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Abstract
In this paper, we address the controversies of epidemic control planning by developing a novel
Simulation-Deep Reinforcement Learning (SiRL) model. COVID-19 reminded constituents
over theworld that government decision-making could change their lives.During theCOVID-
19 pandemic, governments were concerned with reducing fatalities as the virus spread but
at the same time also maintaining a flowing economy. In this paper, we address epidemic
decision-making regarding the interventions necessary given of the epidemic based on the
purpose of the decision-maker. Further, we intend to compare different vaccination strategies,
such as age-based and random vaccination, to shine a light on who should get priority in the
vaccination process. To address these issues, we propose a simulation-deep reinforcement
learning (DRL) framework. This framework is composed of an agent-based simulationmodel
and a governor DRL agent that can enforce interventions in the agent-based simulation
environment. Computational results show that our DRL agent can learn effective strategies
and suggest optimal actions given a specific epidemic situation based on a multi-objective
reward structure. We compare our DRL agent’s decisions to government interventions at
different periods of time during the COVID-19 pandemic. Our results suggest that more
could have been done to control the epidemic. In addition, if a random vaccination strategy
that allows super-spreaders to get vaccinated early were used, infections would have been
reduced by 32% at the expense of 4% more deaths. We also show that a behavioral change
of fully quarantining 10% of the risky individuals and using a random vaccination strategy
leads to a reduction of the death toll by 14% and 27% compared to the age-based vaccination
strategy that was implemented and the New Jersey reported data, respectively. We have also
demonstrated the flexibility of our approach to be applied to other locations by validating
and applying our model to the COVID-19 case in the state of Kansas.
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1 Introduction

Coronavirus disease of 2019 (COVID-19) very quickly paralyzed the world as we know it.
After starting as a local epidemic, in a short time, it reached across the world andwas declared
a pandemic by World Health Organization (WHO) on March 11, 2020. As of June 29, 2021,
33,640,572 individuals have been infected, and 604,115 have died from the COVID-19. No
government had it easy to come up with regulations and interventions. Apart from the loss
of human lives, COVID-19 also caused an economic recession in the world economy. The
global stock market has experienced the worst crash since 1987 (Jones et al. 2021), and the
International Labor Organization estimated a loss of 400 million full-time jobs across the
world (McKeever 2020). COVID-19’s economic impact is also felt in agriculture (Poudel
et al. 2020), manufacturing (Tareq et al. 2021), arts and sports (Grix et al. 2021), and tourism
(Sigala 2020). Even the United States (US) was hit hard by the disruption of supply chains
(Nikolopoulos et al. 2021), change of lifestyle (Giuntella et al. 2021), and limited resources
(Galanakis et al. 2021). This disruption was accompanied by a huge job loss (Bell and
Blanchflower 2020). The effects of COVID-19 on human health and economies led to many
controversies. Former US President Trump declared a national emergency and accepted that
his administration "played it down" to not cause panic in public after the WHO declared the
pandemic. OnMarch 16, the Trump government puts in place the first interventions stopping
gatherings of more than ten people and canceling non-essential trips for the next 15 days. In
fear of an economic failure, this is the closest thing to a nationwide shutdown that the US
implemented. What is worse, a tentative reopening provoked a harsher spread of infections,
kindling the debates regarding how the government handled the pandemic (Ashraf 2020).

At the end of a dark year, hope arosewhen the first vaccineswere introduced.OnDecember
11, 2020, the US Food and Drug Administration (FDA) authorized the Pfizer-BioNTech
vaccine for emergency use, and just a week later, on December 18, the Moderna vaccine
was authorized as well. The government started vaccination using age and comorbidity-
based strategies aiming to protect individuals more prone to the critical effects of a COVID-
19 infection. Another discussion arose as to whether a strategy where the super-spreaders,
individuals contributing the most to the spread of the virus, were targeted first (or at least
were allowed to get vaccinated) could have higher benefits. Moghadas et al. (2021) study
a vaccination strategy with a delayed second dose due to the limited vaccine supply. Their
experiments show that a delay of 9 weeks for the second dose of the Moderna vaccine
could avert at least an additional 17.3 infections per 10,000 population and reduce deaths by
0.34 individuals per 10,000 population compared to the four-week interval between the two
doses. Gupta and Morain (2021) investigate different prioritization approaches and assess
the likeliness of those approaches to reduce morbidity and mortality.

In this study, our goal is to develop an approach incorporating two components: a decision-
maker and an evaluation mechanism of the decisions taken. An agent-based simulation is
a quite suitable approach to mimic epidemic spread and population movements and quan-
tify interventions (Shamil et al. 2021; De Mooij et al. 2021). Hence, we use an agent-based
model as an evaluation of the interventions’ impact on the population’s health status. Kerr
et al. (2021) provide an agent-based model, namely Covasim, which is an online simulation
involving multiple characteristics of individuals in a population and different contact layers
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for each individual where interventions can be applied at any particular point and between any
group of agents. Such bottom-up modeling of human interaction in different environments
transcends other simulation models in terms of representing stochastic situations. Consider-
ing the high usability of, and advancements in reinforcement learning (RL) (see, e.g., Bushaj
and Büyüktahtakın 2021; Delarue et al. 2020; Kong et al. 2018) and the computational lim-
itations of mathematical optimization models to deal with large populations, we employ a
deep reinforcement learning (DRL) agent as a governing decision-maker that can intervene
in the simulation and apply available measures to change the course of an epidemic. DRL
models have been useful in many decision-making environments across different fields such
as healthcare (Zhou et al. 2021), policy-making (Lin et al. 2020), autonomous systems (Chen
and Chan 2021), and logistics (Joe and Lau 2020). DRL models lack the conciseness of
a typical mathematical program but are useful in learning and quickly providing policies
that aim to improve a certain objective. To do this, we propose a Simulation-Deep Rein-
forcement Learning (SiRL) framework where an agent-based simulation model is integrated
inside a reinforcement learning environment.We set out to construct a model that can capture
the details of human individualism and present them as aggregate information to a general
decision-maker. Thus, we believe this approach is a natural representation of the relationship
between a government and its constituents. It combines the stochasticity of individual deci-
sions and the data aggregation to a system governor that can generate a policy for the greater
good of the whole system.

The structure of the rest of the paper includes the related work in Sect. 2, followed by the
details on the agent-based model (ABM) simulation and deep reinforcement learning (DRL)
environment in Sects. 3 and 4, respectively. Further, in Sect. 5, we integrate the ABM and
DRL approaches into a SiRL framework. Finally, we show our experiments and results in
Sect. 6 and conclude the paper in Sect. 7.

2 Related work

In many real-world problems, it is difficult to obtain necessary data and reproduce complex
situations. Hence, simulation has been a useful methodology to express the environment with
all its variables and dynamics. The choice of modeling is highly dependent on the type of the
problem, the complexity of the problem, and the decision-makers’ requirements.

Agent-based simulation has emerged and matured over the last 20 years, expanding both
its realm of applications and its sophistication as technology and computing have improved.
Drawbacks of agent-basedmodeling are the lack of easy-to-use software and implementation
and the amount of time needed to come upwith a structured and detailed environment. System
dynamics (SD) are powerful in designing systems that can illuminate behavior and provide
policies. For example, former SD studies have modeled relevant biological and behavioral
mechanisms aswell as critical feedback processes tomake empirical estimates of theCOVID-
19 progression (Rahmandad et al. 2021; Ghaffarzadegan and Rahmandad 2020). Rather than
rely on the SD approaches that model system-level disease dynamics, our main motivation
to use an agent-based simulation lies in its capability to capture individual-level disease
dynamics and the stochasticity in human contact networks and behavior. Because ABM is
a bottom-up approach, we are focused on providing agents (individuals) full action power,
which models our system according to the individual effect in the environment. Agent-based
simulation can be utilized to predict epidemic trends and dynamics (Müller et al. 2021;
Kieu et al. 2020), evaluate containment strategies and intervention decisions (Kerr et al.
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2021; Shamil et al. 2021; Hinch et al. 2020; Alzu’bi et al. 2021), and mitigate risks of
reopening (D’Orazio et al. 2020; Li et al. 2021). Agent-based modeling can be quite helpful
in representing real-world interactions of populations and offer a decision-maker the chance
to intervene and evaluate the outcomes of each decision. Epstein (2009) suggests that ABM
is perfectly suitable for modeling the dynamics of an epidemic across a population. In the
context of COVID-19, agent-based modeling has the potential to assist public health officials
in responding to outbreaks with an appropriate level of intervention while minimizing the
economic impact of those restrictions.

