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Abstract
In this paper, we propose and analyse two game theoretic approaches to design attribution
mechanisms for multi-channel marketing campaigns. Both approaches are based on a key
performance index function that provides the benefit obtained in each of the observed paths
to conversion. The first approach considers the problem as a cooperative transferable utility
game, and the proposed attribution mechanisms are based on the Shapley value. The second
approach models the problem as a bankruptcy problem and the proposed attribution mech-
anism is based on the constrained equal-losses rule. We also extend the above approaches
to deal with the cases in which the position or the repetition of the channels on the paths to
conversion are taken into account.

Keywords Cooperative game theory · Marketing · Multi-channel attribution · Shapley
value · Bankruptcy problems · Constrained equal-losses rule

1 Introduction and literature review

The attribution of the benefits obtained from the different channels involved in a marketing
campaign, is a relevant issue because it can help to optimally assign a marketing budget and,
in general, a through understanding of the effects of a campaign. In fact, there is a vast amount
of literature on this problem within the field of marketing that we do not intend to analyse
here. The reader is referred to Jayawardane et al. (2015), Choi et al. (2020) for a review and
classification of the methodologies considered in this field.
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Taking into account that an attribution problem is in essence a benefit allocation problem,
we are interested in a game theoretic approach to the marketing attribution problem. Building
on the models and solutions of cooperative game theory allows the decision maker to select a
specific attribution rule based on a list of properties that is considered relevant to the decision
maker’s problem. However, the existing literature on this topic is scarce. Perhaps, the first
paper on themarketing environment adopting a cooperative game approach is (Dalessandro et
al., 2012), inwhich an attributionmethodology based on a causal estimation problem that uses
the concept of Shapley value (Shapley, 1953) is proposed. Since then, several papers which
have not been formally published (Morales, 2016; Zhao et al., 2018) also address this problem
and, in particular, they define a related cooperative game with transferable utility (TU-game)
and consider its Shapley value as the attribution rule, which is precisely our first proposal.
Other subsequent papers also adopt the Shapley value as an attributionmethodology bymeans
of defining TU games, whose characteristic functions are based on a probabilistic markovian
approach (see, for instance, Singal, 2022). In contrast to these scarce contributions, there
are other attribution problems, such as the museum pass problem, introduced by Ginsburgh
and Zang (2003), which are closely related to this attribution problem and deserve a profuse
game theoretic analysis, see for instance (Ginsburgh & Zang, 2004; Béal & Solal, 2010;
Casas-Méndez et al., 2011, 2014; Estévez-Fernández et al., 2010, 2012; Bergantiños &
Moreno-Ternero, 2015; Cano-Berlanga et al., 2017).

We consider two related, but basically different, models to define an attribution rule based
on a game theoretic approach, which have also been considered to address the museum pass
problem. The first model considers a related TU game to describe the marketing attribution
problem. More specifically, the TU game we deal with is a generalisation of the museum
pass game which turns out to be TU-proportional1 to a labeled network game, introduced by
Algaba et al. (2019c). The reader is referred to Algaba et al. (2019) for the analysis of the
relationship between labeled network and museum pass games, as well as other cooperative
games arising from attribute situations. On the basis of this model, we will generalise the
proposed rule -which is also based on the Shapley value and is TU-proportional to the Shapley
quota allocation mechanism for labeled network games (Algaba et al., 2019c)–to take into
account those cases in which the number of times each channel appears on the observed paths
to conversion is relevant, and also to obtain a measure of the relative weight each position
has, when the order in which the channels appear on those paths is also relevant.

The secondmodel follows a similar approach to that of Casas-Méndez et al. (2011, 2014);
Estévez-Fernández et al. (2010, 2012); Bergantiños andMoreno-Ternero (2015), which con-
sists on considering the attribution problem as a bankruptcy problem (O’Neill, 1982; Aumann
& Maschler, 1985). However, none of the bankruptcy problems considered in these papers
are applicable to our problem,with the exception of Bergantiños andMoreno-Ternero (2015).
This is because all of them use the single ticket price for each of themuseums involved, which
makes no sense in our particular context.We specifically propose the constrained equal-losses
(CEL) rule and the proportional (PROP) rule as attribution mechanisms. As stated before, on
the basis of this second model, we will generalise the two proposed rules -based on CEL and
PROP- to take into account those cases in which the number of times each channel appears
in the observed paths to conversion is relevant, and also to obtain a measure of the relative
weight each position has, when the order in which the channels appear in those paths is also
relevant.

The paper is organised as follows. In Sect. 2 we formally introduce the marketing attri-
bution problem that we are dealing with. In Sect. 3 we introduce the first model -which is

1 See Footnote 4 in Page 8 for a rigorous definition of TU-proportionality.
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based on TU games- which we will study. In addition, we analyse related games, propose
several attribution rules on the grounds of different scenarios, depending on the relevance of
the order or the repetitions of channels in the paths to conversion, and adapt some existing
axiomatic characterisations for these rules. We also study monotonicity and decomposition
properties of the mechanisms when repetition and positions are taken into account, respec-
tively. In Sect. 4 we turn to the analysis of the second proposed model. Analogously, we
analyse related bankruptcy problems, propose several attribution rules on the grounds of
different scenarios, depending on the relevance of the order or the repetitions of channels in
the paths to conversion, and adapt existing axiomatic characterisations for these rules. We
also show the monotonicity of the proposed mechanisms when repetition is considered and
we obtain some general results about their behaviour when more than one channel split their
claims simultaneously. Some final conclusions are included in Sect. 5.

2 Multi-channel attribution problem

Weassume that an advertising campaign exists inwhich an advertisement is broadcast through
a set of channels. The consumers can have multiple touch-points with the campaign by
watching the ad on some of those channels. Subsequently, at some point a conversion of a
consumer could happen by purchasing (in a very wide sense) the advertised product, thus
producing a measurable benefit. The attribution problem is then how to attribute to the
different channels that were watched before the conversion, the benefit produced by that
conversion. Let us formalise these ideas:

Let N = {1, 2, ..., n} be the finite set of channels involved in the campaign. A path to
conversion, p = (p(1), p(2), ..., p(�p)), is any finite ordered sequence of channels of N , where
p( j) ∈ N is the channel in position j in path p, and �p being the length of path p. We must
remark that a channel can appear more than once in a path.

Note that the cardinal of the set of all possible paths to conversion P(N ) is, in principle,
infinite. However, we shall consider only finite sets of paths to conversion, since in practice
only a finite number of paths P(N ) ⊆ P(N ) are observed. Since the benefit generated by any
path that did not occur is zero, all those paths will not belong to the support of the considered
problems.

The benefit of a path is given by a Key Performance Index: f : P(N ) −→ R+, that
assigns to any observed path to conversion p ∈ P(N ) a measure f (p) ≥ 0 of the benefit
obtained by conversions of all consumers that have followed this path p. Thus, the total
benefit of the campaign is B = ∑

p∈P(N ) f (p).
Hereafter, we shall assume that f (p) is the sum of the benefits produced by all the

consumers that have followed exactly the same path p to the conversion.We shall also assume
that spontaneous conversions without having watched the advertisement in any channel, are
already discounted in such a way that the benefit of the null path is zero. Formally, we define
a Multi-channel Attribution Problem and aMulti-channel Attribution Rule as follows.

Definition 1 A multi-channel attribution problem (MA problem) is a 3-tuple (N , P(N ), f ),
where N is the finite set of channels, P(N ) is the finite set of all observed paths to conversion,
and f : P(N ) → R+ is the KPI function.

Definition 2 A multi-channel attribution rule (MA rule) is a mapping γ that associates with
each attribution problem (N , P(N ), f ) an allocation in R

N indicating the amount each
channel gets from the benefit B = ∑

p∈P(N ) f (p) generated by the campaign, such that:
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1. γi (N , P(N ), f ) ≥ 0, ∀ i ∈ N ,
2.

∑
i∈N γi (N , P(N ), f ) = B, where B := ∑

p∈P(N ) f (p)

Regarding this problem, some classical approaches that base the attribution on the order
in which the channels appear on the path to conversion are commonly used in practice (first
touch, last touch, indirect last touch, time decay, among others)2. We propose MA rules
based on the classical rules for cooperative games with transferable utility and bankruptcy
problems, which allow us to get a deeper insight into the attribution mechanisms used to help
the advertisers to optimally assign their marketing budget.

3 The first model: a cooperative game theoretic approach

The first model we propose to derive an MA rule is based on TU games. First, we recall
some basic definitions of cooperative game theory. Then, we introduce the basic TU game
on which our proposal is based and we relate it to the museum pass and labeled network
games, which are closely related to it. We adopt the Shapley value as the MA rule to be used
when the presence of channels in a path to conversion is the unique relevant information,
which can be characterised by means of the classical axiomatisation of the Shapley value for
general TU games. Next, we enhance the basic TU game approach in order to deal with more
general attribution situations whereby the order in which channels appear in the conversion
path, as well as the number of times each channel appears, play a relevant role. First, we
consider in Sect. 3.4 the case in which only the number of times a channel appears in a
conversion path is relevant, and we generalise the axiomatic characterisation of the Shapley
quota allocation mechanism to derive an appropriate characterisation for the proposed rule.
Finally, in Sect. 3.5 we take into account the order of appearance and we obtain a measure
of the relative weight each position has in those situations.

3.1 Preliminaries. Basic concepts on cooperative games

A cooperative game with transferable utility, or simply a game from now on, is an ordered
pair (N , v), where N is a finite set of players and v : 2N → R, with 2N = {S | S ⊆ N },
is a characteristic function on N with v(∅) = 0. For any coalition S ⊆ N , v(S) ∈ R is the
worth of coalition S and represents the reward that coalition S can achieve by itself if all its
members act together.

A game (N , v) is superadditive if v(S ∪ T ) ≥ v(S) + v(T ), for every disjoint coalitions
S ∩ T 
= ∅; is monotone if v(S) ≤ v(T ), whenever S ⊆ T ; and it is convex if v(S ∪ T ) ≥
v(S)+ v(T )− v(S∩ T ) for every pair S, T ⊆ N . Convexity can be restated as an increasing
marginal contributions condition, i.e., v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ), for all
S ⊆ T ⊆ N \ {i}, and for all i ∈ N . Thus, convexity encourages cooperation, even more
than supperadditivity and monotonicity.

Given a game (N , v), and allocation or payoff vector is any x ∈ R
N , which gives player

i ∈ N a payoff xi . A payoff vector is said to be efficient if
∑

i∈N xi = v(N ). It is stable if
it is efficient and

∑
i∈S xi ≥ v(S), for every S ⊆ N . The set of all stable payoff vectors is

called the Core of the game (Gillies, 1953), which will be denoted by C(v). The Core of a
game can be empty, however if the game is convex, it is always non-empty (Shapley, 1971).

2 See for instance the multi-touch methodology of Google: https://adwords.googleblog.com/
2016/05/move-beyond-last-click-attribution.html
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A value ϕ is a map that associates with each game (N , v) a payoff vector ϕ(N , v). One of
the most well-known and most used3 values is the Shapley value (Shapley, 1953) that assigns
to each of the players the average of all their marginal contributions when all coalitions of
the same size are equally probable, and also when all sizes are equally probable. Formally,
for each i ∈ N ,

φi (N , v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |!

