
2006) with due adherence to maximum coverage distance. Any significant deviation in either
of these stages may affect the organ supply, widening the demand–supply gap of kidneys
and resulting in organ wastages. The gap may also lead to a longer wait time for the patients
and reduce the chances of prolonging their lifespan. Nevertheless, the demand for kidneys
increases continuously due to new patients needing transplants (Lucey, 2000). Therefore, the
location decisions of OPDOs and subsequent organ allocation policies deserve a thorough
examination to understand their implications on the design of an efficient and equitable kidney
transplant system (Bruni et al., 2006).

To the best of our knowledge, the extant literature does not deliberate enough on the travel
distances of explanted organs from the OPDOs to the TCs and their consequent impact on the
distribution of waiting times among the patients. In addition, our review identifies that while
integrated location-allocation studies are available in the literature, they do not sufficiently
examine the fundamental notions of the trade-off between distance and time. The authors
believe that managing the kidney transplant process in this way captures the complexities
of stakeholders’ decision-making steps and significantly increases the chances of patient
survival in the long run. Thus, policymakers must adopt a customized locational model
for equitable organ distribution. Therefore, we propose to address this gap by studying the
choice of OPDO locations (and the associated organ travel distances) and their consequent
effect on the kidney allocation policies (and the associated distribution of patient waiting
times) in an integrated manner. More specifically, this work aims to answer the question: Do
OPDO locational decisions made from the family of k-sum models have a trade-off effect
on the efficiency and equity of the kidney transplantation process from the perspective of a
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developing economy? In this paper, ’equity’ refers to patients’ waiting time across different
blood groups (Zenios et al., 2000), and equitable solution refers to ‘minimum average waiting
time’ for the patients across all the blood groups. Similarly, ‘efficiency’ refers to the ‘minimum
average distance’ traveled by the explanted organ from a designated OPDO to the registered
hospital of patients.

The contribution of this paper ismulti-fold. Firstly, to our knowledge, this pioneering study
addresses equity and efficiency from a long-term, locational impact perspective. Secondly,
the deliberations may serve as a reference framework for policy and operational decision-
makers to choose health care location models. Thirdly, it is the first to explore the equity
and efficiency issue in a populous developing economy and where there is heavy demand for
scarce organs such as kidneys. Fourthly, the study provides a customized OPDO locational
model for stakeholders that would facilitate controlling the patient waiting time and result in
better equity.

The remainder of this paper is structured as follows: Sect. 2 reviews the background
literature. Section 3 presents a k-sum model for the facility location problem and illustrates
its application in a real-life case. Section 4 simulates the real-life application to assess the
impact of the location choices on the waitlist patients. Section 5 discusses the results and
insights from the models. Finally, Sect. 6 concludes the paper with limitations and future
research directions.

2 Literature review

Extant literature on the design of organ transplantation networks acknowledges that the
associated decision-making process is a complex one that involves both clinical and non-
clinical factors (Afshari & Peng, 2014). Therefore, we find that researchers have approached
this problem from the following perspectives: First, the location of the OPDOs is viewed as a
strategic or a long-term decision. Second, given the OPDO locations, allocation of the organs
is viewed as a tactical or short-term decision. Third, an integrated approach towards location
and allocation combines the long-term decisions and ties them with the short-term ones.
Further, we also find that healthcare scenarios deserve a specific perspective, depending
on the objective of the problem. Thus, this section deals with a brief review of literature
deliberating location models, allocation models, and integrated models with both location
and allocation choices in the organ transplantation domain, and they are presented in the
same order.

2.1 Locationmodels

The location of anOPDO affects the immediate distribution of organs across different regions
of a country. Their location is vital in procuring donated organs in a specific area and allo-
cating them on priority to recipients on the waitlist. In general, the classical location models
can be categorized into three groups based on their objective functions: set covering (mini-
mizing facility costs), minimal covering (P-center/P-median models), and maximal covering
(maximize demands).

Over the years, the locationalmodel studies have evolved to account for various constraints
and requirements of the researchers. These studies address different factors and attributes
in the following combination: facility cost; demand, and distance [un-capacitated facility
location models (Belien et al., 2013)]; minimizing maximum service distance (Toregas &
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Revelle, 1972); maximize the distance covered (Church, 1974; Church & Revelle, 1974;
Toregas et al., 1971).

Past research has also shed light on facility location models applied to healthcare services.
The P-center and P-median models are predominantly used in these services. Further, the
research topics on the healthcare location reveal some interesting trends: The earlier studies
focus on the location of generic healthcare services (Church, 1974; Church & Revelle, 1974;
Heller, 1989; Hodgson, 1986; Hodgson & Rosing, 1992; Huang et al., 2010; Ramos et al.,
1999; Sasaki et al., 2010; Toregas et al., 1971; Toregas & Revelle, 1972). Although these
studies explore the location under different healthcare scenarios, their primary focus tends
to be a methodical contribution, emphasizing benchmarking of their proposed algorithms.

Although such approaches can lead us to an optimal design configuration from the per-
spective of cost, distance or demand, these approaches do not consider the organ-specific
design. The later healthcare location studies have adopted this approach (Refer Table 1)
from (a) single organ-specific location design and (b)multiple organ-specific location design
perspectives. Besides, literature has contextualized different organs such as the liver (Belien
et al., 2013; Kong et al., 2002; Kong, 2006; Stahl, 2005), kidneys, heart, and lung (Belien
et al., 2013). Also, some studies have focused on the CIT factor, unique to organ transplant
networks (Belien et al., 2013; Kong, 2006; Kong et al., 2002; Stahl, 2005).

Further, the research in this area attempts to characterize the number of procurement
and TCs to be open, which are constrained in various ways. For example, the deliberations
by Kong et al. (2002) and Kong (2006) focused on the location of liver TCs, in terms of
configuration to maximize not only intra-regional transfers (local primacy); but also inter-
regional transfers (national primacy). Further, Stahl et al. (2005) extended the study with
a detailed analysis to identify the optimal configuration of transplant regions in the USA,
considering OPDO as both procuring and distributing unit, employing national primacy.

In summary, all the locational studies focus on designing the healthcare networks by
considering the states as separate regions and employing primacy rules to study the effects of
using mathematical models or simulation tools. Also, we observe all these approaches to be
algorithmically effective in handling locational decisions. However, the limitation of these
methods is that they address only the long-term decisions (OPDO locations) and show less
evidence of capturing their impact on the short-term decisions (organ allocations).