Among recent ABM simulations, the Covasim (COVID-19 Agent-based Simulation)
developed by Kerr et al. (2021) models the dynamics of COVID-19 spread in a population by
considering demographics based on age, different transmission characteristics among con-
tact layers, and specific viral properties of the disease itself. Kerr et al. (2021) model human
contact from different environments in a very effective form, capturing system dynamics and
the uncertainty associated with them. Covasim has been very effective in simulating disease
spread and comparing the simulation with other offered non-pharmaceutical interventions,
such as social distancing, reducing contacts, testing, contact tracing, and quarantining. Li
et al. (2021) extend the Covasim by also implementing a vaccination strategy and perform-
ing simulations according to Operation Warp Speed (an intervention proposed by the former
Trump administration) to facilitate and accelerate the development, manufacturing, and dis-
tribution of vaccines and diagnostics and the plan of one million vaccines per day, proposed
by the Biden administration. During the current pandemic, different countries have tried to
implement measures to deal with the epidemic despite having scarce medical resources, all
while aiming to lower the spread of COVID-19 and minimize the economic and human costs
of the epidemic. Most countries have tried to keep a balance and optimize decision-making
based on their available resources.

Typically, epidemiological methods can be categorized into compartments, e.g., Suscep-
tible (S), Infected (I), and Recovered (R) (Kermack and McKendrick 1927) and agent-based
(Epstein 2009; Kerr et al. 2021). Compartmental models tend to be faster, while agent-based
models are slower and more complex. The advantage of ABM is that it can build a realistic
model by capturing the stochasticity in the system by expressing the relationship between
individual agents.

In compartmental models, individuals progress through the compartments which are dis-
tinguished based on the population’s health status. These models are often run with ordinary
differential equations and are useful in predicting how disease spreads, estimating effec-
tive reproductive number, and investigating how different interventions affect the epidemic
spread. Giordano et al. (2020) present an extended compartmentalmodel, SIDARTHE,which
discriminates between infected individuals, thus presenting a realistic view of the diagnosed
infections, their severity, and non-diagnosed individuals. Higazy (2020) models the COVID-
19 pandemic using a fractional-order model of SIDARTHE and predicts the evolution of the
pandemic to understand the impact of possible plans that can reduce the diffusion with dif-
ferent values of the fractional order. Such models do a very good job in modeling infectious
diseases but are generally deterministic. An individual in the SIDARTHEmodel is defined by
the compartment they belong to and the probability of moving to other compartments. These
probabilities are defined by the disease severity and progression. Specifically, the infected
individuals are moved to the Diagnosed compartment with a probability ε. The agent-based
models (e.g., Covasim) have a similar underlying compartmental structure, but in addition
to that, an individual is represented as a more complicated and well-represented entity. Indi-
viduals have contact networks (household, school, workplace), existing conditions, specified
viral loads, and a certain age. This allows for individualism, meaning that two individu-
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als in the same compartment do not necessarily have the same characteristics. Due to this
heterogeneous and individual-based representation of the epidemic dynamics, adopting an
agent-based model can better express the stochastic nature of individual decisions.

In addition to simulation studies that approximate the dynamics of an epidemic,mathemat-
ical optimization has often been used for decision-making to control epidemic outbreaks. In
an epidemic situation, proper resource allocation contributes to better public health outcomes
as well as to a healthier economy. Different mathematical programming methodologies are
presented to tackle the resource allocation challenges in a pandemic, such as mixed-integer
programming (Büyüktahtakın et al. 2018), multi-stage stochastic programs (Bushaj et al.
2022; Yin and Büyüktahtakin 2021; Bushaj et al. 2020; Yin and Büyüktahtakın 2022; Kıbış
et al. 2020), stochastic programs (Tanner et al. 2008; Mehrotra et al. 2020), and approximate
dynamic programming (Coşgun and Büyüktahtakın 2018). Dasaklis et al. (2012) critically
review the roles of logistics operations and their management in epidemic control and iden-
tify possible literature gaps. They claim that the issue of epidemic control in the supply chain
literature is fragmented. Most of the available frameworks have very little correlation to the
real world scenarios, and the applicability of the modeling approaches is limited. Queiroz
et al. (2020) prepare a detailed review on the impacts of epidemic outbreaks in supply chains
and present a series of open research questions to frame a research agenda for scholars and
practitioners. In addition, they identify multiple suitable approaches to support supply chain
responsiveness, adaptation, and sustainability. Among others, they claim that a combination
of simulation theories with dynamic capabilities could make up for complex scenarios to
cope with resource scarcity and sequential decisions throughout the pandemic.

Büyüktahtakın et al. (2018) propose a mixed-integer programming formulation that
integrates epidemic dynamics into a logistics model to project the disease growth while min-
imizing the total number of infections and fatalities from the Ebola outbreak in West Africa.
They provide insights regarding intervention timing and intensity for each region in Guinea,
Liberia, and Sierra Leone. Yin and Büyüktahtakin (2021) present a multi-stage stochastic
programming compartmental model to tackle the uncertain disease progression and resource
allocation in an infectious outbreak. They introduce equity constraints in their model and
apply them to the Ebola disease spread in West Africa. Yin et al. (2023) present a risk-averse
multi-stage stochastic epidemics-ventilator-logistics compartmental model addressing the
resource allocation changes of COVID-19. The authors modify the lower and upper bounds
of Büyüktahtakın (2022) to region-based bounds to tackle problem complexity. Their results
show that short-term migration significantly influences the disease transmission. Ventilator
allocation depends on multiple factors, including initial infections, ICU capacity, the popu-
lation of a geographic location, and the availability of the ventilators.

Optimization models that oversee the impact of all possible interventions and budget allo-
cation scenarios on the growth of the disease simultaneously (see, e.g., Büyüktahtakın et al.
2018; Yin and Büyüktahtakin 2021; Bushaj et al. 2020, 2022; Yin and Büyüktahtakın 2022;
Kıbış and Büyüktahtakın 2019) are powerful tools to model epidemic logistics and optimize
decision strategies for resource allocation. Such operations research (OR) approaches focus
on modeling disease dynamics on a large-scale population over multiple regions and time
periods.

However, optimization models in combination with agent-based simulations can be
extremely difficult to solve. When we focus on a specific population and heterogeneity
among disease compartments such as age-specific transmission rates, agent-based models
could capture individual-level interactions and detailed disease dynamics better than mathe-
matical programmingmodels. However, in that case, agent-basedmodels should be supported
by a powerful optimization tool.
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DeepReinforcement Learning (DRL) has lately been very attractive for evaluating optimal
policies based on a given situation. In the last decade, Reinforcement Learning (RL) has
shifted from the use of tabular formats of actions and states (Watkins and Dayan 1992;
Hasselt 2010) to the usage of Deep Neural Networks (DNN) due to their immense benefits.
The use of DNN in RL has led to advances, such as Deep Q-Learning (Schaul et al. 2015),
Double Deep Q-Learning (Van Hasselt et al. 2016), and Actor-Critic Methods (Mnih et al.
2016; Wu et al. 2017). DRL has proven its strength in various applications such as games
(Mnih et al. 2013; Silver et al. 2018), combinatorial optimization (Bushaj and Büyüktahtakın
2021; Delarue et al. 2020), and healthcare (Mahmud et al. 2018).

Due to the devastating COVID-19 pandemic, recent studies have already used DRL to
help in different applications related to COVID-19 (Kompella et al. 2020; Wan et al. 2020;
Bednarski et al. 2020). Kompella et al. (2020) aim to use RL to optimize decisions during
the pandemic in a way that minimizes the economic impact and keeps hospitals at a normal
capacity. Bednarski et al. (2020) investigate the use of deep learning models to provide near-
optimal distribution of healthcare equipment to better deal with public health crises similar to
COVID-19. Awasthi et al. (2020) tackle the problem of distributing a limited vaccine supply
by using a sequential decision strategy based on RL. They propose VacSIMwhich formulates
sequential decision-making into a Contextual Bandits approach to optimize the distribution
of the COVID-19 vaccine. They claim that up to 9,039 additional lives could be saved when
evaluating their policy against a naive distribution policy. Ohi et al. (2020) implement a
DRL agent based on a short-term memory DDQN to learn an optimal policy for maintain-
ing a balance between mitigating epidemic spread and economic cost. Khalilpourazari and
Doulabi (2021b) use reinforcement learning as a facilitator to solve a compartmental model
(SIDARTHE) in a reasonable time. Khalilpourazari and Doulabi (2021a) design a hybrid
reinforcement learning approach that combines the benefits of machine learning and evolu-
tionary computation. They claim their approach exploits the solution space very intelligently,
accelerating the algorithm and enabling them to resolve complicated large-scale problems.
These studies present an interesting use of RL in enhancing state-of-the-art methodologies.
However, they differ from our study because, in their case, RL is used as an aid, while in
our study RL is the main decision-maker and has full acting power to change the disease
dynamics.

