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Abstract
This paper introduces the new class of two-bound core games, where the core can be described
by a lower bound and an upper bound on the payoffs of the players. Many classes of games
turn out to be two-bound core games. We show that the core of each two-bound core game
can be described equivalently by the pair of exact core bounds, and study to what extent
the exact core bounds can be stretched while retaining the core description. We provide
explicit expressions of the nucleolus for two-bound core games in terms of all pairs of
bounds describing the core, using the Talmud rule for bankruptcy problems, and study to
what extent these expressions are robust against game changes.
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1 Introduction

In the theory of cooperative games (with transferable utility), players collaborate in coalitions
to generate profits. Cooperative game theory analyzes how to allocate profits generated by
the grand coalition among the players in a fair way, and provides several significant solution
concepts.

A central solution concept is the core, which consists of all coalitionally stable pre-
imputations, that is, no coalition will obtain more by deviating from cooperation in the grand
coalition. Bondareva (1963) and Shapley (1967) showed that the core is nonempty if and only
if the corresponding cooperative game is balanced. Another important solution concept is the
nucleolus (Schmeidler, 1969), which lexicographically minimizes the excesses of coalitions.
The nucleolus selects from the core in each balanced game.
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Quant et al. (2005) studied the class of compromise stable games where the core coincides
with the core cover (Tijs & Lipperts, 1982), and provided an explicit expression of the
nucleolus for this class using the Talmud rule for bankruptcy problems. The core cover is
the set of pre-imputations between a specific pair of bounds. In this paper, we generalize the
approach of Quant et al. (2005) to all games where the core equals the set of pre-imputations
between an arbitrary pair of bounds, which we call two-bound core games.

We show that the core of each two-bound core game can be described equivalently by the
pair of exact core bounds (Bondareva & Driessen, 1994), which are defined by the minimum
and maximum individual payoffs within the core. Inspired by Quant et al. (2005), we provide
conditions to check whether a game is a two-bound core game, and describe the extreme
points of the core for each such game. All balanced games with at most three players are
two-bound core games, but this does not hold for more players.

We study to what extent the exact core bounds of a two-bound core game can be stretched
while retaining the core description. It turns out that only three possible cases exist. In the
first case, only the lower bounds are decreased for players who obtain their lower exact core
bounds when all other players obtain their upper exact core bounds, while keeping all other
bounds fixed. In the second case, only the upper bounds are increased for players who obtain
their upper exact core bounds when all other players obtain their lower exact core bounds,
while keeping all other bounds fixed. In the third case, both the lower bound is decreased and
the upper bound is increased for only a single player who obtains the lower exact core bound
when all other players obtain their upper exact core bounds and obtains the upper exact core
bound when all other players obtain their lower exact core bounds.

In line with Quant et al. (2005), we provide an explicit expression of the nucleolus for
two-bound core games in terms of the exact core bounds using the Talmud rule. In fact, the
nucleolus of these games can be equivalently expressed by each pair of bounds describing
the core. We study to what extent these expressions are robust against game changes.

The remainder of this paper is organized as follows. Section 2 introduces preliminary
definitions and notation about cooperative games and bankruptcy problems. In Section 3,
we formally introduce two-bound core games. The nucleolus for two-bound core games is
studied in Section 4. Finally, we conclude this paper with some remarks in Section 5.

2 Preliminaries

Let N be a nonempty and finite set of players and let 2N be the collection of all subsets of
N . An order of N is a bijection σ : {1, . . . , |N |} → N , where |N | denotes the cardinality
of N , and σ(i) represents the player at position i . The set of all orders of N is denoted by
�(N ). Denote by R+ the set of all non-negative real numbers.

Let x, y ∈ R
N .We denote x+ y = (xi + yi )i∈N , x− y = (xi − yi )i∈N , and λx = (λxi )i∈N

for all λ ∈ R. Moreover, x ≥ y denotes xi ≥ yi for all i ∈ N , and x > y denotes xi > yi for
all i ∈ N . The notations ≤ and < are defined analogously. We denote

[x, y] =
{
z ∈ R

N
∣∣ x ≤ z ≤ y

}
.

A cooperative game with transferable utility (a game, for short) is a pair (N , v), where
v : 2N → R is the characteristic function with v(∅) = 0, representing the worth v(S) for
each coalition S ⊆ N when the players in S cooperate. The set of all games with player set
N is denoted by �N . For simplicity, we write v ∈ �N rather than (N , v) ∈ �N .
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Let v ∈ �N . The pre-imputation set of v is

X(v) =
{
x ∈ R

N
∣∣ ∑
i∈N

xi = v(N )

}
,

the imputation set of v is

I (v) = {
x ∈ X(v)

∣∣ ∀i ∈ N : xi ≥ v({i})} ,

and the core of v is

C(v) =
{
x ∈ X(v)

∣∣ ∀S ⊆ N :
∑
i∈S

xi ≥ v(S)

}
.

Note that C(v) ⊆ I (v) ⊆ X(v), and C(λv + a) = λC(v) + a for all λ ∈ R+ and a ∈ R
N ,

where λv + a ∈ �N is defined by (λv + a)(S) = λv(S) + ∑
i∈S ai for all S ⊆ N .

