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Abstract
We contribute to the literature on statistical robustness of risk measures by computing the
index of qualitative robustness for risk measures based on utility functions. This problem
is intimately related to finding the natural domain of finiteness and continuity of such risk
measures.

Keywords Risk measures · Utility functions · Qualitative robustness · Continuity

1 Introduction

Risk measures were introduced in Artzner et al. (1999) as a means of quantifying the amount
of capital a financial institution needs to raise and invest in an “eligible” asset so as to pass
a pre-specified capital adequacy test. The bulk of the literature has focused on cash-additive
risk measures, i.e., risk measures for which the eligible asset is cash (the risk-free asset when
the interest rate is zero). In this note we deal exclusively with cash-additive risk measures.We
refer to Farkas et al. (2014) for a comprehensive treatment of risk measures with respect to a
general eligible asset and toArtzner et al. (2009), Föllmer and Schied (2002), and Farkas et al.
(2015) for extensions to multiple eligible assets. Mathematically, a risk measure is modelled
as a functional defined on a suitable space of random variables, which represent, e.g., the
profit-and-loss profile of a bank or insurance firm. In all existing capital adequacy regimes,
risk measures are law invariant, i.e., they depend only on the probability distribution of the
profit-and-loss profile. In practice, one can never determine this probability distribution with
certainty and can only infer it as the result of an estimation procedure based on historical
observations. This procedure is, by necessity, susceptible to misestimation. A natural and
critical problem is therefore that of determining the degree of sensitivity or robustness of a risk
measure with respect to misestimations of the input data. From a mathematical perspective,
this requires specifying a notion of “distance” for probability distributions and studying the
continuity properties of the risk measure with respect to this distance.
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In a broader context than that of risk measures, the notion of qualitative robustness was
introduced in Hampel (1971). This notion essentially boils down to continuity with respect
to the so-called Lévy distance. Relying on Hampel’s work, Cont et al. (2010) studied the
qualitative robustness properties of cash-additive risk measures. However, as pointed out in
Krätschmer et al. (2012) and reinforced inKrätschmer et al. (2014), this concept of qualitative
robustness may not be ideally suited for risk measures. Indeed, the capital requirements of
two financial institutions whose profit-and-loss distributions have widely different “tails”
should, intuitively speaking, be significantly different. However, this may not be the case
when using a risk measure that is robust according to Hampel’s definition because two
distributions may possess different “tail” behaviour and yet be “close” to each other with
respect to the Lévy distance. To ensure a more appropriate tail sensitivity, a refined notion of
qualitative robustnesswas introduced inKrätschmer et al. (2012) and applied to riskmeasures
in Krätschmer et al. (2014). In these papers, the degree of qualitative robustness on L p spaces
is quantified by the so-called index of qualitative robustness. As shown in Koch-Medina and
Munari (2014), determining the index of qualitative robustness is equivalent to identifying
the largest L p space to which the underlying risk measures can be extended without losing
finiteness and continuity. The index of qualitative robustness has been computed for a number
of classes of risk measures, including distortion risk measures and max-correlation risk
measures; see Koch-Medina and Munari (2014) and Krätschmer et al. (2014). In this note
we focus on utility-based risk measures. This class of risk measures includes some well-
studied examples like the entropic risk measure and has been thoroughly investigated in the
literature; see. e.g., Arai (2010), Armenti et al. (2018), Föllmer and Schied (2002), Föllmer
and Knispel (2011), Geissel et al. (2018), Weber (2006). The index of qualitative robustness
for utility-based risk measures has been characterized in Koch-Medina and Munari (2014)
under the assumption that the underlying utility functions are bounded from above. This
requirement was postulated for technical reasons and does not cover some relevant examples
considered in the literature. The goal of this note is to provide an explicit formula for the
index of qualitative robustness for general utility-based risk measures. Besides delivering a
general result, the approach pursued here ismore direct and allows us to derive, along theway,
new results on finiteness and continuity of expected utility functionals that are of independent
interest. The main result is Theorem 5.6, which shows that the index of qualitative robustness
for a utility-based risk measure associated with a utility function u is explicitly given by

inf

{
p ∈ [1,∞) ; lim sup

x→∞
x p

u(−x)
< 0

}−1

.

