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Abstract
In this paper, we study capital allocation for dynamic risk measures, with an axiomatic
approach but also by exploiting the relation between risk measures and BSDEs. Although
there is a wide literature on capital allocation rules in a static setting and on dynamic risk
measures, only a few recent papers on capital allocation work in a dynamic setting and,
moreover, those papersmainly focus on the gradient approach. To fill this gap,we then discuss
new perspectives to the capital allocation problem going beyond those already existing in
the literature. In particular, we introduce and investigate a general axiomatic approach to
dynamic capital allocations as well as an approach suitable for risk measures induced by
g-expectations under weaker assumptions than Gateaux differentiability.

Keywords Risk measures · Capital allocation · BSDE · g-expectation · Subdifferential ·
Gradient

1 Introduction

A relevant research stream related to risk measures is the capital allocation problem, dealing
with the problem of sharing in a suitable way the margin required to hedge the riskiness of
a position among the different sources of riskiness of the aggregate position. For static risk
measures the capital allocation problem has been faced in an axiomatic way but also from
an empirical or a game-theoretical point of view [see Delbaen (2000), Denault (2001), Kalk-
brener (2005), Tasche (2004), Tsanakas (2009), Canna et al. (2020), Centrone and Rosazza
Gianin (2018) and the references therein]. Although there is a wide literature on the relation
between dynamic risk measures and Backward Stochastic Differential Equations (BSDEs,
for short) and on capital allocation rules (CARs) in a static setting, a systematic analysis
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of the dynamic setting has not yet been extensively developed and only a few papers [see
Boonen (2019), Cherny (2009), Kromer andOverbeck (2014), Kromer andOverbeck (2017),
Mabitsela et al. (2020), Tsanakas (2004)] on capital allocation work in a dynamic setting.
Even if the idea of using BSDEs (or Backward Stochastic Volterra Integral Equations) for
dynamic CARs can be found already in Kromer and Overbeck (2014, 2017); Mabitsela et al.
(2020), in these papers very specific CARs are considered and the authors mainly investigate
and cover the gradient approach.

Motivated by the relevance of dynamic risk measures and the need of a complete study
on CARs in a dynamic setting, in this paper we introduce an axiomatic approach to dynamic
capital allocation as well as an approach suitable for risk measures induced by BSDES or,
better, by g-expectations [see Peng (1997)]. The main goal of the paper is, therefore, to
investigate from an axiomatic point of view capital allocation rules of convex risk measures
in a dynamic setting by weakening the Gateaux differentiability condition of the risk measure
and going beyond the gradient approach. In particular, we generalize the axioms introduced
byKalkbrener (2005) for capital allocations in a dynamic setting and investigate their relation
and compatibility with time-consistency of dynamic risk measures. Furthermore, when the
underlying riskmeasure is induced by aBSDEgoverned by a non-smooth (but convex) driver,
we introduce dynamic capital allocation rules going beyond the gradient allocation (already
represented in terms of the driver in Kromer and Overbeck (2014, 2017); Mabitsela et al.
(2020)).

The paper is organized as follows: in the next section we introduce notations and review
themain notions and results useful in the paper; in Sect. 3we introduce an axiomatic approach
to capital allocation rules in a dynamic setting and investigate existence of rules fulfilling
some further axioms. In Sect. 4, instead, we focus on dynamic capital allocation rules induced
by g-expectations and present some examples. Conclusions and final remarks are provided
in Sect. 5.

2 Notations and preliminaries

In this section we recall some basic notions and definitions that will be used in the following
sections.We first concern with the notion of dynamic risk measures and the related properties
and then move to basic facts about dynamic measures and their connection to BSDEs.

Dynamic risk measures.

Let T > 0 be a given future time horizon and let (�,F, P) be a general probability space.
Consider a continuous-time setting where time evolves between 0 and T and let (Ft )0≤t≤T be
a filtration such that F0 = {∅,�} and FT = F . We will focus on risk measures quantifying
the riskiness of financial positions belonging to L∞(FT ) = L∞(�,FT , P), that is, the
space of essentially bounded random variables defined on (�,FT , P). All equalities and
inequalities have to be understood in the P-a.s. sense.

We recall that a static risk measure is a functional quantifying now the riskiness of any
position X of maturity T , while a dynamic risk measure is a functional quantifying the
riskiness of X at any time t ∈ [0, T ], taking into account the whole information available
up to time t . More precisely, we recall the following definition by referring to Artzner et al.
(1999); Bion-Nadal (2008); Cheridito et al. (2004); Delbaen (2022, 2000, 2006); Detlefsen
and Scandolo (2005); Föllmer and Schied (2008); Frittelli andRosazzaGianin (2002), among
many others, for a more detailed treatment on static and dynamic convex risk measures.
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Definition 1 A static risk measure is a functional ρ : L∞(FT ) → R satisfying some further
assumptions (e.g., monotonicity, cash-invariance, convexity).

A dynamic risk measure (ρt )t∈[0,T ] is a family of functionals

ρt : L∞(FT ) → L∞(Ft ), t ∈ [0, T ],
such that ρ0 is a static risk measure and ρT (X) = −X for any X ∈ L∞(FT ).

An incomplete list of desirable properties that are sometimes imposed to dynamic risk
measures (ρt )t∈[0,T ] are the following:
- Monotonicity: if X , Y ∈ L∞(FT ) and X ≤ Y , then ρt (X) ≥ ρt (Y ) for any t ∈ [0, T ].
- Cash-additivity: ρt (X + mt ) = ρt (X) − mt for any X ∈ L∞(FT ), mt ∈ L∞(Ft ) and
t ∈ [0, T ].
- Convexity: ρt (αX + (1 − α)Y ) ≤ αρt (X) + (1 − α)ρt (Y ) for any X , Y ∈ L∞(FT ),
t ∈ [0, T ] and α ∈ [0, 1].
- Normalization: ρt (0) = 0, for any t ∈ [0, T ].
- Time-consistency: ρs(X) = ρs(−ρt (X)), for any X ∈ L∞(FT ), 0 ≤ s ≤ t ≤ T .
- Weak time-consistency: ρs(X) ≤ ρs(−ρt (X)), for any X ∈ L∞(FT ), 0 ≤ s ≤ t ≤ T .

While monotonicity, cash-additivity, convexity and normalization are essentially a trans-
lation to the dynamic setting of the corresponding static axioms, time-consistency is peculiar
to the dynamic setting and is a recursivity property. Weak time-consistency, instead, is a
weaker version of recursivity.

In the following, with dynamic convex risk measures we mean any dynamic risk measure
satisfying monotonicity, cash-additivity, convexity, and normalization. We recall the follow-
ing results on the dual representations of risk measures [see Bion-Nadal (2009) and Detlefsen
and Scandolo (2005)].

Let (ρt )0≤t≤T be adynamic convex riskmeasure satisfying continuity frombelow, that is, if
(Xn)n≥0 ⊆ L∞(FT ) is an increasing sequence with Xn ↗ X , then ρt (Xn) →n→+∞ ρt (X),
P-a.s. Then it can be represented as

ρt (X) = essmax
Q∈Qt

{EQ[−X |Ft ] − ct (Q)}, (1)

where ct is the so called (minimal) penalty term, defined as

ct (Q) � ess sup
Y∈L∞(FT )

{EQ[−Y |Ft ] − ρt (Y )}, Q ∈ Pt , (2)

withPt being the set of probability measures defined on (�,FT ), absolutely continuous with
respect to P and such that Q|Ft = P , andQt � {Q ∈ Pt : ct (Q) ∈ L∞(Ft )}. Coherent risk
measures correspond to penalty terms belonging to {0;+∞} [see Delbaen (2006)].

BSDEs and their connection to dynamic risk measures.
Let us now recall the connection between dynamic risk measures and BSDEs. Let (Bt )t≥0

be a standard d-dimensional Brownian motion defined on the probability space (�,F, P).
Denote by (Ft )t∈[0,T ] the natural Brownian filtration augmented by the P-null sets. In the
sequel, we identify a probabilitymeasure Q << P with its Radon-Nikodýmdensity dQ

dP . Since
we are working in a Brownian setting, we also identify a probability measure Q equivalent
to P with the predictable process (qt )t∈[0,T ] induced by the stochastic exponential, i.e., such
that

E

[
dQ

dP

∣∣∣∣Ft

]
= E(q.B)t = exp

(
−1

2

∫ t

0
‖qs‖2ds +

∫ t

0
qsdBs

)
.
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See Revuz and Yor (2013) for details. Moreover, given a probability measure Q on (�,F),
we denote by EQ (respectively, EQ[ · |Ft ]) the expected value (respectively, the conditional
expectation) with respect to Q. When the expectation is considered with respect to the
reference probability measure P , we will simply use the notation E .

Pardoux and Peng (1990) introduced equations of the following type (known as BSDEs):

Yt = X +
∫ T

t
g(s, Ys, Zs)ds −

∫ T

t
ZsdBt , 0 ≤ t ≤ T (3)

where g : � × [0, T ] × R × R
d → R is generally called generator or driver, T is the time

horizon and X ∈ L2(FT ) is a terminal condition, where L2(FT ) is the space of all square
integrable random variables on (�,FT , P). To simplify the notation we often write g(t, y, z)
instead of g(ω, t, y, z).