2.2 Allocationmodels

Unlike locational decisions, allocation model decisions are short-term in nature and refer
to the task of allocating an explanted organ to recipients based on their clinical history
and other factors (Stegall, 2005). In general, the extant allocation literature underscores
the importance of appropriate allocation policies which make the transplantation procedure
successful (Meyers et al., 1999). Further, the allocation procedure is specific to the type
of explanted organs and clinical factors of patients, which is due to the variation in the
CIT for different organs (Colajanni & Daniele, 2021; Watson & Dark, 2012). Furthermore,
our review finds that the allocation literature considers at least one clinical factor for organ
transplantation.

The literature shows two modeling approaches for allocation policies, qualitative and
quantitative (Table 2). Similar to location literature, we find a distinct trend with past studies
focusing on qualitative models and adopting rigorous quantitative models later. It is perti-
nent to note that significant advantages of pursuing a qualitative allocation policy are: (a)
Qualitative approaches can be easily changed or updated under prevailing clinical advances
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Table 1 Literature on location models

Sources Problem/Objective/Method/Organ/Factors Major findings

Belien et al. (2013) Problem: Designing TC locations;
Objective: Minimize travel time between
donor notification and donor arrival;
Method: MILP model; Organ; Multiple;
Factors: Clinical and Non-clinical;

When cold-ischemia times are
important, it is better to open
fewer centers, and this comes
at the cost of a lower service
level. When travel times are
important, opening more
centers is optimal, which
increases service level

Toregas & Revelle
(1972)

Problem: Location of Emergency healthcare
services; Objective: Minimize maximum
service distance; Method: Linear
Programming, Reduction rules; Organ:
None specified; Factors: Non-clinical

Linear programming, along
with reduction techniques, can
give better quality solutions

Church & Revelle
(1974); Church
(1974); Toregas et al.
(1971)

Problem: Public facility location; Objective:
Maximize the total distance served;
Method: MILP and Heuristics; Organ:
None; Factors: Non-clinical

Proposed heuristic algorithms
perform well when data
contains dense areas where a
central facility can be located.
Also, addressing mandatory
coverage constraint in the
mathematical model yield
better solutions than classical
set covering problems

Sasaki et al. (2010) Problem: Emergency response service
location; Objective: Enhance Emergency
service by reducing ambulance response
times; Method: Genetic Algorithm; Organ:
None; Factors: Non-clinical

Data-driven ambulance
reallocation strategy resulted
in a significant reduction in
the average time to respond to
calls

Kong et al. (2002);
Kong (2006)

Problem: Liver transplantation center
location; Objective: Maximize total liver
transplants invoking inter/intra-regional
transfers; Method: MILP; Organ: Liver;
Factors: Clinical

The number of liver transplant
coverage increased using a
limited number of centrally
located TCs

Stahl (2005) Problem: Liver transplantation center
location; Objective: Methodological
framework for determining optimal
location configuration maximizing
allocation efficiency; Method: Integer
Programming model; Organ: Liver;
Factors: Clinical and Non-clinical

Results indicate the presence of
a trade-off between allocation
efficiency and geographic
equity

Heller et al. (1989) Problem: Locating emergency medical
service; Objective: Minimizing mean
response time is the primary objective and
considering workload constraints; Method:
Two models: P-median transportation
problem in conjunction with simulation;
Organ: None; Factors: Non-clinical

The p-median transportation
model performs well in
predicting mean response
time reduction under facility
workload restrictions
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Table 1 (continued)

Sources Problem/Objective/Method/Organ/Factors Major findings

Hodgson (1986) Problem: Location design under facility
sizes and patron distances; Objective:
Optimization under different facility sizes
and patron distances; Method: Successive
inclusion of facilities using modified
gravity models; Organ: None specified;
Factors: Non-clinical

Modeling hierarchies with a
negative exponential version
of gravity models result in
consistent predictions

Hodgson & Rosing
(1992)

Problem: Location of service facilities;
Objective: Minimize the cost of serving
two different types of demand when
selecting the location of facilities; Method:
MILP; Organ: None specified; Factors:
Non-clinical

The p-median model is more
susceptible to inferior
solutions than flow-capturing
solutions for the small-scale
problems tested

Huang et al. (2010) Problem: Location of emergency health care
systems; Objective: Location design under
large-scale emergency scenario; Method:
Dynamic programming and MILP; Organ:
None specified; Factors: Non-clinical

Proposed dynamic
programming algorithm able
to get reasonable quality
solutions compared to other
exact methods

Ramos et al. (1999) Problem: Location of Secentersentres;
Objective: Minimize distances; Method:
Multi-objective 1-median Model; Organ:
None specified; Factors: Non-Clinical;

Proposed algorithms can
efficiently locate facilities
under multiple median-type
objectives

(Pritsker et al., 1995). (b) They also offer advantages in terms of measurable progress in the
access to organs by different demographics (Poli et al., 2009; Starzl, 1987). (c) Although
qualitative studies are subjective and difficult to replicate in a different scenario, they enjoy
the advantage of user-friendly nature, easily decoded by decision-makers (Pritsker et al.,
1995).

In the qualitative models, allocating explanted organs is done by assigning points to
patients and is the widely adopted approach. In addition, these models tend to differ in the
type of factors considered for organs. For instance, Pritsker et al. (1995) studied the problem
of allocating livers based on a patient’s score on multiple dimensions based on clinical status,
waiting time, and blood type compatibility with donors. A candidate ranked first or highest
by the allocation policy is offered with the recovered organ. In another qualitative model,
Starzl et al. (1987) proposed a multifactorial system for allocating cadaveric kidneys based
on clinical and non-clinical factors such as waiting time and logistical factors.

Contrary to the qualitative approaches, we find that quantitative approaches focus on
myopic allocation aspects. Nevertheless, these studies have explored characteristics of the
allocation policies with greater analytical depth. For example, Zenios et al. (2000) studied the
performance of kidney allocation policies on clinical efficiency and equity criteria. Similar to
our study, equity from their context is themeanwaiting times across patient types. They found
that the points allotted for waiting time exceeded every other criterion and prioritized those
who came first on the waiting list. In a related study, Zenios (2002) developed aMonte Carlo
simulation model for validating four different kidney allocation policies that differ in the
extent of control kidney exchanges. The patient and donor characteristics were dynamically
simulated in addition to the patient and graft survival rates and quality of life. The proposed
method was found to be effective in comparison with the existing points-based system.
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Table 2 Literature on allocation models

Sources Problem/Objective/Method/Organ/Factors Major findings

Pritsker (1995) Problem: Performance of Allocation
Policies; Objective: Identifying efficient
organ allocation policy; Method:
Multi-criteria Point Ranking Scheme;
Organ: Liver; Factors: Clinical;

Allocation policies perform
similarly in predicting total
deaths; No change is warranted
in the existing system;