This formula is simple to compute for all standard utility functions encountered in the liter-
ature and shows that the index of qualitative robustness only depends on the “tail” behavior
of u, i.e., the asymptotic behavior at −∞. It also shows, a posteriori, that the restrictive
assumption in Koch-Medina and Munari (2014) was not necessary.

The note is organized as follows. After reviewing some fundamental notions from the
theory of riskmeasures in Sect. 2,we discuss extensions of riskmeasures preservingfiniteness
and continuity in Sect. 3 and their statistical robustness in Sect. 4. Utility-based risk measures
are studied in Sect. 5, which contains our main results.

2 Risk measures

The mathematical setting is the following. Throughout the note, we fix a nonatomic prob-
ability space (�,F,P). All “almost-sure” notions are to be understood with respect to P.
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The standard Lebesgue spaces are denoted by L p for p ∈ [1,∞] and are equipped with
their standard Banach lattice structure with canonical norm denoted by ‖ · ‖p . Recall that
the elements of L p are equivalence classes of Borel measurable functions X : � → R with
respect to almost-sure equality. As usual, we do not explicitly distinguish between an equiva-
lence class and any of its representatives. The elements of R are identified with (equivalence
classes of) random variables that are almost-surely constant. All equalities and inequalities
have to be understood in the almost-sure sense. The closure of a set A ⊂ L p is denoted by
clp(A). Finally, for every random variable X we denote by PX its probability law.

Assuming that the profit and loss of a financial institution is described by a random
variable X ∈ L p , with p ∈ [1,∞], we consider risk measures on L p . The primitive notions
in the theory of risk measures are the acceptance set, encapsulating the criterion for deeming
a financial institution to be adequately capitalized, and the eligible asset, specifying how
capital that is raised needs to be invested, which throughout this note will be assumed to be
cash. The risk measure then corresponds to the minimum amount of capital that needs to be
raised and held in cash so as to ensure acceptability.

Definition 2.1 Let p ∈ [1,∞]. A set A ⊂ L p is called an acceptance set if it is nonempty,
strictly contained in L p , and monotone in the sense that for all X , Y ∈ L p

X ∈ A, Y ≥ X �⇒ Y ∈ A.

The (cash-additive) risk measure associatedwithA is themap ρA : L p → [−∞,∞] defined
by

ρA(X) := inf{m ∈ R ; X + m ∈ A}.
Themain results of this note are stated for acceptance sets that are convex and law invariant.

Definition 2.2 Let p ∈ [1,∞]. An acceptance set A ⊂ L p is called:

(1) Convex if λX + (1 − λ)Y ∈ A for all X , Y ∈ A and λ ∈ [0, 1].
(2) Law invariant if Y ∈ A for all X ∈ A and Y ∈ L p with PX = PY .

The following properties of a cash-additive risk measure are well known and easy to
establish.

Proposition 2.3 Let p ∈ [1,∞]. For an acceptance set A ⊂ L p the following statements
hold:

(i) ρA is cash additive, i.e., for all X ∈ L p and m ∈ R

ρA(X + m) = ρA(X) − m.

(ii) ρA is nonincreasing, i.e., for all X , Y ∈ L p

Y ≥ X �⇒ ρA(Y ) ≤ ρA(X).

(iii) If A is convex, then ρA is convex, i.e., for all X , Y ∈ L p and λ ∈ [0, 1]
ρA(λX + (1 − λ)Y ) ≤ λρA(X) + (1 − λ)ρA(Y ).

(iv) If A is law invariant, then ρA is law invariant, i.e., for all X , Y ∈ L p

PX = PY �⇒ ρA(X) = ρA(Y ).
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3 Finiteness and continuity

The quest for the most natural model space for a given class of risk measures, i.e., the “largest
space” towhich a riskmeasure can be extended preserving certain key properties, has been the
subject of extensive research; see, e.g., Bellini et al. (2021), Delbaen (2002), Delbaen (2009),
Filipović and Svindland (2012), Koch-Medina and Munari (2014), Liebrich and Svindland
(2017), Pichler (2013). It is well known that any cash-additive risk measure defined on L∞
is finite valued and continuous, in fact Lipschitz continuous; see, e.g., Föllmer and Schied
(2016, Lemma 4.3). It is alsowell known that a cash-additive riskmeasure defined on L∞ that
is convex and law invariant can always be uniquely extended to a cash-additive risk measure
on L1 that is convex, law invariant, and lower semicontinuous; see, e.g., Bellini et al. (2021)
and Filipović and Svindland (2012). Clearly, this also ensures the existence of law-invariant,
convex, and lower semicontinuous extensions to any intermediate space L p . It is natural to
ask whether these extensions are also finite valued. This is, however, not necessarily the case
(see, e.g., Farkas et al. (2014)), which is not surprising given that, for a convex and monotone
functional, finiteness is such a strong property that it automatically implies continuity.