(
v(S ∪ {i}) − v(S)

)
, (1)

where |S| is the cardinal of S. If the game is convex the Shapley value is stable (Shapley,
1971).

The Shapley value admits an alternative expression in terms of the Harsanyi dividends of
every coalition S in (N , v), which are defined as:

dS =
∑

T⊆S

(−1)|S|−|T |v(T ), ∀ S ⊆ N .

The Harsanyi dividends can be calculated recursively:

dS = v(S) −
∑

T�S

dT ,∀S ⊆ N . (2)

Then, the Shapley value can be expressed from the Harsanyi dividends as follows (see
Shapley, 1953):

φi =
∑

S⊆N
i∈S

dS
|S| (3)

A game (N , v) is totally positive when all its Harsanyi dividends are non-negative. Every
totally positive game is convex, therefore its Shapley value belongs to its Core.

3.2 The sum gamewhen only the presence of channels is relevant

In this section, we introduce the game for the multi-channel attribution problem on which
we base our proposal. It was first introduced in the non-formally published contribution of
Morales (2016) as the conversion game. In the sequel, we will refer to it as the sum game.
We recall its definition, derive its main properties and study its relationship with museum
pass and labeled network games.

We first consider the case when only the presence of channels is relevant. This approach
is suitable for instance in the MA problem related to TV advertising. In this case, when you
are buying TV advertising you have no control of the order in which people are exposed
as you generally buy spots on multiple channels. Frequency is a possible consideration, but
again it is hard to manage as when you buy more spots you reach more consumers, but at the
same time you increase the frequency of exposure for those viewers that watch a lot of TV.
TV ad buyers therefore, are generally more concerned about reaching consumers than about
frequency, e.g. if they have exposed everyone they want to expose.

3 The reader is referred to Roth (1988) and Algaba et al. (2019a) to delve into the study of the Shapley value,
and some of its applications to specific allocation problems.
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Given the MA problem (N , P(N ), f ), when only the presence of channels is relevant,
the information of a given path p that we retain is only the set of channels that appear in any
position of the path (which we call its support):

Sp = {i ∈ N / i ∈ p} ⊆ N .

Thus, we can consider that wework with a set of channels N = {1, . . . , n} and the unique rel-
evant information about their performance is given by the following aggregated KPI function
defined over the subsets of N :

f (T ) :=
∑

p∈P(N )
Sp=T

f (p), ∀ T ⊆ N , (4)

i.e. f (T ) is the total benefit produced by all consumers that have seen the ad exactly in the
channels in T , regardless of the order or the number of times. Now, if coalition S forms, it
can be awarded the profit generated by all conversions of consumers who have seen the ad
on any subset of channels of coalition S and who, in addition, have not seen it on any other
channel in N \ S. That is, the worth assigned to coalition S will be given by the sum of the
the KPI values of its subsets.

Definition 3 Given a set N = {1, 2, ..., n} of players and a map f : 2N → R such that
f (S) ≥ 0 for all S ⊆ N , the sum game (N , v

f
�) is defined by

v
f
�(S) =

∑

T⊆S

f (T ), ∀ S ⊆ N . (5)

Remark 1 Hereafter, when the KPI function is defined over subsets of N we will refer to
them as combination of channels, whereas coalition of channels is restricted to the argument
of a characteristic function.

It is trivial to prove that the sum game is monotone and convex, then it is superadditive,
its Core is nonempty and the Shapley value belongs to the Core. Moreover, the class of sum
games coincides with the class of totally positive games.

Proposition 1 For any given sum game (N , v
f
�), the Harsanyi dividends are given by the

corresponding benefit function f (·) that defines the game. That is, dS = f (S) for all S ⊆ N.
Therefore, the class of sum games coincides with the class of totally positive games.

Proof We prove by induction on the size of S ⊆ N that the Harsanyi dividends of a sum
game verify dS = f (S). Employing the recursive formula of the Harsanyi dividends dS =
v
f
�(S) − ∑

T�S dT , for all S ⊆ N , we obtain:

d∅ = 0; di = f ({i}),∀i ∈ N ; d{i, j} = f ({i, j}),∀{i, j} ⊆ N .

Let S ⊆ N and assume that dT = f (T ), ∀ T ⊆ N such that |T | ≤ |S| − 1. Again, by the
recursive formula, it follows:

dS = v
f
�(S) −

∑

T�S

dT =
∑

T⊆S

f (T ) −
∑

T�S

f (T ) = f (S).

�
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The sum game associated with a multi-channel attribution problem is closely related to
the museum pass game (introduced in Ginsburgh and Zang, 2003) and also to the labeled
network game (Algaba et al., 2019c), which are in fact two classes of games which are also
closely related between them (see Algaba et al., 2019).

In the museum pass problem M = (N , M, K ) there is a set N of museums participating
in a pass program, a set M of customers that have bought a pass, and a map K : M → N
that specifies the set of museums K ( j) ⊆ N visited by customer j ∈ M . In the associated
museum pass game (N , vM ) the value of coalition S is given by the number of pass holders
who only visited some or all of the museums in coalition S. Note that the sum game clearly
generalises the museum pass game, in which the KPI of every conversion (which in this
case is given by a pass holder) is always the same (one, or the price k of the pass). Note
also, that in the museum pass problem, repetitions are not considered, since each pass allows
each museum to be visited no more than one time. The order in which pass holders visit the
museums is also irrelevant. However, if the museum pass game is generalised to consider the
case in which visitors may pay a continuum of different prices for the pass, both classes of
games will coincide when the presence of the channels is the unique relevant information.
However, note that this is not a realistic assumption.

In Cano-Berlanga et al. (2017) the authors introduce the sale channels game to analyse
the multi-channel attribution problem, which coincides with the museum pass game, since
the value of a coalition of channels S equals the number of sales made by customers that
have seen the ad in some of the channels of coalition S.

Within the labeled network allocation problem there is a set of agents N that control some
of the arcs of a given network, a set of labelled routesR whose arcs may belong to different
agents, and the part of one unit of flow which has effectively occurred through each of those
routes. In the associated labeled network game (N , vLN ) the value of coalition S is the part
of one unit of flow that has occurred through routes whose arcs belong to agents in S. Note
that considering k = 1

B (where B is the global benefit of the campaign) every sum game,
when only the presence of channels is relevant, is TU-proportional4 to a labeled network
game. In the sequel we will make use of this relationship. Again, as in the museum pass
problem, the order in which the arcs are visited are usually irrelevant regarding the kind of
situations considered in this framework (use of public transport systems, for instance), nor
do repetitions have much sense.

3.3 The Shapleymulti-channel attribution rule

Considering the definition of the multi-channel attribution rule given in Sect. 2, we can use
many different MA rules based on different values of the sum game associated with each
problem. However, as we have mentioned before, we adopt the Shapley value of the sum
game as the proposed attribution mechanism.We base our decision on the following reasons:
(i) the properties characterising the Shapley value, which are in fact very useful from a
marketing point of view (primarily additivity); (ii) its simple expression in this case, which is
also computationally tractable; and (iii) its widespread use in real-world applications, which
has increased substantially in recent years (see Moretti and Patrone 2008; Thomson, 2019b;
Sánchez-Soriano, 2019; Samek et al.,2021, among many others).

To be specific, we will refer as the Shapley multi-channel attribution (Shapley-MA) rule to
the MA rule given by the Shapley value of the sum game (N , v

f
�) associated with each MA

4 The class C of TU-games is said to be TU-proportional to classD, if and only if, for every game (N , v) ∈ C
there exist k ∈ R+ and (N , w) ∈ D such that v(S) = kw(S), ∀ S ⊆ N .
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problem (N , P(N ), f ): φ(N , P(N ), f ) := φ(N , v
f
�). We must remark that this is precisely

the MA rule proposed by Morales (2016) and Zhao et al. (2018). However, none of these
references develop a thorough analysis of the resulting mechanism, nor generalise it to the
cases in which repetitions or order have a direct impact on the contribution of each channel
to the realised conversion. Moreover, taking into account that the class of sum games is TU-
proportional to the class of labeled network games, it is also TU-proportional to the Shapley
quota allocation mechanism introduced by Algaba et al. (2019c).

As well as museum pass games, sum games are also convex and, taking into account
Proposition 1, their Shapley value can be expressed in terms of the KPI function f (·) as
follows:

φi (N , P(N ), f ) =
∑

S⊆N
i∈S

f (S)

|S| , ∀ i ∈ N . (6)

Although (6) is simpler than the original one, in principle, it still has the problem of involving
an exponential number in n of addends. However, since in practice the number of observed
combinations of channels resulting in conversions is small, the number of non-zero terms in
(6) makes its calculus efficient from a computational point of view.

Zhao et al. (2018) also used (6), however they did not rely on the Harsanyi dividends of
the game to deduce it.

Next, we recall the formulation of the classic axiomatic characterisation of the Shapley
value based on efficiency, null player, additivity and symmetry, which is more appropriate
regarding the situation at hand. See Algaba et al. (2019b) for this formulation and other
alternative ones. First, we summarise the properties that characterise the Shapley value. Note
that, symmetry property can be replaced by equal treatment of equals to obtain an axiomatic
characterisation by a straightforward adaptation of axiomatic characterisation of the Shapley-
quota allocation mechanism for Labeled Network Allocation problems given by Algaba et
al. (2019c) .

Definition 4 Let γ be a MA rule. It is said to satisfy:

– Additivity property, if for all i ∈ N , and for all MA problems (N , P1(N ), f 1) and
(N , P2(N ), f 2) with set of channels N , it holds:

γi (N , Pagg(N ), f agg) = γi (N , P1(N ), f 1) + γi (N , P2(N ), f 2),

where Pagg(N ) = P1(N ) ∪ P2(N ) and f agg(p) = f agg(p) = f 1(p) + f 2(p), where
f j (p) := 0 for every path p /∈ P j (N ), j = 1, 2.

– Symmetry property, if for every pair i, j ∈ N of indistinguishable channels in terms
of performance (i.e. for every conversion path p ∈ P(N ), it holds: (i) i, j ∈ Sp; (ii)
Sp ⊆ N \{i, j}; or (iii) for each p = pi with Spi = S∪{i} for some S ⊆ N \{i, j} there
exists p j ∈ P(N ) with Sp j = S ∪ { j} and f (pi ) = f (p j )), then γi (N , P(N ), f ) =
γ j (N , P(N ), f ).

– Equal treatment of equals property if for every pair i, j ∈ N of equal channels (i.e. i ∈ Sp
if, and only if, j ∈ Sp , for all p ∈ P(N )), then γi (N , P(N ), f ) = γ j (N , P(N ), f ).

– Null channel property if a channel that does not make any contribution in terms of
performance (i.e. f (p) = 0, for every conversion path p ∈ P(N ) with i ∈ Sp), then
γi (N , P(N ), f ) = 0.