Starzl (1987) Problem: Method: Ranking
scheme;Objective: Multifactorial
Equitable Selection; Organ: Kidney;
Factors: Clinical and Non-clinical

Multifactorial equitable selection
policy performed well in
comparison to manual for over
95% of the cases; Exceptions
were managed by surgeons

Aldea et al. (2001) Problem: Conceptual (Multi-agent
Architecture); Objective: Achieving
coordination between stakeholders
(agents); Organ: Multiple; Factors:
Clinical and Non-clinical;

Proposed multi-agent architecture
able to perform better
coordination between different
stakeholders

Zenios et al. (2002) Type: Queuing model; Objective: Organ
allocation; Organ: Kidney; Factors:
Clinical

A centralized system that tightly
controls the exchange system’s
size and invokes indirect
exchanges when appropriate
experiences short waiting times

Zenios (2000) Objective: Efficiency (Clinical) and Equity
(Likelihood of transplant, Waiting time);
Organ: Kidney; Factors: Clinical and
Non-clinical

Equity—Efficiency trade-off can
be alleviated by employing an
appropriate organ allocation
policy that explicitly addresses
this trade-off

Davis et al. (2013) Problem: Impact of allocation policy
changes at the system level for wait times;
Objective: Allocation model to assess wait
times; Method: Discrete event simulation;
Organ: Kidney; Factors: Clinical

Waiting times of AB and B blood
groups are difficult to predict
compared to O and A blood
groups

David & Yechiali
(1985)

Problem: Decision on acceptance-rejection
of a kidney offer for a single patient;
Objective: Devising optimal policies for a
decision on kidney offer; Method:
Birth–death process; Organ: Kidney;
Factors: Clinical

Identification of time frame for
acceptance-rejection of a
kidney offer

David & Yechiali
(1995)

Problem: Decision on acceptance-rejection
of a kidney offer for multiple candidates;
Objective: Devising optimal policies
under different supply–demand scenarios;
Method: Sequential stochastic assignment
model; Organ: Kidney; Factors: Clinical

The total expected reward based
on immediate and delayed
offers is optimal for a minimal
supply of organs. This reward
will be higher for patients with
rare clinical attributes;

Poli et al. (2009) Problem: Developing Advanced Clinical
Kidney allocation algorithm; Objective:
Efficient kidney allocation; Method:
Advanced clinical factor algorithm;
Organ: Kidney; Factors: Clinical

The proposed method has the
potential to use the organs
judiciously

Colajanni & Daniele
(2021)

Problem: Distribution of Organs from TC to
Transplant Centers; Objective:
Minimizing distribution Cost; Method:
MILP under uncertainty; Organ: Multiple;
Factors: Clinical and Non-clinical

The proposed mathematical
model can find reasonable
solutions for small-scale test
problems
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Later, decision support systems were also implemented based on the simulation models.
For instance, Davis et al. (2013) developed a simulationmodel, KSIM, that involved the input
of data characteristics, kidney transplant system simulation framework design, and output
analysis on the effect of geographic disparities and alternative organ allocation policies. The
proposed model was used to study the effect of different allocation policies on the waiting
time of the patients in the waitlist.

Recently, the allocation literature pointed to optimizing the organ transplant network’s
distribution cost during the transplantation process (Colajanni &Daniele, 2021). The authors
propose a mathematical model to allocate the explanted organs across different healthcare
facilities to minimize the total distribution cost while taking care of clinical factors.

Allocation policies in all these studies assume that once organ matching is successful, the
offered organ is accepted by the patient. However, the patient also has an option to reject and
wait for a better match. Such an approach is found in the works of David and Yechiali (1985,
1995). The fundamental notion is to model acceptance as a stochastic process. However, as
the authors observe, the optimal policies devised in these studies are analytically intractable
for large-scale problems.

The allocation literature has also recognized the difficult task of coordination between
various stakeholders for transplantation, which results in complexities ranging from legal,
clinical, and organizational to human dimensions. Therefore, extant literature has also pro-
posed a multi-agent perspective to address these issues (Aldea et al. 2001).

As mentioned above, the review confirms that the allocation policies are short-term, the
decisions during this process span a few days, and the focus is primarily on clinical matching.
Although distributional aspects are also addressed (Colajanni &Daniele, 2021), it is not clear
from these studies how the long-term, irreversible location of key central facilities such as
OPDO impacts organ travel distances and patient waiting times, which is our paper’s focus.

2.3 Location and allocationmodels

In the light of the observations made in previous sections, researchers have long stressed the
need for integrated location and allocation decisions in healthcare (Afshari & Peng, 2014).
Further, integrated location-allocation decisions deserve due attention for several reasons:

• Firstly, since location decisions are not easily reversible, they have a long-run effect on the
subsequent allocation mechanisms, especially amidst the growing demand–supply gap.

• Secondly, the number of OPDOs has a direct relationship with the availability of deceased
donors for the OPDOs and thereby affecting the number of transplanted patients later; and

• Thirdly, it is of interest to the policymakers to study the location of healthcare facili-
ties and its impact on equity and efficiency issues, which can be understood entirely by
incorporating the allocations mechanism in the locational decision-making process.

In an earlier study addressing this gap (Table 3), Bruni et al. (2006) developed a TRALOC
model, based on P-median, to locate and allocate organs by considering the roles of procure-
ment and distribution ofOPDOs in Italy. They stress the proper location ofOPDOs in ensuring
a fair (minimizing distance) and equitable transplant system (minimum waiting time). How-
ever, the objective function in their study does not capture the flexibility of selecting one of
the P-center, P-median, and P-center-beta models. An essential distinction in our study is the
ability of the locational model to explicitly capture this selection using a parameter called
‘k’ that can be useful for policymakers.