Proposition 3.1 (Borwein (1987, Corollary 2.4), Ruszczyński and Shapiro (2006, Proposi-
tion 3.1)). Let p ∈ [1,∞] and let ρ : L p → [−∞,∞] be convex and nonincreasing. If ρ is
finite valued, then it is continuous.

The preceding discussion leads to defining the following index of finiteness, which iden-
tifies the largest L p space where cash-additive extensions of cash-additive risk measures
preserve finiteness. Note that the index is finite precisely when a finite extension to some
intermediate L p space exists.

Definition 3.2 Let A ⊂ L∞ be an acceptance set. The index of finiteness of ρA is

fin(ρA) := inf{p ∈ [1,∞) ;
ρA can be extended to a finite-valued cash-additive risk measure on L p}.

The next result records a characterization of the index of finiteness for cash-additive risk
measures associated with law-invariant and convex acceptance sets.

Theorem 3.3 (Koch-Medina and Munari (2014, Theorem 4.3)). Let A ⊂ L∞ be a law-
invariant convex acceptance set and take p ∈ [1,∞). The following statements are
equivalent:

(i) ρA can be extended to a finite-valued (hence, continuous) cash-additive risk measure on
L p.

(ii) clp(A) has nonempty interior in L p.

In this case, the extension is unique and given by ρclp(A). Moreover,

fin(ρA) = inf{p ∈ [1,∞) ; clp(A) has nonempty interior in L p}.

4 Qualitative robustness

In practice, law-invariant risk measures are computed by means of statistical estimation.
A standard approach in many applications is to use historical estimators, which are plug-
in estimators based on the empirical distribution of historical observations. The standard
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robustness concept associated with historical estimators is based on the Lévy metric and
goes back to Hampel (1971). Let M be the set of (Borel) probability measures over R and
define

M∞ := {μ ∈ M ; μ = PX for some X ∈ L∞}.
We denote by d the Lévy metric on M, i.e., for all μ, ν ∈ M

d(μ, ν) := inf{ε > 0 ; ∀x ∈ R, ν(Ix−ε) − ε ≤ μ(Ix ) ≤ ν(Ix+ε) + ε},
where Ix = (−∞, x] for x ∈ R. We refer to Huber and Ronchetti (2009) for a complete
account of the Lévy and related metrics and to Cont et al. (2010) for a discussion in a risk
measure context. Let A ⊂ L∞ be a law-invariant acceptance set. By law invariance, see
Proposition 2.3, we can define a functional RA : M∞ → R by

RA(PX ) := ρA(X).

By nonatomicity, for every μ ∈ M∞ there exists a sequence (Xn) ⊂ L∞ of i.i.d. random
variables having μ as their common probability law. For each n ∈ N define the random
measure μn : � → M∞ by

μn(ω) := 1

n

n∑
i=1

δXi (ω),

where δ denotes the standard Dirac measure. The historical estimator ofRA(μ) with sample
size n is the function RA(μn) : � → R defined by

RA(μn)(ω) := RA(μn(ω)).

For the remainder of the paper,we assume thatRA(μn) ismeasurable for everyn ∈ N.1 IfA is
convex, then historical estimators are strongly consistent in the sense thatRA(μn) → RA(μ)

almost surely. This follows, e.g., from Krätschmer et al. (2014, Theorem 2.6). The following
definition of qualitative robustness captures the idea that, as long as a change in the law of
the underlying data is small, the law of the corresponding historical estimator cannot change
drastically.

Definition 4.1 We say thatRA is (qualitatively) robust onM∞ if for allμ ∈ M∞ and ε > 0
there exist δ > 0 and n0 ∈ N such that

d(μ, ν) ≤ δ �⇒ d(PRA(μn),PRA(νn)) ≤ ε

for all ν ∈ M∞ and n ≥ n0.