We know from (Pardoux and Peng 1990, Theorem 4.1) and (Peng 1997, Theorem 35.1)
or El Karoui et al. (1997) that if g satisfies the usual assumptions:
(g1) g Lipschitz continuous in y and z, i.e., there exists a constant μ > 0 such that dP × dt ,
for any (y0, z0), (y1, z1) ∈ R × R

d ,

|g(t, y0, z0) − g(t, y1, z1)| ≤ μ (|y0 − y1| + ‖z0 − z1‖) ;
(g2) for any (y, z) ∈ R × R

d , g(·, y, z) is a predictable process such that

E

[∫ T

0
|g(s, y, z)|2 ds

]
< +∞; (4)

(g3) g(t, y, 0) = 0 for any t ∈ [0, T ],
then, for every X ∈ L2(FT ), the BSDE in (3) admits a unique solution (Y X

t , Z X
t )

consisting of predictable processes with values in R × R
d such that

E

[∫ T

0
Y 2
t dt

]
< +∞ and E

[∫ T

0
‖Zt‖2dt

]
< +∞.

Note that the existence and uniqueness of the solution is guaranteed also when (g3) is
replaced by

(g3’) E
[∫ T

0 |g(s, y, 0)|2ds
]

< +∞ for any y ∈ R.

In such a case, the driver will be said to satisfy the non-normalized usual assumptions.
Using Peng (1997)’s terminology, the first component of the solution to the BSDE (3)

Eg(X |Ft ) � Y X
t

is called conditional g-expectation at time t . When g is independent of y and assumes the
form g(t, z) = μ‖z‖ (with μ > 0), Eg will be denoted by Eμ [see, e.g., Peng (1997)]. Some
relevant results about the link between g-conditional expectations and dynamic riskmeasures
can be found in (Rosazza Gianin 2006, Section 4) and Barrieu et al. (2009).

As shown in Rosazza Gianin (2006), for a convex driver satisfying the usual assumptions
(g1)-(g3) and independence from y,

ρ
g
t (X) � Eg(−X |Ft ), X ∈ L2(FT ), t ∈ [0, T ],

is a dynamic convex and time-consistent risk measure satisfying normalization.
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3 Axiomatic approach to capital allocation: from a static to a dynamic
setting

In this section, we introduce and investigate an axiomatic approach to dynamic capital
allocation in the spirit of Kalkbrener (2005).

We start by recalling some theoretical aspects of capital allocation in a static framework
[see Delbaen (2000), Denault (2001), Centrone and Rosazza Gianin (2018), Kalkbrener
(2005), Tasche (2004), Tsanakas (2009), among others, for a detailed treatment]. Assume
that a time horizon T and a static risk measure ρ have been fixed and let X ∈ L∞(FT ) be
a financial position (with maturity T ) which is formed by the sub-units (or business lines or
sub-portfolios) X1, . . . , Xn ∈ L∞(FT ), i.e. X = ∑n

i=1 Xi . For instance, we can think at X
as the profit and loss of a portfolio composed by different assets and at X1, ..., Xn as at the
profits and losses of the different assets, or at X as the riskiness of a firm and at X1, ..., Xn

as at the different branches or business lines of the firm.
The capital allocation problem consists then in finding a “suitableway” to share themargin

ρ(X) among the different sub-units X1, . . . , Xn . More concretely, it consists in finding
k1, . . . , kn ∈ R such that ρ(X) = k1 + · · · + kn where each ki denotes the capital to be
allocated to Xi or, in other words, the risk contribution of Xi to the total risk capital ρ(X) of
X .

More in general, given a convex risk measure ρ, (Kalkbrener, 2005) defined capital
allocation rule (CAR) with respect to ρ any functional � : L∞(FT ) × L∞(FT ) → R

satisfying�(X; X) = ρ(X). In the terminology above, then,�(Xi ; X) represents the capital
to be allocated to the sub-unit Xi of the whole position X . However,� is defined for any pair
(X , Y ) ∈ L∞(FT )×L∞(FT )where X can be seen as a sub-portfolio1 of the whole portfolio
Y , and �(X; Y ) can be interpreted as the capital allocated to the sub-portfolio X to cover the
riskiness of the global portfolio Y . Furthermore, the condition �(X; X) = ρ(X) imposed
to a CAR guarantees that for a stand-alone portfolio the capital to be allocated corresponds
exactly to the margin (or capital requirement) ρ(X). Note that a general CAR may fail to
satisfy the requirement ρ(X) = ∑n

i=1 �(Xi ; X). If such a condition is fulfilled, then the
CAR is said to satisfy full allocation.

Before considering the dynamic version of capital allocation rules, we recall two well-
known and quite popular (static) CARs used in the literature: the gradient and the Aumann-
Shapley CARs [see Delbaen (2000), Denault (2001), Centrone and Rosazza Gianin (2018),
Kalkbrener (2005)]. If ρ is Gateaux differentiable at Y , then:

• the gradient CAR is defined as the directional derivative of ρ at Y in the direction of X ,
i.e.

�grad(X; Y ) � lim
h→0

ρ(Y + hX) − ρ(Y )

h
,

and can be interpreted as the marginal contribution of sub-unit X to the overall risk Y ;
• the Aumann-Shapley CAR is defined as

�AS(X; Y ) �
∫ 1

0
�grad(X; γY )dγ

1 To bemore precise, given a position Y , X is called sub-portfolio of Y if Y = X+ Z for some Z . In particular,
in L∞(FT ) any pair (X , Y ) can be seen as sub-portfolio and portfolio, respectively. See Centrone and Rosazza
Gianin (2018).
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and somehow corresponds to the Aumann-Shapley value of game theory. We recall,
indeed, from Denault (2001) that the Aumann-Shapley value for player/portfolio i is
defined as

�AS
i �

∫ 1

0

∂r

∂δi
(γ
) dγ,

where δ ∈ R
n+ represents the level of participation of the n players in a coalition, the

components of 
 ∈ R
n+ the full participation of the players, and r : Rn → R denotes a

cost function. In the context of fractional players, the Aumann-Shapley value can be then
interpreted as the average of the marginal costs of player/portfolio i , where the average
is taken with respect to γ , acting on the size of portfolio (from 0 to 
).

For non-Gateaux differentiable risk measures, subdifferential versions of the previous
(static) CARs are defined and studied in Centrone and Rosazza Gianin (2018).

Although there is a wide literature on dynamic risk measures and on capital allocation
rules in a static setting, a systematic analysis of dynamic capital allocations has not yet been
extensively developed and only a few papers [see Boonen (2019), Cherny (2009), Kromer and
Overbeck (2014), Kromer and Overbeck (2017), Mabitsela et al. (2020), Tsanakas (2004)]
on capital allocation work in a dynamic setting. Furthermore, in these papers very specific
CARs are considered and the authors mainly investigate and cover the gradient approach. For
this reason, we start providing an axiomatic approach to CARs in the dynamic setting in full
generality. In the next section, inspired by Kromer and Overbeck (2014, 2017); Mabitsela et
al. (2020), we then introduce an approach suitable for risk measures induced by BSDEs.

The general notion of a static capital allocation rule can be immediately generalized to a
dynamic framework.

Definition 2 Given a dynamic risk measure (ρt )t∈[0,T ], we define dynamic capital allocation
rule associated to (ρt )t∈[0,T ] a family (�t )t∈[0,T ] of functionals

�t : L∞(FT ) × L∞(FT ) → L∞(Ft )

satisfying �t (X; X) = ρt (X) for any X ∈ L∞(FT ) and t ∈ [0, T ].
An audacious dynamic CAR, instead, will only satisfy �t (X; X) ≤ ρt (X) for any X ∈

L∞(FT ) and t ∈ [0, T ] [see Centrone and Rosazza Gianin (2018) for the static version].

Similarly to the static case, �t (X; Y ) can be interpreted as the (random) amount to be
allocated to X as a sub-portfolio of Y at time t . Differently from a static CARwhere�(X; Y )

is deterministic, for a dynamic CAR �t (X; Y ) is a Ft -measurable random variable, hence
taking into account all the information available up to time t .

Here below we provide a list of desirable axioms which extend to the dynamic setting
those defined for static CARs in Kalkbrener (2005); Denault (2001); Centrone and Rosazza
Gianin (2018); Tsanakas (2009). In a static setting, no-undercut and full allocation were
already studied in Kalkbrener (2005) while the others have been introduced and discussed
later on.
- Monotonicity: if X ≤ Z then �t (X; Y ) ≥ �t (Z; Y ) for any Y ∈ L∞(FT ) and t ∈ [0, T ].
- No-undercut: �t (X; Y ) ≤ ρt (X) for any X , Y ∈ L∞(FT ) and t ∈ [0, T ].
- Ft -riskless: �t (ct ; Y ) = −ct for any ct ∈ L∞(Ft ), Y ∈ L∞(FT ) and t ∈ [0, T ].
- Ft -1-cash-additivity: �t (X + ct ; Y ) = �t (X; Y ) − ct for any ct ∈ L∞(Ft ), X , Y ∈
L∞(FT ) and t ∈ [0, T ].
- Ft -cash-additivity: �t (X + ct ; Y + ct ) = �t (X; Y ) + ct for any ct ∈ L∞(Ft ), X , Y ∈
L∞(FT ) and t ∈ [0, T ].
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- Full allocation: �t (
∑n

i=1 Yi ; Y ) = ∑n
i=1 �t (Yi ; Y ) for any Y1, ..., Yn, Y ∈ L∞(FT ) such

that Y = ∑n
i=1 Yi , and t ∈ [0, T ].

