
Annals of Operations Research (2023) 322:413–440
https://doi.org/10.1007/s10479-022-04883-1

ORIG INAL RESEARCH

Heuristics for a cash-collection routing problemwith a
cluster-first route-second approach

Bismark Singh1,2 · Lena Oberfichtner3 · Sergey Ivliev4

Accepted: 15 July 2022 / Published online: 30 August 2022
© The Author(s) 2022

Abstract
Motivated by a routing problem faced by banks to enhance their encashment services in
the city of Perm, Russia, we solve versions of the traveling salesman problem (TSP) with
clustering. To minimize the risk of theft, suppliers seek to operate multiple vehicles and
determine an efficient routing; and, a single vehicle serves a set of locations that forms a
cluster. This need to form independent clusters—served by distinct vehicles—allows the use
of the so-called cluster-first route-second approach. We are especially interested in the use of
heuristics that are easily implementable and understandable by practitioners and require only
the use of open-source solvers. To this end, we provide a short survey of 13 such heuristics
for solving the TSP, five for clustering the set of locations, and three to determine an optimal
number of clusters—all using data from Perm. To demonstrate the practicality and efficiency
of the heuristics, we further compare our heuristic solutions against the optimal tours. We
then provide statistical guarantees on the quality of our solution. All of our anonymized code
is publicly available allowing extensions by practitioners, and serves as a decision-analytic
framework for both clustering data and solving a TSP.

Keywords Traveling salesman problem · Clustering · Decision analysis · Heuristics ·
Approximations · Open-source solvers

List of symbols
Abbreviations
TSP Traveling Salesman Problem
VRP Vehicle Routing Problem
CTSP Clustered Traveling Salesman Problem

B Bismark Singh
bismark.singh@fau.de

1 Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,
Germany

2 Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,
Germany

3 Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz, Germany

4 Department of Economics, Perm State University, Perm, Russia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-022-04883-1&domain=pdf
http://orcid.org/0000-0002-6943-657X

414 Annals of Operations Research (2023) 322:413–440

PAM Partitioning Around Medoids
FPAM Fast Partitioning Around Medoids
FKM Simple and Fast k-Medoid
RKM Ranked k-Medoid
IKM Improved k-Medoids Clustering
EM Elbow Method
ASM Average Silhouette Method
GSM Gap Statistic Method
NN Nearest Neighbor
NNR Nearest Neighbor Repeat
NI Nearest Insertion
FI Farthest Insertion
CI Cheapest Insertion
AI Arbitrary Insertion
2O Two-Opt
2ONN 2O version of NN
2ONNR 2O version of NNR
2ONI 2O version of NI
2OFI 2O version of FI
2OCI 2O version of CI
2OAI 2O version of AI

Sets and Parameters
i ∈ I Set of locations
k ∈ K Set of clusters
Ck Set of locations within cluster k
k∗ An optimal number of clusters
Di,l Distance from location i to location l
T D j Total distance of cluster j
T D Total distance of entire clustering

1 Introduction

Weconsider a problem of optimizing the collection of cash from differentmerchants or points
of sales (POSs) and automated teller machines (ATMs) by multiple vehicles. This problem is
increasingly faced by banks to enable effective encashment services (Dandekar and Ranade,
2015; Gubar et al., 2011).We are motivated by a similar problem faced by banks in the city of
Perm, Russia, where several vehicles collect cash on a periodic basis from over two hundred
POSs and ATMs. The particular problem we address in this work was initially proposed by
Perm’s branch of Sberbank—Russia and Eastern Europe’s largest bank as of 2014. Earlier
the bank’s routing was a manual exercise that became a bottleneck in its growing market of
cash-collection and growth of its ATM-network.

Although cash-collection and cash-dispersion forATMs are of relatively low risk due to the
use special secured cassettes, major risks are associated with cash-collection frommerchants
and POSs where unsecured cash is transferred (Scott, 2001). Here, cash is transported as
banknotes in safe boxes within vehicles (Kurdel and Sebestyénová, 2013). To minimize the
risk of cash-in-transit robberies (Bozkaya et al., 2017; Gill, 2001), vehicles carrying cash
seek to reduce the time spent on the road. Perm has an elongated landscape—the city spans

123

Annals of Operations Research (2023) 322:413–440 415

70 kms along the Kama River and has two major railroad crossings, which significantly limit
the connectivity of the city’s districts; see Fig. 1. For a study of the history of crime in Perm,
see Varese (2001). Thus, to enhance security, suppliers prefer multiple vehicles as opposed
to a single vehicle.

There are a number of classical routing problems with close connections to our work. To
describe the problem we consider in this work, we begin with a few subtle differences from
the classical routing problems. Due to the use of multiple vehicles, our problem differs from
a direct application of a classical traveling salesman problem (TSP). Instead, our problem
is more related to the multiple traveling salesman problem (mTSP) with possibly multiple
depots, where multiple vehicles complete their respective tours visiting locations only once
and the overall sum of the tour lengths is minimized, see, e.g., Çetiner et al. (2010). A similar
problem is studied by Svestka and Huckfeldt (Svestka and Huckfeldt, 1973). An optimal
solution for the traditional mTSP fulfills the following conditions:

(i) It finds a route for every vehicle that starts and ends at a depot (the depot may be a
single central depot or different regional depots for different vehicles),

(ii) It visits every location—apart from the depots—exactly once, and
(iii) It minimizes the overall transportation cost.

For the case of a single vehicle, the mTSP reduces to the classical TSP. The mTSP
is a relaxation of another classical problem, namely the vehicle routing problem (VRP),
where the capacity restrictions on the vehicles are removed (Bektas, 2006; Laporte, 2010;
Osman, 1993). Although classical variants of the VRP allow both a single depot or multiple
depots (Bullnheimer et al., 1999), the VRP is unrelated to this work. This is because we do
not include any capacity restrictions, time windows, or bounded tour lengths. To fulfill the
needs of Perm’s suppliers, we allow the possibility of multiple depots as opposed to a single
central depot and search for multiple independent tours. We do not consider a fixed set of
locations that serve as depots, thus vehicles can start a valid tour at any location. This is
because the vehicles used by Perm’s suppliers are also deployed in other businesses, and we
do not know a vehicle’s location at the start of the day. This assumption further simplifies our
problem. To this end, we partition our set of locations into different clusters, or partitions,
that are served by independent vehicles. Then, within each cluster we derive the optimal
routing by solving a standard TSP. This approach for solving a routing problem is known as
the cluster-first route-second approach (Miranda-Bront et al., 2016; Raff, 1983). As we show
later in this work, this approach provides two benefits over a direct solution of the mTSP: (i)
it is computationally cheaper, and (ii) it allows the use of open-source solvers with only a
slight loss in optimality.

Another related problem is the clustered traveling salesman problem (CTSP); in the CTSP
certain locations and the associated partitions are visited contiguously and in a pre-specified
order, respectively, see, e.g., Laporte and Osman (1995). Tours within the different clusters
are connected by edges, thereby forming a single overall tour for all the locations. When all
the clusters are singletons, the CTSP reduces to the classical TSP. Chisman solves this CTSP
by inflating inter-partition distances, thereby discouraging their inclusion in the original
tour (Chisman, 1975). Later, Guttmann-Beck et al. (2000) and Ahmed (2012) study exact
solution methods for this problem, and Baniasadi et al. (2020) provide an algorithm for its
solution. In contrast, we treat clusters independently and do not reconnect them. In this sense,
our work is similar to Ding et al. (2007), where the authors find a Hamiltonian cycle within
every partition, disconnect an edge, and then reconnect the partitions. The approachwe follow
in this work differs in the sense that we do not reconnect the edges and are flexible in the
choice of our initial partitions. Further, as opposed to the classical single-depot VRP we do

123

416 Annals of Operations Research (2023) 322:413–440

not consider a central depot. As we mention before, we are also flexible for depots within a
partition; i.e., vehicles can start a valid tour from any location. Summarizing, closest to the
existing literature our problem can be described as a mTSP that we solve using a cluster-first
route-second approach.

To this end, the following are the key questions we consider in this work:

Q.1 What is a “good” set of locations that form part of each of the clusters?
Q.2 What is a “good” number of clusters?
Q.3 What is an “efficient” routing within a cluster?