A refined notion of qualitative robustness was proposed in Krätschmer et al. (2012) and
further studied in Krätschmer et al. (2014). A critical observation in these papers is that two
probability laws may possess a (very) different tail behavior but be rather close with respect
to the Lévy metric (or, equivalently, with respect to any metric inducing the weak topology
onM such as the Prohorov metric). As a result, establishing qualitative robustness does not
imply that RA can sufficiently distinguish different tail profiles. The following refinement

1 This is always possible provided (�,F ,P) is chosen appropriately as done, e.g., in Krätschmer et al. (2014).
In that setting, measurability follows by composition from the measurability of the maps μn andRA, where
M∞ is equipped with the Borel σ -field induced by the Lévy metric. We refer to Dudley (2004) and Weber
(2006) for details about measurability ofμn andRA, respectively. Note that the particular choice of (�,F ,P)

plays no critical role in our statistical inference problem as we focus exclusively on distribution functions.
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of the notion of qualitative robustness put forward in the above papers was meant to offer a
way to overcome this limitation. For p ∈ [1,∞) define ψp(x) = 1

p |x |p , x ∈ R, and recall
that a set N ⊂ M is said to be uniformly p-integrating if it satisfies

lim
c→∞ sup

μ∈N

∫
{ψp≥c}

ψp(x)dμ(x) = 0.

The desired refinement is obtained by adding a suitable tail sensitive component to the Lévy
metric.

Definition 4.2 Let p ∈ [1,∞). We say thatRA is (qualitatively) p-robust on M∞ if for all
uniformly p-integrating sets N ⊂ M∞, μ ∈ N , and ε > 0 there exist δ > 0 and n0 ∈ N

such that

d(μ, ν) +
∣∣∣∣
∫
R

ψp(x)dμ(x) −
∫
R

ψp(x)dν(x)

∣∣∣∣ ≤ δ �⇒ d(PRA(μn),PRA(νn)) ≤ ε

for all ν ∈ N and n ≥ n0.

As suggested by Krätschmer et al. (2014), one can use the index p in the preceding
definition in order to quantify the degree of qualitative robustness of historical estimators.
We set inf ∅ := ∞ and 1

∞ := 0.

Definition 4.3 Let A ⊂ L∞ be a law-invariant acceptance set. The index of qualitative
robustness of ρA is the number in [0, 1] defined by

iqr(ρA) := 1

inf{p ∈ [1,∞) ; RA is p-robust on M∞} .

It turns out that the degree of qualitative robustness of a risk measure is intimately related
to the existence of finite extensions. As a result, as opposed to trying determine the index of
qualitative robustness by applying its definition, we can equivalently focus on the index of
finiteness, which is more direct and operationally simpler to compute.

Theorem 4.4 (Koch-Medina andMunari (2014, Theorem 4.3), Krätschmer et al. (2014, The-
orem 2.16)). Let A ⊂ L∞ be a law-invariant convex acceptance set and take p ∈ [1,∞).
The following are equivalent:

(a) ρA can be extended to a finite-valued (hence, continuous) cash-additive risk measure on
L p.

(b) clp(A) has nonempty interior in L p.
(c) RA is p-robust on M∞.

Moreover, iqr(ρA) = fin(ρA)−1.

Remark 4.5 The index of qualitative robustness is defined in terms of a family of Orlicz
functions, namely power functions associated with L p norms. In principle, one could take a
different family of Orlicz functions to obtain a different definition of the index. Clearly, to
define an index that allows to rank risk measures in a “total” way, one needs a continuum of
embedded spaces. The family of L p spaces is clearly the natural choice. Another possibility is
to take a continuum of Orlicz spaces linking L∞ with L1, potentially indexed by a parameter
appearing in the corresponding Orlicz functions. In the general case, the question would
of course be that of selecting a continuum of spaces that are meaningful for the targeted
application. Incidentally, note that the embedding between two general Orlicz spaces is a
nontrivial problem but can be characterized under suitable assumptions; see, e.g., Edgar and
Sucheston (1992, Proposition 2.2.1).
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5 Utility-based risk measures

We can now exploit the link between the index of qualitative robustness and the index of
continuity to characterize the index of qualitative robustness of risk measures based on
utility functions. Throughout the entire section, we fix a nonconstant, nondecreasing, right
continuous, and concave function

u : R → [−∞,∞).