- Sub-allocation: �t (
∑n

i=1 Yi ; Y ) ≥ ∑n
i=1 �t (Yi ; Y ) for any Y1, ..., Yn, Y ∈ L∞(FT ) such

that Y = ∑n
i=1 Yi , and t ∈ [0, T ].

- Weak convexity:�t (
∑n

i=1 αi Yi ; Y ) ≤ ∑n
i=1 αi�t (Yi ; Y ) for any αi ∈ [0, 1] (i = 1, ..., n),

Y1, ..., Yn, Y ∈ L∞(FT ) satisfying Y = ∑n
i=1 αi Yi and

∑n
i=1 αi = 1, and t ∈ [0, T ].

Monotonicity means that the capital allocated to a position Z has to be smaller than the
capital allocated to a riskier position X . No-undercut translates the idea that, at any time
t , the capital allocated to any X considered as a sub-portfolio of Y does not exceed the
capital allocated to X considered as a stand-alone portfolio. In the terminology of Tsanakas
(2009), such property guarantees that there is no incentive to split X from Y because the
capital requirement due to X as a stand-alone portfolio would be higher than the capital to
be allocated to X as a sub-portfolio of T . Ft -riskless means that the capital allocated to a,
roughly speaking, “known” position at time t (or, better, to a Ft -measurable r.v.) is exactly
the opposite of such position. Ft -1-cash-additivity and Ft -cash-additivity have a similar
interpretation to cash-additivity for dynamic risk measures; we stress that for Ft -1-cash-
additivity the translation has an impact only on the first variable, i.e., on the sub-portfolio.
Full allocation states that, at any time t , the capital requirement �t (Y ; Y ) is fully divided
into the different sub-portfolios. As emphasized by Kalkbrener (2005) in the static case,
however, full allocation and no-undercut togetherwith�(X; X) = ρ(X) are incompatible for
convex risk measures that are not coherent since these axioms together imply subadditivity.
Nevertheless, as underlined by Brunnermeier and Cheridito (2019), full allocation can be
dropped when, e.g., the CAR is considered only for monitoring purposes [see also Canna
et al. (2020), Centrone and Rosazza Gianin (2018) and the references therein for a deeper
discussion]. For the reason above, sub-allocation and weak convexity can be defined and
investigated as alternatives to full allocation. In particular, sub-allocation implies that the
excess �t (

∑n
i=1 Yi ; Y ) − ∑n

i=1 �t (Yi ; Y ) ≥ 0 can be seen as an undivided deposit/cost
that represents an extra-security margin and can be motivated because of some costs shared
by all the sub-portfolios. Weak convexity, instead, represents a sort of convexity in the first
variable.

While the previous axioms are simply a reformulation in a dynamic setting of those
required in the static case, the following are specific for dynamic CARs and, up to our
knowledge, have not been introduced yet in the literature of CARs. In particular, time-
consistency is specific for the dynamic setting and represents a recursivity requirement,
similarly to the one imposed to dynamic risk measures.
- time-consistency of type 1: �s(−�t (X; Y ); Y ) = �s(X; Y ) for any X , Y ∈ L∞(FT ) and
0 ≤ s ≤ t ≤ T .
- time-consistency of type 2:�s(−�t (X; Y );−ρt (Y )) = �s(X; Y ) for any X , Y ∈ L∞(FT )

and 0 ≤ s ≤ t ≤ T .
More specifically, time-consistency of type 2 means that the capital to be allocated at time

s for X as a sub-portfolio of Y should be the same as the capital to be allocated at time s
for the sub-position −�t (X; Y ) of the whole position −ρt (Y ), arising from a intermediate
step from T to t ; that is, by considering two consecutive steps from T to t and then from
t to s, where in the last step we don’t consider the final position Y but its margin at time t .
Time-consistency of type 1, instead, fixes the whole portfolio whatever is the evaluation time
and represents a recursivity property guaranteeing that the capital to be allocated at s to X
as a sub-portfolio of Y is the same as the capital to be allocated when we proceed backward
in time in two steps and when the whole position Y is fixed.
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Note that for anyY ∈ L∞(FT ) such thatρt (Y ) = −Y (e.g.,Y = ct , with ct ∈ L∞(Ft ), for
ρt satisfying cash-additivity and normalization) the formulation�s(−�t (X; Y );−ρt (Y )) =
�s(X; Y ) (time-consistency of type 2) reduces to that of �s(−�t (X; Y ); Y ) = �s(X; Y )

(type 1). Anyway, in general, the two axioms are similar but somehow complementary.
We now investigate the relation between dynamic CARs and dynamic convex risk mea-

sures and, in particular, the existence of dynamic CARs satisfying some suitable axioms
among those listed.

In the following, let (ρt )t∈[0,T ] be a dynamic convex risk measure satisfying time-
consistency and assume that, for any t ∈ [0, T ],
Assumption 3

ρt (X) = essmax
Q∈Qt

{EQ[−X |Ft ] − ct (Q)} for any X ∈ L∞(FT ), (5)

for the minimal penalty term ct defined in (2) and Qt defined accordingly.

We recall that Assumption 3 is fulfilled, for instance, when ρt is continuous from below [see
Bion-Nadal (2008)].

We recall from the static case that the gradient and the subdifferential CARs are related to
the optimal scenarios in the dual representation of ρ = ρ0 [see Delbaen (2000), Centrone and
Rosazza Gianin (2018), Kalkbrener (2005)]. Similarly to the static case [see Centrone and
Rosazza Gianin (2018)], a dynamic counterpart of the subdifferential CAR can be defined
as follows:

�sub
t (X; Y ) � EQY

t
[−X |Ft ] − ct (Q

Y
t ), (6)

where

QY
t ∈ arg essmax

Q∈Qt
{EQ[−Y |Ft ] − ct (Q)}. (7)

Note that, similarly to the static case, the CAR above is not uniquely assigned but represents
a family of CARs depending on the choice of QY

t with respect to it is defined. A discussion
on this point will follow later.

Similarly as in Delbaen (2000) where the static version is considered, we define the
subdifferential of ρt at X ∈ L∞(FT ) as

∂ρt (X) �
{
Q ∈ Qt : ρt (Y ) ≥ ρt (X) + EQ[−(Y − X)|Ft ] for all Y ∈ L∞(FT )

}
.

It is said [see, e.g., Delbaen (2000); Zălinescu (2002)] that ρt is subdifferentiable at X ∈
L∞(FT ) if ∂ρt (X) is non-empty.

The following lemma extends to the dynamic case the relationship between subdifferential
and optimal scenarios of risk measures, well known in the static case [see, among others,
Delbaen (2000), Ruszczyński and Shapiro (2006), and Zălinescu (2002)].

Lemma 4 For a dynamic convex risk measure ρt satisfying Assumption 3, ∂ρt (X) coincides
with the set formed by all the optimal scenarios in (5) (hence ∂ρt (X) �= ∅ for any X ∈
L∞(FT )). Moreover, the optimal scenario QX

t is uniquely determined whenever ρt (X) is
Gateaux differentiable at X.

Proof Let us observe that (5) guarantees that there exists at least one element in ∂ρt (X). In
fact, in this case, for every QX

t ∈ arg essmaxQ∈Qt

{
EQt [−X |Ft ] − ct (Q)

}
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ρt (Y ) − ρt (X) = essmax
Q∈Qt

{
EQt [−Y |Ft ] − ct (Q)

} −
[
EQX

t
[−X |Ft ] − ct (Q

X
t )

]

≥ EQX
t
[−(Y − X)|Ft ]

holds for any Y ∈ L∞(FT ). Thus QX
t belongs to ∂ρt (X).

Vice versa, QX
t ∈ ∂ρt (X) implies that it is an optimal scenario in the dual representation

of ρt (X). Indeed, QX
t ∈ ∂ρt (X) implies that EQX

t
[−Y |Ft ]−ρt (Y ) ≤ EQX

t
[−X |Ft ]−ρt (X)

for any Y ∈ L∞(FT ), hence

ct (Q
X
t ) = essmax

Y∈L∞(FT )
{EQX

t
[−Y |Ft ] − ρt (Y )} = EQX

t
[−X |Ft ] − ρt (X).

It then follows that

ρt (X) = EQX
t
[−X |Ft ] − ct (Q

X
t ),

therefore QX
t ∈ ∂ρt (X) is an optimal scenario in the dual representation of ρt (X).

As in the static case, we now show that ∂ρt (X) is a singleton when ρt is Gateaux differ-
entiable. To this aim, we say [see, e.g., Ruszczyński and Shapiro (2006), Zălinescu (2002)
for the static case] that ρt is Gateaux differentiable at X if ρt is directionally differentiable
at X in the direction Y , i.e., if there exists the limit in

Dρt (X; Y ) � lim
h→0

ρt (X + hY ) − ρt (X)

h
, (8)

and, for any X ∈ dom(ρt ), the directional derivative Dρt (X; ·) is linear and continuous with
respect to the L∞-norm. Since the L∞-convergence implies pointwise P-a.s. convergence,
we have that if ρt is Gateaux differentiable and satisfies Assumption 3 then, bymonotonicity,

Dρt (X; Y ) = lim
h↘0+

ρt (X + hY ) − ρt (X)

h
≥ lim

h↘0+

EQX
t
[−hY |Ft ]
h

= EQX
t
[−Y |Ft ],

while

Dρt (X; Y ) = lim
h↗0−

ρt (X + hY ) − ρt (X)

h
≤ lim

h↗0−

EQX
t
[−hY |Ft ]
h

= EQX
t
[−Y |Ft ].