In essence, Simulation Optimization (SO) is the optimization of an objective subject, so
some constraints and system dynamics are updated using a simulation. Gillisa et al. (2021)
propose a simulation-optimization framework that combines an age-based SEIR compart-
mental simulation model and a genetic algorithm to discover good strategies and optimize
intervention strategies. They extract insights from the COVID-19 pandemic to aid policy-
makers in making closure, protection, and travel decisions by minimizing the total number of
infections under a limited budget. Their results highlight that social distancing and wearing
masks are of the highest importance, while closures and travel restrictions are more flexi-
ble policy restrictions. Onal et al. (2021) extend the simulation-optimization framework of
Onal et al. (2020) to search and treat invasive species under a limited budget and completely
random dispersal (Büyüktahtakın and Haight 2018). The simulation is responsible for rep-
resenting the growth of the invader spatially for up to 25 years, and then the optimization
model finds an optimal response such that it minimizes the economic damage caused by the
invader.

Simulation-optimization studies using agent-based modeling can be very effective but
often suffer from the dimensionality curse. Specifically, applying those models to a large
population not only becomesmore challenging to simulate, butmight also become impossible
to optimize. To overcome this challenge, recent studies have used RL-based techniques to
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utilize the information obtained from the agent-based simulation. Several studies present
distinct frameworks combining agent-based models with DRL tools to explore decision-
making options. Ohi et al. (2020) implement a simulation model which serves as a virtual
environment for training a DRL agent to make non-pharmaceutical decisions based on a
specific situationswithin the epidemic. They demonstrate howagents select possible available
actions to reduce the spread of the disease while still considering the economic factors. They
present different lockdown strategies that the DRL agent undertakes to halt the propagation
of the disease. Kompella et al. (2020) present a pandemic simulator that models the epidemic
spread, including the interactions between individuals in a community, testing with false
positive/negative rates, imperfect public adherence to social distancingmeasures, and contact
tracing. They then use an RL-based methodology to optimize mitigation policies within the
pandemic simulator.

Inspired by these achievements of DRL, our goal is to develop a self-sufficient framework
that fully represents the relationship between the evolution of a disease in a population with
individual-level interactions and the government’s intervention actions to control an outbreak.
We propose a Simulation-Deep Reinforcement Learning (SiRL) approach to epidemic dis-
ease modeling and decision-making where the simulation is agent-based and optimization is
handled by a DRL agent based on environment compartmental data.

The Covasim methodology of Kerr et al. (2021) has been successfully used to represent
the realism of the COVID-19 pandemic and make future predictions. Hence, we extend the
open-source simulation to better fit with the simulation strategy inside our SiRL framework.
Covasim is a stochastic agent-based simulator developed by researchers from the Institute
for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation in the
U.S, Burnet Institute in Austria, and Big Data Institute at the University of Oxford, United
Kingdom, to analyze COVID-19. The simulations provide projections regarding the numbers
of infections and peak hospital demand and help to explore the potential impact of differ-
ent interventions, including social distancing, school closures, testing, contact tracing, and
quarantining.

Covasim is used extensively in the literature for spatio-temporal simulation (Gharakhanlou
and Hooshangi 2020) to derive strategies for non-pharmaceutical interventions (Contreras
et al. 2021), and to evaluate reopening strategies (Bilinski et al. 2021).

2.1 Key contributions

This paper provides the following contributions in terms of the simulation and reinforcement
learning models and their integration as well as insights into decision making to control the
COVID-19 epidemic.

2.1.1 Simulation

In Covasim, all the details for each intervention are defined at the start of the simulation. We
extend the Covasim simulation to be flexible towards incorporating interventions in real-time
and over multiple time periods. We modify Covasim to incorporate an online intervention at
a current time step by feeding the Covasim model with an action from the DRL agent, who
represents the decision-maker, at a preset frequency and enforcing the intervention internally
based on the details defined. Thisway,Covasimbecomesmore flexible, and new interventions
can be enforced up to a defined time period. The preset frequency serves as a simulation step
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size. This step size is set based on a manager’s decision-making schedule. If a manager wants
to intervene daily, the step size is set as 1, but we can set the step size to any number.

Another extension to the Covasim model is the incorporation of vaccination strategies.
In addition to Covasim’s disease progression mechanism, we add vaccination strategies that
can be used for any two-shot or single-shot vaccine. Currently, we introduce only vaccines
approved under the Emergency Use Authorization (EUA) of the FDA, but an extension to
other single-shot or two-shot vaccines can easily be done. An individual can be exposed to
other infected individuals at any point during the vaccination process. Depending on the state
at which an individual is, we calculate the likeliness of getting infected based on the type of
vaccine and the number of shots they had received. In addition to the age and comorbidity-
based vaccination strategy, we also develop a random vaccination strategy where no priorities
are set. In the randomvaccination strategy, an individual from each group has the same chance
of being selected for vaccination, given that they belong to either susceptible or recovered
compartments.

2.1.2 Reinforcement learning

To our knowledge, this study is the first multi-reward DRL approach that is integrated with
a very detailed agent-based simulation to guide the government with sequential intervention
methods to curb an epidemic outbreak. Typically, reinforcement learning models build upon
an internal environment that represents the dynamics of the systems. Upon that, states are
defined, and actions are used as triggers to switch from one state to another. We develop a
reinforcement learning agent that is fed by an external system, an agent-based simulation
model. The RL agent is guided by a multi-objective reward function that incorporates a
perception of the economy in the population and different compartmental statistics regarding
healthy, infected, and dead individuals. The multi-objective reward function is tailored to
allow the decision-maker to emphasize one problem over another based on a trade-off they
are willing to accept. The RL agent is responsible for learning how to intervene in the agent-
based simulation after looking at the state (information given from the simulation) and then
translating that into an optimal action. Then, the RL action is transformed into an intervention
on the agent-based simulation.

2.1.3 Insights into decision making

Our simulation-deep reinforcement learning approach demonstrates that more could have
been done by the Trump government to tackle the disease spreadwhen it started to proliferate.
Even if the introduced measures had been implemented in a timely manner, then the tentative
reopening in mid-April of 2020 would have proven successful. Further, our experiments
implementing an age-based vaccination strategy, same as the one employed by the state
of New Jersey, show that a reopening was possible with only vaccination and mandatory
masking by mid-February 2021. Our random vaccination strategy suggests that due to the
super-spreaders getting vaccinated early, a faster reopening was possible at the beginning of
February 2021.

Our multi-objective reward function experiments show that giving more attention to max-
imizing the number of healthy individuals and to an effective vaccination process has the
highest impact on reducing the epidemic spread. In addition, putting more weight on saving
the economy may render interventions useless and explode into an uncontrollable wave of
widespread infection, causing more hospitalizations and a higher death toll.
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Comparing vaccination strategies, we investigate the applied age-based vaccination strat-
egy versus a random vaccination strategy where everyone has an equal chance of getting
vaccinated. Our results show that using a random vaccination strategy that allows super-
spreaders to get vaccinated reduces the number of infected individuals by 32%. In addition,
when total infections decrease, the number of hospitalizations and critical cases decreases as
well.

Accounting for behavioral change of individuals at risk can play a significant role in the
effectiveness of randomand age-based vaccination strategies.We show that fully quarantining
10% of the risky individuals and using a random vaccination strategy reduces the death toll
by 14% with respect to age-based vaccination and 27% compared to the NJ reported data.

3 Simulation environment

To simulate the Covid-19 pandemic in the population of around 9 million people who reside
in New Jersey, we enhance the Covasimmodel developed byKerr et al. (2021) (Version 2.1.2,
2021-03-31) and adapt it to our needs and purpose. Kerr et al. (2021) propose an open-source
ABM developed to project epidemic trends and explore intervention scenarios. The Covasim
ABMhasmanyuseful features, such as age-structured agents, and transmission networkswith
different social layers such as households, schools, workplaces, and communities. Covasim
further includes intrahost viral dynamics with viral-load-based transmissibility. Covasim
also supports a wide range of already built interventions such as physical distance, protective
equipment, testing, and quarantine, as well as the capability to extend and make custom
interventions.

Kerr et al. (2021) also implement a process of calibration calculating the loss using a
normalized absolute error. They formulate an equation to find parameters that minimize the
function that measures the difference between the observed data and themodel predictions. In
their calibration module, most of the parameters are fixed based on the values available from
the literature, and the only parameter allowed to vary is β, which is the probability of virus
transmission when a susceptible individual comes in contact with an infectious individual.