Bondareva (1963) and Shapley (1967) showed that a game v ∈ �N is balanced if and
only if C(v) 	= ∅. The set of all balanced games with player set N is denoted by �N

b . A
game v ∈ �N is convex (Shapley, 1971) if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all
S, T ⊆ N . The set of all convex games with player set N is denoted by �N

c . It is known that
�N
c ⊆ �N

b ⊆ �N .
A value ϕ on a domain of games assigns to each game v in this domain a pre-imputation

ϕ(v) ∈ X(v). The nucleolus (Schmeidler, 1969) is the value η that assigns to each game
v ∈ �N with I (v) 	= ∅ the unique imputation x ∈ I (v) satisfying θ(x) � θ(y) for all y ∈
I (v), where θ(x) ∈ R

2|N |−2 is the vector of excesses v(S)−∑
i∈S xi for all S ∈ 2N \ {N ,∅}

arranged in non-increasing order, i.e., θk(x) ≥ θ	(x) for all 1 ≤ k < 	 ≤ 2|N | − 2, and
θ(x) � θ(y) if there exists 1 ≤ t ≤ 2|N | − 2 such that θt (x) < θt (y) and θk(x) = θk(y)
for all 1 ≤ k < t , or θ(x) = θ(y). It is easy to see that η(v) ∈ C(v) for all v ∈ �N

b , and
η(λv + a) = λη(v) + a for all λ ∈ R+ and a ∈ R

N .
A bankruptcy problem is a triple (N , E, c), where E ∈ R+ is the estate to be divided

and c ∈ R
N+ is the vector of claims satisfying

∑
i∈N ci ≥ E . The set of all bankruptcy

problems with player set N is denoted by BN . For simplicity, we write (E, c) ∈ BN rather
than (N , E, c) ∈ BN .

A bankruptcy rule f : BN → R
N+ assigns to each bankruptcy problem (E, c) ∈ BN a

payoff vector f (E, c) ∈ R
N+ such that

∑
i∈N fi (E, c) = E and fi (E, c) ≤ ci for all i ∈ N .

A bankruptcy rule f is self-dual (Aumann & Maschler, 1985) if for all (E, c) ∈ BN ,

f (E, c) = c − f

(∑
i∈N

ci − E, c

)
.

A bankruptcy rule f is invariant under claims truncation if for all (E, c) ∈ BN ,

f (E, c) = f (E, (min{ci , E})i∈N ) .

The Talmud (TAL) rule assigns to each bankruptcy problem (E, c) ∈ BN and each player
i ∈ N ,

f T AL
i (E, c) =

⎧⎨
⎩
min {ci/2, λ} , if

∑
i∈N

ci ≥ 2E,

max {ci/2, ci − λ} , if
∑
i∈N

ci < 2E,

where λ ∈ R is such that
∑

i∈N f T AL
i (E, c) = E . Aumann and Maschler (1985) showed

that the Talmud rule is self-dual and invariant under claims truncation.
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The bankruptcy game (O’Neill, 1982) vE,c ∈ �N associated to bankruptcy problem
(E, c) ∈ BN assigns to each coalition S ⊆ N the residual estate after all other claims have
been satisfied, i.e.,

vE,c(S) = max

⎧⎨
⎩0, E −

∑
i∈N\S

ci

⎫⎬
⎭ .

Curiel et al. (1987) showed that bankruptcy games are convex games. Aumann and
Maschler (1985) showed that for each bankruptcy problem, the payoff vector assigned by
the Talmud rule coincides with the nucleolus of the corresponding bankruptcy game.

3 Two-bound core games

In this section, we introduce two-bound core games, where the core equals the set of pre-
imputations between a lower bound and an upper bound. Let v ∈ �N . Given l, u ∈ R

N , the
l,u-efficient set of v

[l, u] ∩ X(v)

consists of all pre-imputations between lower bound l and upper bound u, i.e., it is the
intersection of the pre-imputation set and the |N |-dimensional hypercube restricted by l and
u, so it is a convex set. If this set is nonempty, then its extreme points can be described as
follows. Similar to Quant et al. (2005), we define ml,u,σ (v) ∈ R

N for all σ ∈ �(N ) and all
k ∈ {1, . . . , |N |} by

ml,u,σ
σ (k) (v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

uσ(k), if
k∑
j=1

uσ( j) +
|N |∑

j=k+1
lσ( j) ≤ v(N ),

lσ(k), if
k−1∑
j=1

uσ( j) +
|N |∑
j=k

lσ( j) ≥ v(N ),

v(N ) −
k−1∑
j=1

uσ( j) −
|N |∑

j=k+1
lσ( j), otherwise.

Thus,ml,u,σ (v) assigns to the first players in σ their upper bound payoffs in such away that
the last players in σ are assigned their lower bound payoffs. The pivot player of ml,u,σ (v) is
the first player in σ who is not assigned the upper bound payoff. If all the players receive their
upper bound payoffs, then the last player is the pivot player of ml,u,σ (v). These definitions
are straightforward generalizations of concepts in Quant et al. (2005) to arbitrary lower and
upper bounds, which can be used to describe the l,u-efficient set.

Lemma 1 Let v ∈ �N and let l, u ∈ R
N be such that [l, u] ∩ X(v) 	= ∅. Then

[l, u] ∩ X(v) = conv
{
ml,u,σ (v)

∣∣ σ ∈ �(N )
}

.

Proof In view of ml,u,σ (v) ∈ [l, u] ∩ X(v) for all σ ∈ �(N ), together with the convexity of
[l, u] ∩ X(v) and conv{ml,u,σ (v) | σ ∈ �(N )}, we have

conv
{
ml,u,σ (v)

∣∣ σ ∈ �(N )
}

⊆ [l, u] ∩ X(v).