Since the mTSP is a relaxation of the VRP, Q.1–Q.3 are also answered by the VRP. In the
first phase of our analysis, we answer questions Q.1 and Q.2 of the list above and quantify
“good”. Multiple algorithms, without consensus, exist to determine good clustering, and the
choice of the algorithm depends on the underlying application. We focus on centroid-based
methods, that are popular within the last few decades (Kaufman and Rousseeuw, 1990;
Schubert and Rousseeuw, 2019). In the second phase, we solve a TSP to determine the tours
within the clusters that minimize the total distance. In general, finding an optimal tour isNP-
hard (Garey and Johnson 1979), and we discuss a variety of heuristics exist for “efficiently”
solving the TSP to answer question Q.3.

The main contributions of this article are the following:

(i) We provide a comparison and review of several heuristic methods for both clustering
and the TSP;

(ii) We present extensive computational results on a real-world case study to guide practi-
tioners facing similar problems, and statistically validate the quality of our results;

(iii) We use only open-source software and demonstrate the competitiveness of existing
implementations to the state-of-the art solution methods;

(iv) We publicly and freely provide our code in R to serve as a modeling guide for future
applications.

The structure of the rest of this article is as follows. In Sect. 2, we describe the dataset
from Perm that we use as an example throughout the article. We present five heuristics for
clustering and our computational experiments in Sect. 3 . We summarize three methods for
determining the number of clusters, and explain our decision-making process, in Sect. 4. In
Sect. 5, we focus on finding tours for the clusters; we present both heuristics and a method
guaranteed to find the optimal tours. Finally, we present some limitations of our work and a
summary in Sect. 6.

2 Data sources and estimation

For our computational experiments, we use a list of 237 POSs andATMs in Perm. Perm lies on
thebanksof theKamaRiver near theUralMountains; all locations arewithin the latitude range
of (57◦57’05.8”N, 58◦09’43.0”N) and longitude range of (55◦55’09.5”E, 56◦26’36.0”E).
Figure 1 visualizes our dataset, and we provide an anonymized dataset at: https://github.
com/Oberfichtner/Clustering_and_TSP_with_R.git. Most of the locations are present in the
center of the city, with the Kama river forming a natural boundary between the locations. We
use the great-circle-distances between two locations to construct a matrix of distances, D,
instead of the actual road distances. Let Di,l denote the distance between locations i and l.
Then, the distance matrix is symmetric in our study; i.e., Di,l = Dl,i .

Existing literature on routing problems often distinguish two classes—the asymmetric
routing problem and the symmetric routing problem—and both classes have a rich history.

123

https://github.com/Oberfichtner/Clustering_and_TSP_with_R.git
https://github.com/Oberfichtner/Clustering_and_TSP_with_R.git

Annals of Operations Research (2023) 322:413–440 417

Fig. 1 Dataset of the considered 237 locations on the map of Perm. For details, see Sect. 2

Formally, an asymmetric distance function, f (x, y), between two locations x and y satisfies
f (x, y) = f (y, x) only if x = y. For other mathematical differences between these two
functions that are beyond the scope of this work, see, e.g., Mennucci (2013). Although
the asymmetric routing problem caters better to real-world problems, it is a significantly
more challenging problem and heuristics towards it are less developed than its symmetric
counterpart (Rodríguez and Ruiz, 2012). Rodríguez and Ruiz (Rodríguez and Ruiz, 2012)
study the effect of asymmetry on heuristics of the TSP, and provide reasons in support of the
use of both versions. The asymmetric routing problem also involves the use of a geographic
information system (GIS) to compute road distances. GIS services could be expensive (Sutton
et al., 2009)1 and/or have privacy concerns (Blatt, 2012). For these reasons, and in a similar
spirit to several classical works (Fischetti et al., 1995; Snyder and Daskin, 2006; Potvin,
1996), our work is on the symmetric TSP. For a detailed computational comparison between
these two classes, we direct the interested reader to Cirasella et al. (2001).

3 Answering Q.1: clustering

In this section,we seek to answer questionQ.1 fromSect. 1. Aswemention in Sect. 2, we have
a distance matrix D available. This allows a direct application of so-called centroid methods
as opposed to hierarchical clustering methods. Within centroid based methods, k-means and

1 We later learned of the large-scale open-source OSRM Project that enables computations of urban asym-
metric distances in several different programming languages (Open Source Routing Machine Project, 2018).
An implementation of ORSM in the language R is also available via the package ‘osrm’ (Giraud et al., 2022).
For a usage guide, see, e.g., Brust (2018) (available in Spanish).

123

418 Annals of Operations Research (2023) 322:413–440

k-medoids are two popular choices; however, the k-meansmethod ismore sensitive to outliers
than k-medoids. To ensure robustness in our clustering, in this work we use the k-medoid
method; for a survey of clustering methods, see, e.g., Leskovec et al. (2014); Rokach and
Maimon (2005).

Questions Q.1 and Q.2 go hand-in-hand. As we mention in Sect. 1, we serve each cluster
independently with a single vehicle. If the number of vehicles is known apriori, then we
simply partition our locations into that many clusters and this answers question Q.2. We then
proceed to determine the set of locations that form these clusters (methods for which we
describe below). If the number of vehicles is not known, we seek to determine both a good
number of clusters from a range of practical values and the corresponding locations in each
cluster. In Sect. 4, we describe three methods to determine a good number of clusters; we
then conclude k∗ = 4 clusters provide a good fit to our data. However, to ensure generality
of our observations, we describe clustering our dataset between k = 2 and k = 20 clusters.
For values beyond 20, we get a significant number of clusters with just one location in them
rendering them impractical.

The structure of the rest of this section is as follows. In Sects. 3.1–3.5, we study five
heuristic methods for clustering. For each of the five methods, we first provide a review of
the algorithm and a reference for the details. Then, we provide computational experiments
on our dataset, using open-source packages implemented in R. We also provide guidelines
on identifying good clustering. In Fig. 2 we visualize the clustering for the five methods for
k = 2, 4, 6; we present the other clusters in the Appendix. We begin with a notation and
definitions that are general to all the five algorithms. The five methods divide the total set
of n locations into k distinct clusters, C1,C2, . . . ,Ck , where k is known. Then, ∪ jC j =
{1, 2, . . . , n} and C j ∩ C j ′ = φ,∀ j, j ′ ∈ {1, 2, . . . k}. Our goal is to determine the set of
locations that form C j ,∀ j = 1, . . . , k. The methods proceed by iteratively determining a set
of locations assigned to a set of medoids, m, to form clusters. The medoid is a location that
forms part of the dataset. We denote the set of locations that are not yet assigned to a medoid
as “non-selected”. We calculate the total distance, T Dj , within cluster j at each iteration as∑

p∈C j
Dp,m j , and the total overall distance, T D, as

∑k
j=1 T Dj . All methods are separated

into two phases — build and swap. In the build phase we determine the initial medoids, and
in the swap phase we exchange these medoids until a termination criteria is fulfilled.

3.1 Partitioning aroundmedoids

3.1.1 Background

We first employ the Partitioning Around Medoids algorithm (PAM) of Kaufman and
Rousseeuw (1990). By default, PAM starts by selecting k locations from the set of n locations
in a manner that “locally” minimizes the average dissimilarities of objects, see Simovici
(2019) for details. We then initialize PAM by using these k locations as the initial medoids
m1, . . . ,mk . This completes the build phase. After assigning every location to a medoid,
and determining T D the build phase finishes, and we update the medoids. We exchange
every selected medoid successively with all non-selected locations and recompute T D for
the corresponding clustering. We find the minimum of these and compare it with the T D
from the previous iteration. If the minimum is less than before, we update the set the medoids
and repeat the process of exchanging every selected medoid. We stop when we either reach
a maximum number of iterations or when T D does not decrease further. For details on PAM,
see Kaufman and Rousseeuw (1990).

123

Annals of Operations Research (2023) 322:413–440 419

Fig. 2 a PAM b FPAM c FKM d RKM e IKM with α = 1.1 f IKM with α = 1.5. Clusters obtained using the
five clustering methods, with two rows for the IKMmethod, shown on the map of Perm. The left, middle, and
right panels display the clustering for k = 2, 4, 6, respectively

123

420 Annals of Operations Research (2023) 322:413–440

3.1.2 Computational experiments

We use the implementation of PAM in R fromMaechler (2019). Figure 2a presents our results
for k = 2, 4, 6. Loosely speaking, the clustering partitions the locations into three regions—
the city center, locations to the west of the river, and locations to the north of the river.
Different values of k hone in on this observation further, see Fig. A1 in the Appendix for
details. We revisit this method in Sect. 4, where we determine an optimal number of clusters.