Note that neither strict concavity nor differentiability of u is required. The function u is
interpreted as a classical von Neumann-Morgenstern utility function. For any α ∈ R such
that u(x) ≥ α for some x ∈ R we consider the law-invariant and convex acceptance set

Au,α := {X ∈ L∞ ; E[u(X)] ≥ α}.
We denote by ρu,α : L∞ → R the corresponding cash-additive risk measure, i.e.

ρu,α(X) := ρAu,α (X) = inf{m ∈ R ; E[u(X + m)] ≥ α}.
Our objective is to provide an explicit formula for the index of qualitative robustness of
ρu,α . We start by highlighting that the expectation E[u(X)] is well defined for every random
variable X ∈ L1 and collecting a few properties of the expected utility functionalEu : L1 →
[−∞,∞] defined by Eu(X) := E[u(X)].
Proposition 5.1 For every X ∈ L1 the expectation E[u(X)] is well defined and satisfies
E[u(X)] < ∞. Moreover, the following properties hold:

(i) Eu is nondecreasing, i.e., for all X , Y ∈ L1

Y ≥ X �⇒ E[u(Y )] ≥ E[u(X)].
(ii) Eu is concave, i.e., for all X , Y ∈ L1 and λ ∈ [0, 1]

E[u(λX + (1 − λ)Y )] ≥ λE[u(X)] + (1 − λ)E[u(Y )].
(iii) Eu is upper semicontinuous, i.e., for all (Xn) ⊂ L1 and X ∈ L1

Xn → X in L1 �⇒ E[u(X)] ≥ lim sup
n→∞

E[u(Xn)].

(iv) Eu is law invariant, i.e., for all X , Y ∈ L1

PX = PY �⇒ E[u(X)] = E[u(Y )].
Proof Note that, by concavity of u, there exist a > 0 and b ∈ R such that u(x) ≤ ax + b
for every x ∈ R. Hence, E[max{u(X), 0}] ≤ aE[|X |] + |b| < ∞ for every X ∈ L1,
showing that E[u(X)] is well defined and satisfies E[u(X)] < ∞. As u is nondecreasing
and concave, it follows that Eu is also nondecreasing and concave. Moreover, it is clear that
Eu is law invariant. To show upper semicontinuity, let (Xn) be a sequence of elements in L1

converging to some X ∈ L1. Without loss of generality, suppose that ‖Xn − X‖1 ≤ 2−n for
every n ∈ N. We can define

Yn =
∞∑
k=n

|Xk − X | ∈ L1

and set Zn = X + Yn ∈ L1 for every n ∈ N. Note that Zn ≥ Xn and, thus,
E[u(Zn)] ≥ E[u(Xn)] for every n ∈ N. By construction, Zn ↓ X almost surely. As u
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is right continuous, it follows that u(Zn) ↓ u(X) almost surely as well. As E[u(Z1)] < ∞,
it follows from the version of Fatou’s lemma in Shiryaev (2008, Theorem 2) that E[u(X)] ≥
lim supn→∞ E[u(Zn)] ≥ lim supn→∞ E[u(Xn)]. This shows that Eu is upper semicontinu-
ous and concludes the proof. ��

For p ∈ [1,∞), the superlevel sets in L p of the expected utility functional are defined for
every α ∈ R by

Ap
u,α := {X ∈ L p ; E[u(X)] ≥ α}.

The next proposition collects their main properties.

Proposition 5.2 Let p ∈ [1,∞) and take α ∈ R such that u(x) ≥ α for some x ∈ R. The set
Ap

u,α is a law-invariant, convex, L p-closed, acceptance set. Moreover, Ap
u,α = clp(Au,α).

Proof Note that Ap
u,α is nonempty by assumption on α. It follows from the properties of

the functional Eu recorded in Proposition 5.1 that Ap
u,α is law invariant, convex, closed, and

monotone. To show that it is a strict subset of L p , it suffices to observe that u(x) → −∞ as
x → −∞ by concavity of u. Now, note thatAu,α ⊂ Ap

u,α . By closedness, it then remains to
show that Ap

u,α ⊂ clp(Au,α). To this effect, take X ∈ Ap
u,α and assume first that u(x) ≤ α

for every x ∈ R. In this case, set m = inf{x ∈ R ; u(x) = α}. Note that u(m) = α by right
continuity. Since E[u(X)] ≥ α, we must have X ≥ m. Set for every n ∈ N

Xn = X1{X≤n} + m1{X>n} ∈ L∞.