Let x ∈ R
N be an arbitrary extreme point of [l, u]∩ X(v), i.e., for each 0 < λ < 1 and all

y, z ∈ [l, u] ∩ X(v), λy+ (1−λ)z = x implies that x = y = z. We claim that there exists at
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most one player i ∈ N such that li < xi < ui and [x j = l j or x j = u j for all j ∈ N \ {i}].
Assume, to the contrary, that there exist i, j ∈ N with i 	= j such that li < xi < ui and
l j < x j < u j . Let 0 < ε < min{xi − li , ui − xi , x j − l j , u j − x j }, let x ′ be defined by
x ′
i = xi + ε, x ′

j = x j − ε and x ′
k = xk for all k ∈ N \ {i, j}, and let x ′′ be defined by

x ′′
i = xi − ε, x ′′

j = x j + ε and x ′′
k = xk for all k ∈ N \ {i, j}. Then x ′, x ′′ ∈ [l, u] ∩ X(v)

and x = 1
2 x

′ + 1
2 x

′′, which contradicts the fact that x is an extreme point of [l, u] ∩ X(v).
If xi = li or xi = ui for all i ∈ N , then it holds that x = ml,u,σ (v) for all σ ∈ �(N )

such that xσ(k) = uσ(k) if and only if k ≤ |{i ∈ N | xi = ui }|. If there exists i ∈ N such that
li < xi < ui and [x j = l j or x j = u j for all j ∈ N \ {i}], then it holds that x = ml,u,σ (v)

for all σ ∈ �(N ) such that [xσ(k) = uσ(k) if and only if k ≤ |{ j ∈ N | x j = u j }|]
and σ(|{ j ∈ N | x j = u j }| + 1) = i . Again with the convexity of [l, u] ∩ X(v) and
conv{ml,u,σ (v) | σ ∈ �(N )}, we have [l, u] ∩ X(v) ⊆ conv{ml,u,σ (v) | σ ∈ �(N )}. 
�

The l,u-efficient set and the core are both convex subsets of the pre-imputation set. We are
interested in l,u-efficient sets that contain the core. Many well-known sets are of this type,
such as the imputation set and the core cover (Tijs & Lipperts, 1982).

Example 1 Let v ∈ �N . Define l, u ∈ R
N by

li = v({i}) and ui = v(N ) −
∑

j∈N\{i}
v({ j})

for all i ∈ N . Then [l, u] ∩ X(v) = I (v), so the l,u-efficient set contains the core. �
Example 2 Let v ∈ �N . Define l, u ∈ R

N by

li = v({i}) and ui = v(N ) − v(N \ {i})
for all i ∈ N . Then C(v) ⊆ [l, u] ∩ X(v), i.e., the l,u-efficient set contains the core. �
Example 3 Let v ∈ �N . Define l, u ∈ R

N by

li = max
S∈2N :i∈S

⎧⎨
⎩v(S) −

∑
j∈S\{i}

(v(N ) − v(N \ { j}))
⎫⎬
⎭ and ui = v(N ) − v(N \ {i})

for all i ∈ N . Then [l, u] ∩ X(v) defines the core cover (Tijs & Lipperts, 1982), which
contains the core. Quant et al. (2005) defined compromise stable games as games where the
core cover coincides with the core. �

To check whether a core-containing l,u-efficient set coincides with the core, we only need
to verify a specific inequality for each nonempty coalition.

Theorem 1 Let v ∈ �N
b and let l, u ∈ R

N be such that C(v) ⊆ [l, u]. Then C(v) =
[l, u] ∩ X(v) if and only if for each S ∈ 2N \ {∅},

v(S) ≤ max

⎧
⎨
⎩

∑
i∈S

li , v(N ) −
∑

i∈N\S
ui

⎫
⎬
⎭ . (1)

Theorem 1, the proof of which is in the Appendix, generalizes the work of Quant et al.
(2005), where this result was proven for the specific pair of bounds in Example 3. If the
l,u-efficient set does not contain the core, then expression (1) may hold even when the core
does not coincide with the l,u-efficient set. This is shown by the following example.
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Example 4 Let N = {1, 2} and let v ∈ �N be given by v({1}) = 1, v({2}) = 2 and v(N ) = 4.
Define l, u ∈ R

N by l1 = u1 = 3
2 and l2 = u2 = 5

2 . It is easy to verify that expression (1)
holds for each nonempty coalition. However, C(v) = {x ∈ R

N | x1 + x2 = 4, x1 ≥ 1, x2 ≥
2} and [l, u] ∩ X(v) = {( 32 , 5

2 )}. Clearly, C(v) 	= [l, u] ∩ X(v). �
We focus on games where the core coincides with some l,u-efficient set. These games are

called two-bound core games.

Definition 1 A game v ∈ �N
b is a two-bound core game if there exist l, u ∈ R

N such that

C(v) = [l, u] ∩ X(v).

The set of all two-bound core games with player set N is denoted by �N
t . It is worthwhile

mentioning that many classical games are two-bound core games. For example, additive
games, unanimity games, bankruptcy games (O’Neill, 1982), 1-convex games (Driessen,
1985), big boss games (Muto, Nakayama, Potters & Tijs,1988), clan games (Potters, Poos,
Tijs &Muto,1989), compromise stable games (Quant, Borm, Reijnierse &Velzen, 2005) and
reasonable stable games (Dietzenbacher, 2018).