We extend the agent-based simulation of Covasim to the one in Fig. 1. Here, the sus-
ceptible compartment includes all healthy individuals. Once a healthy individual is exposed
(Exposed), they get infected but not yet contagious. The yellow shading shows the states at
which an individual is infectious and transmits the disease. As the incubation days are over,
an individual either has no symptoms (Asymptomatic) and is recovered (Recovered), or
symptoms start to manifest (Symptomatic). An individual might experience mild symptoms
(Mild) and then transition to the recovered compartment. If the symptoms become severe,
then there is still a chance that the individual will recover, but medical attention such as hos-
pitalization (Hospital) might be needed. If symptoms become critical (Intensive Care Unit
[ICU]), then the individual still has a slim chance of recovering, but if not, the individual will
be transitioned to the death compartment (Dead). Vaccinated 1 and Vaccinated 2 (enclosed
in the blue dotted rectangle) represent the individuals who get the first and second shot of
a two-shot vaccination, respectively. In our model, susceptible individuals are eligible to be
vaccinated for the first dose. Asymptomatic cases will automatically transition to Recovered
after some time. Other symptomatic individuals might worsen and eventually die, but those
individuals might recover with some probability as well. After eight months, the antibodies of
recovered individuals cannot protect them anymore. Thus, they will transition to susceptible
again (Dan et al. 2021).
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Fig. 1 Covasim disease progression, compartments, and final outcomes in the extended model. The blue
dashed box and arrow show the new aspects of the simulation model extended from that of Kerr et al. (2021)

In their study, Kerr et al. (2021) portray Covasim as a simulation tool with intervention
strategies for thewhole simulation predefined at the start of it. And using themulti-simulation
feature, they can compare how each intervention affects the disease spread. In our study,
we are interested in defining the best intervention strategy for a certain situation of the
pandemic periodically over multiple time stages. Hence, we extend Covasim to be more
flexible where an action can be defined at any point in time, and a new intervention will
be enforced up to a defined time period. Furthermore, we extend the Covasim interventions
by implementing two additional vaccine interventions to perform single-shot or double-shot
vaccines.While one of the vaccination strategies considers vaccinationwith equal probability
for each individual, namely the random vaccinationmodel (RVM), the other considers people
with comorbidities and older in age with a higher likelihood of getting vaccinated than young
and healthy individuals, called the age-based vaccination model (AVM).With this, we aim to
provide insights into the discussion regarding the priority of vaccinating critical individuals
or super-spreaders.
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4 DRL environment

Counting on simulation to describe the compartmental situation of the population, we need
to model a DRL environment where the current state of the simulation is represented. We
define a state in simulation as the population statistics (percentage of the population in each
compartment) in each disease compartment on a particular day during the pandemic. This
information is also used to express the state of the RL environment. A state is composed of the
following information: the ratio of the susceptible population (S), the ratio of the population
who received only the first shot of the vaccine (V1), the ratio of the population who received
both shots of the vaccine (V2), the ratio of total infections (I ), the ratio of hospitalized cases
(H), the ratio of individuals in an ICU (C), the ratio of the recovered individuals (R), and
the ratio of the dead individuals (D) over all the population.

4.1 Episode and states

4.1.1 Episode

We define an episode as the full cycle of simulation and DRL agent intervention decisions-
making. Before starting the framework, we define the step size and the full length of the
simulation. For example, assuming that we want to simulate for a year and our step size is
a month, at the beginning of each month, the DRL agent would enforce interventions in the
simulation. Then, the simulation is run for a month based on the intervention given by the
DRL agent. The episode starts with the first intervention of the first month and ends after the
simulation for the last month of the year.

4.1.2 States

In our RL environment, we formulate our state as a one-dimensional array containing
information for the current compartmental situation of the epidemic and denote it as
θ := [Et , S, I , H ,C, D, R, V1, V2], where Et is the economic index at time t . A state
represents the proportion of the population in each disease compartment defined on Fig. 1.
A state is generated after one simulation run.

4.2 Multi-objective reward function

At first, due to the fast spread of the COVID-19 pandemic, many governments were faced
with tough choices. COVID-19 started taking lives daily, but most governments were slow
to enforce closures since they feared economic collapse (Rocha 2020). In such situations,
a government or a decision-maker needs a tool to do a sensitivity analysis and find trade-
offs between different objectives, such as reducing the overall disease spread, keeping the
economy performing, and protecting people’s health or decreasing the death toll. Particu-
larly, during the COVID-19 pandemic, a full closure would threaten the economy, while no
interventions would result in more infections, deaths, and side economic costs related to
degradation of the quality of human life or loss of lives, workforce reduction, and hospital
expenses. We formulate a multi-objective reward function to offer the decision-maker the
option of shifting between a strategy to keep the economyflowing to anotherwhere theywould
like to reduce the total death toll. Hence, economic stability and well-being are two dimen-
sions that make dealing with an epidemic a more difficult challenge. Without considering
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the epidemic’s impact on the economy, which we call the economic index, decision-making
would not be complete. Hence, we quantify the contribution of each individual to the econ-
omy. Specifically, the health condition of a person defines the level of their contribution to
the economy. Quarantining and work, school, and business closures come at a high cost. We
assume that every healthy individual contributes to the economy with a value of 1. In our
validation, this contribution is given from susceptible, recovered, and vaccinated individuals.
Individuals who get infected will not be able to fully contribute to the economy. Depending
on the severity of the infection, it might also become a cost to the economy. Finally, the deaths
of infected people result in the worst economic loss because the economic contribution of an
individual is completely lost.

4.2.1 Economic index

To quantify the economic situation of a particular day during the pandemic, we formulate
the economic contribution at time t , Et , as follows:

Et = S + V1 + V2 + R − α × I − β × H − γ × C − D, (1)

where α, β, and γ can also serve as tuning parameters of the economic index at a time
t . Here, we assume that healthy people would function normally in the economy while
infected (I), hospitalized (H), people in ICUs (C), and dead (D) individuals would mean a
loss economically.

4.2.2 Multi-objective reward function

Using the formulation of Et above, we maximize the following multi-objective reward func-
tion:

R(θ) = λ × Et − μ × I − ρ × D + π × (S + V1 + V2) (2)

where state θ := [Et , S, I , H ,C, D, R, V1, V2]. Tuning parameters λ, μ, π and ρ are deter-
mined based on which part of the objective we want to emphasize more.

4.3 Actions or interventionmeasures

4.3.1 Actions

For the learning of our DRL agent, we investigate different possible actions that are realistic
but not necessarily exclusive. In practice, we can combine different non-pharmaceutical
interventions and vaccines with social distancing measures. In total, we define nine possible
actions that our agent can choose from. At the start of the pandemic, we will only include
six of these actions as vaccines might not be available at that point. Once the vaccines are
available, all nine actions can be applied. The various actions considered are defined below:

0. Do Nothing: We allow the agent to not enforce any restriction on the population.
1. Testing, Contact Tracing, and Quarantine: This action performs tests and traces con-
tacts of positive tests and quarantines them. Usually, these actions go together as the
traced contacts are notified and they either get tested too, or they are ordered to remain
in quarantine.
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2. Close Schools and Non-Essential Workplaces: Governments might decide to close
schools and non-essential workplaces and limit gatherings up to a certain number to
reduce contact between the individuals in a population, thus reducing infections and
keeping the COVID-19 curve under control.
3.Mandatory Mask: A mandatory mask can be enforced on a population.
4. Testing, Contact Tracing, Quarantine, Close Schools, and Non-Essential Workplaces:
Because actions one and two are not exclusive, governments can choose to enforce them
at the same time to have a higher impact on slowing the disease spread.
5. Testing, Contact Tracing, Quarantine, and Mandatory Mask: Action one can also
be enforced in combination with action three. This action does not close schools or
businesses, but it enforces mandatory mask usage to control the spread.
6. Vaccination: When vaccines become available, it is a form of action that can be com-
bined with any non-pharmaceutical measure. This action considers only vaccination in
case governments decide to only use vaccination and reopen without any other enforced
intervention.
7. Vaccination and Mandatory Mask: This action consists of a combination of actions
three and six. It is seen as a probable reopening strategy as with vaccines, the population
will become more protected, and masks will reduce the transmission of disease.
8.Total Lockdown: In an extreme situation, where the healthcare system has failed and the
government did not intervene timely, a full lockdown might be applied, which enforces
all non-pharmaceutical interventions together with vaccination. This measure can result
in economic hardships and failures due to the closure of workplaces and businesses.