From the uniqueness of the limit in (8) we can conclude that

Dρt (X; Y ) = EQX
t
[−Y |Ft ].

Consequently, for any pair Q1
X , Q2

X ∈ arg essmaxQt

{
EQ[−X |Ft ] − ct (Q)

}
the identity

EQ1
X
[−Y |Ft ] = EQ2

X
[−Y |Ft ]

holds for every Y ∈ L∞(FT ). Thus Q1
X and Q2

X coincide on FT and Dρt (X; Y ) can be
represented by (one of) them. Hence, ∂ρt (X) is a singleton if ρt is Gateaux differentiable at
X . �

Note that, from the arguments above, the dynamic subdifferential CAR �sub
t can be also

written as

�sub
t (X; Y ) = ρt (Y ) − EQY

t
[−(Y − X)|Ft ]. (9)

The previous lemma implies that, for a dynamic convex risk measure satisfying Assump-
tion 3, the subdifferential CAR represents a family of CARs since, in general, there may
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be several optimal scenario QX
t . The optimal scenario QX

t is instead uniquely determined
whenever ρt (X) is Gateaux differentiable at X .

The non-differentiability of a risk measure (leading to a ∂ρt (X) that is not a singleton in
general, hence to a family of -static or dynamic- CARs) could seem to be problematic since
different CARs may rank differently sub-portfolios. However, we wish to emphasize that
this may happen in general since to any (static or dynamic) risk measure one can associate
different capital allocation rules according to different axioms (e.g., gradient or subdifferen-
tial, marginal, quantile-based, Aumann-Shapley,...). See Dhaene et al. (2012); Tasche (2004);
Tsanakas (2009). In order to define uniquely a CAR (e.g., out of a family of CARs), one
possibility could be to choose an optimal capital allocation rule where optimality is taken
with respect to a suitable deviation measure (as discussed by Dhaene et al. (2012)). Another
possibility could be to fix the family of CARs according to some desirable axioms and, in
case of non-differentiability of the risk measure and of subdifferential CARs, to choose the
optimal scenario on which the CAR is built according to some criteria, e.g. of minimal mar-
tingale or entropy [see Föllmer and Schweizer (1991), Frittelli (2000), Centrone and Rosazza
Gianin (2018) for a discussion on related CARs].

The following result establishes a one-to-one correspondence between (�t )t∈[0,T ] and
(ρt )t∈[0,T ] and the relationship between the properties of (�t )t∈[0,T ] and of (ρt )t∈[0,T ], in line
with Theorem 4.3 of Kalkbrener (2005) and of Proposition 4 of Centrone and Rosazza Gianin
(2018). The proposition below also implies that, although time-consistency of type 1 and of
type 2 are similar but somehow complementary, when together with further assumptions the
“impact” of type 2 is stronger than that of type 1.

Proposition 5 (a) If�t : L∞(FT )× L∞(FT ) → L∞(Ft ), for any t ∈ [0, T ], is a monotone
and weakly convex functional satisfying �t (X; Y ) ≤ �t (X; X) for any X , Y ∈ L∞(FT )

(no-undercut) and time-consistency of type 1 (resp. of type 2), then the associated dynamic
risk measure ρt , defined as ρt (X) � �t (X; X) for X ∈ L∞(FT ), is a monotone, convex and
weak time-consistent (resp. time-consistent) risk measure. Moreover, if �t satisfies also Ft -
cash-additivity, then the associated risk measure ρt is also cash-additive (hence, a dynamic
convex and time-consistent risk measure).
(b) If ρt is a dynamic convex risk measure satisfying continuity from below, then there exists
at least a dynamic CAR�t (e.g.,�sub

t ) satisfying monotonicity, weakly convexity,Ft -1-cash-
additivity and no-undercut.

Proof (a) Monotonicity of ρt can be checked easily due to the corresponding properties of
�t .

If �t satisfies time-consistency of type 1, then weak time-consistency of ρt follows.
Indeed, it holds that for any 0 ≤ s ≤ t ≤ T and any X ∈ L∞(FT )

ρs(X) = �s(X; X) = �s(−�t (X; X); X) ≤ ρs(−ρt (X)),

where the second equality comes from time-consistencyof type 1,while the inequality follows
from the no-undercut property.

Time-consistency of type 2 of�t , instead, implies time-consistency of ρt . Indeed, for any
0 ≤ s ≤ t ≤ T and any X , Y ∈ L∞(FT ) we have

ρs(X) = �s(X; X) = �s(−�t (X; X);−ρt (X)) = ρs(−ρt (X)),

where the second equality comes from time-consistency of type 2.
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Convexity: from ρt (X) � �t (X; X) it follows that for any t ∈ [0, T ], α ∈ [0, 1] and
X , Y ∈ L∞(FT )

ρt (αX + (1 − α)Y ) = �t (αX + (1 − α)Y ;αX + (1 − α)Y )

≤ α�t (X;αX + (1 − α)Y ) + (1 − α)�t (Y ;αX + (1 − α)Y )

≤ αρt (X) + (1 − α)ρt (Y ),

where the former inequality is due to weakly convexity of �t , while the latter from no-
undercut.

Cash-additivity of ρt is straightforward under Ft -cash-additivity of �t .
b) By the hypothesis on ρt , the dual representation (5) holds true [see Bion-Nadal (2008)

and the references therein]. Consider now

�t (X; Y ) = �sub
t (X; Y ) = EQY

t
[−X |Ft ] − ct (Q

Y
t ),

where QY
t denotes an optimal scenario in the dual representation of ρt (Y ).

By definition of QY
t , �sub

t (Y ; Y ) = ρt (Y ) and �sub
t is a dynamic CAR. Monotonicity,

weakly convexity and Ft -1-cash-additivity can be easily checked. No-undercut, instead,
follows by

�t (X; Y ) = EQY
t
[−X |Ft ] − ct (Q

Y
t ) ≤ essmax

Q∈Qt
{EQ[−X |Ft ] − ct (Q)} = ρt (X)

for any t ∈ [0, T ] and X , Y ∈ L∞(FT ). Furthermore, sub-allocation is also fulfilled. Indeed,
for any Y1, ..., Yn, Y ∈ L∞(FT ) such that Y = ∑n

i=1 Yi and t ∈ [0, T ] it holds that

�sub
t

(
n∑

i=1

Yi ; Y
)

= EQY
t

[
−

n∑
i=1

Yi

∣∣∣∣∣Ft

]
− ct (Q

Y
t )

≥
n∑

i=1

EQY
t
[−Yi |Ft ] − nct (Q

Y
t )

=
n∑

i=1

{EQY
t
[−Yi |Ft ] − ct (Q

Y
t )}

=
n∑

i=1

�sub
t (Yi ; Y ).

�
Note that, starting from a dynamic and time-consistent CAR, we can obtain a time-

consistent dynamic risk measure. The converse implication, instead, needs a further
investigation. A further step will be then to investigate the existence of a time-consistent CAR
induced by a time-consistent dynamic risk measure. For a ρt coming from a g-expectation
we will show in the next section that the existence is guaranteed.

4 CARs associated to a �t induced by a g-expectation

In the following, we will restrict our attention to dynamic risk measures that are induced by
g-expectations. The main motivations for this choice can be summarized as follows. First, as
shown inCoquet et al. (2002); Peng (2005); RosazzaGianin (2006), awide family of dynamic
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time-consistent convex risk measures satisfying some further assumptions come from a g-
expectation. Second and somehow related to the previous point, there is a huge literature
on risk measures induced by BSDEs in a Brownian setting or in a setting with jumps. See,
among others, Barrieu et al. (2009), Delbaen et al. (2010), Rosazza Gianin (2006), Laeven
and Stadje (2014), Quenez and Sulem (2013), Calvia and Rosazza Gianin (2020). Finally,
some recent works [see Kromer and Overbeck (2014), Kromer and Overbeck (2017) and
Mabitsela et al. (2020)] already focus on dynamic risk measures induced by BSDEs and
Volterra equations to investigate the gradient allocation.