Furthermore, Belien et al. (2013) propose an integrated location and allocation model to
minimize an organ’s time outside the body. Under this condition, the authors suggest that
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Table 3 Literature on integrated location-allocation models

Sources Problem/Objective/Method/Organ/Factors Major findings

Afshari & Peng (2014) Problem: Review of Literature; Objective:
Synthesis of literature; Organ: Multiple;
Factors: Clinical and Non-clinical

Lack of comprehensive
models that integrate
location considerations
with tactical or operational
considerations

Bruni et al. (2006) Problem: Identification of TC location while
balancing wait list; Objective: Minimize the
distance between center to center while
minimizing wait list length; Organ: Multiple
(Kidney, Liver, Heart); Factors: Clinical and
Non-clinical

Models that consider wait
list length explicitly have
the potential to reduce the
length compared to models
that do not;

Belien et al. (2013) Problem: Identification of TC location;
Objective: Minimize the time organ
becomes available until transplantation into
recipient’s body; Method: MILP; Organ:
Multiple (Kidney, Liver, Lung, Heart,
Pancreas); Factors: Clinical and
Non-clinical

When CIT is relatively more
important than total travel
times of organ and
recipient, centralizing the
facilities is better but at a
lower service level

Zahiri et al. (2014) Problem: Design of transplant networks under
uncertainty; Objective: Minimize total cost
and waiting time for transplantation;
Method: Multi-objective, Multi-period
location-allocation model; Organ: Multiple;
Factors: Clinical and Non-clinical

Both stochastic models were
proposed to yield the same
number of TCs for Iran.
Under uncertainty, the
stochastic model results
are similar to deterministic
models with the
centralization of facilities
for congested areas. For
sparse areas, one stochastic
model yields reliable
results with more TCs
accessible to patients

Aghazadeh et al. (2017) Problem: Design of transplant networks
including clinical factors; Objective: Reduce
total cost, maximize the number of expected
donors and minimize total organ shipping
time; Method: Multi-objective MILP;
Organ: Multiple; Factors: Clinical and
Non-clinical

Total organ shipping times
exhibit more sensitivity to
parameters followed by the
number of expected
donors; Total cost of
transplant is the least
sensitive of all

Hodgson & Jacobsen
(2009)

Problem: Capturing Irrational behavior of
recipients in location-allocation design;
Objective: Minimize the negative effect of
irrational behavior (patrons traveling to
farther facilities termed as irrational);
Method: Hierarchical P-median model;
Organ: None specified; Factors: Non-clinical

Modeling the irrational
behavior of recipients
results in the total distance
traveled by recipients
increasing slightly

Rouhani et al. (2021) Problem: Organ transplantation network
design; Objective: Maximize network
responsiveness while minimizing total cost;
Method: Possibilistic programming; Organs:
Multiple; Factors: Clinical and Non-clinical

Among the three possibilistic
programming methods
proposed, the realistic
approximation method
provides better solutions
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the centralization of facilities may result in less patient travel time. Our objective differs by
addressing organ travel distances and patient wait times for organ delivery in the decision-
making process. While the locational decision stage considers distance explicitly, wait times
are the result of allocation policy in our model. Related studies have also addressed multiple
objectives: Zahiri et al. (2014) propose a multi-objective cost and time model in designing a
transplant network under uncertain conditions. A related study by Aghazadeh et al. (2017)
developed a multi-objective model for organ transplantation networks. The model had three
objectives for designing an effective decision-making system. Their study reveals that organ
shipping times prioritize the number of expected donors and the total cost of transplants.

Recently, Rouhani et al. (2021) proposed a bi-objectivemodel for organ transplant network
design, focusing on maximizing network responsiveness while minimizing the total cost of
transplantation with due consideration of clinical and non-clinical factors. These studies
examine the impact on equity or clinical efficiency in a multi-organ context. Although multi-
organ network design covers a wide range of requirements, it is argued that designing a
single organ transplant network may result in a more equitable system (Bruni et al., 2006).
Therefore, this was one of the motivations to look at a single organ context (kidney). Thus,
our study differs from these by examining efficiency in the notion of distance traveled by
explanted organs and equity in terms of patient waiting times to receive the organs using
clinical and non-clinical factors in kidney transplantation.

In summary, our detailed literature survey reveals a notable gap in understanding the
consequential effect of locational choice on kidney allocation in the decision-making mech-
anism and the implicit trade-off between equity and efficiency. These proposed models also
lack inherent flexibility in choosing locational models in the first stage. Further, it is unclear
from the existing studies whether building such flexible locational models can influence effi-
ciency and equity. We posit that building flexible locational models is the key to unlocking
more OPDO choices that can positively influence the patient waiting times and reduce organ
wastage. Therefore, the study endeavors to address this gap.

3 Models for efficiency and equity in organ transplantation

Our proposed integrated model relies on a single iteration mechanism, where we first choose
a set of OPDOs from the available list of all TCs using a mathematical model. The chosen set
of OPDOs is then used for the organ allocation process to study the distribution of waiting
times. Figure 1 depicts the overall modeling process.

We propose a mathematical model for locating OPDOs that fundamentally addresses the
notion of ‘distance’ to capture the ‘efficiency.’ Traditionally, the model belongs to a family
of the k-sum model used for locational decisions in the literature.

3.1 Locationmodels

We use a generalized version of the P-median model, the k-sum model, which is flexible
enough to characterize the averages by optimizing the sum of ‘k’ worst outcomes and is
ideally suited to study the problem we address. Such an approach towards optimizing ‘k’
worst outcomes enables the decision-maker to select one of the following locational models:
(1) P-center model, (2) P-median model or (3) P-center-beta model.

Specifically, we use a version of the k-sum model rooted in the idea proposed by Fillippi
et al. (2017) to study the effect of locational decisions on the subsequent kidney allocation
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Fig. 1 Decision-making Process for Efficiency and Equity in Kidney Transplantation

stage. The P-median, P-center, and P-median models can be derived from this base model by
changing the value of ‘k.’ The notations, variables, and indexes used in this paper are given
here.

3.1.1 Indices

i, Demand TC index range 1,…N
j, OPDO index range 1…M

3.1.2 Sets

N , Total number of TCs
M, Number of OPDOs
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3.1.3 Parameters

Dij, Distance between demand TC i and OPDO j
P, Number of facilities (OPDOs) to locate
C , Coverage constraint on the Cold Ischemia Time (CIT) in terms of distance.
k, Number of TCs to be considered as the average maximum distance.

3.1.4 Decision variables

u, A continuous variable to optimize obtaining the minimum of the maximum distances.
vi , A continuous variable to obtain the most significant average outcome of the subset of

k outcomes for TC i.
Xj, A binary variable takes 1 if the OPDO j is designated, 0 if not
Yij, A binary variable that takes 1 if the demand TC i is covered by the OPDO j or 0 if not

3.2 k-summodel

min k ∗ u +
n∑

i=1

vi

Subject to:

m∑

j=1

Yi j = 1,∀i, i in 1, . . . , n (1)

Yi j ≤ X j∀i, j, i in 1 . . . n, j in 1 . . .m (2)

m∑

j=1

X j = P (3)

Di j ∗ Yi j ≤ C ∀i in 1 . . . n, j in 1 . . .m (4)

k ∗ u + k ∗ vi ≥
m∑

j=1

Di jYi j∀i, i in 1 . . . n (5)

where,

X j =
{
1, if OPDO j is assigned
0, Otherwise

Yi j =
{
1, if demand transpant centeri is covered by OPDO j
0, Otherwise

u ≥ 0

vi ≥ 0

The objective function minimizes the average and maximum distance of the worst-case
outcome. Constraint (1) ensures that the demand of each TC is satisfied by exactly one of
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the designated OPDOs among the candidate TCs. Constraint (2) stipulates that the demand
at each TC is taken care of by the designated OPDO associated with it. Constraint (3) is
the number of OPDOs to be located and is specified by the modeler. Since the explanted
organ must travel to the hospital within the CIT, this coverage constraint is taken care of by
(4). Constraint (5) ensures that the sum of average and maximum (worst-case) distance for a
given TC is at least as significant as the total distances of all the TCs served from designated
OPDOs. A critical observation in this location model must be recorded here is that CIT is
treated indirectly as a distance rather than the actual time.