5 Integrated simulation-RL

Using the ABM simulation and DRL environment presented in Sects. 3 and 4, respectively,
we create an Integrated Simulation - RL (SiRL) framework. Figure2 shows how Covasim
agent-based simulation interacts with the DRL procedure. We start by creating an RL and an
agent-basedmodel environment where compartmental statistics for the population are stored.
At the first step, we have initial information about the compartments. So, the DRL agent takes
an action based on the initial proportion of the population in each health compartment. Once
the simulation starts, it picks up the decision from the DRL agent, applies the respective
intervention, and runs for s days, where s is the step size of the simulation. After s days,
the compartmental statistics from the simulation are used to formulate the DRL state and
feed it to the DRL agent. Based on the DRL state, we calculate a reward using Eq. (2). This
reward is the evaluation of the last intervention applied by the DRL agent. At this point, we
check if the end date of the simulation is reached, and based on that, the execution of the
SiRL framework ends, or the DRL agent will take another decision to be applied in the next
s days on the simulation environment and follow the same cycle until the end date. When
the end date is reached, the episode terminates. Note that the take action in green and dashed
yellow boxed in Fig. 2 represent the same compartment. The difference is that the action
compartment in yellow is executed once in the beginning and then called inside the cycle
until the SiRL episode is terminated.

Figure3 describes how the agent-based simulation and the DRL agent interact and
exchange information. At time t = 1 after we have started the environments (RL and agent-
based simulation) and taken thefirst action,wedeclare the initial data and start the agent-based
simulation incorporating the first action. The simulation will run for s = 15 days (our defined
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Fig. 2 The SiRL Framework, which is an agent-based simulation integrated at the heart of a DRL framework

step size) and, at the end of the simulation step, will feed compartmental statistics and the
economic index to the DRL agent. Our assumption for a step size of 15 days is based upon
the incubation period, which is at most up to two weeks (Lauer et al. 2020). The initial inter-
ventions of the government were initially put in place for two weeks, in most of the countries
(Ngonghala et al. 2020). Based on the state, the DRL agent takes decision x1, which enforces
interventions on the simulation for the next simulation period. In turn, after this simulation
period ends, it will again give the new compartmental statistics after the intervention where
the agent’s action is evaluated according to the reward function. This process continues until
the entire simulation ends.

5.1 Training algorithm

Algorithm 5.1 describes the general steps and data used to train an agent. First, we create
the respective simulation and RL environments. At the start of a simulation, we decide on
the total population, the total length of the simulation, and the step size at which we enforce
interventions. At the start of the RL environment, we initialize the agent and define the
weights of the reward function. Then for each simulation period,we extract the compartmental
statistics from the simulation and feed them to the DRL agent. Compartmental statistics
include the percentage of the population in each compartment and the economic index at
the end of the simulation period. Having this information, the DRL agent will decide on an
action x j ∈ X at simulation run j . Based on this action, the simulation is run for a one-step
size, and then a reward is generated to quantify how good the action of the agent was.
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Fig. 3 Agent-based simulation and DRL agent information exchange between simulation periods

Algorithm 1 Simulation DRL Training Algorithm

1: Procedure: SiRL
2: Input: 
, s, σ, �0, θ0 {We start with the total population, step size, simulation periods, initial

compartmental statistics, and initial state.}
3: Output:  {Trained Deep Q-Network Model.}
4: Initiate SiRL with 
, s, σ {Create DRL and simulation environments.}
5: Take an initial action x0 {First interventions.}
6: for j ∈ J do {for each simulation period}
7: θ j ←− � j {Update state with compartmental statistics}
8: Take action x j ∈ X
9: R(θ j , x j ) ←− {Calculate reward.}
10: end for

6 Experiments

In our experiments, we want to be flexible and generalize over different possible epidemics.
Therefore, we test different models: one without a vaccine available (no-vaccination model
as NVM), another after the vaccine is discovered and an age-based vaccination is applied
(age-based vaccination AVM), and another after the vaccine is discovered, but everyone is
eligible to be vaccinated above the age of 12 (random vaccination RVM). We gather data
for the COVID-19 epidemic in New Jersey and address the management of the disease. In
this section, we assume each objective of the multi-objective reward function in Eq. (2) has
equal importance. Hence, we use the same weight for all parameters (λ = μ = ρ = π = 1),
except Sect. 6.3.3, where we tune the objective weights in the reward function (2) for multi-
objective analysis. We train our agents using a population of 500,000 benefiting from the
scaling properties of Covasim, and test our trained agents on the population of New Jersey
(8,882,190). For time efficiency, we use a lower population for training. After training, testing
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with the SiRL framework on a population of nearly 9 million takes 15min.We report training
times and the number of episodes for each model in “Section A1”.

6.1 Data gathering

We collect bi-weekly compartmental data from the start of the Covid-19 epidemic until the
beginning of our project ( March 1, 2020, to April 15, 2021). The compartments we consider
are Susceptible (S), Infected (I ), Hospitalized (H), ICU (C), Dead (D), Recovered (R),
Tested (T ), Vaccinated with 1st shot (V1), and Vaccinated with the 2nd shot (V2) obtained
from CDC database (CDC 2022) and crosschecked with the NJ COVID-19 dashboard (NJ
2021). In addition, to compare and understand decision-making at any point of the pandemic,
we also collect government decisions to identify what interventions are active and a specific
date. We collect these data for the whole US and the state of NJ in particular.

Figure4 presents a decision timeline for theUSduring the beginning period of theCOVID-
19 (March 1, 2020, to June 30, 2020). This timeline also corresponds in close dates with the
responses that each state has taken to control the spread.

To provide a robust framework, SiRL can be used to extract control measures for different
epidemics. In our case, we want to draw conclusions at any point during the COVID-19
pandemic. That is why we calibrate our model and train our DRL agent in different stages
of the pandemic. We consider the start of the COVID-19 pandemic where a vaccine is not
available, and we refer to this model as the no-vaccination model,NVM. We also investigate
the COVID-19 dynamics after the vaccines are introduced. With the vaccination models,
to be consistent with the reality, we calibrate our model using age and comorbidity-based

Fig. 4 COVID-19 timeline from April 1, 2020, to June 30, 2020, created based on the information provided
in Thebault et al. (2021)
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vaccination strategy,AVM. We then use these calibrated actions to implement also a random
vaccination strategy, RVM.

6.2 Validation of intervention effect for NVM

We use our simulation to measure the effect of non-pharmaceutic risk measures on the
COVID-19 progress. Thus, we can use these quantified effects to train our agents. To calibrate
between Covasim and New Jersey environments, we calibrate each no-vaccination model
action by reproducing the COVID-19 spread during its first four months when vaccines were
not available. In these four months, we mimic governmental actions in the same period that
they were enforced.

During the first fourmonths (March 1 to June 30), the government suffered from resources,
and not many effective interventions were implemented. On March 3, Vice President Pence
announced that CDC would lift federal restrictions on testing for COVID-19. Despite that,
until April 12, 2020, it was not easy to get tested. On March 11, 2020, WHO declared
COVID-19 a global pandemic. Two days later, onMarch 13, 2020, President Trump declared
a national emergency and promised to increase efforts tomake testing available and accessible
for Americans. OnMarch 16, 2020, the Trump government also announced social distancing
guidelines to be in place for two weeks initially (Thebault et al. 2021).

Around the same time, onMarch 18, 2020, GovernorMurphy of New Jersey, in an attempt
to slowdown the spread of the disease, ordered the closure of all pre-K,K-12, higher education
institutions, casinos, theaters, gyms, and non-essential retail, recreational and entertainment
businesses also banning gatherings of people more than 50.

In addition, we apply the paired t-test to investigate the difference between the mean
bi-weekly compartmental values obtained from the simulation and the mean actual corre-
sponding data values provided by the CDC. According to the statistical analysis shown in
Table 1, our validation is statistically similar to the actual data reported by the CDC since
all p-values are greater than 0.05. We also demonstrate the validation of the NVM model
where we exclude vaccination as an intervention in Fig. 14 in “Appendix A2”. Similarly,
we validate the intervention effect of the age-based vaccination AVM in “Appendix A3”.
Figure 16a–f in “Appendix A4” show comparisons between real values and simulated results
from the SiRL framework for cumulative Infections, hospitalizations, and recoveries (with
fixed interventions to represent the reality).

6.3 Results

Weshow results for different periods of the pandemic in the state ofNewJersey.Weemphasize
the usability and flexibility of the framework by a comparative study of different strategies for

Table 1 Paired t-test analysis comparing the compartmental data from the NVM simulation (Predicted) with
the actual data from the CDC (Actual) with the 95% confidence level

Compartment Mean Two-tailed paired t-test
Actual Predicted t-stat t-critical p-value

Infected 107, 650 107, 569 0.72 2.2 0.49

Hospitalized 22, 523 20, 890 0.76 2.1 0.46

ICU 966 964 0.73 2.2 0.48

Dead 9251 9242 0.67 2.3 0.51
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decision-making during the pandemic. Details of training results are presented in “Appendix
Section A1”.