Let (ρt )t∈[0,T ] be a dynamic convex and time-consistent risk measure that is induced by
a g-expectation in a Brownian setting, i.e., (ρt (X), Z X

t ) solves the following BSDE

ρt (X) = −X +
∫ T

t
gρ(s, Z X

s ) ds −
∫ T

t
Z X
s dBs, X ∈ L∞(FT ), (10)

for a suitable driver gρ satisfying the usual assumptions and convexity in z. In particular, gρ

is uniformly Lipschitz in z and gρ(s, 0) = 0 for any s ∈ [0, T ].
Inspired by Kromer and Overbeck (2014) where the authors proved that, under Gateaux

differentiability of ρt , the gradient CAR for a ρt as in (10) satisfies a BSDE with a driver
depending on the gradient of gρ , we now introduce a general formulation of dynamic CARs
also induced by a g-expectation but going beyond the gradient approach and under weaker
assumptions than differentiability. Assume now that also the dynamicCAR�t we are looking
for is induced by a g-expectation with a different driver g�. More precisely, assume that

�t (X; Y ) = −X +
∫ T

t
g�(s, Z X ,Y

s , ZY
s ) ds −

∫ T

t
Z X ,Y
s dBs, (11)

where Z X ,Y
s is part of the solution while ZY

s comes from

ρt (Y ) = −Y +
∫ T

t
gρ(s, ZY

s ) ds −
∫ T

t
ZY
s dBs,

and with g�(s, z, zy) satisfying (for any zy ∈ R
d ) the usual non-normalized assumptions on

z and the condition

g�(s, z, z) = gρ(s, z) for any s ∈ [0, T ], z ∈ R
d . (12)

In this case, the driver g�(s, z, zy) depends then on an additional parameter zy .
Note that the assumptions on g� imply the existence and uniqueness of the solution
(�t (X; Y ); Z X ,Y

t )t∈[0,T ] of (11), while condition (12) guarantees that�t is a dynamic CAR,
i.e., �t (Y ; Y ) = ρt (Y ) for any t ∈ [0, T ] and Y ∈ L∞(FT ).

Given a dynamic risk measure (ρt )t∈[0,T ] induced by a gρ-expectation, it is then possible
to define several dynamic capital allocations induced by a g�-expectation with g� fulfilling
condition (12). Viceversa, given a dynamic family (�t )t∈[0,T ] induced by a g�-expectation,
the associated dynamic risk measure is uniquely determined via (12).

As already discussed above, the assumption of a dynamic CAR induced by a g-expectation
generalizes the gradient case and, in view of a result of Coquet et al. (2002) [see alsoRemark 6
below], seems to be rather reasonable for risk measures coming from g-expectations.

Remark 6 (a) If (ρt )t∈[0,T ] is Gateaux differentiable at any time t ∈ [0, T ], then the gradient
allocation (�

grad
t )t∈[0,T ] is of the form (11) with

g�(s, Z X ,Y
s , ZY

s ) = ∇gρ(s, ZY
s ) · Z X ,Y

s , (13)
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where, in the d-dimensional case, ∇gρ stands for the gradient of gρ with respect to z. We
observe that this result has been already proved in (Kromer and Overbeck 2014, Theorem
3.1) for BSDEs where ∇gρ(s, ZY

s ) is from a BMO.2

(b) It seems quite reasonable to assume that a dynamic CAR associated to a dynamic risk
measure as in (10) is induced by a g�-expectation. Indeed, let (ρt )t∈[0,T ] be as in (10) and
let (�t )t∈[0,T ] be convex, monotone and cash-additive in X , and satisfying time-consistency.
Assume, in addition, that �t satisfies Eμ̄-dominance for some μ̄ > 0, that is,

�t (X; Y ) − �t (Z; Y ) ≤ Eμ̄(−(X − Z)|Ft ), for any X , Y , Z ∈ L∞(FT ), t ∈ [0, T ].
It then follows by Coquet et al. (2002) that (�t )t∈[0,T ] is also induced by a ḡ-expectation
for some μ̄-Lipschitz driver ḡ = ḡY , i.e., there exists some ḡY (s, z) ≤ μ̄|z| such that
�t (X; Y ) = EḡY (−X |Ft ) for any X , Y ∈ L∞(FT ).

Note that Eμ-dominance of (�t )t∈[0,T ] is guaranteed, for instance, when

�t (X; Y ) − �t (Z; Y ) ≤ ρt (X − Z), for any X , Y , Z ∈ L∞(FT ), t ∈ [0, T ].
The condition above seems to be a reasonable generalization of

�t (X; Y ) ≤ ρt (X) = Egρ (−X |Ft ) ≤ Eμ(−X |Ft ), for any X , Y ∈ L∞(FT ), t ∈ [0, T ],
μ being the Lipschitz constant from assumption (g1), that is automatically fulfilled under
no-undercut.

Assume now that ρt is convex but non necessarily Gateaux differentiable and assume that
∂ρt (X) �= ∅, that is, ρt is subdifferentiable at X [see Lemma 4 and Ruszczyński and Shapiro
(2006) for a detailed discussion]. As from Lemma 4, we can identify an element of ∂ρt (X)

with the corresponding probability measure Q.
We are now ready to prove the existence of a dynamic CAR that is time-consistent

for a dynamic time-consistent risk measure induced by a g-expectation, as a follow-up of
Proposition 5-b).

With an abuse of notation, formulations containing the term ∂gρ should be read as follows:
to any element of the set ∂gρ we associate an element (e.g., of ∂ρt (X), �sub

t or g�). To be
more precise, in (14) to any element of the family (∂gρ(u, Z X

u ))u∈[0,t] of the subdifferen-
tial of gρ it corresponds an element QX

t of the subdifferential ∂ρt (X) and, consequently, a
different element of the family �sub. Or, better, similarly to the general case, �sub is not
uniquely defined but corresponds to a family of CARs depending on the choice of the optimal
scenario to which is associated. A discussion on the subdifferentiability of gρ is postponed
to Remark 13.

Proposition 7 (Existence of a CAR satisfying time-consistency) Let (ρt )t∈[0,T ] be a dynamic
convex risk measure that is induced by a gρ-expectation as in (10).

If gρ is subdifferentiable, then ρt is also subdifferentiable and elements QX
t defined by

E

[
dQX

t

d P

∣∣∣∣Ft

]
� E(∂gρ(t, Z X

t ) · B) = exp

{
−1

2

∫ t

0
‖∂gρ(u, Z X

u )‖2 du

−
∫ t

0
∂gρ(u, Z X

u ) dBu

}
(14)

2 Note that in Kromer and Overbeck (2014) gρ may have quadratic growth in z, hence ∇gρ is not bounded
in general. ∇gρ(s, ZY

s ) is then assumed to be from a BMO in order to be able to apply Girsanov Theorem
and to define an equivalent probability measure in terms of ∇gρ . For a precise definition of BMO we refer to
Kazamaki (1994).
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belong to ∂ρt (X).
Furthermore,�sub

t (X; Y ) related to QX
t as above is a (family of) time-consistent dynamic

CAR(s) of both types 1 and 2 satisfying monotonicity, no-undercut and sub-allocation.
Existence of a CAR satisfying the axioms above is therefore guaranteed.

Moreover, �sub
t (X; Y ) satisfies the following BSDE

�sub
t (X; Y ) = −X +

∫ T

t

[
gρ(s, ZY

s ) + ∂gρ(s, ZY
s ) · (Z X ,Y

s − ZY
s )

]
ds −

∫ T

t
Z X ,Y
s dBs .

(15)

Proof Let gρ be subdifferentiable and convex and let q̄ ∈ ∂gρ(s, z), where ∂gρ(s, z) � {q ∈
R
d : gρ(s, u) ≥ gρ(s, z) + q · (u − z) for any u ∈ R

d}. It then holds that gρ is continuous
in the second variable and gρ(s, z) = q̄ · z − g∗

ρ(s, q̄) where g∗
ρ is the convex conjugate of

gρ . Note that any element q̄ ∈ ∂gρ(s, z) is such that ‖q̄‖ ≤ μ where μ > 0 is the Lipschitz
constant of gρ . This follows because g∗

ρ(s, q̄) = +∞ for ‖q̄‖ > μ [see, e.g., Delbaen et al.
(2010), Prop. 3.6] and gρ(s, z) = q̄ · z − g∗

ρ(s, q̄) is finite. In the following, we sometimes
denote g = gρ when there is no possible misunderstanding. With a slight abuse of notation,
we also indicate an element in the subdifferential of g(s, z) by ∂g(s, z).

We start proving that ρt is also subdifferentiable and that QX
t in (14) belongs to ∂ρt (X).

Fix now X ∈ L∞(FT ) and consider any Y ∈ L∞(FT ). By (10),

ρt (Y ) − ρt (X) = −(Y − X) +
∫ T

t

[
gρ(s, ZY

s ) − gρ(s, Z X
s )

]
ds −

∫ T

t

(
ZY
s − Z X

s

)
dBs

≥ −(Y − X) +
∫ T

t
∂g(s, Z X

s ) ·
(
ZY
s − Z X

s

)
ds −

∫ T

t

(
ZY
s − Z X

s

)
dBs

≥ −(Y − X) −
∫ T

t

(
ZY
s − Z X

s

)
d B̄QX

s

where d B̄QX

s = dBs − ∂g(s, Z X
s ) ds and, by Girsanov Theorem, (B̄QX

t )t∈[0,T ] is a QX -
Brownian motion. By taking the conditional expectation with respect to QX

t of the first and
last term in the chain of inequalities above, it follows that

ρt (Y ) − ρt (X) ≥ EQX
t
[−(Y − X)|Ft ] for any Y ∈ L∞(FT ),

hence ρt is subdifferentiable at X and QX
t ∈ ∂ρt (X) is an optimal scenario.