It turns out that the core of each two-bound core game can be described by the following
specific pair of bounds. Let v ∈ �N

b . The lower exact core bound is defined by

l∗i (v) = min
x∈C(v)

xi for all i ∈ N .

The upper exact core bound is defined by

u∗
i (v) = max

x∈C(v)
xi for all i ∈ N .

The lower and upper exact core bounds were also studied by Bondareva and Driessen (1994).

Lemma 2 A game v ∈ �N
b is a two-bound core game if and only if C(v) = [l∗(v), u∗(v)] ∩

X(v).

Proof The if-part follows directly from the definition of two-bound core games. For the only-
if part, assume thatC(v) = [l, u]∩X(v) for some l, u ∈ R

N . Then li ≤ l∗i (v) and ui ≥ u∗
i (v)

for all i ∈ N , so [l∗(v), u∗(v)] ⊆ [l, u]. Together with C(v) ⊆ [l∗(v), u∗(v)] ∩ X(v), it
follows that C(v) ⊆ [l∗(v), u∗(v)] ∩ X(v) ⊆ [l, u] ∩ X(v) = C(v). Hence, C(v) =
[l∗(v), u∗(v)] ∩ X(v). 
�

All balanced games with at most three players are two-bound core games, but this does
not hold for more players.

Proposition 1 �N
t = �N

b if and only if |N | ≤ 3.

Proof Let v ∈ �N
b with |N | = 2. Then it can be seen directly that v ∈ �N

t since
l∗i (v) = v({i}) and u∗

i (v) = v(N ) − v(N \ {i}) for all i ∈ N , which implies that
v(S) ≤ max{∑i∈S l∗i (v), v(N )−∑

i∈N\S u∗
i (v)} for all S ∈ 2N \ {∅}, so Theorem 1 applies.

Let v ∈ �N
b with |N | = 3. For all i ∈ N ,

v({i}) ≤ l∗i (v) ≤ max

⎧⎨
⎩l∗i (v), v(N ) −

∑
j∈N\{i}

u∗
j (v)

⎫⎬
⎭ .
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For all S ∈ 2N with |S| = 2,

v(S) ≤ v(N ) −
∑

i∈N\S
u∗
i (v) ≤ max

⎧⎨
⎩

∑
i∈S

l∗i (v), v(N ) −
∑

i∈N\S
u∗
i (v)

⎫⎬
⎭ .

Hence, v ∈ �N
t by Theorem 1.

Let v ∈ �N
b with |N | > 3 be defined by v(N ) = 3, v({i, j}) = 1 for distinct i, j ∈ N

and v(S) = 0 otherwise. Then l∗k (v) = 0 for all k ∈ N , u∗
i (v) = u∗

j (v) = 3, and u∗
k(v) = 2

for all k ∈ N \ {i, j}. This implies that

v({i, j}) = 1 > 0 + 0 = l∗i (v) + l∗j (v)

and

v({i, j}) = 1 > 3 − 2(|N | − 2) = v(N ) −
∑

k∈N\{i, j}
u∗
k(v).

Hence, v /∈ �N
t by Theorem 1 and Lemma 2. 
�

In what follows next, we study to what extent the exact core bounds of a two-bound core
game can be stretched while retaining the core description. It turns out that the exact core
bounds can be stretched in only three different ways.

Proposition 2 Let v ∈ �N
t . If there exist l, u ∈ R

N with [l, u] 	= [l∗(v), u∗(v)] such that
C(v) = [l, u] ∩ X(v), then exactly one of the following cases holds:

(i) l ≤ l∗(v) and u = u∗(v),
(ii) l = l∗(v) and u ≥ u∗(v),
(iii) there exists i ∈ N such that li < l∗i (v), ui > u∗

i (v), and l j = l∗j (v) and u j = u∗
j (v) for

all j ∈ N \ {i}.
Proof In view of l ≤ l∗(v) and u ≥ u∗(v), it suffices to prove that if l 	= l∗(v) and u 	= u∗(v),
then case (iii) arises. Assume to the contrary that there exist i, j ∈ N with i 	= j such that
li < l∗i (v) and u j > u∗

j (v). Let x ∈ C(v). Define x ′ by x ′
i = xi −ε, x ′

j = x j +ε and x ′
k = xk

for all k ∈ N \ {i, j}, where ε = min{xi − li , u j − x j } ≥ min{l∗i (v) − li , u j − u∗
j (v)} > 0.

Then x ′ ∈ [l, u] ∩ X(v), but x ′ /∈ C(v) in view of x ′
i = li < l∗i (v) or x ′

j = u j > u∗
i (v). So,

C(v) 	= [l, u] ∩ X(v), which is a contradiction. 
�
Moreover, we show that the first case in Proposition 2 arises only if the players whose

lower bounds are decreased obtain their lower exact core bounds when all other players
obtain their upper exact core bounds. The second case in Proposition 2 arises only if the
players whose upper bounds are increased obtain their upper exact core bounds when all
other players obtain their lower exact core bounds. The third case in Proposition 2 arises only
if the player whose exact core bounds are stretched obtains the lower exact core bound when
all other players obtain their upper exact core bounds and obtains the upper exact core bound
when all other players obtain their lower exact core bounds.