Note that in this case, the additivity axiom, which is usually the most controversial one,
turns out to be a key property for the marketing managers, since it allows them to aggregate
campaigns and allocate the benefits of a huge campaign sequentially at different stages.

123



Annals of Operations Research (2022) 318:1043–1075 1051

Theorem 1 The Shapley-MA rule is the unique MA rule satisfying additivity, null channel
and equal treatment of equals.

Proof The proof follows the same lines than that of Algaba et al. (2019c), by induction on
the number of observed conversion paths. �


Besides the characterising properties, the Shapley-MA rule satisfies other interesting prop-
erties. Next, we introduce the concept of independent subset of channels.

Definition 5 Let (N , P(N ), f ) be a MA problem. Then, a subset S∗ ⊆ N of channels is
said to be an independent set of channels, if for all p ∈ P(N ), Sp ∩ S∗ 
= ∅ if, and only if,
Sp ⊆ S∗.

Note that the worth generated by an independent subset S∗ of channels equals
∑

S⊆S∗ f (S), which is precisely v
f
�(S∗), moreover, it can be clearly identifiable and thus

should be imputed to S∗. In these situations, in which no conversion has been made by
consumers exposed to combinations of channels mixing some channels of S∗ with other
channels that are not in S∗, channels in S∗ should not receive any credit from the conversions
of devices exposed to channels in N \ S∗, and the other way around.

Definition 6 Let γ be a MA rule. It is said to satisfy:

– Stand-alone property, if for all MA problem (N , P(N ), f ), and for all i ∈ N , it holds:

γi (N , P(N ), f ) ≥ f ({i}) :=
∑

p∈P(N )
Sp={i}

f (p)

– Fair attribution property, if for all MA problem (N , P(N ), f ), and for all i, j ∈ N such
that:

f (S ∪ {i}) :=
∑

p∈P(N )
Sp=S∪{i}

f (p) ≥
∑

p∈P(N )
Sp=S∪{ j}

f (p) =: f (S ∪ { j}), ∀ S ⊆ N \ {i, j},

then it holds γi (N , P(N ), f ) ≥ γ j (N , P(N ), f ).
– Stability, if for all MA problem (N , P(N ), f ), and for all S ⊆ N it is verified:

γS(N , P(N ), f ) :=
∑

i∈S
γi (N , P(N ), f ) ≥ v

f
�(S) =

∑

T⊆S

f (T ).

– No subsidizing property, if for allMA problem (N , P(N ), f )with an independent subset
of channels S∗ ⊆ N , it holds:

γS∗(N , P(N ), f ) =
∑

T⊆S∗
f (T ).

Stand-alone property ensures that the value attributed to a channel is not less than the
value it can obtain by itself. Fair attribution property states that when the combination with
channel i is more profitable (or at least equally profitable) than the combination with channel
j for every combination S, channel i should not be attributed worse than channel j . Stability
property, which is closely related to no subsidizing, states that the global value attributed to
each combination S of channels should always be greater than or equal to the value generated
by all conversions from consumers exposed to any possible combination of channels in S that
have not watched any other channel. No subsidizing property assures that any combination
of channels should not subsidize other channels with which it does not interact.
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Proposition 2 The Shapley-MA rule verifies stand-alone, fair attribution, stability and no
subsidizing properties.

Proof All of them follow trivially from the properties of the Shapley value and the definition
of the sum game, taking into account that the sum game is supperadditive and convex. �


3.4 Case when the number of times a channel is visited is relevant. The rShapley-like
multi-channel attribution rule

In this section, we try to extend the previous analysis to the case whereby the order in which
the channels are on a path to conversion is not considered relevant information, but the
number of times the channels appear is. For example, paths (1, 2) and (2, 1) are considered
indistinguishable in terms of information, but different from path (2, 1, 2, 2). In the latter
case, we consider that the value of channel 2 should be greater than the value of channel 1 on
that path to conversion. Therefore, the above approach of aggregating the values of different
paths that share the same subset S of channels, must be carefully done because the informa-
tion about the repetition of channels can be lost. To avoid this possible loss, we introduce the
sum game with repetitions by repeating each original channel as many times as necessary,
by properly taking into account the information about the number of times each consumer
has seen the ad in each channel. As before, we rely on the Shapley value of the replicated
sum game to derive the proposed MA rule, which we name as rShapley-like multi-channel
attribution rule, and turns out to be TU-proportional to the Doubly Proportional quota allo-
cation mechanism defined in Algaba et al. (2019c). We study its properties and derive an
axiomatic characterisation that generalises the Shapley attribution rule axiomatisation given
in Theorem 1.

In order to define the sum game with repetitions, let ri the maximum number of times
channel i appears in any path of the MA problem (N , P(N ), f ), i.e.

ri = max
p∈Pi (N )

ni (p), (7)

where ni (p) is the number of times channel i appears in path p and being Pi (N ) := {p ∈
P(N ) | i ∈ Sp}, for all i = 1, . . . , n. Then we create fictitious channels i1, i2, . . . , iri that
substitute the original channel i . To be specific, if channel i appears ni (p) times in path
p, then channel i is substituted by fictitious channels i1, i2, . . . , ini (p) in this path p. Let
Nr = ∪n

i=1S
r
i , where Sri = {i1, i2, . . . , iri }, i ∈ N , be the channel set with repetitions, and

let P(Nr ) denote the set of conversion paths obtained after renaming the channels. Then, the
KPI function with repetitions f r (·) is given by the following sum:

f r (Sr ) :=
∑

p∈P(Nr )
Sr=Srp

f (p), ∀ Sr ⊆ Nr , (8)

where Srp := {i k ∈ Nr | i k ∈ p}, for every p ∈ P(Nr ), and being the sum over the empty
set defined as 0. Now, with each MA problem (N , P(N ), f ), we may associate a sum game
with repetitions defined as follows.

Definition 7 Given a MA problem (N , P(N ), f ), its associated sum game with repetitions
(Nr , v

f r

� ) is given by:

v
f r

� (Sr ) :=
∑

T r⊆Sr
f r (T r ), for all Sr ⊆ Nr . (9)
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Table 1 Campaign data Path p KPI value f (p)

(1) 20

(1, 2) 40

(2, 1) 10

(2, 1, 2) 30

Table 2 KPI and characteristic
function with repetitions for
observed combinations and
coalitions

S ⊆ Nr f r (S) v
f r

� (S)

{11} 20 20

{21} 0 0

{22} 0 0

{11, 21} 50 70

{11, 22} 0 20

{21, 22} 0 0

{11, 21, 22} 30 100

Definition 8 The rShapley-like MA rule associates with each MA problem (N , P(N ), f ),
the allocation φr (N , P(N ), f ) in R

N given by the following sum:

φr
i (N , P(N ), f ) := φi1(N

r , v
f r

� ) + · · · + φiri (N
r , v

f r

� ), i ∈ N . (10)

Trivially, the rule defined above is a MA rule:

–
∑n

i=1 φr
i (N , P(N ), f ) = B.

– φr
i (N , P(N ), f ) ≥ 0 for all i ∈ N .

Example 1 Let us consider the MA problem (N , P(N ), f ) with N = {1, 2}, P(N ) =
{(1), (1, 2), (2, 1), (2, 1, 2)}, and the following KPI values:

Then we create fictitious players 11, 21, 22 and consider the sum game with repetitions
(Nr = {11, 21, 22}, v f r

� ) based on the KPI function with repetitions f r depicted in the new
Table 2.

Thus, the rShapley-like MA rule is given by:

φr
1(N , P(N ), f ) = φ11(N

r , v
f r

� ) = 55,

φr
2(N , P(N ), f ) = φ21(N

r , v
f r

� ) + φ22(N
r , v

f r

� ) = 35 + 10 = 45.

The Shapley-MA rule is given by φ1(N , v
f
�) = 60 and φ2(N , v

f
�) = 40. Thus, taking into

account repetitions by means of the rShapley-like MA rule, increases the worth of channel
2.

Taking into account the rShapley-like MA rule definition and the expression of the
Shapley-MA rule (6), we can straightforwardly deduce the following simple expression for
the rShapley-like MA rule based on the KPI of the observed paths, which also shows its
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relation with the doubly proportional allocation mechanism for labeled network allocation
problems (Algaba et al., 2019c):

φr
i (N , P(N ), f ) =

∑

Sr⊆Nr

Sr∩Sri 
=∅

|Sr ∩ Sri |
|Sr | f r (Sr ) =

∑

p∈Pi (N )

ni (p)

�p
f (p), (11)

being �p = ∑
i∈N ni (p) the length of path p ∈ P(N ).

Now, we introduce the property of monotonicity with respect to channel repetition that
captures the following fact observed inExample 1: if a given channel increases its appearances
while the remaining characteristics continue, its attribution will improve, or at least will not
worsen, and we prove that the rShapley-like MA rule verifies it. We end up with an axiomatic
characterisation of the rShapley-likeMA rule, which emphasises the difference between both
proposed MA rules based on the Shapley value.

Definition 9 Let (N , P(N ), f ) and (N , P+i (N ), f +i ) be two MA problems with channel
set N , such that they are equally apart from the existence of path p0 ∈ P(N ) in which channel
i appears one more time in (N , P+i (N ), f +i ) than it appears in (N , P(N ), f ). That is:

– P+i (N ) = P(N ) \ {p0} ∪ {p+i
0 }, with n j (p

+i
0 ) = n j (p0), for all j 
= i , and ni (p

+i
0 ) =

ni (p0) + 1.
– f +i (p+i

0 ) = f (p0) and f +i (p) = f (p), for all p ∈ P(N ) \ {p0}.
Then, a MA rule γ verifies monotonicity with respect to channel repetition whenever
γi (N , P(N ), f ) ≤ γi (N , P+i (N ), f +i ).

Proposition 3 The rShapley-like MA rule verifies monotonicity with respect to channel rep-
etition.

Proof Taking into account (11), the only difference betweenφr
i (N , P(N ), f ) andφr

i (N , P+i

(N ), f +i ) is given by the weight corresponding to paths p0 ∈ P(N ) and p+i
0 ∈ P+i (N ),

which are ni (p0)
�p0

and ni (p0)+1
�p0+1 , respectively. Since �p0 ≥ ni (p0), the inequality holds. �


Note that the Shapley-MA rule trivially satisfies monotonicity with respect to channel
repetition, since it is in fact indifferent to repetitions. On the contrary, the rShapley-like MA
rule is strictly monotonic whenever the enlarged path p0 contains another channel in addition
to channel i itself.

In order to obtain an axiomatic characterisation for the rShapley-like MA rule, we intro-
duce the notion of proportional channels and the property of proportional treatment of
proportional channels, which generalises the property of equal treatment of equals to prop-
erly reflect the effect of repeated exposures to the ad in the same channel over the attribution.

Definition 10 Let (N , P(N ), f ) be a MA problem. Then, two channels i, j ∈ N are said
to be proportional if they are equal channels, i.e., i ∈ p if and only if j ∈ p for all
p ∈ P(N ), and besides, there exists a positive constant k > 0 such that ni (p)

n j (p)
= k, for every

p ∈ Pi (N ) = Pj (N ).