6.3.1 Comparison to government actions

In Sect. 6.2, we calibrate the government decisions during the first four months of the pan-
demic. After we train, we allocate our DRL agent the same resources and actions to observe
what the agent deems optimal. Based on the agent’s response, the government closes schools
and non-essential workplaces and uses tests to identify infected individuals and then trace
their contacts and quarantine them for the first 45 days fromMarch 1 to April 15, 2020. After
that is done in the first months, our agent suggests a reopening but enforcing mandatory
masks. It is even more interesting that this strategy is very similar to what the government
did, but there is a shift in time. Our model suggests contact tracing and stay-at-home orders
must have been enforced exactly at the beginning of March and then start reopening around
mid-April. This result implies that the government was late in any of the actions except for
the reopening date. Since measures were not executed timely and sufficiently to control the
outbreak, reopening backfired in more cases after the April reopening, keeping most educa-
tional institutions closed for the rest of the year. Figure5 compares the decisions taken by
the government with the decisions suggested by the trained DRL agent for the NVM model.
Above the x-axis, we map the government decision. Notice that there is a delay in action.
Testing is announced that it will be available in the first week of March, but it was made
widely available for symptomatic people around mid-April. Below the x-axis, we describe
the suggested actions from the DRL agent. Notice that during the first months, testing and
contact tracing are important, while also schools and workplaces are temporarily closed to
slow the spread down. After that, a reopening is suggested by only enforcing masks.

Figure6 illustrates the comparison between the NJ and Federal government interven-
tions enforced during the first four months after vaccines were introduced, specifically from
December 15, 2020, to April 15, 2021, with the interventions suggested from the DRL agent
trained using the age-based vaccination model. Above x-axis notice that the government
implemented all available interventions in combination with vaccination. During this period,
the government gave priority to older people and those with pre-existing conditions. Month
after month, the age bar for vaccination was reduced, allowing more younger people to get
vaccinated. On April 19, 2021, all individuals older than 16 became eligible for vaccination
in New Jersey. In our age-based vaccination strategy, we follow a similar pattern. We give a

Fig. 5 Comparison of government actions and DRL agent actions during the first four months of the COVID-
19 pandemic in the US. Above the x-axis, we describe the government actions, and below x-axis the DRL
agent suggestions are shown

123



Annals of Operations Research (2023) 328:245–277 263

Fig. 6 Comparison of government and DRL agent actions for the first four months after vaccines were intro-
duced for theCOVID-19 using an age group vaccination strategy. Above the x-axiswe describe the government
actions, and below x-axis the DRL agent suggestions are shown

Fig. 7 COVID-19 timeline allowing all age groups access to vaccination. Above the x-axis we describe the
government actions and below x-axis the DRL agent suggestions are shown

higher probability to the older ages while reducing it after each month. Our model suggests
that testing, contact tracing, and mandatory mask be enforced for the second half of Decem-
ber 2020 and the first half of January 2021. It is interesting that the model does not suggest
an immediate vaccination. This is because, at the beginning, the vaccine supply was small.
So, the DRL agent does not see it as highly beneficial since the number of vaccine doses
available was very low when vaccines were first offered. When equal weights are assigned
to each sub-objective in the reward function (2), the DRL agent cannot capture that even a
very small number of vaccines should be used. From the second half of January 2021, the
agent suggests the enforcement of all measures while vaccination should also be applied with
those interventions. After only a month, in mid-February, the DRL agent suggests lifting the
closures but recommends a continued vaccination while also enforcing the use of masks.

Figure7 compares decisions suggested by the DRL agent trained with random vaccination
strategy towards those enforced by the government. Differently also from the AVM strategy,
RVM suggests only 15 days of the mandatory mask, testing, and contact tracing followed
by full closures with vaccination for the next month up until January 31. A reopening is
suggested at the beginning of February, combining the mandatory mask with vaccination,
which is earlier than that suggested by the AVM.

6.3.2 Economic standing

To compare the economic situation in different simulations, we use the formula in Eq.1. We
calculate the economic index by assigning a weight to each of the compartments. Figure8
compares the economic situation between the simulation with the no-vaccination model
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Fig. 8 Comparison of the economic index between NJ CDC Data and simulation data using NVM

Fig. 9 Comparison of the economic index between NJ CDC Data and simulation data using AVM and RVM

(NVM) and the CDC data for the state of New Jersey. Notice that NVM simulation allows
for a weaker economic situation since we use equal weights for each sub-objective in the
reward function (2). Based on our comparison, our model did decide on reopening, but it
is doing slightly worse from the economic point of view. This is due to the multi-objective
function as we give equal weight to each of the sub-objectives. If a manager wants to focus
more on a flowing economy, a larger weight can be given to the economic sub-objective of
the reward function in Eq. (2).

We also compare the economic situation between the CDC-reported data and our vacci-
nation strategies based on the SiRL framework. Figure9 compares the economic standing
at 15-day intervals. We notice that the age-based vaccination maintains slightly the same
economy as the CDC data. That is because our results for using an age-based vaccination
strategy provide a very good estimation of the real situation. Surprisingly, a better economic
standing would be achieved using a model with available vaccination for all individuals older
than 12 years old, corresponding to the random vaccination strategy.

6.3.3 Multi-objective analysis

In this section, we consider modifying the reward function shown in Eq. (2). Tuning this
functionwill shift importance and suggest decisions to reduce theworst outcomes of different
situations. For example, if a government wants to prevent the infection rate and severity of the
epidemic, it can give more weight to the μ parameter. To analyze how each tuning parameter
affects the compartmental statistics, we consider four formulations with respect to the reward
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Table 2 Comparison of different tuning parameters in the reward function for age-based vaccination

Compartment Economy Total infections Death toll Healthy or vaccinated
(λ, μ, ρ, π ) (5, 1, 1, 1) (1, 5, 1, 1) (1, 1, 5, 1) (1, 1, 1, 5)

Infected 6, 762, 388 2, 078, 877 2, 348, 258 1, 057, 088

Hospitalized 385, 494 102, 179 127, 259 66, 881

ICU 119, 828 28, 796 37, 156 21, 365

Dead 39, 014 10, 218 11, 147 8, 360

function: economy, death toll, total infections, and healthy individual, each with a weight
of λ, μ, ρ, and π , respectively. We modify the reward function for each of these models by
increasing the respective tuning parameter or weight five times and retraining the model to
perform tests. For example, in our experiments, we give a value of one to each of the tuning
parameters. When we want to emphasize the economy, we use λ = 5, while other tuning
parameters are still one.

Table 2 compares how the number of individuals in each compartment changes with dif-
ferent focus on the reward multi-objective function. We observe that a weight distribution
of 1, 1, 1, and 5 for the tuning parameters λ, μ, ρ, and π , respectively, results in the mini-
mum number of infections and deaths. This means that strategies aiming to keep individuals
healthy and vaccination have the highest impact on the infections and the death rate. Param-
eters below the headers in Table 2 show the respective values for each tuning parameter of
the multi-objective reward function shown in Eq. (2). Each specific objective also effects
decisions taken. For example, emphasizing the economy would shift decisions from a full
closure to reopening and vaccinating while everyone can move freely. When the economy
is emphasized, we notice a massive disease spread. If a government only aims to maintain a
healthy economy, then the number of individuals, who are hospitalized, in critical condition,
and dead sharply increases. Among each part of the reward function, although emphasizing
the total infections or the death toll reduces the spread in each compartment, emphasizing the
portion of healthy and vaccinated individuals seems to show the best situation with respect to
the total infections and death toll. Between the total infections and the death toll, emphasiz-
ing the total infections seems to be more beneficial because of the transmission mechanism.
Emphasizing the death rate does not directly affect infections; therefore, the higher spread
still contributes to more deaths.