4 The organ transplantation case of Tamil Nadu

The analysis primarily depends on the value of ‘k,’ the primary decision-making parameter
in selecting the one among three, i.e., P-center, P-median, or P-center-beta models. Lower
values of k make the model minimize the worst-case distance, and higher values of k drive
the model closer to minimizing the average distance. Thus, k = 1 implies the P-center model,
and k = N indicates a P-median model. Any value of k between 1 and N indicates a trade-off
with a newmodel, namely the P-center-beta model. This flexibility in the model specification
captures the underlying tension of distance (captured explicitly in the locational stage) and
waiting time (implicitly as a derivative of the locational model studied in the allocation stage).
We choose to explore this model in the context of OPDOs located in Tamil Nadu state, India,
for the reasons discussed in the following paragraph.

Tamil Nadu is one of the 29 states in India, having a population of 67.9 million, and is also
one of the most developed states of India in terms of the Human Development Index. The
choice of this state for the case study is motivated by the number of transplants post-2008.
The state has seen many surgeries in the recent past (Srinivasan, 2013). This state has set the
standards for others because of its pioneering effort to increase the number of donations in
the form of the Cadaver Transplant Program (CTP). Fifty-eight hospitals, which act as TCs,
have registered for organ sharing in the Cadaver Transplant Program. About 29 of these TCs
are concentrated in Chennai, and the remaining are dispersed in other state regions. Without
loss of generality, we assume k = 1 for the P-center model, k = 29 for the P-center-beta
model, and k = 58 for the P-median model for the rest of the analysis study.

Since most TCs are in the Chennai district, collectively, we call the TC in this district a
‘dense cluster’ and the rest of the TCs a ‘sparse cluster.’ Tamil Nadu has been divided into
three zones, North, South, andWest comprising different districts for effectively utilizing the
harvested organ without wastage. Each zone currently comprises one major OPDO that takes
care of the transplantation process and follows local primacy rule (i.e., priority for patients
in respective zones) for kidney allocation.

The geographic location and demand data are downloaded from the Tamil Nadu Network
for Organ Sharing (TNOS) and the Transplant Authority of Tamil Nadu (TRANSTAN)
website (TNOS, 2018; TRANSTAN, 2018). Further, distances between TCs and designated
OPDOs are computed from a pairwise-distance matrix. The coverage distance for the organ
has been fixed at an upper limit of 300 km, as a proportional value of CIT.

In addition, we study the model sensitivity towards the number of TCs to be designated as
OPDOs. This is done by varying the values of ‘P’ (i.e.,P= 2, 3&4) to check the robustness of
the location model and the consequential impact it has on the subsequent allocation process.

The mathematical model was implemented using the public domain data on the patient
waiting lists of 1825 patients in the ILOG CPLEXOPTIMIZATION STUDIO software. The
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Table 4 Descriptive Statistics for distances in K-sum (P = 3) approach

K = 58
(P-median)

K = 1
(P-center)

K = 29
(P-center-beta)

Mean distance 35.65 50.55 37.28

Standard deviation (SD) 56.14 56.15 54.26

Sample variance 3152.49 3153.08 2944.79

Minimum 0 0 0

Maximum 209.98 146.60 212.76

Coefficient of variation (SD/Mean) 1.57 1.11 1.45

model solution will consist of the value of 1 for binary variables associated with the terms
Xj and Yij. We use this information to compile the distances between each TC and their
designated OPDO to arrive at the results presented in Table 4 for a 3-OPDO scenario. We
chose this for presentation because there are three designated OPDOs currently in operation
in Tamil Nadu.

Table 4 allows us to examine the efficiency of the locational model. The P-median model
outperforms other models in the primary metric, namely, the mean distance of 35.65 kms
travelled by the explanted organs. This result was expected because it considers all the candi-
date TC for distance minimization. However, as shown in Table 4, the worst-case (maximum)
distance is higher for the P-median and P-center-beta models than for the P-center model,
which has the lowest value. It is observed that the standard deviation is comparable across
all three models. Further, we expected the P-center model to outperform the P-median model
in the metric CV because of the minimization of worst-case distance (a single hospital out-
come), which may increase the mean distance. It turns out that the CV is indeed the lowest
for the P-center model compared to others, with 1.11. Thus, the P-center model scores better
on two other metrics. This indicates that the P-center model is the best choice if maximum
coverage distance or CV is of priority.

The initial results applying the locational model to real-life data for a three OPDO require-
ment reveal the performance of the P-median model as superior compared to others from an
efficiency perspective when mean distance is used for comparison. However, as we contend,
an efficient model need not be equitable because the equity aspect of waiting time or clinical
attributes is not addressed in the model. The remainder of the analyses attempts to validate
this hypothesis. The TCs selected by the model is the designated OPDOs for the allocation
procedure.

4.1 Allocationmodel for equity in organ transplantation

An allocation model is a natural consequence of facility location. Our study implies the
designation of OPDOs as hubs and the associated TCs as spokes. The organs arriving at
OPDOs are allocated for the patients registered in the associated TC. Thus, the locational
choice made in the previous model has an important bearing on the long-term outcome of
organ allocation because the efficiency is already ‘fixed’ by the locational model at this stage.
In our allocation model, we use a discrete probability simulation to study the effect of OPDO
locational choice on the equity of allocation. A fair allocation of the organs to all the patients
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Table 5 Sample of Simulated Donor Arrivals

Organ number Date of arrival
(Forecasted using CMA)

Blood group
(Simulated)

OPDO zone
(simulated)

Hospital
(simulated)

1 01-01-2014 A North Apollo

2 01-01-2014 O North Apollo

3 01-01-2014 B North Apollo

4 01-01-2014 O North Apollo

5 01-01-2014 O North Apollo

6 01-01-2014 B North Apollo

7 01-02-2014 A North Apollo

8 01-02-2014 O North Apollo

9 01-02-2014 B South Frontline

10 01-03-2014 B North Apollo

should result in an ‘equitable waiting time distribution of average waiting time’ for all the
blood groups in all the zones.