Theorem 2 Let v ∈ �N
t and let l, u ∈ R

N . Then the following statements hold:

(i) If l ≤ l∗(v) and u = u∗(v), then C(v) = [l, u] ∩ X(v) if and only if

v(N ) = l∗i (v) +
∑

j∈N\{i}
u∗
j (v) for all i ∈ N with li < l∗i (v).
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(ii) If l = l∗(v) and u ≥ u∗(v), then C(v) = [l, u] ∩ X(v) if and only if

v(N ) = u∗
i (v) +

∑
j∈N\{i}

l∗j (v) for all i ∈ N with ui > u∗
i (v).

(iii) If there exists i ∈ N such that li < l∗i (v), ui > u∗
i (v), and l j = l∗j (v) and u j = u∗

j (v)

for all j ∈ N \ {i}, then C(v) = [l, u] ∩ X(v) if and only if

u∗
i (v) +

∑
j∈N\{i}

l∗j (v) = v(N ) = l∗i (v) +
∑

j∈N\{i}
u∗
j (v). (2)

Proof (i) For the only-if part, assume that C(v) = [l, u] ∩ X(v), where l ≤ l∗(v) and u =
u∗(v).We show that v(N ) = l∗i (v)+∑

j∈N\{i} u∗
j (v) for all i ∈ N with li < l∗i (v). Assume, to

the contrary, that there exists i ∈ N with li < l∗i (v) such that v(N ) 	= l∗i (v)+∑
j∈N\{i} u∗

j (v).
Let x ∈ C(v) be such that xi = l∗i (v). Then we have

v(N ) = xi +
∑

j∈N\{i}
x j < l∗i (v) +

∑
j∈N\{i}

u∗
j (v).

It follows that there exists j ∈ N \ {i} such that x j < u∗
j (v). Define x ′ by x ′

i = xi − ε,
x ′
j = x j + ε and x ′

k = xk for all k ∈ N \ {i, j}, where 0 < ε < min{xi − li , u∗
j (v) − x j }.

Then x ′ ∈ [l, u]∩ X(v), but x ′ /∈ C(v) in view of x ′
i < xi = l∗i (v). So,C(v) 	= [l, u]∩ X(v),

which is a contradiction.
For the if-part, assume that l ≤ l∗(v) and u = u∗(v) such that v(N ) = l∗i (v) +∑
j∈N\{i} u∗

j (v) for all i ∈ N with li < l∗i (v). We show that C(v) = [l, u] ∩ X(v).
In view of C(v) = [l∗(v), u∗(v)] ∩ X(v) ⊆ [l, u] ∩ X(v), we only need to prove that
[l, u] ∩ X(v) ⊆ [l∗(v), u∗(v)] ∩ X(v). Let x ∈ [l, u] ∩ X(v). Then xi ≥ li = l∗i (v) for all
i ∈ N with li = l∗i (v). For all i ∈ N with li < l∗i (v),

xi = v(N ) −
∑

j∈N\{i}
x j ≥ v(N ) −

∑
j∈N\{i}

u j = v(N ) −
∑

j∈N\{i}
u∗
j (v) = l∗i (v).

Together with x ≤ u = u∗(v), we obtain that x ∈ [l∗(v), u∗(v)] ∩ X(v). Hence, [l, u] ∩
X(v) ⊆ [l∗(v), u∗(v)] ∩ X(v).

(i i) The proof is analogous to the proof of (i).
(i i i) For the only-if part, assume thatC(v) = [l, u]∩X(v), where li < l∗i (v), ui > u∗

i (v),
and l j = l∗j (v) and u j = u∗

j (v) for all j ∈ N \{i}.We show that expression (2) holds. Assume
that v(N ) 	= u∗

i (v) + ∑
j∈N\{i} l∗j (v) or v(N ) 	= l∗i (v) + ∑

j∈N\{i} u∗
j (v). Then, analogous

to the proofs of (i) and (i i), it follows that C(v) 	= [l, u] ∩ X(v), which is a contradiction.
For the if-part, assume that there exists i ∈ N such that li < l∗i (v), ui > u∗

i (v), l j = l∗j (v)

and u j = u∗
j (v) for all j ∈ N \ {i}, and expression (2) holds. We show that C(v) =

[l, u] ∩ X(v). In view of C(v) = [l∗(v), u∗(v)] ∩ X(v) ⊆ [l, u] ∩ X(v), we only need to
prove that [l, u] ∩ X(v) ⊆ [l∗(v), u∗(v)] ∩ X(v). Let x ∈ [l, u] ∩ X(v). Then

xi = v(N ) −
∑

j∈N\{i}
x j ≥ v(N ) −

∑
j∈N\{i}

u j = v(N ) −
∑

j∈N\{i}
u∗
j (v) = l∗i (v)

and x j ≥ l j = l∗j (v) for all j ∈ N \ {i}, so x ≥ l∗(v). Similarly,

xi = v(N ) −
∑

j∈N\{i}
x j ≤ v(N ) −

∑
j∈N\{i}

l j = v(N ) −
∑

j∈N\{i}
l∗j (v) = u∗

i (v)
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and x j ≤ u j = u∗
j (v) for all j ∈ N \ {i}, so x ≤ u∗(v). It follows that x ∈ [l∗(v), u∗(v)] ∩

X(v). Hence, [l, u] ∩ X(v) ⊆ [l∗(v), u∗(v)] ∩ X(v). 
�
Proposition 2 and Theorem 2 directly imply the following result, which shows exactly

under which condition two-bound core games can be described by different pairs of bounds.