6.3.4 Vaccine decisions and distributions

Vaccination restrictions have been among important discussions during the pandemic. There
is definitely good in giving priority to individuals with pre-existing conditions or older people
whomight bemore endangered from the pandemic. But older ages are among individualswho
have the least amount of contact during the day. Therefore, their contribution to the spread
is generally low. Hence, we want to analyze the trade-off between age-based vaccination
and random vaccination. In random vaccination, we do not prioritize super-spreaders to
vaccinate, but we allow them and individuals with pre-existing conditions and of older age
to get vaccinated with the same probability. Comparing our AVM and RVM models can
give us insight into the benefits of each. We notice from comparing Figs. 6 and 7 that the
RVM strategy offers a faster closure and earlier vaccination start, hence also improving
the economy. In another situation where a government tends to be cautious about the total
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Table 3 Comparison of vaccine distribution among age groups and the compartmental values for each model

Subgroup NJ CDC data RVM AVM pdiff1 (%) pdif2 (%)

Vaccination under 50 (%) 45 67 55 − 18 − 33

Vaccination 50 to 75 (%) 79 66 94 42 20

Vaccination over 75 (%) 78 63 96 51 22

Infected 851, 485 675, 310 892, 672 32 26

Hospitalized 668, 201 652, 431 665, 185 2 2

ICU 153, 657 142, 122 153, 268 8 8

Recovered 828, 283 845, 298 898, 803 6 − 2

Dead 24, 702 25, 080 24, 151 − 4 − 2

pdiff1 shows the percentage difference between the random and age-based vaccination models and pdiff2

calculates the percentage difference between the random vaccination model and the NJ COVID-19 reported
data

number of deaths, they can give higher weight to the ρ parameter, representing the weight of
the death toll. This would cause lower rewards when death rates increase; thus, the DRL agent
will optimize the decision while focusing on minimizing the death rates. In addition, Fig.9
shows a comparison between the age-based and random models. Allowing super-spreaders
to get vaccinated as early as possible during an outbreak reduces infections in general, hence
explaining the suggested faster reopening and better economic performance.

Table 3 compares the vaccination percentage and compartmental statistics for random
vaccination and age-based vaccination strategies and real data. To clarify, the NJ CDC Data
and AVM columns do not report data from the validation experiments. The NJ CDC Data
is obtained from the CDC, and AVM represents the results obtained from the DRL agent
suggestions. Column pdiff1 represents the percentage difference between the random vacci-
nation and age-based vaccination models, while pdiff2 calculates the percentage difference
between the random vaccination data and CDC reported data for NJ. Notice that the vaccine
distribution for the age groups differs between the twomethods. Random vaccination slightly
suggests that some portion of the younger people should get vaccinated as soon as vaccines
are available, while the age-based model vaccinates almost all older-age groups first. Com-
partmental data shows that the total number of infected individuals reduces by 32% when
using a random vaccination strategy over the age-based vaccination strategy. Due to this,
the number of hospitalized and critical cases and recovered individuals slightly reduce as
well. The total number of dead individuals, though, is slightly increased by 4%. This shows
that a random vaccination strategy can offer earlier reopening and slower spread, but fast
reopening and not focusing on an age-based vaccination strategy comes with a cost. Figure3
also compares the random vaccination strategy with the real data reported from the CDC for
NJ. We notice a similar trend to that of the age-based vaccination. The experiments show
that random vaccination could reduce the number of infections but still reports a 2% higher
death rate than that of the CDC statistics for NJ.

6.3.5 Vaccine decisions with epidemic behavior change

To incorporate the impacts of behavioral change into our simulations, we raise the assumption
that due to the fast spread of COVID-19, a portion of older-aged individuals take further
measures to self-quarantine and reduce contacts to a minimum.We train our simulation-deep
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Table 4 Comparison of vaccine distribution among age groups and the compartmental values for each model
with older age-group’s self-protection assumption

Subgroup NJ CDC data RVM AVM pdiff1 (%) pdif2 (%)

Vaccination under 50 (%) 45 72 55 − 24 − 38

Vaccination 50–75 (%) 79 72 94 30 10

Vaccination over 75 (%) 78 72 96 34 7

Infected 851, 485 686, 766 755, 505 10 24

Hospitalized 668, 201 603, 785 613, 074 2 11

ICU 153, 657 123, 544 130, 046 5 24

Recovered 828, 283 787, 420 898, 803 1 5

Dead 24, 702 19, 507 22, 294 14 27

pdiff1 shows the percentage difference between the random and age-based vaccination models, and pdiff2

calculates the percentage difference between the random vaccination model and the NJ COVID-19 reported
data

reinforcement learning framework by enforcing the assumption that 10% of the individuals
belonging to the risky groups (over the age of 50) reduce their contacts to zero.

Similar to Tables 3, 4 presents the vaccination percentage for three distinct age groups.We
notice that the vaccination percentages among different age groups have not been affected
using the age-based vaccination strategy, while the random vaccination strategy now suggests
an equal distribution of vaccines among different age groups. This is due to the reduction in
disease spread and death rate as a result of the behavioral change in risky groups.

The protection of individuals at risk is quite effective also in the case of the age-based
vaccination strategy as results show smaller values for infections, hospitalization, critical
condition, death compartments when compared to the results in Table 3 and with respect to
the NJ reported data where an age-based vaccination strategy is used. Compartmental results
in Table 4 suggest that if 10% of individuals belonging to higher risk groups (individuals
over the age of 50) were fully quarantined and a random vaccination strategy was used, then
we would have 10% fewer infected cases and death toll reduced by 14% compared to the
age-based vaccination strategy.

6.3.6 Model flexibility

To address the flexibility of our approach to be applied to other locations, we validate and
apply our model to the COVID-19 case in the state of Kansas, using CDC data (CDC 2022).
When applying the model in another location, some adjustment needs to be made because
populations in different locations differ in their cultures, proximity, and community involve-
ment which highly affects disease spread. Similarly, when looking at other epidemics, the
disease’s biological properties change the course of an epidemic. In both cases, an initial val-
idation must be performed to ensure that the interventions and simulations are synchronized
and represent the dynamics of the disease in a real situation. Appendix Section A5 describes
the validation process and results for the Kansas case study. We consider a situation where
each part of our multi-objective function in Eq. (2) has the same weight of 1 (λ = 1, μ = 1,
ρ = 1, and π = 1). Figure 17 in “Appendix A5” shows the validation of interventions for
Kansas in the time period from September 15, 2021, to January 15, 2022. With the validated
actions, an agent can be trained by studying different states of the compartmental statistics.
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Fig. 10 Comparison of government actions and DRL agent actions for the Kansas case from September 15,
2021, to January 15, 2022. Above the x-axis, we describe the government actions, and below the x-axis, the
DRL agent’s suggestions are shown

Fig. 11 Average reproduction rate for each 15-day period starting September 15, 2021, to January 15, 2022.
The green line represents the average reproduction rate for the decision Mandatory Mask + Vaccination, and
the pink line represents the average reproduction rate for Mandatory Mask + Vaccination + Work/School
Closure + Contact Tracing. The Red line represents the average reproduction rate calculated as is defined as
the average number of secondary cases per primary case on a certain date by Gu (2022)

Figure10 plots the government actions (above x-axis) against actions suggested by the
trained RL agent (below x-axis) over a four-month period. During the same period, the
government removed the lockdown policy and only enforced masks in indoor environments,
while several institutions pushed their employees to vaccinate. Our DRL agent suggests
that in addition to mandatory masks and vaccination, a lockdown should start beginning of
January 2022. This suggestion is reasonable considering the increase in infection at the end
of 2021.

To observe how actions suggested by the SiRL agent related to the effective reproduction
number, Re, we use the “instantaneous reproductive number” presented in Gostic et al.
(2020). Re for the SiRL is computed by dividing the new number of infections on day t
by the number of actively infectious individuals on day t , then multiplied by the average
duration of infectiousness. Since we do not have access to the actual number of actively
infectious individuals, we calculate the Re for the real case using the formulation provided
by Gu (2022), which is defined as the average number of secondary cases per primary case on
a certain date. Figure11 shows the average reproduction rate for every 15-days (we observe
and intervene every 15 days) for both the real and SiRL data. The Red line color represents the
average Re resulting by the decisions suggested by the government for each period, whereas
green gives the average Re by the SiRL, which suggests a combination of Mandatory Mask
and Vaccination and pink means in addition to those, the average Re reflects that Contact
Tracing and School/Work Closures. We observe an agreement in trend in the Re for both
the real data and the SiRL, despite using two different formula. We notice that decision is
adapted to become more conservative as the Re gets larger, according to both calculations

123



Annals of Operations Research (2023) 328:245–277 269

shown. Specifically, as the Re increases up to around 0.9, the DRL agent started suggesting
closures.

7 Conclusion

We present a Simulation-Deep Reinforcement Learning (SiRL) framework for epidemic
decision-making. In SiRL, an agent can be trained to take actions based on different available
interventions and epidemic infection situations. Our results show that more could be done in
handling the COVID-19 pandemic spread in the US. Our DRL agent identifies situations in
which government agencies should have acted faster toward slowing the spread of the virus.
In addition, we compare different vaccination strategies and provide insights on the trade-off
between random and age-based vaccination strategies.

7.1 Managerial insights

• Our approach demonstrates that learning algorithms can be trained to understand an epi-
demic situation based on compartmental statistics and take decisions in effect to improve
a certain objective, such as reducing infections, keeping people healthy, maintaining a
healthy economy, or reducing the death toll.