It is immediate to see that Xn → X in L p and E[u(Xn)] ≥ u(m) = α for every n ∈ N. Next,
suppose that u(x) > α for some x ∈ R. In this case, set Xλ = λX + (1− λ)x for λ ∈ (0, 1)
and observe that Xλ → X in L p as λ → 1. By concavity of u, we have for every λ ∈ (0, 1)

E[u(Xλ)] ≥ λE[u(X)] + (1 − λ)u(x) > α.

This shows that we can assume without loss of generality that E[u(X)] > α. In this case, set
for n ∈ N

Xn = X1{|X |≤n} − n1{X<−n} + n1{X>n} ∈ L∞.

Note that u(Xn) → u(X) almost surely and for n large enough u(−n) < 0 and u(n) ≥ α,
so that

|u(Xn)| = |u(X)|1{|X |≤n} − u(−n)1{X<−n} + |u(n)|1{X>n}
≤ |u(X)|1{X≤n} + max{|u(X)|, |α|}1{X>n}
≤ max{|u(X)|, |α|}.

Note that |u(X)| ∈ L1 by Proposition 5.1. Hence, the dominated convergence theorem
delivers E[u(Xn)] → E[u(X)], implying that E[u(Xn)] > α for n large enough. This
concludes the proof. ��
Remark 5.3 The equality Ap

u,α = clp(Au,α) also follows from a general result about convex
law-invariant sets; see Bellini et al. (2021, Corollary 4.3). The above proof exploits the
particular structure of the sets Ap

u,α .

Our next proposition links the finiteness and continuity of the expected utility functional
with the existence of finite and continuous extensions of the corresponding utility-based risk
measure. This result will play a key role in the characterization of the index of qualitative
robustness for utility-based risk measures. We use the notation u∞ := sup{u(x) ; x ∈ R}
and follow the convention 1

0 := ∞.
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Proposition 5.4 Let p ∈ [1,∞) and take α < u∞. The following statements are equivalent:

(a) ρu,α can be extended to a finite-valued (hence, continuous) cash-additive risk measure
on L p.

(b) Eu is finite valued and continuous on L p.
(c) Ap

u,α has nonempty interior in L p.
(d) lim supx→∞ x p

u(−x) < 0.

Proof Note that {X ∈ L p ; E[u(X)] > α} is a nonempty open set wheneverEu is continuous
on L p . This shows that (b) implies (c). Now, assume that (c) holds and let X ∈ L p be an
interior point of Ap

u,α . By density of L∞ in L p , we can assume that X ∈ L∞. In particular,
u(‖X‖∞) ≥ α. If (d) does not hold, then lim supx→∞ x p

u(−x) = 0. This implies that for every
m > 0

sup
x≥m

x p

u(−x)
= 0.

Hence, for every r > 0 we can find m > r sufficiently large to satisfy

0 <
mp

u(‖X‖∞) − u(‖X‖∞ − m)
<

r p

u(‖X‖∞) − α
,

where the right-hand side inequality is trivial if u(‖X‖∞) = α. Rearranging yields

0 ≤ u(‖X‖∞) − α

u(‖X‖∞) − u(‖X‖∞ − m)
<

r p

m p
< 1.

As a consequence, we find λ ∈ (0, 1) such that

u(‖X‖∞) − α

u(‖X‖∞) − u(‖X‖∞ − m)
< λ <

r p

m p
.

In particular, note that λmp < r p and

λu(‖X‖∞ − m) + (1 − λ)u(‖X‖∞) < α.

By nonatomicity, we find E ∈ F with P(E) = λ. Now, set Z = X − m1E ∈ L p . Clearly,

E[u(Z)] = E[u(X − m1E )] ≤ λu(‖X‖∞ − m) + (1 − λ)u(‖X‖∞) < α.

Moreover, ‖Z − X‖p
p = λmp < r p . This shows that Ap

u,α contains no L p-neighborhood of
X . As this goes against our assumption, we conclude that (d) must hold. Next, assume that
(d) holds so that we find ε > 0 and m > 0 such that u(−m) < 0 and

sup
x≥m

x p

u(−x)
≤ −ε.