4.1.1 Data source

This model aims to test the allocation policy based on public data from the Tamil Nadu state
health care department (TRANSTAN). The organ transplantation data of 2014 (275 kidney
donations) consisting of historical donor monthly arrivals and their blood groups, individual
hospital contributors, and benefactors’ data forms the basis for simulating organ arrivals. We
assume this data represents a best-case scenario because, after 2015, no detailed statistics
regarding donor arrivals were published on the website.

Monthly donor data with details on the blood group and the contributing hospital from
January 2014 to March 2014 and April 2015 to December 2016 is computed through fore-
casting (Central Moving Average). Without loss of generality, we assume that the arrivals
happen during the first day of eachmonth. For instance, if we assume there are three deceased
donors in January 2014, six kidneys will be available on January 1, 2014. Further, the blood
group and OPDO zone to which these donor arrivals belong are simulated using the historical
data from this report (Appendix 1, Table 1) using a simple discrete probability simulation. A
sample of the forecasted donor arrival data for January and February is provided in Table 5.

These generated organ arrivals are allocated to recipients from waitlist data on the
TRANSTAN website (Table 6). The waitlist consists of individual patient details with the
registration date, hospital, and blood group. The rank within a zone, computed based on the
blood group & hospital zone combination by TRANSTAN, is also available on the waitlist.

4.1.2 Recipient matching process

Once a donor organ arrives with a specified date and blood group at a designated OPDO, it
is ready for the recipient matching process. Recipient matching is crucial in transplantation
as it impacts the equity and efficiency trade-off. The recipient matching process in our study
closely mimics the actual matching process and is governed by the assumptions already listed
in Sect. 3.3.1, adding the assumptions mentioned below.
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Table 6 Sample of Waitlist of recipients maintained in the registry

Sl. no. Blood
group

Hospital Registered date
(mm/dd/yy)

Hospital
zone

Rank within
zone

1 O Kovai Medical Center
and Hospital,
Coimbatore, India

11/30/2009 West 1

2 A Dr. Jeyasekharan medical
trust, Nagercoil, India,

11/30/2009 South 1

3 O Sri Ramakrishna
Hospital, Coimbatore,
India

11/30/2009 West 2

4 A Kidney Care Center,
Thiruvananthapuram,
India

11/30/2009 South 2

5 B Kidney Care Center,
Tuticorin, India

11/30/2009 South 1

4.1.3 Assumptions in the recipient matching process

• Recipients receive the organs from their designated OPDO based on the solution of the
mathematical model.

• Each organ arrival is considered an individual, discrete event.
• The patient always accepts the kidney offered.
• Every organ is deemed as ‘shared.’
• Organs are equally likely to be allotted to anyone within the zone, following the First
Come-First Transplant (FCFT) policy.

• For allocation, only perfect matching is allowed (O–O, A-A, B-B, and AB-AB Blood
groups).

4.2 Steps for recipient matching

Broadly, the steps for recipient matching involved in recipient matching are:
Step 1 Prepare a SeparateWaitlist consisting of Zone-wise, and Blood-groupwise poten-

tial recipients.
Step 2 Prepare a Combined Waitlist consisting of Blood-group wise potential recipients

from all zones combined.
Step 2 For the next donor arrival in the selected zone, check for the first perfect blood

group match from the Separate Waitlist of the respective zone. If a match is found, make
the allocation and repeat Step 2; otherwise, go to Step 3.

Step 3 For the selected donor arrival, check for the first perfect blood group match from
theCombinedWaitlist. If a match is found, make the allocation and go to Step 2.; otherwise,
list the organ as ‘Unallocated’ and go to Step 2.

Step 4 If all arrivals are completed in the donor list, select the next zone, and go to Step
2. If no more zones remain, Stop.

A detailed step-by-step approach to this recipient matching process is shown in Fig. 2. The
allocation model solution facilitates the comparison of equity and efficiency. We calculate
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Fig. 2 Allocation procedure—Process chart

patients’ waiting time as the difference between the registration and the allocation in days.
Further, these results are also used for computing ‘unallocated’ organs for each model.
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5 Results and discussion

The simulation was conducted using MS Excel software on a laptop with a Windows con-
figuration. New arrivals were generated using the random number function in MS Excel,
adhering to the arrival patterns published in the report, as mentioned earlier. The simulated
allocation is applied for all three scenarios of the number of OPDOs (P = 2, 3 & 4). Since the
results vary from patient to patient, we evaluate the results using aggregate and disaggregate
information with different design configurations. First, we present disaggregate information
in the form of cumulative frequency plots. Second, we present the aggregate information in
scatter plots and tables. The results of the simulation model are presented in the subsequent
sections.

5.1 Cumulative frequency plots for waiting time

The results in this section discuss the concept of ‘equity’ using the ‘waiting time’ metric.
Such metrics have already been documented in Marsh and Shilling (1994). While a Lorenz
curve may be a helpful tool for comparison, we choose a cumulative frequency plot which
is a slightly modified version because of ease of comparison on the metric of interest. A
cumulative frequency plot will help analyze the chosen metric for all the patients. An ideal
model should have lower waiting times for most patients compared to other models. A better-
performing model will have its cumulative frequency in the shape of ‘G’. Any deviation from
this shape indicates the poor performance of the model. In such plots, one thing to note is
that the x-axis will have units normalized between 0 and 100. Therefore, we normalize the
waiting time in all our analyses before plotting these graphs. Normalization is accomplished
by dividing the individual waiting times of patients by the total waiting time of all the patients
and then scaled to 100. The Y-axis represents the cumulative frequency of the number of
patients.

Figure 3 clearly reveals the effect of flexibility in the choice of locational model. The
patients’ waiting time (equity) is influenced by the locational model, namely P-median, P-
center, and P-center-beta. Specifically, for P = 3, we find no single model dominating the
other. Further, in the 2-OPDOs scenario, 80 percent of patients have a waiting time less than
a normalized waiting time of 20 units, and 17 percent of patients have a waiting time between
20 and 40 units. Thus, from Fig. 3, we can conclude that all three models perform similarly
on the metric waiting time for a 2-OPDO scenario.

However, a similar analysis for the 3-OPDO scenario provides a different perspective. For
a 3-OPDO scenario, the models exhibit a significant departure, with P-median and P-center-
beta models exhibiting better performance for 80 percent of customers with a normalized
waiting time of fewer than 20 units. However, the P-center model performs better for the
remaining 15 percent of customers, where cumulative waiting times are more than 20 and
up to 60. The performance of these models is similar when the 4-OPDO scenario is con-
sidered. Further, the models yield slightly different results, with P-median and P-center-beta
performing well for most patients.