3.2 Fast partitioning aroundMedoids

3.2.1 Background

The Fast Partitioning Around Medoids (FPAM) algorithm is an improvement of the PAM
algorithm where both the build and swap phases are improved (Schubert and Rousseeuw,
2019). In the initialization of the build phase, we choose the first medoid as the one that is
closest to all the other locations. The rest of the initial medoids are determined successively
by relating the minimum overall T D with the already determined medoid. The swap phase
is similar to PAM in the sense that both methods choose the new candidate as the one that
minimizes T D from the existing k medoids, and that the methods terminate if the revised
T D is not reduced. The difference is that FPAM saves all the best candidates that are swapped
for each medoid, whereas PAM saves only the single-best. FPAM proceeds by choosing one
of the following two choices determined by the user: (i) swapping any of the k − 1 medoids
to the new one if T D decreases further, or (ii) exchanging only if the swap still obtains at
least the same decrease in T D as before. For details on FPAM, see Schubert and Rousseeuw
(2019).

3.2.2 Computational experiments

FPAM is part of the sameRpackage asPAM (Maechler, 2019). Although FPAM is theoretically
faster than PAM and capable of handling larger datasets (Schubert and Rousseeuw, 2019),
in our computational experiments we do not notice any significant difference. Figure 2b
presents our results for k = 2, 4, 6, and Fig. A2 in the Appendix presents results for the other
clusters. Most of the clusters are similar to PAM, except k = 9 and k = 12 where the clusters
differ on the west side of the center.

3.3 Simple and fast k-Medoid

3.3.1 Background

Next, we look at the Simple and Fast k-Medoid (FKM) algorithm of Park and Jun Park and
Jun (2009). FKM initializes with the k most “centered” locations as the starting medoids. To
this end, it computes a metric, vi , as follows:

vi =
n∑

l=1

Dl,i
∑n

p=1 Dl,p
, i ∈ {1, 2, . . . , n}.

Then, we set the k locations with the smallest vi values as our starting medoids. We assign
all non-selected locations to their closest medoid. We update the medoids by searching

123

Annals of Operations Research (2023) 322:413–440 421

for a new medoid at every assignment; for this, we only consider the locations within the
assignment. Then, we recompute T D. We repeat this update-step until T D does not decrease
compared to the previous iteration, orwehave accomplished amaximumnumber of iterations.
FKM has twomajor differences from PAM: (i)FKM only updates themedoidswithin the chosen
clusters, and (ii) FKM updates all the medoids while PAM updates just one. For details on
FKM, see Park and Jun (2009).

3.3.2 Computational experiments

FKM is implemented in R in the package “kmed” (Budiaji, 2019). We use an iteration limit
of 200, although we observe the algorithm terminates before this limit is reached. Figure 2c
presents our results for k = 2, 4, 6, For k = 2, FKM splits the locations nearly in half, unlike
PAM and FPAM. However, for k = 3 (see Fig. A3 in the Appendix) the partitioning is again
into the three zones of the center, north of the river, and west of the river. We also observe
clusters with lesser variability in the number of points, as compared to the PAM and FPAM
methods; we discuss this further in Sect. 3.6, see, also Fig. 3 and Table A1 in the Appendix.

3.4 Ranked k-Medoid

3.4.1 Background

Unlike the methods in Sects. 3.1–3.3, the Ranked k-Medoid (RKM) algorithm of Zadegan et
al. is not directly focused on T D (Zadegan et al., 2013). Analogous to the D matrix, here we
compute a matrix R, where an entry Ri, j shows a rank of the similarity of locations i and j .
Lower ranks indicate higher similarity, and Ri,i = 1. In each iteration of themethod,we select
a set of w “closest” locations to a given medoid m j ; i.e., G j = {i |Ri,m j = 1, . . . , w},∀i ∈
I ,∀ j = 1, . . . , k. Similar to the vi metric in Sect. 3.3, we compute a metric—the hostility
value—for all locations in G j as follows:

hik =
∑

l∈G j

Ri,l ,∀i ∈ G j ,∀ j = 1, . . . , k.

The hostility value, h, suggests a degree of dissimilarity of location i to the others within G j .
To update the medoids, we select the new medoid as the location with the highest hostility
value; in the event of a tie,we pick one arbitrarily.We then assign each non-selected location to
the medoid with the smallest R value. The choice of the parameter w influences the resulting
clusters and the speed of the algorithm. For details on RKM, see Zadegan et al. (2013).

3.4.2 Computational experiments

RKM is available in R using the same package as FKM (Budiaji, 2019); here, it is suggested to
keep the parameterw between 5 and 15.We choosew = 5 for our computational experiments
as the total number of our locations is less than that used in Zadegan et al. (2013). We use
the same iteration limit of 50 as Zadegan et al. (2013). Unlike the methods in Sects. 3.1–3.3,
the output of RKM is not deterministic; i.e., we do not get back the same clustering for every
run. This is due to the fact that RKM starts with a set of random locations, and the search
space is limited to the set G j . An artifact of this randomness is that we tend to get outliers
that are farther away from the other clusters. Figure 2d presents one example of a clustering
obtained via RKM.

123

422 Annals of Operations Research (2023) 322:413–440

3.5 Improved k-Medoids

3.5.1 Background

The fifth clustering method we summarize is the Improved k-Medoids (IKM) algorithm of
Yu et al. (2018). The IKM algorithm is based on the FKM and primarily differs in the selection
of the initial medoids. Yu et al. define the variance of a location i as (Definition 2 Yu et al.
(2018)):

σi :=
√
√
√
√ 1

n − 1

n∑

l=1

D2
i,l ∀i = {1, . . . , n},

and the variance of a dataset as

σ :=
√
√
√
√ 1

n − 1

n∑

i=1

D2
i,m∗ ,

where m∗ is the mean of the dataset. Given a parameter α, the candidate subset of medoids
is defined as:

Sm = {i |σi ≤ ασ, i = 1, 2, . . . , n}.
The set Sm contains all locations that are possible choices for medoids. Outliers are avoided
inclusion in the set Sm using small values of α. IKM initializes by choosing two medoids, and
then sequentially adding one until all k medoids are chosen. The first medoid, m1, is chosen
as:

m1 = argmini∈Sm
n∑

l=1

Di,l .

The second medoid, m2, is chosen farthest away from m1 to reduce the likelihood of both
m1 and m2 being in the same cluster:

m2 = argmaxi∈Sm Di,m1 .

Then the method proceeds iteratively. We first select a candidate, m′
j , in each of the given

2 ≤ k′ ≤ k medoids as m′
j = argmaxl∈C j∩Sm Dl,m j with j ∈ {1, . . . , k′}. Then, we

determine the next initial medoid as follows:

mk′+1 = argmax j∈{1,2,...,k′} Dm j ,m′
j

We repeat this process until k′ = k. This finishes the build phase as all initial medoids are
determined. The swap phase for our implementation of IKM is the same as that of the FKM
method we describe in Sect. 3.3.1. For details on IKM, see Yu et al. (2018).

3.5.2 Computational experiments

IKM is also available in R in the same package as FKM and RKM (Budiaji, 2019). Although Yu
et al. (2018) recommend a value of α between 1.5 and 2.5, the default value for α in the R
package is 1 (Budiaji, 2019). However, the default value of α = 1 results in only a single
value within the candidate set Sm , while α = 1.1 and α = 1.5 result in 75 and 172 values,
respectively. In this sense, we find the recommendation of Yu et al. (2018) more helpful than
the default value of α in the R package. In Fig. 2e and f we present results for α = 1.1 and
α = 1.5, respectively, for k = 2, 4, 6.