This yields x p ≥ −εu(−x) whenever x ≥ m. As a consequence,

E[u(X)] = E[u(X)1{X<−m}] + E[u(X)1{X≥−m}]
≥ −1

ε
E[(−X)p1{X<−m}] + P(X ≥ −m)u(−m)

≥ −1

ε
‖X‖p

p + P(X ≥ −m)u(−m) > −∞
for every X ∈ L p . Hence, by Proposition 5.1, the map Eu is finite valued on L p . The
monotonicity of Eu implies, by Proposition 3.1, that Eu is also continuous on L p , proving
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(b). To conclude the proof, it remains to observe that (a) and (c) are equivalent by Theorem 3.3
and Proposition 5.2. ��
Remark 5.5 For many standard utility functions the limsup in the preceding proposition can
be replaced by a limit; see Example 5.8. However, for a general utility function, convergence
may fail and the limsup may therefore be necessary, as shown in the following example.
Let p ∈ (1,∞). We construct a strictly-increasing sequence (xn) ⊂ (0,∞) and a strictly-
increasing convex function f : [0,∞) → [0,∞) such that for every n ∈ N

x p
2n−1

f (x2n−1)
≥ 2,

x p
2n

f (x2n)
≤ 1. (5.1)

It will therefore suffice to assume that u(−x) = − f (x) for every x ≥ 0 to see that x p

u(−x)
does not admit a limit for x → ∞. The function f is a piecewise linear function of the form

f (x) =
{

α1x + β1 if x ∈ [0, x1],
α2n+1x + β2n+1 if x ∈ (x2n−1, x2n+1], n ∈ N.

We ensure strict monotonicity and convexity by assuming for every n ∈ N that 0 < α2n−1 <

α2n+1 and

β2n+1 = α2n−1x2n−1 + β2n−1 − α2n+1x2n−1.

It remains to fix the sequences (xn) and (α2n−1) and the coefficient β1 in such a way that (5.1)
holds. We proceed by recursion. In a first step, we ensure (5.1) for n = 1. To this effect, set
x1 = 1 and x2 = 2. Moreover, define α1 = 1

2 and β1 = 0. Finally, take α3 ≥ x p
2 −α1x1−β1.

It is easy to verify that

x p
1

f (x1)
= x p

1

α1x1 + β1
= 2,

x p
2

f (x2)
= x p

2

α3x2 + β3
= x p

2

α3(x2 − x1) + α1x1 + β1
≤ 1.

Now, assume that we have determined x2n−1 and x2n as well as α2n−1 and α2n+1 so that (5.1)
holds for some n ∈ N. Take x2n+1 > x2n large enough to satisfy x p

2n+1 ≥ 2(α2n+1x2n+1 +
β2n+1). Moreover, set x2n+2 = x2n+1 + 1 and take α2n+3 ≥ x p

2n+2 − α2n+1x2n+1 − β2n+1.
It follows that

x p
2n+1

f (x2n+1)
= x p

2n+1

α2n+1x2n+1 + β2n+1
≥ 2,

x p
2n+2

f (x2n+2)
= x p

2n+2

α2n+3x2n+2 + β2n+3
= x p

2n+2

α2n+3(x2n+2 − x2n+1) + α2n+1x2n+1 + β2n+1
≤ 1.

This shows that (5.1) holds for n + 1, concluding the construction by recursion.

The previous result can be exploited to derive our desired formula for the index of qual-
itative robustness for utility-based risk measures. In the interesting situations, the index is
determined by the decay behavior of the utility function for large losses.

Theorem 5.6 Let α ∈ R satisfy u(x) ≥ α for some x ∈ R. The following statements hold:

(i) If u(x) ≤ α for every x ∈ R, then iqr(ρu,α) = 0.
(ii) If u(x) > α for some x ∈ R, then

iqr(ρu,α) = 1

fin(ρu,α)
= 1

inf{p ∈ [1,∞) ; lim supx→∞ x p

u(−x) < 0} .
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Proof If u(x) ≤ α for every x ∈ R, then for p ∈ [1,∞) we have Ap
u,α = {X ∈

L p ; E[u(X)] = α}. This set has empty interior in L p . Indeed, for every X ∈ Ap
u,α it is

enough to take m ∈ R with u(m) < α and a sequence (En) ⊂ F such that P(En) = 1
n for

every n ∈ N, which exists by nonatomicity, and set Xn = 1Enm + 1Ec
n
X ∈ L p for every

n ∈ N. Then, Xn → X in L p but E[u(Xn)] < E[u(X)] = α for every n ∈ N. This yields
fin(ρu,α) = ∞ by Theorem 3.3. Otherwise, we infer from Proposition 5.4 that

fin(ρu,α) = inf

{
p ∈ [1,∞) ; lim sup

x→∞
x p

u(−x)
< 0

}
.