Definition 11 A MA rule γ verifies proportional treatment of proportional channels
(PTP) if for all i, j ∈ N proportional channels with ni (p)

n j (p)
= k, for every p ∈ Pi (N ) =

Pj (N ), then γi (N ,P(N ), f ))
γ j (N ,P(N ), f ) = k.
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Theorem 2 The rShapley-like MA rule is the only MA rule satisfying additivity, null channel
and proportional treatment of proportional channels.

Proof First, we prove that the properties hold for the rShapley-like MA rule. Null channel
and proportional treatment of proportional channels properties follow straightforwardly from
(11). In order to prove additivity, let (N , P1(N ), f 1) and (N , P2(N ), f 2) be two MA prob-
lems with the same set of channels N , then the channel set with repetitions for the aggregated
problem (N , Pagg(N ), f agg) is given by Nr

agg := Nr
1 ∪ Nr

2 , where Nr
1 , N

r
2 are the channel

sets with repetitions of (N , P1(N ), f 1) and (N , P2(N ), f 2), with raggi = max{r1i , r2i }, that
accounts for all possible repetitions in both campaigns. Now, in order to rely on the additivity

property of the Shapley value, we extend the two sum games with repetitions (Nr
1 , v

f 1r

� ) and

(Nr
2 , v

f 2r

� ) to the same player set Nr
agg adding the non-existing players in each game as null

ones.
Clearly, if r1i < r2i (r2i < r1i ) then all paths p in which channel i appears � > r1i (� > r2i )

times shall have a zero KPI in the first (second) problem, and therefore the corresponding

fictitious channel i� with r1i < � ≤ r2i (r2i < � ≤ r1i ) will be a null channel in (Nr
1 , v

f 1r

� )

((Nr
2 , v

f 2r

� )). However, since the Shapley value verifies Null player out property5 Derks and
Haller (1999), it holds for all i� ∈ Nr

agg:

φi� (N
r
agg, v

f 1r

� ) = φi� (N
r
1 , v

f 1r

� ), ∀ � ≤ r1i ,

φi� (N
r
agg, v

f 1r

� ) = 0, ∀ r1i < � ≤ raggi ,

φi� (N
r
agg, v

f 2r

� ) = φi� (N
r
2 , v

f 2r

� ), ∀ � ≤ r2i ,

φi� (N
r
agg, v

f 2r

� ) = 0, ∀ r2i < � ≤ raggi .

Thus, by definition of the rShapley-likeMA rule and additivity of the Shapley value, it follows
that φr

i (N , P1(N ), f 1) + φr
i (N , P2(N ), f 2) equals:

r1i∑

�=1

φi� (N
r
1 , v

f 1r

� ) +
r2i∑

�=1

φi� (N
r
2 , v

f 2r

� ) =
raggi∑

�=1

φi� (N
r
agg, v

f 1r

� ) +
raggi∑

�=1

φi� (N
r
agg, v

f 2r

� )

=
raggi∑

�=1

φi� (N
r
agg, v

f agg,r

� ) := φr
i (N , Pagg(N ), f agg),

for every channel i ∈ N .
Now,we are left with the question of uniqueness. It follows the same lines than the proof of

uniqueness in the axiomatisation of the Shapley quota allocation mechanism given in Algaba
et al. (2019c), by induction on the cardinality of P(N ).

Let γ be a MA rule satisfying null channel, additivity and PTP. First, let (N , P(N ), f ) be
a problem with a unique conversion path p: |P(N )| = 1. Then, since γ satisfies null channel
and PTP, and it is efficient by definition, we obtain the following:

γi (N , P(N ), f ) =
{

ni (p)
�p

f (p), if i ∈ Sp,

0, ifi /∈ Sp,

5 Removing a null player does not affect the Shapley value of the remaining players: φi (N , v) = φi (N \
{ j}, v− j ), for all i, j ∈ N , (N , v), such that j is a null player in (N , v) and i 
= j .
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Table 3 Campaign data Path p KPI value f (p)

(1) 30

(1, 2) 60

(2, 1) 10

for all i ∈ N , which equals the rShapley-like MA rule.
Let us suppose by induction that γ = φr for every (N , (P(N ), f ) such that |P(N )| ≤

m − 1, m > 1, and let us consider (N , P ′(N ), f ′) with |P ′(N )| = m, then the equality
γ (N , P ′(N ), f ′) = φr (N , P ′(N ), f ′) holds by induction hypothesis taking into account that
(N , P ′(N ), f ′) can be obtained as the aggregation of (N , P ′(N ) \ { p̃}, f ′) and (N , { p̃}, f ′)
and both rules are additive. �


3.5 Case when the position of a channel in a path to conversion is relevant

We will now consider the case in which a channel can play distinct roles at different stages
of the conversion process, i.e. a channel can have distinct impacts on consumers’ decision-
making at different stages of the path to conversion. In fact, as we have mentioned in Sect. 2,
classical approaches that base the attribution on the order in which the channels are on the
path to conversion, are commonly used in practice (first touch, last touch, indirect last touch,
time decay, among others). However, in all of these cases, the relative importance that each
position has is exogenously given. Our proposal is intended to obtain endogenous information
about position importance. An interesting task, that deserves future analysis, is to adequately
exploit the information obtained on the positions for endogenously providing an appropriate
weight system to capture the relative importance of each position.

We shall first consider the case in which each channel appears once, at the most, in
every path to conversion. Then again, we make use of the idea of considering fictitious
channels for tracking positions. In this case, every channel i that appears in position j
in some path to conversion p ∈ Pi (N ) is substituted by a new fictitious channel i j that
combines the information about the channel and its position. Let IP(i) = { j ∈ N+ | ∃ p ∈
Pi (N ) s.t. p( j) = i} be the set of positions channel i occupies and pi = |IP(i)|. Then,
we create pi fictitious channels i j , j ∈ IP(i) that substitute the original channel i . Let
No = ∪n

i=1S
o
i , where Soi = {i j | j ∈ IP(i)}, i ∈ N , be the set of channels positions, and

let P(No) denote the set of conversion paths obtained after renaming the channels. Then,
the KPI function f o(·) and theMA problem for channels positions (No, P(No), f o) can be
defined as in the previous Sect. 3.4.

Now, in order to assess the contribution made by each channel when it occupies different
positions, we can rely on the Shapley-MA rule of the MA problem for the position of the
channels. To be specific, we define the Shapley-MA of channel i in position j ∈ IP(i),
as φ

j
i (N , P(N ), f ) := φi j (N

o, P(No), f o), for very i ∈ N , and for every MA problem
(N , P(N ), f ) with ri = 1, for all i ∈ N .

Example 2 Let us consider the MA problem (N , P(N ), f ) with N = {1, 2}, P(N ) =
{(1), (1, 2), (2, 1)}, and the following KPI values.

The KPI function for the channels positions f o(·) and the corresponding characteristic
function of the sum game (No, v

f o

� ), with channels positions set No = {11, 12, 21, 22}, are
depicted in Table 4.
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Table 4 KPI and characteristic
functions for the channels
positions set No

S ⊆ No f o(S) v
f o

� (S)

{11} 30 30

{21} 0 0

{22} 0 0

{11, 21} 0 30

{11, 22} 60 90

{12, 21} 10 10

{11, 21, 22} 0 90

{11, 12, 21, 22} 0 100

The Shapley-MA rule of theMAproblem (No, P(No), f o) for channels positions is given
by

φ1
1(N , P(N ), f ) := φ11(N

o, P(No), f o) = 60,
φ2
1(N , P(N ), f )) := φ12(N

o, P(No), f o) = 5,
φ1
2(N , P(N ), f ) := φ21(N

o, P(No), f o) = 5,
φ2
2(N , P(N ), f ) := φ22(N

o, P(No), f o) = 30.

We can observe the following relation with the Shapley-MA rule when the order is not
considered relevant:

φ1
1(N , P(N ), f ) + φ2

1(N , P(N ), f ) = 65 = φ1(N , P(N ), f ), (12)

φ1
2(N , P(N ), f ) + φ2

2(N , P(N ), f ) = 35 = φ2(N , P(N ), f ). (13)

Then, we can interpret the attribution to channels 1 and 2 as the sumof the attribution obtained
by each channel, when it occupies the first position or the second position in a path. In this
particular case, channel 1 contributesmuchmorewhen it is the first touch-point to conversion,
whereas channel 2 contributes much more when it is the last touch-point.

Note that for every MA problem (N , P(N ), f ) with ri = 1, for all i ∈ N , the Shapley-
MA rule of channel i in position j ∈ IP(i) can also be obtained by means of the following
simplified expression in terms of the original KPI function:

φ
j
i (N , P(N ), f ) =

∑

p∈P j
i (N )

f (p)

�p
, (14)

where P j
i (N ) ⊆ P(N ) is the set of paths in which player i occupies position j .

If no repetition occurs and thus each channel appears only once in every observed path to
conversion p ∈ P(N ), the next proposition (which is straightforward to check) shows that
relations (12) and (13) generalise.

Definition 12 We say that a MA rule γ verifies decomposition with respect to positions if
for all MA problem (N , P(N ), f ) it holds:

γi (N , P(N ), f ) =
∑

j∈IP(i)

γi j (N
o, P(No), f o), ∀ i ∈ N . (15)

Proposition 4 If no repetition occurs, the Shapley-MA rule verifies decomposition with
respect to positions.
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Table 5 KPI function with
repetitions for observed
combinations

Sro f ro(S)

{111} 20

{111, 212} 40

{211, 112} 10

{211, 112, 223} 30

It is worth highlighting that in Zhao et al. (2018) an intuitive idea regarding the use of a
similar approach to deal with the case in which the order is relevant was considered, which
they called ”ordered Shapley values”. However, they did not consider any formalisation of
the procedure to obtain these ordered Shapley values, neither did they consider its relation
to the case when the order was not relevant.

Following Zhao et al. (2018) we can use the attribution of the Shapley-MA rule of each
channel and position to measure the importance of a given fixed position j . Formally:

Definition 13 For any MA problem (N , P(N ), f ), and any observed position j (i.e., there
exists a path p ∈ P(N ) of length � ≥ j), the pShapley-like value of position j is defined
as:

φo
( j)(N , P(N ), f ) :=

∑

i∈N
j∈IP(i)

φ
j
i (N , P(N ), f ).

The pShapley-like value of position j defined above can also be obtained in terms of the
KPI function as follows:

φo
( j)(N , P(N ), f ) =

∑

p∈P(N )
�p≥ j

f (p)

�p
,

for any observed position j in the MA problem (N , P(N ), f ).
Note that by construction it always holds φo

( j)(N , P(N ), f ) ≤ φo
(�)(N , P(N ), f ), for

every pair of positions j ≤ �.
As for a more general case, in which a channel appears more than once in several paths,

we can follow an analogous approach by means of considering as many fictitious channels
as necessary, and defining the rShapley-like MA rule of channel i in position j ∈ IP(i). In
that case, if repetition occurs, the rShapley-like MA rule verifies decomposition with respect
to positions, whereas Shapley-MA rule does not.