Corollary 1 Let v ∈ �N
t . Then there exist l, u ∈ R

N with [l, u] 	= [l∗(v), u∗(v)] such that
C(v) = [l, u]∩X(v) if andonly if there exists i ∈ N such thatv(N ) = l∗i (v)+∑

j∈N\{i} u∗
j (v)

or v(N ) = u∗
i (v) + ∑

j∈N\{i} l∗j (v).

4 The nucleolus

In this section, we consider the nucleolus of two-bound core games. Quant et al. (2005)
provided an explicit expression of the nucleolus for compromise stable games in terms of
the pair of bounds in Example 3, using the Talmud rule for bankruptcy problems. On the one
hand, we extend their approach by providing an explicit expression of the nucleolus for all
two-bound core games in terms of the exact core bounds. On the other hand, we show that
the nucleolus can be equivalently expressed by each pair of bounds describing the core.

Lemma 3 Let v ∈ �N
t . Then

η(v) = l∗(v) + f T AL

(
v(N ) −

∑
i∈N

l∗i (v), u∗(v) − l∗(v)

)

= u∗(v) − f T AL

(∑
i∈N

u∗
i (v) − v(N ), u∗(v) − l∗(v)

)
.

The proof of Lemma 3, which is in the Appendix, is similar to the proof of Theorem 4.2
of Quant et al. (2005). However, as the following example shows, the expression obtained by
Quant et al. (2005) in terms of the pair of bounds in Example 3 is not valid for all two-bound
core games.

Example 5 Let v ∈ �N
t with N = {1, . . . , n} and n ≥ 4 be defined by v(N ) = v({1, 2}) =

v({1, 3}) = 1 and v(S) = 0 otherwise. Then l∗(v) = u∗(v) = (1, 0, . . . , 0) and C(v) =
{(1, 0, . . . , 0)}, so

η(v) = (1, 0, . . . , 0) + f T AL (0, (0, . . . , 0)) = (1, 0, . . . , 0).

However, v is not a compromise stable game, and η(v) cannot be expressed using the lower
bound l = (0, . . . , 0) and the upper bound u = (1, . . . , 1) from Example 3 in view of

η(v) 	= (0, . . . , 0) + f T AL (1, (1, . . . , 1)) = ( 1n , . . . , 1
n ).

�
More generally, the nucleolus of two-bound core games can be equivalently expressed in

terms of each pair of bounds describing the core.

Theorem 3 Let v ∈ �N
t . Then

η(v) = l + f T AL

(
v(N ) −

∑
i∈N

li , u − l

)
= u − f T AL

(∑
i∈N

ui − v(N ), u − l

)

for all l, u ∈ R
N such that C(v) = [l, u] ∩ X(v).
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Proof Let l, u ∈ R
N be such that C(v) = [l, u] ∩ X(v). If [l, u] = [l∗(v), u∗(v)], then the

statement follows directly from Lemma 3. Suppose that [l, u] 	= [l∗(v), u∗(v)]. Then, by
Proposition 2, exactly one of the following cases holds.

(i) l ≤ l∗(v) and u = u∗(v). By Theorem 2, v(N ) = l∗i (v) + ∑
j∈N\{i} u∗

j (v) for all
i ∈ N with li < l∗i (v). This implies that

∑
j∈N u∗

j (v) − v(N ) = u∗
i (v) − l∗i (v) < ui − li

for all i ∈ N with li < l∗i (v). Applying Lemma 3, invariance under claims truncation, and
self-duality,

η(v) = u∗(v) − f T AL

(∑
i∈N

u∗
i (v) − v(N ), u∗(v) − l∗(v)

)

= u − f T AL

(∑
i∈N

ui − v(N ), u − l∗(v)

)

= u − f T AL

(∑
i∈N

ui − v(N ), u − l

)

= l + f T AL

(
v(N ) −

∑
i∈N

li , u − l

)
.

(i i) l = l∗(v) and u ≥ u∗(v). By Theorem 2, v(N ) = u∗
i (v) + ∑

j∈N\{i} l∗j (v) for all
i ∈ N with ui > u∗

i (v). This implies that v(N ) − ∑
j∈N l∗j (v) = u∗

i (v) − l∗i (v) < ui − li
for all i ∈ N with ui > u∗

i (v). Applying Lemma 3, invariance under claims truncation, and
self-duality,

η(v) = l∗(v) + f T AL

(
v(N ) −

∑
i∈N

l∗i (v), u∗(v) − l∗(v)

)

= l + f T AL

(
v(N ) −

∑
i∈N

li , u
∗(v) − l

)

= l + f T AL

(
v(N ) −

∑
i∈N

li , u − l

)

= u − f T AL

(∑
i∈N

ui − v(N ), u − l

)
.

(i i i) There exists i ∈ N such that li < l∗i (v), ui > u∗
i (v), l j = l∗j (v) and u j = u∗

j (v) for
all j ∈ N \ {i}. By Theorem 2,

v(N ) −
∑
j∈N

l∗j (v) = u∗
i (v) − l∗i (v) =

∑
j∈N

u∗
j (v) − v(N ).
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This implies that v(N ) = 1
2

∑
j∈N (u∗

j (v) + l∗j (v)). Then

η(v) = l∗(v) + f T AL

⎛
⎝v(N ) −

∑
j∈N

l∗j (v), u∗(v) − l∗(v)

⎞
⎠

= l∗(v) + f T AL

⎛
⎝1

2

∑
j∈N

(u∗
j (v) − l∗j (v)), u∗(v) − l∗(v)

⎞
⎠

= l∗(v) + 1
2 (u

∗(v) − l∗(v))

= 1
2 (u

∗(v) + l∗(v)).