• Our experiments show that strategies aiming to keep individuals healthy result in lower
infections and a lower death rate.

• In a situation where the economy is highly prioritized, infections at any level sharply
increase. This specifically indicates that closures and reopening should be done carefully
as they can result in a higher disease spread.

• Our trade-off analysis between age-based and random vaccination suggests that vacci-
nating super-spreaders can help in faster reopening but can increase deaths.

7.2 Future directions

Future directions can include extensions from the DRL and agent-based simulation as well.
Further experiments could tell us more if we consider racial or geographical data. The sim-
ulation model can be extended to account for additional costs, different virus strains, or an
economic value of a current infestation, including the interventions active at a point in time.
The DRL framework can also be extended to another epidemic disease. To achieve this, the
biological properties of the epidemic, such as the disease spread, the incubation period, and
transition probabilities, need to be adjusted, and the DRL agent needs to be trained with new
characteristics of the disease and the population considered. Another DRL algorithm could
be used to study how that changes agent performance. Furthermore, new approaches could
be developed to calculate the Pareto frontier with a 4-dimensional objective. Finally, to study
the flexibility of the framework, other epidemic data in different regions of the US and the
world can be validated.
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Appendices

A1: Training results

No-vaccination model training
Figure 12 shows the reward agent gets during training. We train by simulating around 30k
episodes, where each is a four-month simulation (March 1 to June 30, 2020). The approximate
training time was 30.2h. As the agent goes through more episodes, we notice that it builds
a behavior to improve rewards. The learning trend in Fig. 12 is calculated using a moving
average of 15 periods.

Age-based vaccination model
Figure 13 shows the progress of the training agent for around 30k episodes. An episode
is done once a four-month simulation is run (December 15, 2020, to April 15, 2021). The
approximate consumed time to train for the AVM is 32.7h. The trend calculated using a
moving average shows an increase as the agent trains in more episodes. This signifies that
the agent is learning to win higher rewards, therefore, building knowledge of what action is
good in a certain state.

Fig. 12 Reward for each training epoch for the NVM model

Fig. 13 Reward for each training epoch for the AVM model
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Fig. 14 Comparison of the Covasim agent-based simulation data and CDC data for the state of New Jersey
for the period from March 1, 2020, to June 30, 2020. The x-axis shows the timeline where each dot on the
trend lines corresponds to a decision. The y-axis shows the absolute value of the difference between the
real number of individuals in each compartment (S, I, H, C, D, R, T) at a point in time and the number of
individuals estimated from the simulation in that compartment (Ss , Is , Hs ,Cs , Ds , Rs , Ts ). For example,
trend line |S− Ss | represents the absolute difference between the real susceptible proportion of the population
(S) and simulated susceptible proportion (Ss ) at bi-weekly dates starting March 1 to June 30. Similarly, the
trend lines for each compartment are plotted

A2: Validation of intervention effect for NVM

Figure 14 shows the validation of the NVM model where we exclude vaccination as an
intervention. We present the absolute value of the difference for each compartment between
our simulation and the CDC data. The y-axis represents the absolute value of the difference
in percentage between the value of each compartment of CDC data and the respective value
of the compartment in the simulation. Notice that we are 0.01% away from the real data on a
four-month simulation based on the |T − Ts | metric, which refers to the absolute difference
between the real treated proportion of the population (T) and simulated treated proportion
of the population (Ts) in the worst case. In the best case, the percent difference between the
final compartmental statistics of the SiRLat the end of each simulation period and the real
data based on the |C − Cs | metric is 0.001%.

A3: Validation of intervention effect for AVM

To model vaccination intervention in our model, we study the period when vaccines became
available. On December 11, 2020, The Food and Drug Administration authorized the Pfizer-
BioNTech vaccine for emergency use. A week later, on December 18, the Moderna vaccine
was also authorized with the same status. Despite this, for the rest of the year 2020, the
vaccination campaign is off to a chaotic, confused, and slower-than-expected start, ending up
with less than the planned 20 million doses. We model our vaccination models based on the
vaccine availability data provided by CDC for Pfizer-BioNTech, Moderna, and Johnson &
Johnson vaccines and their respective protection levels by does as research shows. Figure 15
shows the validation for the age-based vaccination strategy (AVM) compared to the real com-
partmental data for NJ. Each line represents the absolute value of the difference between the
agent-based simulation model and the real CDC Data reported for NJ, including vaccination.
We simulate for four months starting from December 15, 2020, to April 15, 2021. During
this period, vaccinations were done according to age and comorbidity-based priority. Our
validation is off only 0.12 % during the whole four-month simulation period. The actions
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Fig. 15 Comparison of the Covasim agent-based simulation data and CDC date for the state of New Jersey
for the period from December 15, 2020, to April 15, 2021. The x-axis shows the timeline where each dot on
the trend lines corresponds to a decision. The y-axis shows the absolute value of the difference between the
real number of individuals in a compartment at a point in time and the number of individuals estimated in
that compartment from the simulation. For example, trend line |H − Hs | represents the absolute value of the
difference between the hospitalized individuals in New Jersey and the hospitalized individuals estimated by
the simulation at bi-weekly dates starting December 15, 2020, to April 15, 2021. Similarly, the trend lines for
each compartment are plotted

Table 5 Paired t-test analysis comparing the bi-weekly compartmental data from the AVM simulation with
the actual data from the CDC with confidence interval 95%

Compartment Mean Two-tailed paired t-test
Actual Predicted t-stat t-critical p-value

Infected 677, 437 667, 457 0.03 2.3 0.97

Hospitalized 556, 169 556, 452 0.36 2.3 0.72

ICU 124, 795 125, 920 1.01 2.3 0.40

Dead 21, 525 21, 510 0.27 2.3 0.79

Vaccinated 1 1, 373, 739 1, 368, 578 1.04 2.3 0.35

Vaccinated 2 631, 651 630, 619 0.31 2.3 0.75

calibrated using the agent-based simulation for the age-based vaccination strategy (AVM)
will also be used to run a simulation regarding the random vaccination strategy RVM.

Further, we apply the paired t-test to investigate the difference between the mean of the bi-
weekly compartmental values of the simulation, including one-shot and two-shot vaccinated
individuals, and the mean actual values provided by the CDC. According to the statistical
analysis shown in Table 5, the mean biweekly AVM simulation DRL results and the mean
CDC data values are not statistically different.

A4: Visual comparison of cumulative infections, hospitalizations, and
recoveries

Figure 16a–f show comparisons between real values and simulated results from the SiRL
framework (with fixed interventions to represent the reality). In almost all cases (Fig. 16a–f)
the simulation slightly overestimates the real data. This is possibly due to the under-reporting
or biases involved in the reported data. For example, we observe a constant slight overestimate
in the death rate comparison (Fig. 16f). On May 5, 2022, WHO published a report where
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Fig. 16 Comparison between the real (reported) data and the results from the simulation on a population of
9,288,994 (estimated population of NJ on April 1, 2020, by US Census Bureau). a Number of infected people
with no symptoms. b Number of infected people with symptoms. c Total number of infected individuals. d
Number of hospitalized individuals. e Total number of recovered individuals. f Number of reported deaths

they estimated excess of 14.9 million deaths associated with COVID-19 in 2020 and 2021
(see who.int). This brings forward the point that more effort should be put into modeling the
systems as realistically as possible to avoid transferable bias/error coming with data.

A5: Validation for Kansas case study

During the validation process, we calibrate the DRL interventions in our agent-based envi-
ronment according to the real interventions and their effect over four months starting from
September 15, 2021, to January 15, 2022. We collect the bi-weekly data from the CDC and
map the same decisions that were active during this considered simulation period. Figure 17
shows the validation for the age-based vaccination strategy (AVM) compared to the real
compartmental data for the state of Kansas. Each line represents the absolute value of the
difference between the agent-based simulation model and the real CDC Data reported for
Kansas, including vaccination. In Fig. 17, it is shown that the difference from the real value
for all compartmental predictions is less than 0.09%.
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Fig. 17 Comparison of the Covasim agent-based simulation data and CDC data for the state of Kansas for
the period from September 15, 2021, to January 15, 2022. The x-axis shows the timeline where each dot on
the trend lines corresponds to a decision. The y-axis shows the absolute value of the difference between the
real number of individuals in a compartment at a point in time and the number of individuals estimated in
that compartment from the simulation. For example, trend line |H − Hs | represents the absolute value of the
difference between the hospitalized individuals in Kansas and the hospitalized individuals estimated by the
simulation at bi-weekly dates starting September 15, 2021, to January 15, 2022. Similarly, the trend lines for
each compartment are plotted
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