Example 3 Let us consider the MA problem of Example 1 to illustrate the general case. We
should consider fictitious players i k j , where k deals with repetitions and j with positions.
Then, the KPI function with repetitions f ro for the positions of the channels defined over
combinations in Nro = {111, 112, 211, 212, 223} is depicted below in Table 5.

Thus, the rShapley-like MA rule of each channel, and the rShapley-like MA rule of each
channel and positions are given by:

φr
1(N , P(N ), f ) = 55 = 40 + 15 = φ

r ,1
1 (N , P(N ), f ) + φ

r ,2
1 (N , P(N ), f ),

φr
2(N , P(N ), f ) = 45 = 15 + 20 + 10 =

= φ
r ,1
2 (N , P(N ), f ) + φ

r ,2
2 (N , P(N ), f ) + φ

r ,3
2 (N , P(N ), f ).

The pShapley-like rule of positions 1, 2 and 3 is given by φo(N , P(N ), f ) = (55, 35, 10).
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Remark 2 It should be noted that, the purpose of taking into account the number of times a
channel appears on each path to conversion, differs from that of taking into account the posi-
tion each channel occupies on those paths. Taking into consideration repetitions is intended
to modify the attribution to each channel, on the basis that the part of the benefit produced by
each path attributed to each channel should increase if the number of times the ad is viewed
on that channel increases. However, considering positions is intended to endogenously assess
the importance of positions in each path for conversion, which is a major issue in marketing
attribution. The information on the value obtained from each channel in each of the positions
it occupies is not used to alter the attributions it obtained regardless of its positions.

4 The secondmodel: a bankruptcy approach

In this section, we propose a different approach to the multi-channel attribution problem, by
considering it a bankruptcy problem. First, we recall some basic preliminaries on bankruptcy.
Then, we introduce the basic multi-channel bankruptcy problem on which our proposal is
based, and characterise the class of bankruptcy problems that defines it. In particular, we
explore the proportional (PROP) rule and the constrained equal-losses (CEL) rule (Aumann
&Maschler, 1985) asmulti-channel attribution rules. Proportional rules are always appealing
since they can be easily computed and understood by the user (the marketing campaign
manager in our context). However, in this framework, additivity is an interesting property
for the manager, and moreover, there are other important aspects that are attractive for the
manager who would be interested in discarding channels with low contributions. Taking into
account that there is no additive bankruptcy rule (see (Bergantiños & Vidal-Puga, 2004)),
we propose to rely on the CEL rule, which verifies a weaker version of additivity -which
we refer to as quasi additivity- and also excludes weaker claimants. We also analyse PROP
rule as a benchmark to compare it with. Next, following Sects. 3.4 and 3.5, we rely on the
multi-channel attribution problem with repetitions and the multi-channel attribution problem
for the positions of the channels and consider, from a bankruptcy perspective more general
attribution situations whereby the order in which channels appear in the conversion path, as
well as the number of times each channel appears, could play a relevant role.

4.1 Preliminaries. Basic concepts on bankruptcy problems

O’Neill (1982) and Aumann and Maschler (1985) introduce the bankruptcy problem as a
game theoretic problem for solving the question of how to allocate a given estate among the
different agents that have rights on a part of it, in the event that the estate is not sufficient to
meet all their claims. The reader is referred to Thomson (2003, 2015, 2019a) for a survey on
bankruptcy problems, where themost important allocation rules for bankruptcy are described
and characterised.

Formally, a bankruptcy problem is given by (N , E, c), where N = {1, . . . , n} is the set
of claimants, E is the estate and c = (c1, . . . , cn) is the vector of claims, being ci the claim
of agent i , such that 0 < E ≤ ∑n

i=1 ci . We shall denote by C = ∑n
i=1 ci the total quantity

that is claimed and by D = C − E ≥ 0 the deficit. Let U = {1, 2, . . . } be the universe of
all potential claimants, and let N be the class of all non-empty finite subsets of U . For any
element N ∈ N , let BN denote the family of all bankruptcy problems with set of claimants
N .
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Definition 14 For all N ∈ N , a bankruptcy rule for BN is a mapping R that associates
with every problem (N , E, c) ∈ BN a unique vector R(N , E, c) ∈ R

N such that 0 ≤
Ri (N , E, c) ≤ ci , for all i ∈ N (Boundedness) and

∑
i Ri (N , E, c) = E (Efficiency).

The bankruptcy problem can bemodelled as a game (O’Neill, 1982; Aumann&Maschler,
1985) and specific game theoretic solutions as the nucleolus (Schmeidler, 1969) or the Shap-
ley value can be derived as bankruptcy rules. However, a direct treatment of the bankruptcy
problem could be more intuitive and acceptable from the point of view of the user. To be
specific, we focus on the proportional rule and the constrained equal-losses (Aumann &
Maschler, 1985) rule.

Definition 15 For all N ∈ N , and for every bankruptcy problem (N , E, c) ∈ BN , the
proportional rule assigns to each claimant:

PROPi (N , E, c) = ci
C
E, i = 1, . . . , n.

The CEL (constrained equal-losses rule) assigns to each agent in a bankruptcy problem
(N , E, c) ∈ BN the amount:

CELi (N , E, c) = max{0, ci − λ},
where λ > 0 verifies

∑

i∈N
max{0, ci − λ} = E .

The proportional rule assigns to each claimant a part of the estate which is proportional
to its claim, whereas The CEL rule allocates the deficit D to the claimants as equally as
possible.

4.2 A bankruptcy approach. The constrained equal-losses multi-channel attribution
rule

For each MA problem (N , P(N ), f ) , we consider an associated bankruptcy problem in
which the estate represents the total revenues obtained from the campaign, whereas we
consider that each channel claims all profits generated by the conversions of the viewers who
have seen the ad on that channel.

We first consider the case when only the presence of the channels is relevant. In this
case, given a MA problem, (N , P(N ), f ), we denote by (N , B f , c f ) ∈ BN the associated
bankruptcy multi-channel attribution (BMA) problem, where the estate is given by:

B f =
∑

S⊆N

f (S),

and claims are given by

c f
i =

∑

S⊆N
i∈S

f (S), i ∈ N .

Obviously, the sum of the claims C f = ∑
i∈N c f

i exceeds the global benefit B f (the estate),
which is precisely the global amount that should be attributed to the channels. Let D f ≥ 0
denote the deficit D f = C f − B f .

Let us denote byBAN the class of all those BMAproblemswith channel set N , for all N ∈
N . The next theorem proves that the class of bankruptcy multi-channel attribution problems
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coincideswith the class of Simple claims bankruptcy problems introduced inO’Neill (1982)6,
which is a proper subset of BN .

For convenience, hereafter we will omit the superscript f when, within the context, there
is no doubt about which KPI function f is being used.

Theorem 3 For every finite set N ∈ N , and any given bankruptcy problem (N , E, c) ∈ BN ,
∑

i∈N
ci ≥ E ≥ max

i
ci (16)

is a necessary and sufficient condition for (N , E, c) ∈ BAN , i.e., for the existence of a
non-negative map f : 2N → R+ with f (∅) := 0, such that

E =
∑

S⊆N

f (S) and ci =
∑

S⊆N
i∈S

f (S), ∀ i ∈ N .

Proof By definition, if (N , E, c) ∈ BAN , there exists a MA problem (N , P(N ), f ) such
that (N , E, c) = (N , B f , c f ). Thus, clearly condition (16) is satisfied. We will prove that it
is also a sufficient condition by induction on the number of claimants.

Let us first prove that, under condition (16), the next set of linear constraints correspond-
ing to a bankruptcy problem with two claimants, has a non-negative feasible solution with
f (∅) := 0:

E = f ({1}) + f ({2}) + f ({1, 2}),
c1 = f ({1}) + f ({1, 2}),
c2 = f ({2}) + f ({1, 2}).

Trivially, f ({1}) = E − c2, f ({2}) = E − c1 and f ({1, 2}) = c1 + c2 − E solves the system
and condition (16) assures that all of them are non-negative.

Now, let us suppose by induction hypothesis that given a bankruptcy problemwith n = |N |
claimants satisfying condition (16) there exists a non-negative map f (·) with f (∅) = 0 such
that E = ∑

S⊆N f (S) and ci = ∑
S⊆N
i∈S

f (S), for all i ∈ N , and we will prove the existence

of a similar function for any bankruptcy problem with n + 1 claimants verifying (16).
Let (N , E, c) be such a bankruptcy problem, and let us assume without loss of generality

c1 ≤ c2 ≤ · · · ≤ cn ≤ cn+1. Then, let us define

f ({n + 1}) := max{cn+1 − cn, E −
n∑

i=1

ci } (17)

Now, let us consider two cases:

1. If f ({n + 1}) = cn+1 − cn , then the reduced problem (N , E ′, (c1, . . . , cn)) with
E ′ := E − cn+1 + cn is a bankruptcy problem satisfying condition (16). Note that cn =
maxi=1,...,n ci ≤ E −cn+1 +cn = E ′ since E ≥ cn+1, and

n∑

i=1

ci ≥ E −cn+1 +cn = E ′,

6 O’Neill (1982) defines the class of simple claims problems as those ones“.. defined by an estate of given
size, n heirs and n corresponding wills each specifying a bequest for that heir, which total at least as much
as the total estate, with each bequest non-negative and less than or equal to the total estate, will be called a
simple claims problem.”. Since the restriction of being ci ≤ E , for all claimant i ∈ N , does not appear in other
general definition of bankruptcy problem, we have adopted the terminology simple claims as an adjective to
refer to those bankruptcy problems that verify this condition.
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since cn+1 − cn ≥ E −
n∑

i=1

ci . Thus, there exists a non-negative function f ′(·) such that:

E − cn+1 + cn =
∑

S⊆N

f ′(S), (18)

ci =
∑

S⊆N
i∈S

f ′(S), i = 1, . . . , n. (19)

Now, let us define function f : 2N∪{n+1} → R+ as follows: f ({n + 1}) := cn+1 − cn ;
f (S) := f ′(S) and f (S ∪ {n, n + 1}) := f ′(S ∪ {n}), for every S ⊆ {1, . . . , n − 1}; and
being f (S) := 0 for the remaining S containing only one of the agents n or n + 1.
Trivially, f verifies

E =
∑

S⊆N∪{n+1}
f (S)

and

ci =
∑

S⊆N∪{n+1}
i∈S

f (S), for all i ∈ N ∪ {n + 1}.

2. If f ({n + 1}) = E −
n∑

i=1

ci , then 0 ≤ cn+1 − cn ≤ E −
n∑

i=1

ci , and therefore the

reduced problem (N , E ′, (c1, . . . , cn)) with E ′ := E − f ({n+1}) = ∑
i∈N ci is a trivial

bankruptcy problem which also satisfies condition (16).
The function f ′({i}) := ci for all i = 1, . . . , n, and f ′(S) = 0 otherwise, is a non-negative
function that trivially verifies

E ′ :=
n∑

i=1

ci =
∑

S⊆N

f ′(S) and ci =
∑

S⊆N
i∈S

f ′(S), ∀ i ∈ N = {1, . . . , n}.