5.2 OPDOs, locational models, and equity-efficiency trade-off

Although insightful, the previous analysis does not demonstrate the effects of clinical (blood
group) and non-clinical (Type of OPDO, Locational model) factors. Since the effect of these
factors may be evident at an aggregate level, we carry out the aggregate waiting for time
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Fig. 3 Cumulative Frequency Plot and Waiting time—2, 3, 4 OPDOs

analysis across the following variables: Blood group, Type of OPDO (Dense/Sparse clusters),
and the location model employed. Further, since aggregate analysis is considered, we use
‘average waiting time’ to measure equity.

Figure 4 shows that the average waiting time exhibits dissimilarities across the blood
groups and the number of OPDOs. Specifically, the current representative zonal structure of
three OPDOs has a higher variance in the average waiting time across all the blood groups
than in the other scenarios. Surprisingly, the variation is less for the rarest blood group AB
than for prevalent blood group A. The universal blood group O shows a higher waiting time
variation in the 3-OPDO cluster than the other two.

There is also dissimilarity between the dense and the sparse clusters. The sparse cluster
exhibits a higher variance than the dense cluster for all the blood groups, which may be
attributed to the arrival patterns between the dense and sparse clusters. Organ arrivals are
generally more frequent in a dense cluster than in a sparse cluster due to higher cadaver
donations resulting in a higher supply of organs in these regions.

The influence of the location choice on the average waiting time yields a similar result
(see Fig. 5). The waiting times differ significantly between the P-center and P-center-beta
models and the P-median models. Specifically, the P-center model seems to have a higher
waiting time than the other two models for blood group A. The waiting time for this blood
group also exhibits higher variance. All the locational models exhibit a lower average waiting
time for the rarest blood group, AB, which could be because of the infrequent donor arrivals
for this blood group coupled with a lower number of registered patients on the waitlist for
this blood group.
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Fig. 4 Average waiting time based on the number of OPDOs

The more common blood group O shows a higher waiting time in all the models. Further,
these waiting times differ significantly between dense and sparse OPDOs. In other words,
variation in waiting times for dense clusters seems to be considerably less than that for sparse
clusters.As discussed earlier, this could be attributed tomore donations than the sparse cluster.

5.3 Unallocated organs and equity

The encouraging results from the previous section motivated us to study another aspect
of organ allocation, namely the ‘number of unallocated organs’ resulting from applying a
location-allocation model in this section.

As mentioned earlier, organ arrivals remain the same across all models, implying the
donor organs arrive simultaneously for all location models. However, since different location
models result in different designated OPDOs and associated TC affiliations, we hypothesize
that the number of unallocated organs after completing the simulation will differ in each
model.

Thus, we undertake a simple analysis of the unallocated organs in each scenario across
different location models and the number of OPDOs. Table 7 shows that location models
identified as efficient in terms of distance are found to be the most inequitable, in that order.
In other words, the most efficient P-median model performs the worst. The least efficient
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Fig. 5 Average waiting time based on the location models

Table 7 Number of Unallocated organs in each scenario

Location model OPDO =
2

OPDO = 3 OPDO = 4 Total unallocated
organs

P-center 0 0 25
(A = 17, B = 8)

25

P-median 0 33
(A = 22, B = 11)

66
(O = 28, A = 22, B =
16)

99

P-center-beta 0 43
(O = 5, A = 24, B =
14)

43
(O = 5, A = 24, B =
14)

86

Total Unallocated
organs

0 76 134

P-center model resulted in the minimum number of unallocated organs. Commensurate with
the observation from the previous section, the number of unallocated organs is high for blood
group A, followed by B.
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5.4 Findings from the study

Compared to Fillippi et al. (2017) findings, this study confirms that these locational models
are sensitive to changes in P. The study acknowledges that all models’ computational time is
reasonable, ranging from 5 to 15 min. Further, our results confirm the extant literature obser-
vations that the P-median model performs better in the mean distance metric. We augment
this finding that the P-center model is better in terms of CV and maximum distance metric,
while the performance of the P-center-beta model lies in between the two. Hence, if the
objective of the locational model is minimizing the worst-case coverage distance, P-center
is a good choice.

However, the same may not be said about the metric waiting time. We find that no single
locational model dominates the other models in waiting time from our observation, except
for the scenario P = 3, where each model dominates for only a certain percentage of the
population. This shows that locational model selection can result in fluctuating equity in the
organ transplantation network.

In relation to waitlist size, we observe the total waitlist to be minimum for lower values
of P, and with increasing values of P, the number on the total waitlist increases. Waitlist size
is influenced by the locational model employed and the number of OPDOs, and this effect
is more pronounced in the case of P = 4. This contrasts with the arguments of Beliën et al.
(2013), where the total waitlist decreases with more OPDOs. This could be the result of the
local primacy allocation procedure, which is currently the case with that of the allocation
rules. Amore dynamic allocation process with organs allocated to neighboring zones or states
may alleviate this problem.

Further, the study results are different in the number ofOPDOs to open compared to Belien
et al. (2013). Based on their mathematical model, the authors advocate opening lesser centers
when considering the total waiting time of the organ outside the body. However, based on our
analysis, the authors believe that the behavior of equity fluctuates when the total waiting time
of recipients is the variable of interest. Unlike Belien et al. (2013), where the total waitlist
number is influenced by non-clinical factors such as distance, our study noted that the total
waitlist number is influenced by clinical and non-clinical factors such as blood group, type
of OPDO, and locational model employed.

Furthermore, equity is influenced by the rarity of the blood group. For instance, the rare
blood group such as AB exhibits a clear advantage with lower overall waiting times than the
more prevalent O-type blood group. This observation is valid across all the location models.
The other interesting result is the derived metric on the number of unallocated organs. The
most efficient P-median model performs the worst with the most unallocated organs for a
similar arrival distribution. On the contrary, the least efficient P-center model is the most
equitable in the chain for this metric.

6 Managerial implications

The study contributes to the extant literature in multiple ways. First, it investigates the con-
sequences of locational choices on the trade-off between equity and efficiency in kidney
transplantation. The findings validate the fundamental proposition of equity and efficiency
trade-off in OPDO location and organ allocation in complex humanitarian supply chains.
Specifically, these models affirm the role attributed to patient equity in the locational choice
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models. Second, although our results on the metric mean distance align with existing lit-
erature (i.e., using different locational models), these results differ when considering the
worst-case distance and CV. The P-center model performs better in these metrics.