123

Annals of Operations Research (2023) 322:413–440 423

Fig. 3 Comparison of the standard deviation (y-axis) of the number of locations in different clusters (x-axis)
for the different clustering methods

3.6 Summary of computational experiments

In this section, we seek to compare the quality of the clustering by the five methods we
describe above. In Sects. 3.1–3.5 we see that that the methods can lead to widely different
clusters. One measure of the variability in the clustering is the dispersion of the number of
locations in each cluster. Figure 3 plots the standard deviation of the number of locations in
each cluster for PAM, FPAM, FKM, and two runs of IKMwith α = 1.1, 1.5; see also, Table A1
in the appendix. Since RKM returns a random output for each run, we do not include it in
Fig. 3. For k = 2, the methods result in contrasting clusters. PAM, FPAM, IKM with α = 1.5
split the locations to the west and east of the river, while FKM and IKMwith α = 1.1 split the
locations in the center to get two nearly similar sized clusters. This is reflected in the large
and small standard deviations in Fig. 3 for k = 2. For k = 3, the distributions between the
methods are again not similar. PAM, FPAM, IKMwith α = 1.5 split the locations into the west
of the river, the north of the river, and the center; while FKM splits the locations to the west
and IKMwith α = 1.1 the north section away from the center with the rest in half. For k = 4,
all methods separate the locations to the west of the river, north-east of the city center, and
two clusters in the center. For k > 4, the clusters do not differ widely. They have a similar
structure and split the locations in the center into smaller clusters. The standard deviation
of the locations in a cluster in Fig. 3 further suggests that PAM and FPAM are similar; we
also discuss this in Sect. 3.2.2. For the two IKM methods, we notice little variation in the
clustering from Fig. 3 when k is large; i.e., the α value ceases to create a significant effect.

We conclude this section with a summary of the five clustering methods we consider in
Table 1.

123

424 Annals of Operations Research (2023) 322:413–440

Table 1 Summary of five clustering methods described in Sect. 3

Build phase Swap phase Origin

PAM Random Exchange every
medoid
individually and
search for
minimum T D

Kaufman and Rousseeuw (1990)

FPAM Iterative Exchange each
medoid
individually and
search each
medoid for the
minimum

Schubert and Rousseeuw (2019)

FKM Most centered Update all
medoids by
checking for
new candidates
only within
clusters

Park and Jun (2009)

RKM Random Highest hostility
value

Zadegan et al. (2013)

IKM Iterative Update all
medoids by
checking for
new candidates
only within
clusters

Yu et al. (2018)

4 Answering Q.2: number of clusters

In this section, we build on the results of Sect. 3 and seek to answer question Q.2 from Sect. 1.
To this end, we describe three quantitative tests that determine an optimal number of clusters.
The tests determine this optimal k—that we denote as k∗—based on a given clustering; thus,
the answers to questions Q.1 and Q.2 depend on each other. Here, we employ each of the five
the methods of Sect. 3 for k = 2, 3, . . . , 20 and then for every method determine k∗ using
the three tests. Unfortunately, in practice, these tests do not always lead to the same k∗. We
thus provide guidance on selecting k∗ by summarizing our reasons for choosing k∗ = 4.

The structure of this section is similar to that of Sect. 3.Wefirst provide a short reviewof the
three tests for determining k∗ and references for the details. Then, we provide computational
experiments on our dataset, and analyze the clustering provided by the fivemethods in Sect. 3.
As we mention in Sect. 3.4, the RKM outputs a different clustering for each run. Thus, we
run RKM a thousand times and compute the frequency of k∗. For the IKM, we compute k∗ for
both α = 1.1 and α = 1.5. This provides us k∗ for each of the five methods for each of the
three tests. Finally, we provide guidance on determining k∗ when the different tests provide
conflicting results. Figure 5 summarizes our results of this section, and we explain this figure
below.

123

Annals of Operations Research (2023) 322:413–440 425

Fig. 4 An explanatory figure for the Elbow Method. For details, see Sect. 4.1

4.1 Elbowmethod

4.1.1 Background

The Elbow Method (EM) serves as a simple visual guide to determine k∗ and relies on
“statistical folklore” (Tibshirani et al., 2001). The method is remarkably simple in the sense
that the only parameter required is T Dk —the total distancewhen the dataset is clustered into
k clusters. Then, theEM compares the trade-off between k and T Dk by computing an “elbow”.
To this end, we plot T Dk and identify the first k where the angle is larger than the one before
and after; this point determines k∗. With this intuition, we formalize the concept of an elbow
or a bend in Fig. 4. Then, the angle βk is 180◦ + tan−1(1

T Dk−1−T Dk
) − tan−1(1

T Dk−T Dk+1
)

for cluster k; here tan−1(·) denotes the inverse tangent of its argument. The elbow method
chooses k∗ = min{k : βk < βk−1, βk < βk+1}.

4.1.2 Computational results

First, for the thousand runs of RKM the EM suggests k∗ = 2, 3, 4, 5, 6 in 163, 449, 303, 73, 12
of these runs, respectively. Thus, overall the EM suggests k∗ = 3 or k∗ = 4 for the RKM, with
a preference towards k∗ = 3. Next, Fig. 5a presents our results for the EM for the other four
methods. The circles provide the values of k∗. Here, the EM suggests k∗ = 4 for PAM, FPAM,
FKM, and IKM with α = 1.1; however, the EM suggests k∗ = 3 for IKM with α = 1.5.

123

426 Annals of Operations Research (2023) 322:413–440

4.2 Average Silhouette method

4.2.1 Background

The Average Silhouette Method (ASM) provides a metric of the relative fit of a location in
its own cluster versus its fit in other clusters. Given a clustering of locations into k clusters,
consider the following two quantities: (i) aik = 1

|C j |
∑

l∈C j
Di,l ,∀i ∈ C j , j = 2, . . . , k,

and (ii) bik = minh∈{1,2,...,k};h
= j
1

|Ch |
∑

l∈Ch
Di,h,∀i ∈ C j , j = 2, . . . , k. Then, aik denotes

the average distance of location i to other locations within its own cluster, while bik denotes
the minimum average distance of location i to any cluster except its own. The silhouette
coefficient for the ASM is defined as

sik = bik − aik
max{aik, bik} ,∀k,∀i = 1, 2, . . . , n.

Then,−1 ≤ sik ≤ 1. A value of sik close to one suggests a good clustering as the locations are
relatively closer to their own cluster than others, while a value close to minus one suggests a
poor clustering. Todetermine k∗,we choose the clustering that provides themaximumaverage
silhouette value; i.e., k∗ = 1

n argmaxk
∑

i sik . For details on the ASM, see Rousseeuw (1987).

4.2.2 Computational results

470 of the thousand runs of the RKM with the EM suggest k∗ = 2, while 123 runs suggest
k∗ = 3. The remaining runs do not have a clear consensus. Hence, the RKM suggests k∗ = 2
with the ASM. For the other four methods, Fig. 5b presents a plot of the average value of sik
versus k. Again, the circles provide the values of k∗. Here, the ASM computes k∗ = 3 for
PAM, FPAM, and IKM with α = 1.5, while the ASM computes k∗ = 4 for FKM and IKM with
α = 1.1.

4.3 Gap statistic method

4.3.1 Background

The third method we study to determine k∗ is the Gap Statistic Method (GSM) of Tibshirani
et al. (2001). Similar to the ASM, given a clustering of locations into k clusters, there are two
quantities we consider in the GSM. First, let Wk = ∑k

j=1
1

2|C j |
∑

i,l∈C j
Di,l be the within-

cluster sum of distances. Next, we seek to determine the deviation ofWk from a reference.We
do so by generating B reference datasets; let W ∗

k b with b = 1, . . . , B be the within-cluster
distances for the bth reference data set.

Next, we compute three key quantities:

(i) Gapk = 1
B

∑B
b=1(logW

∗
k b) − logWk ,

(ii) sdk =
√

1
B

∑B
b=1

(
logW ∗

k b − 1
B

∑B
b=1 logW

∗
k b

)2,

(iii) sek =
√
1 + 1

B sdk .

Then, k∗ is the smallest k such that Gapk ≥ Gapk+1 − sek+1 is satisfied. For details on the
GSM, see Tibshirani et al. (2001).

123

Annals of Operations Research (2023) 322:413–440 427

Table 2 Suggested optimal
number of clusters for the
different clustering methods of
Sect. 4

PAM FPAM FKM RKM IKM

α = 1.1 α = 1.5

EM 4 4 4 3 4 3

ASM 3 3 4 2 4 3

GSM 4 4 4 2 4 3

4.3.2 Computational results

We use B = 500 for our computational experiments with the GSM. For the RKM, we use
the same 500 reference datasets. In the thousand runs, the GSM computes k∗ = 2, 3, 4, 5 in
858, 134, 7, 1 of the runs, respectively; i.e., we conclude k∗ = 2 for the RKM. For the other
four methods 2, Fig. 5c presents the values of Gapk with circles indicating k

∗. Here, the GSM
suggests k∗ = 3 for IKM with α = 1.5; however, the GSM computes k∗ = 4 for consistently
for all the other methods.