It is easy to check that if ρt is subdifferentiable at X ∈ L∞(FT ), then ρt is continuous
from above at X . By the arguments above and by the characterization of the penalty term in
Delbaen et al. (2010), Theorem 3.2, and Barrieu et al. (2009), Theorem 7.4, it then follows
that

ρt (X) = EQX
t
[−X |Ft ] − ct (Q

X
t )

= EQX
t
[−X |Ft ] − EQX

t

[∫ T

t
g∗
ρ(s, ∂g(s, Z X

s )) ds

∣∣∣∣Ft

]

= EQX
t

[
−X −

∫ T

t

[
∂g(s, Z X

s ) · Z X
s − g(s, Z X

s )
]
ds

∣∣∣∣Ft

]
.

By similar arguments and by the martingale representation theorem, there exists a unique
stochastic process (Z X ,Y

s )s∈[0,T ] such that
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�sub
t (X; Y ) = EQY

t
[−X |Ft ] − ct (Q

Y
t )

= EQY
t

[
−X −

∫ T

t

[
∂g(s, ZY

s ) · ZY
s − g(s, ZY

s )
]
ds|Ft

]

= −X −
∫ T

t

[
∂g(s, ZY

s ) · ZY
s − g(s, ZY

s )
]
ds −

∫ T

t
Z X ,Y
s d B̄QY

s

= −X +
∫ T

t

[
∂g(s, ZY

s ) · (Z X ,Y
s − ZY

s ) + g(s, ZY
s )

]
ds −

∫ T

t
Z X ,Y
s dBs,

hence (�sub
t (X; Y ), Z X ,Y

t ) solves a g�-expectation with final condition −X and driver

g�(s, Z X ,Y
s , ZY

s ) = ∂g(s, ZY
s ) · (Z X ,Y

s − ZY
s ) + g(s, ZY

s )

depending on ZY
s . It is straightforward to check that g�(s, 0, ZY

s ) = g(s, ZY
s ) − ∂g(s, ZY

s ) ·
ZY
s satisfies (g2) since g satisfies condition (4) and, for any s ∈ [0, T ], z ∈ R

d , q ∈ ∂g(s, z) is
such that‖q‖ ≤ μwhereμ > 0 is theLipschitz constant of g.Wenowprove time-consistency
of type 1 and 2, i.e.

�sub
s (−�sub

t (X; Y ); Y ) = �sub
s (X; Y ) and �sub

s (−�sub
t (X; Y );−ρt (Y )) = �sub

s (X; Y ),

for any 0 ≤ s ≤ t ≤ T and any X , Y ∈ L∞. We observe that

�sub
s (X; Y ) = −X +

∫ T

s
g�(s, Z X ,Y

s , ZY
s ) ds −

∫ T

s
Z X ,Y
s dBs

= −X +
∫ T

t
g�(s, Z X ,Y

s , ZY
s ) ds −

∫ T

t
Z X ,Y
s dBs

+
∫ t

s
g�(s, Z X ,Y

s , ZY
s ) ds −

∫ t

s
Z X ,Y
s dBs

= �sub
t (X; Y ) +

∫ t

s
g�(s, Z X ,Y

s , ZY
s ) ds −

∫ t

s
Z X ,Y
s dBs .

Moreover, �sub
s (−�sub

t (X; Y );−ρt (Y )) solves the following BSDE

�sub
s (−�sub

t (X; Y );−ρt (Y )) = �sub
t (X; Y ) +

∫ t

s
g�(s, Z̄s, Z

−ρt (Y )
s ) ds −

∫ t

s
Z̄sd Bs

= �sub
t (X; Y ) +

∫ t

s
g�(s, Z̄s, Z

Y
s ) ds −

∫ t

s
Z̄sd Bs .

where the last equality follows from Z−ρt (Y )
s = ZY

s , which is due to time-consistency of
(ρt )t∈[0,T ].

In fact, from ρs(−ρt (Y )) = ρs(Y ) we deduce that

ρs(Y ) = −Y +
∫ T

s
g(s, ZY

s )ds −
∫ T

s
ZY
s dBs

= −Y +
∫ T

t
g(s, ZY

s )ds −
∫ T

t
ZY
s dBs +

∫ t

s
g(s, ZY

s )ds −
∫ t

s
ZY
s dBs

= −(−ρt (Y )) +
∫ t

s
g(s, ZY

s )ds −
∫ t

s
ZY
s dBs
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which gives Z−ρt (Y )
s = ZY

s for every s ∈ [t, T ] by the uniqueness of the solution of the
BSDE above.

We then conclude that �sub
s (−�sub

t (X; Y );−ρt (Y )) = �sub
s (−�sub

t (X; Y ); Y ) =
�sub

s (X; Y ), i.e. �sub
s satisfies both time-consistency of type 1 and 2.

Monotonicity, no-undercut and sub-allocation have been already proved in Proposition 5-
b). �
Remark 8 (a) For dynamic coherent differentiable risk measures induced by gρ-expectations
with differentiable gρ , the result above reduces to Theorem 3.1 of Kromer and Overbeck
(2014). Indeed, if (ρt )t∈[0,T ] is coherent, then the term corresponding to the penalty term
disappears. It is then easy to check that differentiability of gρ implies that also ρt is

Gateaux differentiable at any time t ∈ [0, T ] and �sub
t (X; Y ) = �

grad
t (X; Y ) satisfies a

g�-expectation with final condition −X and driver

g�(s, Z X ,Y
s , ZY

s ) = ∂gρ(s, ZY
s ) · Z X ,Y

s = ∇gρ(s, ZY
s ) · Z X ,Y

s .

As recalled previously, in Kromer and Overbeck (2014) ∇gρ(s, ZY
s ) is assumed to be from a

BMO because gρ may have quadratic growth in z. In our case, instead, the BMO assumption
can be dropped since gρ is Lipschitz in z, hence ∂gρ is bounded.

(b) Note that Z X ,Y
s in (15) coincides with Z X

s when X = Y . Indeed, for any X ∈ L∞(FT )

�sub
t (X; X) = ρt (X)

= −X +
∫ T

t
gρ(s, Z X

s ) ds −
∫ T

t
Z X
s dBs

= −X +
∫ T

t

[
gρ(s, Z X

s ) − ∂gρ(s, Z X
s ) · (Z X

s − Z X
s )

]
ds −

∫ T

t
Z X
s dBs .

By (15) and from the uniqueness of the solution of a BSDE, it then follows that Z X ,X
s = Z X

s .
(c) An alternative proof of the previous result can be driven by using the formulation

�sub
t (X; Y ) = ρt (Y ) − EQY

t
[−(Y − X)|Ft ]

and by applying the martingale representation theorem to both the terms EQY
t
[−Y |Ft ] and

EQY
t
[X |Ft ].

In the following, we provide some particular cases of dynamic CARs from a g�-
expectation and of the corresponding drivers g�.

Remark 9 Assume that ρt is a dynamic convex risk measure that is induced by a gρ-
expectation. The gradient, subdifferential and marginal CAR are compatible with the
formulation of dynamic CARs by means of g�-expectations and, as discussed below, can be
obtained by choosing a suitable driver g�. See Delbaen (2000); Denault (2001); Centrone
andRosazzaGianin (2018); Kalkbrener (2005); Tasche (2004); Tsanakas (2009) for the static
versions.

Gradient case: if ρt is Gateaux differentiable, then Kromer and Overbeck (2014) showed
that �grad

t (X; Y ) solves a BSDE with driver

ggrad� (s, z, zy) = ∇gρ(s, zy) · z.
Subdifferential case: if ρt is only subdifferentiable, then the previous result shows that

�sub
t (X; Y ) solves a BSDE with driver

gsub� (s, z, zy) = ∂gρ(s, zy) · (z − zy) + g(s, zy),
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satisfying condition (12). As already pointed out previously, ∂gρ(s, zy) is not necessarily
unique but it is assumed to be chosen and fixed for any s and zy .

Marginal case: the marginal dynamic �
marg
t (X; Y ) = ρt (Y ) − ρt (Y − X) solves

�
marg
t (X; Y ) = ρt (Y ) − ρt (Y − X)

= −X +
∫ T

t

[
gρ(s, ZY

s ) − gρ(s, ZY−X
s )

]
ds −

∫ T

t

(
ZY
s − ZY−X

s

)
dBs

= −X +
∫ T

t
gmarg
� (s, Z X ,Y

s , ZY
s ) ds −

∫ T

t
Z X ,Y
s dBs

by denoting Z X ,Y
s � ZY

s −ZY−X
s and gmarg

� (s, Z X ,Y
s , ZY

s ) = gρ(s, ZY
s )−gρ(s, ZY

s −Z X ,Y
s ).

The driver gmarg
� satisfies condition (12) when gρ(s, 0) = 0 holds for any s ∈ [0, T ].

In the following, we investigate under which conditions a dynamic CAR (�t )t∈[0,T ] that
is induced by a g�-expectation satisfies some further axioms and vice versa.

Proposition 10 Let g� be a driver satisfying the usual non-normalized assumptions and
condition (12).

(i) �t (X + ct ; Y ) = �t (X; Y ) − ct for any X , Y ∈ L∞(FT ), ct ∈ L∞(Ft ).
(ii) if g�(s, 0, zy) = 0 for any s ∈ [0, T ], zy ∈ R

d , then �t (0; Y ) = 0 for any t ∈ [0, T ]
and Y ∈ L∞(FT ).