Besides, our study characterizes the role of patient ‘waiting time,’ which depends mainly
on the selected locational model, number of chosen facilities, their type, and blood group.
Third, our simulation results suggest that no single model dominates on either ‘equity’ or
‘efficiency,’ and the equity is sensitive to changes in values of P. This is one of the significant
revelations from this study. Fourth, our study acknowledges the role of cluster density in
the allocation, a significant contribution of our study. The study supports the inference that
dense clusters exhibit a homogenous waiting time across blood groups compared to the
sparse groups from our experiments. The results of the case study point to the need for more
deliberations on organ recovery mechanisms and minimizing organ wastage in the sparse
clusters.

These overall deliberations have a broader implication for policymakers. First, considering
the patient equity inmind, real-life OPDOs’ location-decision should involve a detailed study
of locationalmodels because of their individual varying effects. Second, equity and efficiency
results strongly depend on the locational models employed. The most efficient model is the
P-median model. However, this behavior is in-conclusive in the waiting time distribution.
The most efficient P-median model is the ‘inequitable’ model in the ‘waiting time’ metric.

Also, in a specific scenario: 3-OPDOs significantly affect the distribution of waiting times.
This input would help the planners to design and prioritize their processes. Third, blood group
and cluster density also impactwaiting time distribution. Fourth, thewaitlist number allocated
is influenced by OPDOs location, as evident from the number of unallocated organs. This is a
key input to operational planning and provides directions to policymakers for their locational
choice decision-making. The deliberations support the idea of combining the models for
location-choice decisions.

One of the existing allocation criteria, namely ‘local primacy,’ possibly leads to many
unallocated organs, especially when the number of OPDOs increases. Managers may need
to investigate this under dynamic allocation criteria. Regarding the number of OPDOs, the
current zonal structure of 3-OPDOs also represents the highest variance in the patient’s
waiting time, which significantly bears organ equity. Therefore, the policymakersmay look to
re-engineer the existing kidney transplant network configuration. Finally, the higher waiting
times for sparse clusters point toward policymakers’ need to focus on procuring kidneys
effectively in these locations and reducing organ wastages.

7 Conclusion, limitations, and future scope

The paper has utilized a K-sum optimization approach to study location decisions and the
consequent long-term impact on the equity and efficiency of a kidney transplant network
in a developing economy. Locational choices were made using this model, and the chosen
facilities were designated OPDOs for analysis. An allocation policy was devised close to
the existing policy, followed by the government entity, TRANSTAN. The procedure was
simulated based on the historical organ arrival data from a public report and matched with
recipients from an existing waiting list listed on the same website. We show a trade-off
between efficiency and equity for the selected case study. i.e., the most efficient model in
terms of efficiency need not be the most equitable.
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The literature shows that when the model considers only equity (waiting time), central-
ization of facilities may be a better option (Beliën et al., 2013). Our experiments seem
inconclusive because findings indicate that changing the number of facilities during the loca-
tional decision has a fluctuating impact on equity (waiting time). This behavior suggests
the multi-modal nature of the equity-efficiency trade-off function earlier pointed out by Cho
(1998). Future experiments are needed to confirm this pattern.

The current COVID-19 crisis has a significant impact on organ arrivals, which is not
captured as-is in our simulation model. However, our simulation study can be modified to
reflect the current organ arrival patterns and patient characteristics on the waitlist. Frequent
lockdowns since March 2020 have taken a toll on the number of cadaver donations. Because
of the continual lockdowns in the region, the TRANSTAN had briefly restricted kidney
transplantation in TC. The state has seen an unprecedented reduction in the number of organs
donated and the number of transplants conducted during this period. The number of kidneys
donated in 2020 is 91 compared to 212 in 2019. An increased demand–supply mismatch
coupled with such decisions will significantly impact critical patients needing dialysis and
transplants. Such choices anduncertainties are already reflected in the all-timehigher numbers
on the active waitlist (TRANSTAN). The current active number of waitlist patients has
touched an all-time high of 6000. This demand–supply imbalance significantly increases the
waiting time to receive such organs and increases the risk of mortality due to the contraction
of deadly viruses. This leads to a silent physical and mental crisis for the patients.

Our study is limited to the blood group as the only clinical factor in the allocation policy.
Future studies can includemore clinical factors such as graft quality and co-morbid conditions
that are realistic and effective for developing allocation policies. Further, our study represents
CIT indirectly as distance in the locational model. While this allows indirect characterization
of this critical factor, this may result in a design with conservative assignment during the
locational stage. The inclusion of CIT directly in the model may provide a more accurate
design configuration with optimal utilization of travel times.

Alternatively, to address the increasing demand–supply mismatch, the policymakers can
consider employing simulation studies to study the effect of location and allocation policies.
The advantages of such studies are the ability to arrive at decisions quickly and effectively.
Also, the current model is restrictive because of the assumption of organ arrivals being spread
throughout the year, although arrivals are generated based on past data. More studies require
exploration of the role of equity under irregular or seasonal organ arrivals. The study also
ignores the perception ofOPDOs in terms of fairness and transparency of the patients. Further
investigations may address this dimension that can offer key inputs to standard procedures.

Appendix

See Tables 8, 9 and 10.
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Table 8 Deceased donors from
the Annual Report 2015 (Used
for Forecasting Donor arrivals)

Month Year Donors

April 2014 8

May 2014 7

June 2014 8

July 2014 16

August 2014 12

September 2014 14

October 2014 13

November 2014 14

December 2014 14

January 2015 16

February 2015 19

March 2015 14

Table 9 Distribution of kidney
transplants based on blood group Blood type No. of transplants

O 110

A 62

B 84

AB 19

Table 10 The number of donations from each hospital

TC Donations

Apollo TC, Chennai 45

Global Hospital, Chennai 30

Rajiv Gandhi Government Central Hospital, Chennai 21

Stanley Government Medical College Hospital, Chennai 20

CMC Vellore 19

Fortis Malar, Chennai 6

Sri Ramachandra, Chennai, 10

MIOT TC, Chennai 30

Kamatchi Hospital, Chennai 2

Vijaya Hospital, Chennai 2

Kovai Medical Center and Hospital 20

KG TC, Coimbatore 18

Sri Abirami Hospital, Coimbatore 2

G Kuppuswamy Naidu Memorial Hospital, Coimbatore 26

Kovai Medical Specialty Hospital, Coimbatore 4
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Table 10 (continued)

TC Donations

Salem Gopi Hospital 4

Meenakshi Mission, Madurai 2

KMC, Trichy 2

Frontline TC, Trichy, 8

Cethar TC, Trichy 2

Meenakshi Hospital, Thanjavur 2
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