Define (E∗, c∗) ∈ BN by E∗ = v(N ) − ∑
j∈N l∗j (v) and c∗ = u∗(v) − l∗(v), and define

(E, c) ∈ BN by E = v(N ) − ∑
j∈N l j and c = u − l. Then

E − E∗ =
∑
j∈N

l∗j (v) −
∑
j∈N

l j = l∗i (v) − li > 0,

ci − c∗
i = (ui − u∗

i (v)) + (l∗i (v) − li ) > E − E∗,

and c j = c∗
j for all j ∈ N \ {i}. Moreover, for all j ∈ N \ {i},

ci > c∗
i = u∗

i (v) − l∗i (v) = v(N ) −
∑
k∈N

l∗k (v) ≥ u∗
j (v) − l∗j (v) = c∗

j = c j .

This implies that f T AL
i (E, c) = f T AL

i (E∗, c∗)+ E − E∗ = f T AL
i (E∗, c∗)+ l∗i (v)− li and

f T AL
j (E, c) = f T AL

j (E∗, c∗) for all j ∈ N \ {i}. Applying Lemma 3 and self-duality,

η(v) = l∗(v) + f T AL

(
v(N ) −

∑
i∈N

l∗i (v), u∗(v) − l∗(v)

)

= l∗(v) + f T AL (
E∗, c∗)

= l + f T AL (E, c)

= l + f T AL

(
v(N ) −

∑
i∈N

li , u − l

)

= u − f T AL

(∑
i∈N

ui − v(N ), u − l

)
.


�
Example 6 Let v ∈ �N

t with N = {1, 2, 3} be defined by v({1}) = v({2}) = 2, v({3}) = 4,
v({1, 2}) = 10, v({1, 3}) = 6, v({2, 3}) = 12, and v(N ) = 20. Then l∗(v) = (2, 2, 4)
and u∗(v) = (8, 14, 10). Since l∗1 (v) + u∗

2(v) + l∗3 (v) = v(N ) = u∗
1(v) + l∗2 (v) + u∗

3(v),
Theorems 2 and 3 imply that

η(v) = (2, 2, 4) + f T AL (12, (6, 12, 6)) = (8, 14, 10) − f T AL (12, (6, 12, 6))

= (2, 0, 4) + f T AL (14, (6, 14, 6)) = (8, 20, 10) − f T AL (18, (6, 18, 6))

= (2, 0, 4) + f T AL (14, (6, 20, 6)) = (8, 20, 10) − f T AL (18, (6, 20, 6)) = (5, 8, 7).
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The first two expressions are in terms of the lower exact core bounds and the upper exact
core bounds. The third expression is based on a decrease of only the lower exact core bound
of player 2 to l2 = 0. The fourth expression is based on an increase of only the upper exact
core bound of player 2 to u2 = 20. The fifth and sixth expressions are based on a decrease
of player 2’s lower bound to l2 = 0 and an increase of player 2’s upper bound to u2 = 20
simultaneously. In view of u∗

1(v) + l∗2 (v) + l∗3 (v) < v(N ) < l∗1 (v) + u∗
2(v) + u∗

3(v) and
l∗1 (v) + l∗2 (v) + u∗

3(v) < v(N ) < u∗
1(v) + u∗

2(v) + l∗3 (v), the lower and upper exact core
bounds of players 1 and 3 cannot be stretched. �

So far, we have studied to what extent the exact core bounds of a two-bound core game
can be stretched while retaining the core and nucleolus descriptions. Instead of stretching
the lower and upper bounds, we can also study to what extent these expressions are robust
against game changes. It turns out that the worths of coalitions can be increased subject to
specific restrictions.

Theorem 4 Let v ∈ �N
t and let l, u ∈ R

N be such that C(v) = [l, u] ∩ X(v). If w ∈ �N is
such that v(S) ≤ w(S) ≤ max{∑i∈S li , v(N ) − ∑

i∈N\S ui } for all S ∈ 2N \ {∅}, then the
following statements hold:

(i) C(v) = C(w),
(ii) η(v) = η(w).

Proof (i)Define v̂ ∈ �N by v̂(S) = max{∑i∈S li , v(N )−∑
i∈N\S ui } for all S ∈ 2N\{∅}. By

Theorem 1, v(S) ≤ v̂(S) for all S ∈ 2N \ {∅}. Letw ∈ �N be such that v(S) ≤ w(S) ≤ v̂(S)

for all S ∈ 2N \{∅}. ThenC(v̂) ⊆ C(w) ⊆ C(v).We claim thatC(v̂) = C(v). Suppose, to the
contrary, that there exists x ∈ C(v)\C(v̂). Let S ∈ 2N \{N ,∅}be such that∑i∈S xi < v̂(S). If
v̂(S) = ∑

i∈S li , then
∑

i∈S xi <
∑

i∈S li , so xi < li for some i ∈ S, contradicting x ∈ C(v).
If v̂(S) = v(N ) − ∑

i∈N\S ui , then
∑

i∈S xi < v(N ) − ∑
i∈N\S ui , so xi > ui for some

i ∈ N \ S, contradicting x ∈ C(v). Hence, C(v) = C(w) = C(v̂).
(i i)Statement (i) implies thatw ∈ �N

t andC(w) = C(v) = [l, u]∩X(v) = [l, u]∩X(w).
By Theorem 3,

η(v) = l + f T AL

(
v(N ) −

∑
i∈N

li , u − l

)
= l + f T AL

(
w(N ) −

∑
i∈N

li , u − l

)
= η(w).