(iii) �t satisfies monotonicity.
(iv) if g�(s, z, zy) ≤ gρ(s, z) for any s ∈ [0, T ] and z, zy ∈ R

d , then �t satisfies no-
undercut.

(v) if
∑n

i=1 g�(s, zi , zy) ≤ g�(s,
∑n

i=1 z
i , zy) for any s ∈ [0, T ], zi , zy ∈ R

d , then �t

satisfies sub-allocation.
(vi) if g�(s, z, zy) is convex in z for any s ∈ [0, T ], zy ∈ R

d , then�t satisfies weak convexity.

Moreover, the converse implications hold in iv) if g�(s, z, zy) is continuous in s.

Proof (i)–(iii) are straightforward thanks to the properties of g-expectations with a driver
independent on the y-component [see Peng (1997) and Rosazza Gianin (2006)]. In particular,
(ii) is due to the fact that (�t (0; Y ); Z0,Y

t )t with Z0,Y
t = 0 solves the BSDE providing

�t (0; Y ).
The proof of the sufficient conditions (iv)–(vi) follows byComparison Theorem of BSDEs

[see Theorem 2.2 of El Karoui et al. (1997)] and by the properties of g-expectations with a
driver independent on the y-component [see Peng (1997) and Rosazza Gianin (2006)]. The
last statement, concerning the necessary condition in iv), follows by Theorem 4.1 of Briand
et al. (2000). �

Note that conditions in (v) and in (vi) are only sufficient but not necessary for sub-allocation
and weak convexity, respectively.

It is well known that for convex risk measures that are not coherent the gradient approach
fails to satisfy no-undercut. At the level of a convex g�, we have indeed that the sufficient
condition in (iii) is not satisfied in general because

ggrad� (s, z, z) = ∇gρ(s, z) · z = gρ(s, z) + g∗
ρ(s,∇gρ(s, z)) ≥ gρ(s, z)

for any z ∈ R
d , where the equality holds iff g∗

ρ(s,∇gρ(s, z)) = 0.
As discussed previously, a popular static CAR related to cooperative game theory is the

Aumann-Shapley CAR [see Aumann and Shapley (1974), Tsanakas (2009), Centrone and

123



766 Annals of Operations Research (2024) 336:749–772

Rosazza Gianin (2018)]. We now introduce the dynamic (generalized) Aumann-Shapley
CAR defined ω × ω as

�AS
t (X; Y ) =

∫ 1

0
E
QγY
t

[−X |Ft ] dγ (16)

and the dynamic penalized Aumann-Shapley CAR with penalty function c as

�c−AS
t (X; Y ) =

∫ 1

0

[
E
QγY
t

[−X |Ft ] − ct (Q
γY
t )

]
dγ =

∫ 1

0
�sub

t (X; γY ) dγ, (17)

with Q·
t defined as in (7).

The following result deals with the dynamic (penalized) Aumann-Shapley and its time-
consistency.

Proposition 11 Let ρt be a dynamic time-consistent convex risk measure that is subdiffer-
entiable and such that the map Gt (γ ) � ρt (γ X) is differentiable in γ ∈ [0, 1] for any
X ∈ L∞(FT ).

(a) �AS
t is a dynamic CAR. Furthermore,

�AS
t (X; Y ) = E

[
−L̃Y (T ; t)X

∣∣∣Ft

]
, (18)

where

L̃Y (T ; t) �
∫ 1

0
LγY (T ; t) dγ =

∫ 1

0

E(∂g(s, ZγY
s ) · B)(T )

E(∂g(s, ZγY
s ) · B)(t)

dγ (19)

and

LH (T ; t) �
dQH

T
dP
dQH

t
d P

= exp

{
−1

2

∫ T

t
‖∂g(u, ZH

u )‖2 du −
∫ T

t
∂g(u, ZH

u ) dBu

}
.

(b) If gρ is positively homogeneous (hence ρt is coherent), then �AS
t is time-consistent.

(c) The penalized �c−AS
t is a dynamic audacious CAR (not a dynamic CAR in general)

satisfying no-undercut.

Proof (a) We start proving that �AS
t is a CAR and later that (18) is satisfied. This proof

is in line but extends the one of Corollary 4.1 of Kromer and Overbeck (2014) (to non-
differentiable risk measures and to the expression of �t ) and of Proposition 9(a) of Centrone
and Rosazza Gianin (2018) (to the dynamic case).

Let Qγ X
t ∈ ∂ρt (γ X). Then, by definition,

G ′
t,−(γ ) = lim

h↗0

ρt (γ X + hX) − ρt (γ X)

h
≤ E

Qγ X
t

[−X |Ft ]

G ′
t,+(γ ) = lim

h↘0

ρt (γ X + hX) − ρt (γ X)

h
≥ E

Qγ X
t

[−X |Ft ].

Under the assumption of differentiability of Gt (γ )

for every γ ∈ [0, 1], it follows that G ′
t,−(γ ) = G ′

t,+(γ ) and hence the following equality
holds true ∫ 1

0
G ′

t,−(γ )dγ =
∫ 1

0
E
Qγ X
t

[−X |Ft ]dγ =
∫ 1

0
G ′

t,+(γ )dγ.
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By normalization of ρt ,
∫ 1
0 E

Qγ X
t

[−X |Ft ]dγ = Gt (1) −Gt (0) = ρt (X) and, consequently,

�AS
t is a dynamic CAR.

Furthermore, by Proposition 7 and (14), we know that E
[
dQX

t
d P

]
= E(∂g(t, Z X

t ) · B) =
= exp

{
− 1

2

∫ t
0 ‖∂g(u, Z X

u )‖2 du − ∫ t
0 ∂g(u, Z X

u ) dBu

}
. By Fubini-Tonelli Theorem, this

implies that

�AS
t (X; Y ) =

∫ 1

0
E
QγY
t

[−X |Ft ] dγ

=
∫ 1

0
E[−XLγY (T ; t)

∣∣∣Ft ] dγ

= E

[∫ 1

0
(−XLγY (T ; t)) dγ

∣∣∣∣Ft

]

= E

[
−X

∫ 1

0
LγY (T ; t) dγ

∣∣∣∣Ft

]

= E
[
−X L̃Y (T ; t)

∣∣∣Ft

]
.

(b) If gρ is positively homogeneous (hence ρt is coherent), then

L̃Y (T ; t) =
∫ 1

0

E(∂g(s, ZγY
s ) · B)(T )

E(∂g(s, ZγY
s ) · B)(t)

dγ

=
∫ 1

0
exp

{
−1

2

∫ T

t
‖∂g(u, ZγY

u )‖2 du −
∫ T

t
∂g(u, ZγY

u ) dBu

}
dγ

=
∫ 1

0
exp

{
−1

2

∫ T

t
‖∂g(u, γ ZY

u )‖2 du −
∫ T

t
∂g(u, γ ZY

u ) dBu

}
dγ (20)

=
∫ 1

0
exp

{
−1

2

∫ T

t
‖∂g(u, ZY

u )‖2 du −
∫ T

t
∂g(u, ZY

u ) dBu

}
dγ (21)

= exp

{
−1

2

∫ T

t
‖∂g(u, ZY

u )‖2 du −
∫ T

t
∂g(u, ZY

u ) dBu

}
, (22)

where (20) is due to ZγY
s = Zγ

s and (21) to ∂g(u, γ ZY
u ) = ∂g(u, ZY

u ), both satisfied for
any γ ∈ [0, 1] because of positive homogeneity of g(u, z) in z. By (22), it then follows that
L̃Y (T ; s) = L̃Y (T ; t) · L̃Y (t; s) for any s ≤ t ≤ T , hence time-consistency of �AS

t .
(c) No-undercut follows from

�c−AS
t (X; Y ) =

∫ 1

0

[
E
QγY
t

[−X |Ft ] − ct (Q
γY
t )

]
dγ

≤
∫ 1

0
ρt (X)dγ = ρt (X)

for any X , Y ∈ L∞(FT ), t ∈ [0, T ]. Finally, from a) it follows that

�c−AS
t (X; X) = �AS

t (X; X) −
∫ 1

0
ct (Q

γ X
t )dγ = ρt (X) −

∫ 1

0
ct (Q

γ X
t )dγ

in general does not coincide with ρt (X), implying that �c−AS
t is not a dynamic CAR but

only an audacious dynamic CAR. �
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We conclude this section with an example of different dynamic CARs associated to the
same risk measure. Some related remarks and discussions will follow. It is worth empha-
sizing that, although the example below deals with differentiable g� and gρ (hence with
Gateaux differentiable risk measures), there are several examples of CARs induced by g-
expectations and that are only subdifferentiable, e.g., the one corresponding to gρ(s, z) = c|z|
and g�(s, z, zy) = c(|zy | + |zy − z|). Although the case below goes beyond the Lipschitz
case, we have decided to focus on it mainly because it corresponds to one among the few
examples of BSDEs where one has an explicit solution [see, e.g., Barrieu et al. (2009)], but
also because the entropic riskmeasure is quite popular and widely used also due to its relation
to utility theory.