4.4 Summary of computational results

The three methods in Sects. 4.1–4.3 suggest different choices of k∗; in this section, we
summarize our key results and provide a reasoning for our final choice of k∗. Table 2 provides
a summary; here, the suggested k∗ for the RKM is the one suggested in most of its thousand
runs. Excluding the RKM—given its different outputs for every run—our choice of k∗ is then
between k∗ = 3 or k∗ = 4. From the 18 instances in Table 2, 10 suggest k∗ = 4. Further,
EM and GSM provide a strong suggestion indication for k∗ = 4 across all the methods except
RKM and IKMwith α = 1.5. Thus, we decide in the favor of k∗ = 4 and answer question Q.2.

Given k∗ = 4, we next seek to answer question Q.1—specifically, whichmethod’s cluster-
ing with k∗ = 4 do we choose? We observe that FKM and IKM with α = 1.1 result in k∗ = 4
for all the three methods. Further, both the FKM and IKM have the same set of medoids. Thus,
we use the clusters provided by the clustering methods FKM and IKMwith k∗ = 4. Although
we presented these clusters in Fig. 2, for the sake of clarity we present these again in Fig. 6a
and denote them as C1 (red), C2 (green), C3 (blue), C4 (yellow), respectively. Clusters C1

and C4 are the larger clusters, and both are located in the center of the city; these include 77
and 113 locations, respectively. Clusters C2 and C3 are significantly smaller with 23 and 24
points, respectively; these are located in the west and northeast, respectively.

Some existing work on clustering algorithms within the routing literature also considers
the notion of fairness. This is especially pervasive in works on wireless sensor networks, see,
e.g., (Haseeb et al., 2017; Jiang et al., 2009; Zahedi et al., 2016). Nallusamy et al. (2010) study
a problem with multiple traveling salesman where each salesman visits the same number of
locations. Such concerns are beyond the scope of our work, but can be easily incorporated
by using a so-called balanced k-means clustering method (Malinen and Fränti, 2014). Then,
the clusters have an equal number of locations.

We conclude this section with a summary of the three methods we consider in Table 3.

2 For the two IKMmethods, we do not use an independent sample of 500 reference datasets as this resulted in
empty clusters in the implementation in R. Thus, we sample 10 batches of reference datasets of B = 50 each.

123

428 Annals of Operations Research (2023) 322:413–440

Fig. 5 a ElbowMethod. k∗= 3 for IKMwith α = 1.5, while k∗= 4 for PAM,FPAM,FKM and IKMwith α = 1.1.
b Average Silhouette Method. k∗= 3 for PAM, FPAM, and IKM with α = 1.5, while k∗= 4 for FKM and IKM
with α = 1.1. c Gap Statistic Method. k∗= 3 for IKM with α = 1.5, while k∗= 4 for PAM, FPAM, FKM and
IKM with α = 1.1. Comparison of three methods to determine an optimal number of clusters, k∗. The x-axis
denotes the number of clusters, while the y-axis denotes the corresponding metric. The circles indicate k∗.
For details, see Sect. 4

123

Annals of Operations Research (2023) 322:413–440 429

Fig. 6 a The four optimal clusters. For details, see Sect. 4.4 b The shortest tours for the four clusters. For
details, see Sect. 5.5. The four optimal clusters of the 237 locations in Perm—C1 (red),C2 (blue),C3 (green),
and C4 (yellow)

123

430 Annals of Operations Research (2023) 322:413–440

Table 3 Summary of three methods described in Sect. 4 to determine an optimal number of clusters

Trade-off Metric Criteria

EM Cluster size and T D A function of T D First bend of T D

ASM Fit within a luster to other
clusters

Average silhouette value Maximum of average
silhouette value

GSM Within-cluster dispersion to
its expectation

A function of Gapk First k satisfying the function

5 Answering Q.3: routing within clusters

In Sects. 3 and 4, we distribute our data locations into four clusters with the idea that each
cluster is served by a single vehicle. In this section, we determine the optimal tour for a vehicle
within a cluster by solving a TSP. To assist practitioners, we restrict ourselves to open-source
and pre-implemented solvers for the TSP that are available in R. We use five methods—
Nearest Neighbor, Nearest Neighbor Repeat, Nearest Insertion, Farthest Insertion, Cheapest
Insertion, Arbitrary Insertion, and Two-Opt—all of which are included in the “Traveling
Salesperson Problem -R package” (Hahsler andHornik, 2020) (henceforth, “TSP-Package”).
Since all of these methods are heuristics without a guarantee of finding the optimal route,
we next compare the respective tours with an optimal tour. To this end, we determine the
optimal tour using the so-called subtour elimination method from Miller et al. (1960), using
an implementation in GAMS (Rosenthal (2007); GAMS (2020)).

We employ a similar structure for this section as that of Sects. 3 and 4. We first provide a
short review of the heuristic methods tests for determining the routing, and then we provide
computational experiments on our dataset. As the heuristics can return a different tour for
each run, we repeat each of the heuristics 5000 times for our results to have a statistical
relevance. Table 5 summarizes our results, and we discuss this in greater detail below. Next,
in Sect. 5.5 we compare the quality of the heuristic tours against an optimal routing. In
Sect. 5.6 we repeat our computational experiments, but without clustering and then compare
our overall tour lengths.

5.1 Nearest neighbor

5.1.1 Background

The Nearest Neighbor (NN) heuristic starts with an arbitrarily chosen location. The method
iterates by successively adding the nearest location, that is not yet included, to the last added
location. The process repeats until all the locations are included, and a tour is formed. Despite
the heuristic’s simplicity, a performance guarantee on the tour length is available, see Table 4.
For details on NN, see Bellmore and Nemhauser (1968).

5.1.2 Computational experiments

Two versions of NN are available in the TSP-Package: (i) the plain NN that we describe in
Sect. 5.1.1, and (ii) a version where every possible location is used as the initial starting
point, we denote this version as “Nearest Neighbor Repeat” (NNR). In NNR, the minimum
tour length over all initial locations is returned; thus, if the number of locations is small then

123

Annals of Operations Research (2023) 322:413–440 431

Table 4 Summary of some performance guarantees for heuristics discussed in Sect. 5

Heuristic Bound Source

NN 1
2 �lg2(n)
 + 1

2 Rosenkrantz et al. (1977) page 565

Insertion �lg2(n)
 + 1 Rosenkrantz et al. (1977) page 571

NI, CI 2 Rosenkrantz et al. (1977) page 573

2O
√

n
2 Hougardy et al. (2020)

The Bound column denotes a bound on the ratio of the tour length of the heuristic to the optimal tour length

NNR is advisable over NN. Also, NN can return tours within a wide range due to the arbitrary
choice of the initial point. Since NNR returns the best possible tour available from NN at each
run, there is no dispersion in its output. See the first two rows of Table 5 for details.

5.2 Nearest insertion, farthest insertion, cheapest insertion, and arbitrary insertion

5.2.1 Background

Insertion methods work on the principle of greedily “inserting” a location, p, to an existing
edge connecting locations i and j such that the quantity Di,p + Dp, j − Di, j is minimized.
Thus, at each iteration, the size of an existing tour size is increased by one location and
exactly one existing edge is updated. The second row of Table 4 provides a performance
guarantee for any insertion method.

We use four insertion methods as heuristics for solving our TSP. In the Nearest Insertion
(NI) heuristic, we choose the location closest to the existing location in the tour. In the
Farthest Insertion (FI) heuristic, we choose the location farthest to the locations in the tour.
In the Cheapest Insertion (CI) heuristic, we choose the location where the cost or gain of
tour length is the minimum, while in the Arbitrary Insertion (AI) heuristic, we choose an
arbitrary location that is not part of the existing tour. For more details on insertion methods,
see, e.g., Bentley (1992); Rosenkrantz et al. (1977).

5.2.2 Computational experiments

The third to sixth rows of Table 5 provide results of our computational experiments for the
four insertion methods. For cluster C2 the four insertion methods provide nearly the same
results; the dispersion between the maximum (24.59 kms) and minimum (23.80 kms) tour
lengths is less than a kilometer. For the other three clusters, we observe NI performs worse
than FI; the maximum tour length of FI is less than the minimum tour length of NI. Thus,
we prefer FI over NI for these three clusters. FI also performs better in a comparison with
CI—forC3 the worst tour of FI is nearly half a kilometer better than the best tour of CI, and
for C1 the worst tour of FI is only 120 meters more than the best tour of CI. The average
tour length for CI is over 4.5 kms more than that of FI. Although the minimum tour lengths
of AI are the best of the four insertion methods, it has a high variance reflected in large
ranges of tour lengths.