�

5 Concluding remarks

In this paper, we introduced the large class of two-bound core games and provided explicit
expressions of the nucleolus in terms of all pairs of bounds describing the core, using the
Talmud rule for bankruptcy problems. Other values for two-bound core games are directly
obtained by replacing the role of the Talmud rule in these expressions by any bankruptcy rule.
Quant et al. (2006) studied these extensions from a general point of view and paid particular
attention to the specific random arrival rule (O’Neill, 1982). González-Díaz et al. (2005)
followed a similar approach with a focus on the adjusted proportional rule (Curiel, Maschler,
and Tijs, 1987). Future research could study extensions of these and other bankruptcy rules
to the class of two-bound core games.
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Appendix

Proof of Theorem 1

Proof For the only-if part, assume that C(v) = [l, u] ∩ X(v). Then, according to Lemma 1,
we have ml,u,σ (v) ∈ C(v) for all σ ∈ �(N ). Let S ∈ 2N \ {∅} and consider σ ∗ ∈ �(N )

such that σ ∗(k) ∈ N \ S for all k ∈ {1, . . . , |N \ S|}. If the pivot player of ml,u,σ ∗
(v) is an

element of N \ S, then ml,u,σ ∗
i (v) = li for all i ∈ S, so

v(S) ≤
∑
i∈S

ml,u,σ ∗
i (v) =

∑
i∈S

li .

If the pivot player of ml,u,σ ∗
(v) is an element of S, then ml,u,σ ∗

i (v) = ui for all i ∈ N \ S,
so

v(S) ≤
∑
i∈S

ml,u,σ ∗
i (v) = v(N ) −

∑
i∈N\S

ml,u,σ ∗
i (v) = v(N ) −

∑
i∈N\S

ui .

Combining these two cases, we obtain expression (1).
For the if-part, assume that expression (1) holds for all S ∈ 2N \ {∅}. We only need to

prove that [l, u]∩X(v) ⊆ C(v). In view of the convexity of the core, together with Lemma 1,
it suffices to show that ml,u,σ (v) ∈ C(v) for all σ ∈ �(N ). For all S ∈ 2N \ {∅} and all
σ ∈ �(N ),

v(S) ≤max

⎧
⎨
⎩

∑
i∈S

li , v(N ) −
∑

i∈N\S
ui

⎫
⎬
⎭

≤max

⎧⎨
⎩

∑
i∈S

ml,u,σ
i (v), v(N ) −

∑
i∈N\S

ml,u,σ
i (v)

⎫⎬
⎭ =

∑
i∈S

ml,u,σ
i (v).

Hence, ml,u,σ (v) ∈ C(v) for all σ ∈ �(N ). 
�

Proof of Lemma 3

Proof Define w ∈ �N by w(S) = v(S) − ∑
i∈S l∗i (v) for all S ∈ 2N . Then l∗i (w) = 0

and u∗
i (w) = u∗

i (v) − l∗i (v) for all i ∈ N , C(w) = [l∗(w), u∗(w)] ∩ X(w), and η(v) =
l∗(v) + η(w). For each i ∈ N , there exists x ∈ C(w) such that xi = l∗i (w), so

0 = l∗i (w) = xi = w(N ) −
∑

j∈N\{i}
xi ≥ w(N ) −

∑
j∈N\{i}

u∗
j (w).
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Similarly, for each i ∈ N , there exists x ∈ C(w) such that xi = u∗
i (w), so

u∗
i (w) = xi = w(N ) −

∑
j∈N\{i}

xi ≤ w(N ) −
∑

j∈N\{i}
l∗j (w) = w(N ).

Define (E, c) ∈ BN by E = w(N ) and c = u∗(w). Then vE,c(N ) = E = w(N ) and for
all i ∈ N ,

l∗i (vE,c) = max

⎧
⎨
⎩0, E −

∑
j∈N\{i}

c j

⎫
⎬
⎭ = max

⎧
⎨
⎩0, w(N ) −

∑
j∈N\{i}

u∗
i (w)

⎫
⎬
⎭ = 0 = l∗i (w)

and

u∗
i (vE,c) = min{E, ci } = min{w(N ), u∗

i (w)} = u∗
i (w).

This implies that

C(vE,c) = [l∗(vE,c), u
∗(vE,c)] ∩ X(vE,c)

=
{
x ∈ R

N
∣∣ ∑
i∈N

xi = vE,c(N ) and l∗(vE,c) ≤ x ≤ u∗(vE,c)

}

=
{
x ∈ R

N
∣∣ ∑
i∈N

xi = w(N ) and l∗(w) ≤ x ≤ u∗(w)

}

= [l∗(w), u∗(w)] ∩ X(w)

= C(w).

Potters and Tijs (1994) showed that the nucleoli of two balanced games are equal if their
cores are equal and at least one of the two games is convex. Since vE,c is convex, this implies
that η(vE,c) = η(w). Applying self-duality,

η(v) = l∗(v) + η(w)

= l∗(v) + η(vE,c)

= l∗(v) + f T AL(E, c)

= l∗(v) + f T AL(w(N ), u∗(w))

= l∗(v) + f T AL

(
v(N ) −

∑
i∈N

l∗i (v), u∗(v) − l∗(v)

)

= u∗(v) − f T AL

(∑
i∈N

u∗
i (v) − v(N ), u∗(v) − l∗(v)

)
.


�
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