Example 12 (Entropic risk measures with different dynamic CARS) Let ρt be a dynamic
entropic risk measure, i.e., ρt (X) = λ ln

(
E[exp(− X

λ
)|Ft ]

)
where λ > 0 denotes the risk

aversion parameter. It is well known that the dynamic entropic risk measure solves a BSDE
with driver gρ(s, z) = 1

2λ‖z‖2 [see, e.g., Barrieu et al. (2009)].
In the following, we consider and compare different dynamic CARs associated to the

entropic risk measure above by considering the approach presented before even if gρ is not
Lipschitz in z.

Dynamic gradient CAR. Since gρ is differentiable in z, the dynamic gradient CAR is
well-defined and corresponds to

�
grad
t (X; Y ) = E

⎡
⎣−X

e− Y
λ

E
[
e− Y

λ

∣∣∣Ft

]
∣∣∣∣∣∣Ft

⎤
⎦ ,

[see Kromer and Overbeck (2014) and Mabitsela et al. (2020)], solving a BSDE with driver
g�(s, z, zy) = ∇gρ(s, zy) · z = 1

λ
z · zy .

Consider now the following two alternative drivers g�:

g1�(s, z, zy) = c(z − zy) + 1

2λ
‖zy‖2; g2�(s, z, zy) = 1

2λ̃
‖z − zy‖2 + 1

2λ
‖zy‖2

for some c, λ̃ > 0 where λ̃ can be seen as a second risk aversion parameter. Note that
g1�(s, z, z) = g2�(s, z, z) = gρ(s, z), g1� is a Lipschitz driver (in z), while g2� is a quadratic
driver (in z) of a similar form of gρ , hence guaranteeing existence and uniqueness of the
solution.

Starting with g1�,

�1
t (X; Y ) − ρt (Y )

= −(X − Y ) +
∫ T

t

[
c(Z X ,Y

s − ZY
s ) + 1

2λ
‖ZY

s ‖2
]
ds −

∫ T

t
Z X ,Y
s dBs +

−
∫ T

t

1

2λ
‖ZY

s ‖2 ds +
∫ T

t
ZY
s dBs

= −(X − Y ) +
∫ T

t

[
c(Z X ,Y

s − ZY
s )

]
ds −

∫ T

t

(
Z X ,Y
s − ZY

s

)
dBs,

hence

�1
t (X; Y ) = ρt (Y ) − EQt,c [−(Y − X)|Ft ]

= λ ln

(
E

[
exp

(
−Y

λ

)∣∣∣∣Ft

])
− EQt,c [−(Y − X)|Ft ],
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with dQt,c
d P = E(c · B) = exp

{− 1
2c

2t − c Bt
}
.

Concerning g2�, instead,

�2
t (X; Y ) − ρt (Y )

= −(X − Y ) +
∫ T

t

[
1

2λ̃
‖Z X ,Y

s − ZY
s ‖2 + 1

2λ
‖ZY

s ‖2
]
ds −

∫ T

t
Z X ,Y
s dBs +

−
∫ T

t

1

2λ
‖ZY

s ‖2 ds +
∫ T

t
ZY
s dBs

= −(X − Y ) +
∫ T

t

[
1

2λ̃
‖Z X ,Y

s − ZY
s ‖2

]
ds −

∫ T

t

(
Z X ,Y
s − ZY

s

)
dBs .

Since given a constant a > 0, a final condition ξ and a fixed process (bt )t∈[0,T ] the BSDE

Yt = −ξ +
∫ T

t

1

2a
‖Zs − bs‖2 ds −

∫ T

t
(Zs − bs) dBs

admits a unique solution with first component Yt = a ln
(
E[exp(− ξ

a )|Ft ]
)
, �2

t is then given

by

�2
t (X; Y ) = ρt (Y ) + λ̃ ln

(
E

[
exp

(
− X − Y

λ̃

)∣∣∣∣Ft

])

= ln

[(
E

[
exp

(
−Y

λ

)∣∣∣∣Ft

])λ (
E

[
exp

(
− X − Y

λ̃

)∣∣∣∣Ft

])λ̃
]

.

As seen above, we can associate several dynamic CARs to the entropic risk measure (as
well as to any risk measure). In particular, the choice of g� and of the corresponding dynamic
CAR may reflect the preference (or the risk aversion) of the agent/intermediary/investor.
This financial interpretation is particularly evident for g2� depending on the two risk aversion
parameters λ, λ̃ where λ can be seen as the risk aversion at the level of the whole portfolio
Y while λ̃ at the level of the rest of the portfolio with the exclusion of X . In particular,
g2� incorporates the drivers of two different entropic terms with different risk aversion and,
consequently, the corresponding CAR is somehow related to different entropic risk measures
acting on Y and on Y − X .

Note that g1�, g2� of the previous example are particular cases of g f
�(s, z, zy) =

f (s, zy, z − zy) + gρ(s, zy) with f (s, zy, 0) = 0. In such a case,

�
f
t (X; Y ) = −X +

∫ T

t

[
f (s, ZY

s , Zs − ZY
s ) + gρ(s, ZY

s )
]
ds −

∫ T

t
Zs dBs

= −(X − Y ) +
∫ T

t
f (s, ZY

s , Zs − ZY
s ) ds −

∫ T

t

[
Zs − ZY

s

]
dBs +

−Y +
∫ T

t
gρ(s, ZY

s ) ds −
∫ T

t
ZY
s dBs
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= ρt (Y ) − (X − Y ) +
∫ T

t
(Zs − ZY

s )
f (s, ZY

s , Zs − ZY
s )

Zs − ZY
s

ds

−
∫ T

t

(
Zs − ZY

s

)
dBs

= ρt (Y ) − EQt, f [−(Y − X)|Ft ]

with
dQt, f
d P = E(


 f

z · B) and 
 f


z = f (s,ZY
s ,Zs−ZY

s )

Zs−ZY
s

. In other words, when the driver of the

CAR is given by that of the risk measure plus an additional term depending on the difference
z − zy , the dynamic CAR can be obtained by the riskiness of the whole portfolio with a
correction term depending on Y − X , that is, on the rest of the portfolio with the exclusion
of X . Roughly speaking, this approach is somehow similar to that of marginal contributions
where the contribution of X on the whole portfolio Y is taken into account.

The main aim of this paper has been to provide an axiomatic study of dynamic CARs
and to introduce a general formulation of them in a BSDE-framework, both under the sub-
differentiability assumption, weaker than Gateaux differentiability. The following remark
illustrates why the subdifferentiability assumption is rather weak for gρ and what is the
impact of subdiffertiability of g� on �t and on ρt .

Remark 13 Although gρ is assumed to be convex in z ∈ R
n (because of convexity of ρt ),

g�(s, z, zy) is not necessarily convex in z. Consequently, while ∂gρ(t, z) �= ∅ on the rel-
ative interior of the domain of gρ [see Rockafellar (1970)], g�(s, z, zy) is not necessarily
subdifferentiable in z.

We claim that subdifferentiability of g�(s, ·, zy) and g�(s, z, ·), however, implies
subdifferentiability of gρ , ρt and �t , where that of �t should be understood as

∂�t (X; Y ) = {Qt ∈ Qt : �t (H ; Y ) ≥
�t (X; Y ) + EQt [−(H − X)|Ft ] for all H ∈ L∞(FT )

} �= ∅
for any Y ∈ L∞(FT ).

In fact, subdifferentiability of gρ follows easily from gρ(s, z) = g�(s, z, z).
Subdifferentiability of g�, then, implies that

�t (H ; Y ) − �t (X; Y )

= −(H − X) +
∫ T

t

[
g�(s, ZH ,Y

s , ZY
s ) − g�(s, Z X ,Y

s , ZY
s )

]
ds −

∫ T

t

[
ZH ,Y
s − Z X ,Y

s

]
dBs

≥ −(H − X) +
∫ T

t
∂g�(s, Z X ,Y

s , ZY
s )

[
ZH ,Y
s − Z X ,Y

s

]
ds −

∫ T

t

[
ZH ,Y
s − Z X ,Y

s

]
dBs

= EQY ,X
t

[−(H − X)|Ft ],

for any H , X , Y ∈ L∞(FT ), where E

[
dQY ,X

t
d P

∣∣∣∣Ft

]
= E(∂gλ(s, Z

X ,Y
s , ZY

s ) · B). It then

follows that QY ,X
t ∈ ∂�t (X; Y ), so both �t (·; Y ) and ρt are subdifferentiable.

5 Conclusions

In this paper, we have introduced a general axiomatic approach to dynamic capital allocations
as well as an approach suitable for risk measures induced by g-expectations, by going beyond
the gradient approach and by weakening the Gateaux differentiability condition.
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Furthermore, for risk measures induced by g-expectations we have seen that it is possible
to associate several dynamic capital allocations induced by a g�-expectation, where the
choice of the driver g� and of the corresponding dynamic CAR may reflect the preferences
of the intermediary/investor. Vice versa, instead, given a dynamic family of CARs induced
by a g-expectation, the associated dynamic risk measure is uniquely determined.
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Zălinescu, C. (2002). Convex analysis in general vector spaces. World Scientific.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/math/0501415

	Dynamic capital allocation rules via BSDEs: an axiomatic approach
	Abstract
	1 Introduction
	2 Notations and preliminaries
	3 Axiomatic approach to capital allocation: from a static to a dynamic setting
	4 CARs associated to a ρt induced by a g-expectation
	5 Conclusions
	Acknowledgements
	References