123

432 Annals of Operations Research (2023) 322:413–440

Fig. 7 a before b after. Example of one iteration for the 2O heuristic. The edges connecting the locations
a, b, c, d are changed. For details, see Sect. 5.3.1

5.3 Two-Opt

5.3.1 Background

The Two-Opt (2O) method is based on Croes (1958). The method seeks to improve already
existing tours by inverting edges; i.e., we remove two edges and reconnect them in the
opposite order, thereby inverting the order for a part of the tour. We explain this with an
example. Consider the tour 1, 2, . . . 12, 1 in Fig. 7a. Assume that we remove the two edges
between locations 3, 4 and 9, 10. Now, we reconnect the locations to have two new edges—
3, 9 and 4, 10—and we invert the direction of the tour between 4 and 9. Thus, the new tour
is 1, 2, 3, 9, 8, 7, 6, 5, 4, 10, 11, 12, 1, see Fig. 7b.

In general, we only switch the edges if there is a decrease in the length of a tour; i.e.,
Da,b + Dd,c > Da,d + Db,c, with a, b, c, d defined as in Fig. 7. We improve until the
result is “two-optimal”; i.e., the tour length can not decrease further with these two-edge
inversions. For a so-called “metric” TSP, where the distances satisfy the triangle inequality,
Table 4 provides a performance guarantee for 2O; i.e., the ratio of the length of a tour with

n locations calculated by 2O to that of an optimal tour is no more than
√

n
2 .

5.3.2 Computational experiments

In the TSP-Package, 2O heuristic is initialized with an arbitrary tour that is then improved
until it is two-optimal. The seventh row in Table 5 presents our results. The 2O heuristic
results in tour lengths of a wide range, e.g., C1 has a range of almost 14 kms that is 30% of
the minimum tour. This observation leads to the conclusion that 2O is strongly dependent on
the initial tour.

Since we already have tours from six heuristics in Sects. 5.1–5.2, we now use them as
the initial tours for the 2O method. We denote these new schemes as 2ONN, 2ONNR, 2ONI,
2OFI, 2OCI, 2OAI. The last six rows of Table 5 present these results. The cluster C2 has
short tour lengths already for all the heuristics with a dispersion of less than 5%. For the other
methods, the mean and maximum tour length both decrease after implementing 2O; e.g., for
C1 the mean tour length drops from 56.21 with NN to 49.80 with 2ONN. As the 2O heuristic
is guaranteed to improve a tour, we suggest additionally using the 2O heuristic after running
any other heuristic method.

123

Annals of Operations Research (2023) 322:413–440 433

5.4 Choice of the best heuristic

In this section, we employ statistical tests to compare the optimal tours obtained from the
various heuristics against each other. First, we determine if the tour lengths across the 13
heuristics indeed differ.We have 5000 runs for each of the four clusters for the 13methods. To
this end, we use the Friedman Rank Test with n = 5000 samples and k = 13 groups (Fried-
man, 1937). The null hypothesis for this test is that the heuristics produce identical tours;
from Table 5 we do not expect this hypothesis to hold. Indeed, the null hypothesis is rejected
for each of the four clusters with p-values of practically zero. Thus, there is statistically sig-
nificant evidence to suggest that the choice of the heuristics affects the optimal tour lengths.
The next question is if a single heuristic method can be declared as the one that provides the
best tour. We seek to determine this in the current section.

From Table 5, we observe that 2OAI achieves the minimum tour length across all the 13
methods for C1 and C4. For C2 and C3, 2OAI again achieves the minimum tour length—
this minimum tour length is also achieved by four and eight other heuristics for C2 and C3,
respectively. To validate this good performance of 2OAI, we further employ a statistical test.
To this end, let μX and μY denote the mean length of a tour found by heuristic X and Y over
5000 runs. Then, consider the following null and alternative hypotheses:

H0 : μX = μY

HA : μX
= μY .

For Y = 2OAI, we test all four clusters and all the 13 heuristics, at a significance level
of α = 5%, and compute a z-score. For the large sample size of 5000, a normal distribution
suffices instead of a Student-t distribution. Three cases exist:

(i) −1.96 < z < 1.96; i.e., we have no statistical significant evidence to reject H0.
(ii) z < −1.96; i.e., we have statistically sufficient evidence to reject H0, and conclude that

method X performs better than Y ,
(iii) z > 1.96; i.e., we have statistically sufficient evidence to reject H0, and conclude that

method X performs worse than Y .

For C1, we are in the third case for all the heuristics except 2OFI. Thus, we next test
the hypotheses with Y = 2OFI. Then, we are always in the third case; thus, we conclude
that the mean tour length obtained using 2OFI is statistically shorter than any other method
for C1. This trend repeats for C2 as well. Analogously for C3, for Y = 2OAI and X =
NNR,FI,2ONNR,2OFI,2OCI we are in the second case. Repeating the process with Y =
2ONNR, we are always in the third case; i.e., we conclude themean tour length obtained using
2ONNR is statistically shorter than any other method for C3. Similarly, for C4 we conclude
the winner is 2OAI.

To summarize, we have statistically significant evidence to conclude that, on average,
the shortest tours for clusters C1,C2,C3,C4 are determined by 2OFI, 2OFI, 2ONNR, and
2OAI, respectively. This is loosely reflected in Table 5 as well—the upper limit of 95% CI
of the best-performing heuristic is lower than the lower limit of the competing methods. Had
we not employed a statistical test we could have erroneously concluded 2OAI as the best
performing heuristic.

123

434 Annals of Operations Research (2023) 322:413–440

Ta
bl
e
5

Su
m
m
ar
y
of

th
e
co
m
pu

ta
tio

na
lr
es
ul
ts
of

th
e
13

he
ur
is
tic

m
et
ho

ds
fo
r
T
S
P
pr
es
en
te
d
in

Se
ct
s.
5.
1–

5.
3
us
in
g
50

00
ru
ns

C
1

C
2

C
3

C
4

M
ea
n

R
an
ge

95
%

C
I

M
ea
n

R
an
ge

95
%

C
I

M
ea
n

R
an
ge

95
%

C
I

M
ea
n

R
an
ge

95
%

C
I

N
N

56
.2
1

(5
1.
01

,6
2.
62

)
(5
6.
13

,5
6.
29

)
24

.9
3

(2
4.
27

,2
8.
76

)
(2
4.
90

,2
4.
96

)
41

.0
7

(3
7.
06

,4
8.
20

)
(4
0.
98

,4
1.
17

)
63

.9
6

(5
9.
57

,7
0.
05

)
(6
3.
89

,6
4.
03

)

N
N
R

51
.0
1

(5
1.
01

,5
1.
01

)
(5
1.
01

,5
1.
01

)
24

.2
7

(2
4.
27

,2
4.
27

)
(2
4.
27

,2
4.
27

)
37

.0
6

(3
7.
06

,3
7.
06

)
(3
7.
06

,3
7.
06

)
59

.5
7

(5
9.
57

,5
9.
57

)
(5
9.
57

,5
9.
57

)

N
I

53
.7
8

(5
1.
40

,5
4.
38

)
(5
3.
77

,5
3.
80

)
24

.0
4

(2
3.
87

,2
4.
13

)
(2
4.
04

,2
4.
04

)
42

.9
9

(3
8.
32

,4
4.
31

)
(4
2.
95

,4
3.
03

)
60

.1
6

(5
9.
30

,6
1.
87

)
(6
0.
14

,6
0.
18

)

F
I

48
.1
0

(4
6.
26

,5
1.
24

)
(4
8.
07

,4
8.
13

)
23

.9
2

(2
3.
80

,2
4.
14

)
(2
3.
92

,2
3.
93

)
37

.0
8

(3
7.
01

,3
7.
85

)
(3
7.
08

,3
7.
09

)
54

.4
9

(5
2.
31

,5
7.
86

)
(5
4.
46

,5
4.
52

)

C
I

52
.7
5

(5
1.
12

,5
4.
06

)
(5
2.
73

,5
2.
78

)
23

.9
4

(2
3.
87

,2
4.
02

)
(2
3.
94

,2
3.
94

)
43

.3
7

(3
8.
32

,4
4.
31

)
(4
3.
32

,4
3.
40

)
58

.2
5

(5
7.
17

,6
0.
22

)
(5
8.
22

,5
8.
28

)