Now, let us define the function f as follows:

f ({n + 1}) := E −
n∑

i=1

ci ,

f ({i}) := f ′({i}) = ci , i = 1, . . . , n − 1,

f ({n}) := f ′({n}) − D = cn − (

n+1∑

i=1

ci − E) ≥ 0,

f ({n, n + 1}) := D =
n+1∑

i=1

ci − E ≥ 0,

f (S) := 0, otherwise.
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Note that f ({n}) ≥ 0 since cn+1 − cn ≤ E −
n∑

i=1

ci . Trivially, f verifies

E =
∑

S⊆N∪{n+1}
f (S) and ci =

∑

S⊆N∪{n+1}
i∈S

f (S), ∀ i ∈ N ∪ {n + 1}.

�

As we have mentioned before, we adopt the CEL bankruptcy rule as the proposed attri-

bution mechanism based on this second approach. We base our selection on the grounds of
its properties. Excluding weaker claimants helps the manager to concentrate on the most
powerful channels, whereas quasi-additivity (which we introduce in this paper) can help
the manager to aggregate campaigns. Here, we also consider the PROP rule as a matter of
comparison.

Definition 16 A Bankruptcy multi-channel attribution (BMA) rule is a MA rule that
associates with each MA problem (N , P(N ), f ) a vector given by γi (N , P(N ), f ) =
Ri (N , B f , c f ), for all i ∈ N , being R a given bankruptcy rule.

Definition 17 The PROP-MA rule is the BMA rule that assigns to each MA problem
(N , P(N ), f ) the vector PROPi (N , B f , c f ), ∀ i ∈ N , for all N ∈ N .
The CEL-MA rule is the BMA rule that assigns to each MA problem (N , P(N ), f ) the
vector CELi (N , B f , c f ), ∀ i ∈ N , for all N ∈ N .

Remark 3 It is worthy to relate our proposal with the different allocation rules for themuseum
pass problem based on its analysis as a bankruptcy problem. The first paper which proposes
to model the museum pass problem using a bankruptcy approach is (Estévez-Fernández et
al., 2010, 2012). Since then, other authors have considered this approach, Casas-Méndez et
al. (2011) and Bergantiños and Moreno-Ternero (2015). However, the bankruptcy approach
followed by these authors is not valid for analysing the multi-channel allocation problem,
since they rely on the admission fees of each museum, as well as the number of visitors that
have visited each museum without a pass, that have no counterpart in the problem under
consideration. To be specific, in Estévez-Fernández et al. (2010, 2012), the claims equal
the global amount that each museum would receive if they had charged regular fees for
the services provided to pass-holders. Casas-Méndez et al. (2011) considered a weighted
bankruptcy model to allocate the pass price, the estate, in which the claims are the admission
fees and the weights are given by the number of pass-holders that have visited each museum.
Bergantiños and Moreno-Ternero (2015) consider three different kinds of proportional rules
according to the informational bases they assume. The simplest case, in which the authors
assume that they only know the total number of pass holders that visited each museum,
coincides with our approach. Nevertheless, the axiomatisation of the proportional rule they
derive is based on a compatibility property, which involves admission fees and the profile of
visits without a pass, and thus is not valid in this context.

Next, we show that for any N ∈ N , the subclass BAN is closed under all the operations
involved in the properties of equal treatment of equals, path independence, and composition
fromminimal rights,which characterise theCEL rule onBN (Herrero&Villar, 2001;Herrero,
2003). Therefore, this CEL axiomatisation is still a valid one for the CEL-MA rule. With
respect to the PROP-MA rule, the characterisation of the proportional rule on the subclass of
simple claims bankruptcy problems given by O’Neill (1982) is meaningful and valid in this
context.
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Definition 18 Let R be a bankruptcy rule for BAN , for all N ∈ N . It is said to satisfy:

– ETE equal treatment of equals, if for all (N , B, c) ∈ BAN and for all i, j ∈ N , ci = c j
implies Ri (N , B, c) = R j (N , B, c).

– PIN path independence, if for all (N , B, c) ∈ BAN and for all B ′ > B, R(N , B, c) =
R(N , B, R(N , B ′, c)).

– CMRComposition from minimal rights, if for all N , all (N , B, c) ∈ BAN , R(N , B, c) =
m(N , B, c) + R(N , B − ∑

i∈N mi (N , B, c), c − m(N , B, c)), where mi (N , B, c) =
max{0, B − ∑

j 
=i c j } is the minimal right of claimant i .

Note that the ETE property for BMA problems is stronger than the property of Equal
Treatment of Equals, considered in Sect. 3.3, in terms of the MA problem. Two channels
can have the same claims but they can differ in the KPI values of the combinations to which
they belong. With respect to the PIN property, it is clearly a valid property on BAN : for
every BMA problem (N , B, c) ∈ BAN , then (N , B, R(N , B ′, c)) ∈ BAN . On the contrary,
in the case of the CMR property, it is not obvious that the derived bankruptcy problem
(N , B − ∑

i∈N mi (N , B, c), c − m(N , B, c)) ∈ BAN . Let us prove it.

Proposition 5 If (N , B, c) ∈ BAN , then (N , B−
∑

i∈N
mi (N , B, c), c−m(N , B, c)) ∈ BAN .

Proof First, it is obvious that
∑

i∈N (ci − mi (N , B, c)) ≥ B − ∑
i∈N mi (N , B, c).

Second, wemust prove that maxi∈N ci −mi (N , B, c) ≤ B−∑
i∈N mi (N , B, c). Assume,

without loss of generality that claims are ordered in decreasing order, c1 ≥ c2 ≥ · · · ≥ cn ,
therefore c1 = maxi ci . As

∑

i 
=1

ci ≤
∑

i 
= j

ci , ∀ j ∈ N ,

this implies that mi is a non-increasing function in i . Then, if there exists mi 
= 0, m1 
= 0.
If m j > 0, c j − m j = c j − B + ∑

i 
= j ci = D − B. If for a given j , m j = 0, we must
check that c1 − m1 ≥ c j . Assume m1 > 0 (otherwise is trivial), c1 − m1 = D − B =∑

i∈N ci − B ≥ c j because m j = 0 implies that B − ∑
i 
= j ci ≤ 0.

Therefore, we must only check that B − ∑
i∈N mi ≥ c1 −m1. Let k be such that mi > 0

for all i = 1, .., k, and mi = 0 for i > k. The cases k = 0, 1 are trivial. For k ≥ 2 some
simple calculations allows us to obtain that:

B −
∑

i∈N
mi = (k − 1)D +

n∑

j=k+1

c j

Then, B−∑
i∈N mi −(c1−m1) = (k−1)D+∑n

j=k+1 c j −D = (k−2)D+∑n
j=k+1 ≥ 0.

�

Herrero (2003) characterizes the CEL bankruptcy rule by means of ETE, PIN and CMR.

All these properties are still valid on BAN , for all N ∈ N , and as we will show next, they
also characterise CEL-MA rule.

Theorem 4 CEL-MA is the only BMA rule verifying ETE, PIN and CMR.

Proof Clearly, since ETE, PIN and CMR are still valid on BAN , for all N ∈ N , CEL-MA
verifies all of them. Now, in order to prove the uniqueness of the CEL-MA rule, we will
follow the lines of Dagan (1996) proof of the CEA rule characterisation.
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Let R be a BMA rule verifying ETE, PIN andCMR, and let N and c ∈ R
N+ be two arbitrary

finite set of agents and vector of claims, respectively. We will prove that Ri (N , B, c) =
CELi (N , B, c), for every estate cn ≤ B ≤ ∑

i∈N ci , where we assume without loss of
generality that c1 ≤ c2 ≤ · · · ≤ cn .

Let us start with the case in which B = α1 + c2 + · · · + cn , 0 ≤ α1 ≤ c1. Then, the
minimal right of claimant i ∈ N is given by:

mi = α1 + c2 + · · · + cn −
n∑

j=1
j 
=i

ci =
{

α1, i = 1,

(ci − c1) + α1, 2 ≤ i ≤ n.
(20)

Since R verifies CMR, then Ri (N , B, c) = mi + R(N , B − ∑n
i=1 mi , c − m). Note

that (N , B − ∑n
i=1 mi , c − m) ∈ BAN (Proposition 5). Now, taking into account that

ci − mi = c1 − α1 ≥ 0, for all i ∈ N , by ETE, it holds:

Ri (N , B −
n∑

i=1

mi , c − m) = B − ∑n
i=1 mi

n
= (n − 1)(c1 − α1)

n
.

Thus,

Ri (N , B, c) = ci − c1−α1
n , ∀ i ∈ N , (21)

which equals CEL(N , B, c).
Now, we will prove the same coincidence for every estate B between B2 := (c2 + · · · +

cn) − c1(1 − 1
n ) and B1 := c2 + · · · + cn . If n = 2, then we have already proved that

Ri (N , B, c) = CELi (N , B, c) for all estate B such that (N , B, c) ∈ BAN , since B must
satisfy c2 ≤ B ≤ c1 + c2. Otherwise (n ≥ 3), B2 ≥ cn , and thus (N , B, c) ∈ BAN , for all
estate B such that B2 ≤ B ≤ B1.

Let B = B2 + α2, 0 ≤ α2 ≤ c1(1 − 1
n ). Since R verifies PIN, then R(N , B, c) =

R(N , B, R(N , B1, c)). Now, taking into account expression (21) above for α1 = 0, after
some calculations, we obtain the following vector of minimal rights in the new bankruptcy
problem (N , B, R(N , B1, c)) ∈ BAN :

mi =
{

α2, i = 1,

(ci − c1) + α2, 2 ≤ i ≤ n.
(22)

Again, as R verifies CMR, then

Ri (N , B, R(N , B1, c)) = mi + Ri (N , B −
n∑

i=1

mi , R(N , B1, c) − m), ∀ i ∈ N ,

where Ri (N , B1, c) − mi = n−1
n c1 − α2 ≥ 0, for all i ∈ N . Thus, by ETE, it holds:

Ri (N , B −
n∑

i=1

mi , R(N , B1, c) − m) = B − ∑n
i=1 mi

n
= (n − 1)(c1 − α2) − n−1

n c1
n

,

for all i ∈ N . Therefore,

Ri (N , B, c) = ci − 1

n

(
c1 + c1(1 − 1

n
) − α2

)
, ∀ i ∈ N ,

which equals CEL(N , B, c).
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Now, we can repeat the same argument finitely many times considering Bt = C −
c1

∑t−1
j=0(1 − 1

n ) j , to show that R(N , B, c) = CEL(N , B, c) for every Bt ≤ B ≤ Bt−1.
Since R and CEL-MA satisfy PIN, Ri and CELi are continuous in B for all i ∈ N
(see Herrero & Villar, 2001), then it follows that R(N , B, c) = CEL(N , B, c), for every
B ≥ C − nc1 = limt→∞ Bt . Note that in case C − nc1 < cn , we can always stop the
argument in a previous step B = cn .