The desired statement is now a direct consequence of Theorem 4.4. ��
Remark 5.7 (i) The preceding theorem extends a result in Koch-Medina and Munari (2014),
which was obtained under the assumption that u is bounded from above and that x p

u(−x) admits
a limit for x → ∞ for every p ∈ [1,∞). Even though the asymptotic behavior of u at∞ has
no influence on the result itself, the assumption was used to prove a technical preliminary
step. As such, the result for general, possibly unbounded above, utility functions cannot be
derived from the result in that paper. The strategy we pursued here is more direct and works
for every u.

(ii) The condition u(x) ≥ α for some x ∈ R ensures that Au,α ∩ L∞ is not empty and,
hence, qualifies as an acceptance set by Proposition 5.2.

We conclude by determining the index of qualitative robustness for a variety of concrete
utility functions. The main message arising from the preceding theorem is that only the
“tail” behavior of u, i.e., the behavior at −∞, matters to compute the index of qualitative
robustness. This is why, for our purposes, we can distinguish utility functions based on their
“tail” behavior. In what follows we always choose α so as to satisfy α < u(x) for some
x ∈ R.

(1) Power tail If q ∈ [1,∞) and u(x) is asymptotic to −|x |q for x → −∞, then

lim
x→∞

x p

u(−x)
=

⎧⎪⎨
⎪⎩

−∞ if p > q,

−1 if p = q,

0 if p < q,

for every p ∈ [1,∞). As a result, iqr(ρu,α) = 1
q .

(2) Exponential tail If γ > 0 and u(x) is asymptotic to −e−γ x for x → −∞, then

lim
x→∞

x p

u(−x)
= 0

for every p ∈ [1,∞). As a result, iqr(ρu,α) = 0.

The following examples are special instances of the preceding results. It should be noted
that the well-known entropic risk measure, i.e., the risk measure corresponding to an expo-
nential utility function, exhibits a poor index of qualitative robustness compared to other
cases. We denote by NA the case where the index of qualitative robustness cannot be com-
puted because the underlying risk measure is degenerate in the sense that Au,α = ∅ and,
hence, ρu,α ≡ ∞. The first two examples are discussed, e.g., in Ben-Tal and Teboulle (2006).
The other three examples are discussed, e.g., in Henderson and Hobson (2009).

Example 5.8 (i) Gain-loss linear utility Let γ1 > γ2 ≥ 0 and define the utility function

u(x) = γ1x1(−∞,0)(x) + γ2x1[0,∞)(x), x ∈ R.
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For every α ∈ R we have

iqr(ρu,α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if γ2 > 0 and α ∈ R,

1 if γ2 = 0 and α < 0,

0 if γ2 = 0 and α = 0,

NA if γ2 = 0 and α > 0.

(ii) Quadratic utility Let γ > 0 and define the utility function

u(x) = (x − γ x2)1(−∞,1/2γ )(x) + 1

4γ
1[1/2γ,∞)(x), x ∈ R.

For every α ∈ R we have

iqr(ρu,α) =

⎧⎪⎨
⎪⎩

1
2 if α < 1

4γ ,

0 if α = 1
4γ ,

NA if α > 1
4γ .

(iii) Dampened quadratic utility Let γ > 0 and define the utility function

u(x) = 1

γ
(1 + γ x −

√
1 + γ 2x2), x ∈ R.

For every α ∈ R we have

iqr(ρu,α) =
{
1 if α < γ,

NA if α ≥ γ.

(iv) Exponential utility Let γ > 0 and define the utility function

u(x) = 1

γ
(1 − e−γ x ), x ∈ R.

For every α ∈ R we have

iqr(ρu,α) =
{
0 if α < 1

γ
,

NA if α ≥ 1
γ
.

(v) Amplified exponential utility Let γ > 0 and define the utility function

u(x) = 1

γ
(1 + x − e−γ x ), x ∈ R.

For every α ∈ R we have iqr(ρu,α) = 0.
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