A
I

48
.9
6

(4
5.
93

,5
5.
41

)
(4
8.
93

,4
9.
00

)
24

.0
2

(2
3.
80

,2
4.
59

)
(2
4.
02

,2
4.
02

)
40

.3
4

(3
7.
01

,4
6.
29

)
(4
0.
28

,4
0.
40

)
54

.9
2

(5
1.
66

,5
9.
58

)
(5
4.
89

,5
4.
96

)

2
O

50
.6
0

(4
6.
04

,6
0.
03

)
(5
0.
54

,5
0.
65

)
24

.1
7

(2
3.
80

,2
4.
83

)
(2
4.
16

,2
4.
18

)
40

.7
6

(3
7.
01

,4
9.
81

)
(4
0.
68

,4
0.
84

)
55

.7
8

(5
1.
82

,6
1.
94

)
(5
5.
73

,5
5.
82

)

2
O
N
N

49
.8
0

(4
6.
38

,5
5.
20

)
(4
9.
75

,4
9.
85

)
24

.2
6

(2
3.
93

,2
4.
47

)
(2
4.
25

,2
4.
26

)
38

.7
1

(3
7.
01

,4
2.
11

)
(3
8.
66

,3
8.
76

)
55

.4
9

(5
1.
34

,5
9.
29

)
(5
5.
45

,5
5.
54

)

2
O
N
N
R

48
.0
3

(4
8.
03

,4
8.
03

)
(4
8.
03

,4
8.
03

)
24

.2
7

(2
4.
27

,2
4.
27

)
(2
4.
27

,2
4.
27

)
37

.0
1

(3
7.
01

,3
7.
01

)
(3
7.
01

,3
7.
01

)
53

.9
1

(5
3.
91

,5
3.
91

)
(5
3.
91

,5
3.
91

)

2
O
N
I

49
.8
6

(4
8.
66

,5
4.
04

)
(4
9.
83

,4
9.
90

)
23

.9
4

(2
3.
87

,2
4.
02

)
(2
3.
94

,2
3.
95

)
39

.6
7

(3
7.
01

,4
2.
60

)
(3
9.
61

,3
9.
73

)
56

.6
0

(5
5.
06

,5
9.
04

)
(5
6.
58

,5
6.
62

)

2
O
F
I

47
.3
8

(4
6.
11

,4
9.
84

)
(4
7.
36

,4
7.
39

)
23

.8
3

(2
3.
80

,2
4.
14

)
(2
3.
83

,2
3.
84

)
37

.0
3

(3
7.
01

,3
7.
80

)
(3
7.
03

,3
7.
04

)
53

.9
5

(5
1.
59

,5
5.
94

)
(5
3.
93

,5
3.
97

)

2
O
C
I

49
.4
9

(4
8.
33

,5
2.
91

)
(4
9.
47

,4
9.
52

)
23

.9
4

(2
3.
87

,2
4.
02

)
(2
3.
94

,2
3.
94

)
37

.4
8

(3
7.
01

,4
3.
26

)
(3
7.
45

,3
7.
51

)
55

.8
1

(5
3.
31

,5
7.
11

)
(5
5.
80

,5
5.
83

)

2
O
A
I

47
.8
8

(4
5.
89

,5
3.
58

)
(4
7.
85

,4
7.
91

)
23

.9
2

(2
3.
80

,2
4.
29

)
(2
3.
92

,2
3.
92

)
37

.7
0

(3
7.
01

,4
4.
01

)
(3
7.
66

,3
7.
74

)
53

.7
5

(5
1.
21

,5
8.
57

)
(5
3.
73

,5
3.
78

)

A
ll
va
lu
es

ar
e
in

ki
lo
m
et
er
s,
an
d
th
e
95

%
C
I
co
lu
m
ns

de
no

te
th
e
95

%
co
nfi

de
nc
e
in
te
rv
al
ra
ng

es

123

Annals of Operations Research (2023) 322:413–440 435

Table 6 Optimal tour lengths for
the four clusters

Cluster C1 C2 C3 C4

Tour length 45.89 23.80 37.01 50.97

All values are in kilometers. For details, see Sect. 5.5

5.5 Shortest tours

5.5.1 Background

As we describe above, the heuristics offer the advantage of simplicity and solutions can
be obtained using open-source solvers. However these advantages come at the expense of
a suboptimal tour. We now benchmark the tours computed by the heuristic methods by
comparing them with the shortest possible tours. Finding an optimal tour of the TSP requires
the so-called subtour elimination constraints (SECs) that eliminate any tours not involving
the entire set of considered locations.

Let xi, j = 1 if location i is directly connected to location j in a tour, and 0 otherwise.
And, let ui denote the position of node i in the tour, with i > 1. Then, model 2 presents a
formulation of the TSP (Miller et al., 1960).

min
x,u

n∑

i=1

n∑

j=1; j
=i

Di, j xi, j (2a)

s.t.
n∑

i=1,i
= j

xi, j = 1 j = 1, . . . , n (2b)

n∑

j=1, j
=i

xi, j = 1 i = 1, . . . , n (2c)

ui − u j + nxi, j ≤ n − 1 2 ≤ i, j ≤ n (2d)

u1 = 1 (2e)

ui ∈ {2, . . . , n} i = 2, . . . , n (2f)

xi, j ∈ {0, 1} i = 1, . . . , n; j = 1, . . . , n. (2g)

Constraints (2b)–(2c) ensure that each location is visited only once,while constraints (2d)–
(2f) are the SEC from Miller et al. (1960). The objective function in (2a) minimizes the total
tour length.

5.5.2 Computational experiments

We solve model 2 with n = |C j |, j = 1, . . . , 4 for the clusters we present in Sect. 3. We use
the pre-implemented TSP solver—“Traveling Salesman Problem - Five” (GAMS, 2020)—in
the modeling language GAMS; this solver is again based on the formulation by Miller et al.
(1960). Table 6 presents the lengths of optimal tours.

From Tables 5 and 6 we observe that at least one of the heuristics manages to obtain
the optimal tour for clusters C1, C2, and C3. For cluster C4—the largest cluster with 113
locations—none of the heuristics manage to determine the optimal tour for this cluster in any
of their 5000 runs. Our preferredmethod 2OAI falls short by 0.5% from the optimal, however
the mean tour length is significant larger by 5.6%. For clusterC1—with 77 locations—2OAI

123

436 Annals of Operations Research (2023) 322:413–440

Table 7 Analogous results to
Table 5 for the 13 heuristic
methods without clustering

Mean Range 95% CI

NN 185.60 (168.02, 218.49) (185.32, 185.89)

NNR 168.02 (168.02, 168.02) (168.02, 168.02)

NI 188.70 (181.63, 191.54) (188.67, 188.74)

FI 160.92 (157.40, 167.15) (160.87, 160.97)

CI 185.96 (179.52, 189.62) (185.91, 186.01)

AI 167.00 (157.25, 186.52) (166.90, 167.10)

2O 167.08 (156.35, 191.72) (166.94, 167.21)

2ONN 163.27 (156.57, 173.11) (163.17, 163.37)

2ONNR 158.27 (158.27, 158.27) (158.27, 158.27)

2ONI 174.68 (168.08, 181.00) (174.61, 174.75)

2OFI 159.80 (155.87, 167.01) (159.76, 159.84)

2OCI 172.64 (165.09, 175.10) (172.58, 172.70)

2OAI 161.05 (155.42, 182.59) (160.98, 161.12)

All values are in kilometers

finds the optimal tour. Our choice of the best performing heuristic, 2OFI, could not find the
optimal tour and its shortest tour is 0.5% larger. However, themean tour lengths for 2OAI and
2OFI are 4.2% and 3.3% away from the optimal, lending credence to our choice of 2OFI
as a preferred method in Sect. 5.4. For cluster C2—the smallest cluster with 23 locations—
five of the 13 heuristic methods find the optimal tour. The mean of our preferred method,
2OFI, falls short by less than 0.01% from the optimal tour length. For cluster C3—with 24
locations—ten of the thirteen methods find the optimal tour. 2ONNR, our preferred method,
finds the optimal tour as well.

Summarizing the the total tour length over the four clusters by the use of the preferred
heuristics from Sect. 5.4 is in the range (161.93,162.02). The optimal tour length over the
four clusters is 157.67; i.e., the best heuristics are worse by at least 4.26 kms and at most
4.35 kms.