The whole argument may be applied to show that R(N , B, c) = CEL(N , B, c) for every
estate B such that C − nc1 − (n − 1)(c2 − c1) ≤ B ≤ C − nc1. This may be repeated
considering the following consecutive intervals:

C −
k∑

j=0

(n − j + 1)(c j − c j−1) ≤ B ≤ C −
k−1∑

j=0

(n − j + 1)(c j − c j−1),

where c0 = c−1 = 0, until all possible estates B ∈ [cn,C] are covered. �

PROP-MA also verifies ETE and PIN properties, however it fails to verify CMR.
Next, we introduce other interesting properties. Exclusion (EXC) and additivity (ADD) are

classic properties of bankruptcy rules, whereas, to our knowledge, Quasi Additivity (QAD)
and Irrelevant claimants property (ICL) have not been considered before.

We say that i ∈ N is an irrelevant claimant for the rule R in (N , B, c) if Ri (N , B, c) = 0.

Definition 19 Let R be a bankruptcy rule for BAN , for all N ∈ N . It is said to satisfy:

– EXC Exclusion, if for all (N , B, c) ∈ BAN , if ci ≤ D/n then Ri (N , B, c) = 0.
– ICL irrelevant claimants property, if for all (N , B, c) ∈ BAN , and any irrelevant

claimant k ∈ N for the rule R, the attribution R(N \ {k}, B, c−k) of the reduced problem
without claimant k, verifies Ri (N \ {k}, B, c−k) = Ri (N , B, c), for all i ∈ N \ {k}.

– ADD additivity, if for all (N , B, c), (N , B ′, c′) ∈ BAN . R(N , B + B ′, c + c′) =
R(N , B, c) + R(N , B ′, c′).

– QADquasi additivity, if for all (N , B, c), (N , B ′, c′) ∈ BAN with no irrelevant claimants
for R, R(N , B + B ′, c + c′) = R(N , B, c) + R(N , B ′, c′).

EXC and QAD properties are appealing to the user: EXC assures that the attribution con-
centrates on the channels with the highest values, and QAD guaranties a restrictive additivity
of the campaigns, since unfortunately there is no bankruptcy rule verifyingADD (Bergantiños
& Vidal-Puga, 2004).

It is worth pointing out that all the properties considered above are well defined for the
subclass BAN , as well as for the general class of bankruptcy problems BN , for all N ∈ N .
Moreover, the next results regarding PROP-MA and CEL-MA as BMA rules generalises for
PROP and CEL as general bankruptcy rules.

Remark 4 If a claimant i ∈ N is excludable (i.e., ci ≤ D/n), then it is irrelevant for the
CEL-MA rule, but the converse is not true in general (apart from the case in which there is
a unique irrelevant claimant).

Proposition 6 CEL-MA rule verifies EXC, ICL and QAD properties. PROP-MA rule verifies
ICL.

Proof EXC is a typical property of the CEL rule.
With respect to ICL, we first prove that the property is correctly defined for CEL-MA,

i.e. the reduced problem (N \ {k}, B, c−k) ∈ BAN\{k}. Obviously, B ≥ maxi∈N ci ≥

123



Annals of Operations Research (2022) 318:1043–1075 1067

maxi 
=k∈N ci . We must check that C−k = C − ck ≥ B: If CELk(N , B, c) = 0, then
ck ≤ (C − B)/n = (C−k + ck − B)/n holds. Thus C−k − B ≥ (n − 1)ck ≥ 0, for all n ≥ 1.

Now, we will show that the remaining non-irrelevant claimants receive the same in both
problems. Let λ > 0 be the solution of the original problem defining CEL(N , B, c), i.e.
CELi (N , B, c) = max{0, ci − λ}, for all i ∈ N and

B =
∑

i∈N
max{0, ci − λ} =

∑

i∈N
CELi (N ,B,c)>0

max{0, ci − λ}.

Thus, λ is also the solution for the reduced problem defining CEL(N \ {k}, B, c−k) and
therefore, thewhole set of irrelevant claimants can be removedwithout changing the proposed
attribution.

In order to prove quasi-additivity of CEL-MA, let (N , B, c), (N , B ′, c′) ∈ BAN be two
bankruptcy problems with no irrelevant claimants for CEL-MA, then ci > D/n, ∀i ∈ N
and CELi (N , B, c) = ci − D/n, ∀i ∈ N . Analogously, CELi (N , B ′, c′) = c′

i − D′/n,
∀i ∈ N . Thus, since D + D′ is the deficit of the sum problem (N , B + B ′, c + c′), it
has no irrelevant claimants for CEL-MA, which implies that CELi (N , B + B ′, c + c′) =
ci + c′

i − (D + D′)/n = CELi (N , E, c) + CELi (N , E ′, c′),∀i ∈ N .
Trivially, PROP-MA verifies ICL, considering that PROPi (N , B, c) = 0 if, and only if,

ci = 0. �

On the contrary, it is clear that the PROP-MA rule does not verify neither EXC nor QAD.

Following O’Neill (1982), the PROP-MA rule can be characterised by symmetry (which is
ETE), continuity on ci , independence of the inclusion of claimants with no claim and strategy-
proof (if some claimants merge by adding their claims together, they should receive the same
global amount).

4.3 Case when the number of times a channel is visited is relevant

Now we consider the case in which the number of times each channel appears in a path is
also regarded as relevant information. We follow an approach similar to that in Sect. 3.4, by
means of defining the associated multi-channel attribution problem with repetitions. We will
show that both BMA rules, rCEL-like MA and rPROP-like MA, verifies monotonicity with
respect to channel repetition.

Definition 20 The rCEL-like MA rule, associates to each (N , P(N ), f ) MA problem, the
allocation CELr (N , P(N ), f ) in R

N given by the following sum:

CELr
i (N , P(N ), f ) := CELi1(N

r , B, cr ) + · · · + CELiri (N
r , B, cr ), i ∈ N , (23)

where (Nr , B, cr ) ∈ BANr
is the BMA problem associated to the MA problem with repeti-

tions (Nr , P(Nr ), f r ).

Analogously, the rPROP-like MA rule is defined. Trivially, both rules are MA rules.

Proposition 7 The rCEL-like MA and rPROP-like MA rules verify monotonicity with respect
to channel repetition.

Proof Let (N , P(N ), f ) be a MA problem. Without loss of generality, we can prove mono-
tonicity by only considering the case inwhich there exists a unique channel i ∈ N that appears
twice in (N , P+i (N ), f +i ). That is, there is a new path p+i ∈ P+i (N ) that substitutes path
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p ∈ P(N ) by repeating once player i ∈ p without changing its value f +i (p+i ) = f (p), and
being r j = 1, for all j ∈ N in the original problem (N , P(N ), f ). Let (Nr , P+i (Nr ), f +i,r )

be the MA problem with repetitions for (N , P+i (N ), f +i ).
Let (N , B, c) ∈ BAN be the BMA problem associated with (N , P(N ), f ), then the

bankruptcy problem associated to (Nr , P+i (Nr ), f +i,r ) is (Nr , B, cr ), where Nr = N \
{i} ∪ {i1, i2}, crj = c j , for all j ∈ Nr , j 
= i2 and cri2 = f +i (p+i ) = f (p).

We first prove the monotonicity of the CEL-MA rule. That is, we must prove that

CELi (A) =: CELr
i (N , P(N ), f ) ≤ CELr

i (N , P+i (N ), f +i ) :=
CELi1(A

r ) + CELi2(A
r ), (24)

where, for the sake of brevity throughout the proof A and Ar will denote the BMA problems
(N , B, c) and (Nr , B, cr ), respectively. We will distinguish two cases:

– Case 1: If CELi2(A
r ) = 0 then, by ICL property, CELi1(A

r ) = CELi (A) holds.
– Case 2: Otherwise, let us first prove that IC(Ar ) ⊆ IC(A), where IC(·) stands for the set

of irrelevant claimants for CEL-MA of the given BMA problem.We will show that every
irrelevant claimant in A is also irrelevant in Ar and it is excluded at the same stage of
the distribution process. Since CELi2(A

r ) > 0, then cri2 = f (p) > Dr/(n + 1), where
the deficit Dr for the new bankruptcy problem is Dr = D + f (p). Thus, f (p) > D/n
and D+ f (p)

n+1 ≥ D
n . Therefore, c j ≥ D+ f (p)

n+1 ≥ D
n , and this implies that every excluded

claimant in A (at the first stage) is also an excluded claimant (at the first stage) in Ar .
Now, let E(A) ⊆ N be the set of excluded claimants (at the first stage) in A. Then,
cri2 = f (p) > (Dr − ∑

j∈E(A) c j )/(|N \ E(A)| + 1), because CELi2(A
r ) > 0. Then,

ck ≥ Dr − ∑
j∈E(A) c j

(|N \ E(A)| + 1)
>

D − ∑
j∈E(A) c j

|N \ E(A)| .

Thus, every excluded claimant at the second stage in A is also an excluded claimant at the
second stage in Ar . Repeated application of the above reasoningyields IC(A) ⊆ IC(Ar ).
We are now in a position to prove that (24) holds. Let λ and λr be the solutions to the
problems defining CEL(A) and CEL(Ar ), and let RC(·) stands for the set of relevant
claimants forCEL-MAand the givenBMAproblem.We consider, yet again, two different
cases:

(i) If there exists a claimant k ∈ RC(A) which turns out to be irrelevant in Ar , then
ck − λ > 0 ≥ ck − λr . Thus, λr > λ and therefore CEL j (A) = c j − λ ≥
max{0, c j − λr } = CEL j (Ar ), for all j ∈ RC(A) and condition (24) holds taking
into account that

∑

j∈RC(A)
j 
=i

CEL j (A) + CELi (A) = B =

=
∑

j∈RC(A)
j 
=i

CEL j (A
r ) + CEi1(A

r ) + CELi2(A
r ).

(ii) Otherwise, the set RC(Ar ) = RC(A) \ {i} ∪ {i1, i2}. We will prove that λr ≥ λ. Let
us suppose that λr < λ, then it holds:

B =
∑

j∈RC(A)
j 
=i

CEL j (A) + CELi (A) <
∑

j∈RC(A)
j 
=i

CEL j (A
r ) + CEi1(A

r ) ≤ A,
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Table 6 Campaign data Path p KPI value f (p)

(1) 20

(1, 3) 40

(3, 1, 2) 30

(2, 3) 10

which is a contradiction. Therefore, λr ≥ λ and the reasoning of the previous case
applies.

In order to prove PROPi (A) ≤ PROPi1(A
r ) + PROPi2(A

r ), it is only necessary to
check that:

ci
C
B ≤ ci

C + f (p)
B + f (p)

C + f (p)
B,

which clearly holds since ci ≤ C �


4.4 Case when the position of a channel in a path to conversion is relevant

Now, we consider the case in which a channel has a different impact on the final conversion,
depending on its position in the path to that conversion.We follow an approach similar to that
in Sect. 3.5, by means of defining the associated multi-channel attribution problem for the
positions of the channels assuming there are no repetitions. In this case, the decomposition
result obtained for the Shapley-MA rule is still valid for the PROP-MA rule, but CEL-MA
does not verify decomposition with respect to positions in general.

Formally, let (N , P(N ), f ) be a MA problem with ri = 1, for all i ∈ N . Then the CEL-
MAattribution of channel i ∈ N in position j ∈ IP(i) is given byCEL j

i (N , P(N ), f ) :=
CELi j (N

o, B, co), for all i ∈ N , where (No, B, co) is the BMA problem associated with
(No, P(No), f o). Analogously, it is defined the PROP-MA attribution of channel i ∈ N
in position j ∈ IP(i).

Example 4 Given the campaign data in Table 6, CEL-MA and PROP-MA attributions for
each channel appear in Table 7. Tables 8 and 9 show the corresponding data for the MA
problem for channels positions, and the CEL-MAand PROP-MAattributions of each channel
i ∈ N = {1, 2, 3} in its observed positions IP(i), respectively. Thus, we can check that
PROP-MA verifies decomposition with respect positions whereas CEL-MA does not:

CEL1(N , B, c) = 160/3 > CEL11(N
o, B, co) + CEL12(N

o, B, co) = 50

CEL2(N , B, c) = 10/3 < CEL21(N
o, B, co) + CEL23(N

o, B, co) = 10

CEL3(N , B, c) = 130/3 > CEL31(N
o, B, co) + CEL32(N

o, B, co) = 40

In this example, the main reason for this result is that channel 2 is the one that least divides
its forces among its respective position channels to the extent that one of them becomes
irrelevant, as we will see later.

It should be noticed that, when introducing position channels (without repetitions) in
bankruptcy problems, two properties are preserved:

– The claims of the position channels i j , j ∈ IP(i), corresponding to channel i ∈ N
verify:

∑
j∈IP(i) ci j = ci . Therefore, the deficit Do does not change, i.e. Do = D. This

is the main difference with respect to the case with repetitions.
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Table 7 Bankruptcy solutions
without order

Channels 1 2 3

CEL-MA 160/3 10/3 130/3

PROP-MA 900/21 400/21 800/21

Table 8 Campaign data with
channels positions

Path p KPI value f (p)

(11) 20

(11, 32) 40

(31, 12, 23) 30

(21, 32) 10

Table 9 Bankruptcy solutions for channels and positions

Channels and positions 11 12 21 23 31 32

CEL-MA 40 10 0 10 10 30

PROP-MA 600/21 300/21 100/21 300/21 300/21 500/21

– The extended BMA problem with channels positions is also a BMA problem:
(No, B, co) ∈ BANo

Then, analysing the effectswhen considering the different positions a channel has occupied
in the observed conversion paths, is an analysis about the splitting effects for a general
bankruptcy problem. First, note that previous analysis on manipulation by splitting (see, for
instance, Ju, 2003; Ju et al., 2007; Moreno-Ternero, 2007) only deals with the case in which
there is only one claimant that splits her claims. Here, we recall the common definition of a
non-manipulable by splitting rule (Moreno-Ternero, 2007).

Definition 21 Arule R is non-manipulable by splitting (NMS) if for all (N , E, c), (N ′, E, c′),
with N � N ′, and such that there is some i ∈ N such that ci = c′

i + ∑
j∈N ′\N c′

j and for
each j ∈ N \ {i}, c′

j = c j then Ri (N , E, c) ≥ Ri (N ′, E, c′) + ∑
j∈N ′\N R j (N ′, E, c′).

PROP and CEL are NMS rules (Moreno-Ternero, 2007). However, in the case we are
interested in, more than one channel (claimant) may simultaneously split, and therefore,
questions regarding how simultaneous splits (or, equivalently, decomposition with respect
positions) affect the global attribution of each channel arise naturally.

For the PROP-MA rule is straightforward to prove the next result.

Proposition 8 If no repetition occurs, the PROP-MA rule verifies decomposition with respect
to positions.

CEL-MA rule does not verify decomposition with respect positions in general. However,
some results about splitting effects when claimants split simultaneously and there are not
repetitions, can be given:

Proposition 9 Let (N , B, c) ∈ BAN be a BMA problem such that all claimants in N, as well
as all their corresponding position claimants in the BMA problem (No, B, co) for channels
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positions, are relevant. Then

CELi (N , B, c) ≤
∑

j∈IP(i)

CELi j (N
o, B, co) ⇐⇒ pi ≤

∑
�∈N p�

n
.

Proof Since all claimants in N , as well as all their corresponding position claimants in
the BMA problem for channels positions (No, B, co), are relevant, what we have is that
CELi (N , B, c) = ci − D/n and CELi j (N

o, B, co) = ci j − D/
∑

�∈N p�, for all j ∈
IP(i). Thus, taking into account that ci = ∑

j∈IP(i) ci j , it follows that CELi (N , B, c) ≤∑
j∈IP(i) CELi j (N

o, B, co) if, and only if, pi ≤ ∑
�∈N p�/n. �


That is, channel i benefits from position decomposition if its number of corresponding
positions is below the average.

As we have seen in Example 4, CEL-MA does not verify decomposition with respect to
positions property in general. However, in some particular cases, it can hold as an immediate
corollary of the above proposition:

Corollary 1 Under the same conditions of Proposition 9, if pi = p� for all i, � ∈ N, CEL-MA
verifies decomposition with respect to positions.

The next proposition gives a result on how the splitting affects a channel with an irrelevant
position.

Proposition 10 Let (N , B, c) ∈ BAN be a BMAproblem such that all claimants in N, as well
as all their corresponding position claimants in the BMA problem (No, B, co) for channels
positions, are relevant except a unique position claimant �k corresponding to claimant � ∈ N

with p� ≤
∑

i∈N pi
n , then it holds:

CEL�(N , B, c) ≤
∑

j∈IP(i)

CEL� j (No, B, co).

Proof We shall denote by n′ = ∑
i∈N pi . Since �k is the only irrelevant claimant in

(No, B, co), then c�k ≤ D/n′, CEL�k (N
o, B, co) = 0, and CEL� j (No, B, co) = c� j −

(D − c�k )/(n
′ − 1), for all j ∈ IP(i), j 
= k. Analogously, since all the original claimants

are relevant in (N , B, c), then we have CEL�(N , B, c) = c� − D/n. Then we shall prove
that under the proposition conditions:

c� − D

n
≤

∑

j 
=k

(
c� j − D − c�k

n′ − 1

)
,

that is equivalent to prove

c�k − D

n
≤ −(p� − 1)

D − c�k

n′ − 1

since c� = ∑
j c� j .

After some algebra we obtain that the above condition is equivalent to

c�k (1 − q) ≤ D
(1

n
− q

)

where q = (p� − 1)/(n′ − 1).
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But c�k (1− q) ≤ D(1− q)/n′ since �k is the only irrelevant player. Then we shall prove
that

D(1 − q)

n′ ≤ D
(1

n
− q

)
.

if and only if

q ≤ n′ − n

n(n′ − 1)

After substituting q by its expression, we obtain that the above condition holds if and only
if

p� ≤ n′

n
.

�

To sum up, what Propositions 9 and 10 say is that a channel can benefit from the attribution

to its position channels the less it splits its claim. Finally, it should be noted that the above
propositions are valid for a general bankruptcy problem.

Remark 5 Despite the fact that in some cases CEL-MA does not verify decomposition with
respect to positions, we recall (Remark 2) that the main objective of the valuation of the posi-
tions is not to change the attribution to the different channels, but to get some endogenously
obtained insight about position importance in the paths to conversion which is an important
issue in practical marketing.

5 Conclusions

In this paper, we have addressed the attribution problem that arises when the total benefits
obtained by a marketing campaign must be attributed to the different advertising channels
involved in the campaign, which is nowadays a cornerstone of any multi-channel marketing
strategy. Essentially, We have analysed two kinds of attribution mechanisms, one of them
based on the Shapley value of an appropriate game,while the other one is based on bankruptcy
problems.

Morales (2016) y Zhao et al. (2018) suggested the idea of using the sum game as themodel
and the Shapley value as a possible attribution mechanism without developing this approach
thoroughly. We have formalised the model, studied its properties and analysed its relation
with museum pass games and labeled network games. We also extend this model to the case
in which the position or the number of times a channel appears in each path to conversion
is relevant. The proposed attribution mechanisms are based on the Shapley value of these
games.We have developed a thorough analysis of their properties asmulti-channel attribution
rules, providing axiomatic characterisations, focusing on monotonicity and decomposition
propertieswhen repetition and positions, respectively, are taken into account. From a practical
point of view, this approach hasmany advantages: (1) The characteristic function of the games
are conceptuallywell defined and have good properties.Moreover, their definitions are simple
and easy to understand and explain; (2) The proposed basic attribution is very simple and
also helps to understand the method: the value attributed to a channel is the sum of the aliquot
part of the value of each combination to which it belongs; (3) Its additivity allows to jointly
manage a batch of related campaigns; (4) Monotonicity property states that if a channel is
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more frequently seen its attribution cannot decrease; and (5) Decomposition with respect to
positions allows us to endogenously obtain information about the relative importance of the
positions.

The approach based on bankruptcy problems is, as far as we know, new.We have proposed
an appropriate bankruptcy problem to deal with attribution problems, which has an intuitive
and easy to explain definition. We have formalised the model, studied its properties and
analysed its relation with museum pass problems studied as bankruptcy problems (Estévez-
Fernández et al., 2010, 2012; Casas-Méndez et al., 2011; Bergantiños & Moreno-Ternero,
2015). It is remarkable that the class of bankruptcy problems that arises is the proper subclass
of simple claims bankruptcy problems (O’Neill, 1982). We also extend this model to the case
in which the position or the number of times a channel appears in each path to conversion
is relevant. Among the existing bankruptcy rules, it is the CEL rule that establishes an
alternative view which is different to the Shapley value of the sum game. In this case, the
exclusion property is fundamental: it gives zero value to very weak channels, if any, and tends
to concentrate the attribution in the channels that belong to the highest valued combinations.
As it happens with the Shapley-MA rule, the CEL rule is also simple to calculate. Although
additivity is lost, the weaker property of quasi additivity holds for CEL.We have provided an
axiomatic characterisation of theCEL-MArule, focusing onmonotonicity anddecomposition
properties when repetition and positions, are respectively taken into account. In particular,
we have obtained several results for general bankruptcy problems about the behaviour of the
CEL rule when more than one claimant simultaneously split their claims.

Other important issues that deserve further analysis are to study other rules for the proposed
models and to tackle certain problems that can appear in practical situations. For instance,
taking into account that value f ({i}) is only obtained by channel i , it would be interesting
to consider extended bankruptcy problems in which each of the agents have an objective
entitlement besides their claims. These models are analysed in Pulido et al. (2002, 2008).
Among the practical situations to be addressed, we can point out the existence of spontaneous
conversions, the incomplete information about the KPI function and how to use the positional
decomposedvalues of each channel value in order to obtain a general valuation of the positions
in any path to conversion.
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