5.6 A tour without clustering

5.6.1 Background

In the preceding sections, to satisfy the needs of our particular problem’s application, we
solve a TSP separately on our four clusters assuming a different vehicle serves each cluster.
Next, we solve a single TSP over the entire set of locations to provide another benchmark for
our four tours. Both versions of the problem have the same number of edges. If clusters are far
away from each other, with few outliers close to other clusters, then the total tour length of the
cluster-first route-second version is expected to be shorter than that of the benchmark version.
However, if our clustering is poor and with locations closer to other clusters, we expect the
benchmark version to provide a shorter tour length. This intuition serves to provide another
indicator of the quality of clustering.

123

Annals of Operations Research (2023) 322:413–440 437

5.6.2 Computational experiments

We again use 5000 runs for the 13 heuristic methods. Table 7 presents results analogous
to Table 5. In Table 7, the maximum tour lengths for 2ONNR and 2OFI are less than the
minimum tour length for NN, NNR, NI, CI, and 2ONI, while the best tour—with a length
of 155.42 kms—is determined by 2OAI. We further determine the optimal tour length using
the method we present in Sect. 5.5.1 with a length of 153.48 kms; i.e., in this case our
heuristics are at least 2 kms worse. Summarizing, the shortest total tour length by the use
of heuristics for the cluster-first route-second version is 157.91 kms (optimal tour length =
157.67 kms), while that of the benchmark is 155.42 kms (optimal tour length = 153.48 kms).
These numbers further signify that open-source and already implemented heuristics have the
potential to quickly obtain near-optimal solutions in practical instances.

6 Conclusion

In this article, we present a review and a practical guide on the use of heuristics and open-
source solvers for a problem of collecting and dispersing cash from POSs using a fleet of
vehicles. We use data from the city of Perm, and empirically study the relationship of our
problem to the standard TSP and VRP. Our analysis demonstrates that, despite the relatively
small-sized problem we consider, a single heuristic does not uniformly perform the best. The
ease of understanding of methods by a practitioner—as well as the application—guides our
choice of the clustering; and, visual illustrations, such as the ones we present in this work,
assist in the decision-making process. Heuristics can fail to be optimal especially when the
number of data points is large. Yet, there are several grounds that encourage their use. First,
heuristics present an easy way for a practitioner to understand both the clustering and the
TSP. Second, heuristics have a direct and an open-source implementation available in many
programming languages, such as R, thereby allowing a straightforward application.

Our study has several limitations. Since we optimize based on the estimated distances
between the locations, we exclude several other aspects such as the amount of cash to restock
or withdraw from the POSs, time windows of delivery, and limits of cash a vehicle is allowed
to carry. Further, we ignore service hours of banks, shift length of the drivers, and service
times at each stop. Finally, the use of the great circle distance instead of the actual road
distance occasionally provides tours that cross the river over points that are not directly
connected. Future work could incorporate such extensions.

All our codes are publicly available at: https://github.com/Oberfichtner/Clustering_and_
TSP_with_R.git.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10479-022-04883-1.

Acknowledgements Parts of this work are based on the Master’s thesis of the second author. We thank the
two anonymous referees whose comments significantly improved the manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

123

https://github.com/Oberfichtner/Clustering_and_TSP_with_R.git
https://github.com/Oberfichtner/Clustering_and_TSP_with_R.git
https://doi.org/10.1007/s10479-022-04883-1
https://doi.org/10.1007/s10479-022-04883-1

438 Annals of Operations Research (2023) 322:413–440

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahmed, Z. H. (2012). An exact algorithm for the clustered travelling salesman problem. OPSEARCH, 50(2),
215–228. https://doi.org/10.1007/s12597-012-0107-0

Baniasadi, P., Foumani, M., Smith-Miles, K., & Ejov, V. (2020). A transformation technique for the clustered
generalized traveling salesman problem with applications to logistics. European Journal of Operational
Research, 285(2), 444–457. https://doi.org/10.1016/j.ejor.2020.01.053

Bektas, T. (2006). The multiple traveling salesman problem: An overview of formulations and solution pro-
cedures. Omega, 34(3), 209–219. https://doi.org/10.1016/j.omega.2004.10.004

Bellmore, M., & Nemhauser, G. L. (1968). The traveling salesman problem: A survey. Operations Research,
16(3), 538–558. https://doi.org/10.1287/opre.16.3.538

Bentley, J. J. (1992). Fast algorithms for geometric traveling salesman problems.ORSA Journal on Computing,
4(4), 387–411. https://doi.org/10.1287/ijoc.4.4.387

Blatt, A. J. (2012). Ethics and privacy issues in the use of GIS. Journal of Map & Geography Libraries, 8(1),
80–84. https://doi.org/10.1080/15420353.2011.627109

Bozkaya, B., Salman, F. S., & Telciler, K. (2017). An adaptive and diversified vehicle routing approach to
reducing the security risk of cash-in-transit operations. Networks, 69(3), 256–269. https://doi.org/10.
1002/net.21735

Brust, A. V. (2018). Ruteo de alta perfomance con OSRM. https://rpubs.com/HAVB/osrm
Budiaji, W. (2019). kmed: Distance-based K-Medoids. https://CRAN.R-project.org/package=kmed. R pack-

age version 0.3.0
Bullnheimer, B., Hartl, R., & Strauss, C. (1999). An improved ant system algorithm for thevehicle routing

problem. Annals of Operations Research, 89, 319–328. https://doi.org/10.1023/a:1018940026670
Çetiner, S., Sepil, C., & Süral, H. (2010). Hubbing and routing in postal delivery systems.Annals of Operations

Research, 181(1), 109–124. https://doi.org/10.1007/s10479-010-0705-2
Chisman, J. A. (1975). The clustered traveling salesman problem. Computers & Operations Research, 2(2),

115–119. https://doi.org/10.1016/0305-0548(75)90015-5
Cirasella, J., Johnson, D. S., McGeoch, L. A., & Zhang, W. (2001). The asymmetric traveling salesman

problem:Algorithms, instance generators, and tests. In A. L. Buchsbaum& J. Snoeyink (Eds.),Algorithm
Engineering and Experimentation (pp. 32–59). Springer.

Croes, G. A. (1958). Amethod for solving traveling-salesman problems.Operations Research, 6(6), 791–812.
https://doi.org/10.1287/opre.6.6.791

Dandekar, P. V., & Ranade, K. M. (2015). ATM cash flow management. International Journal of Innovation,
Management and Technology, 6(5), 343.

Ding, C., Cheng, Y., & He, M. (2007). Two-level genetic algorithm for clustered traveling salesman problem
with application in large-scale TSPs. Tsinghua Science and Technology, 12(4), 459–465. https://doi.org/
10.1016/s1007-0214(07)70068-8

Fischetti, M., González, J. J. S., & Toth, P. (1995). The symmetric generalized traveling salesman polytope.
Networks, 26(2), 113–123. https://doi.org/10.1002/net.3230260206

Friedman,M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance.
Journal of the American Statistical Association, 32(200), 675–701. https://doi.org/10.1080/01621459.
1937.10503522

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability (Vol. 174). W. H. Freeman & Co.
Gill,M. (2001). The craft of robbers of cash-in-transit vans:Crime facilitators and the dntrepreneurial approach.

International Journal of the Sociology of Law, 29(3), 277–291. https://doi.org/10.1006/ijsl.2001.0152
Giraud, T., Cura, R., Viry, M., & Lovelace, R. (2022). Interface between R and the openstreetmap-based

routing service (OSRM). Tech. rep. https://github.com/riatelab/osrm
Gubar, E., Zubareva, M., & Merzljakova, J. (2011). Cash flow optimization in ATM network model. Contri-

butions to Game Theory and Management, 4, 213–222.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s12597-012-0107-0
https://doi.org/10.1016/j.ejor.2020.01.053
https://doi.org/10.1016/j.omega.2004.10.004
https://doi.org/10.1287/opre.16.3.538
https://doi.org/10.1287/ijoc.4.4.387
https://doi.org/10.1080/15420353.2011.627109
https://doi.org/10.1002/net.21735
https://doi.org/10.1002/net.21735
https://rpubs.com/HAVB/osrm
https://CRAN.R-project.org/package=kmed
https://doi.org/10.1023/a:1018940026670
https://doi.org/10.1007/s10479-010-0705-2
https://doi.org/10.1016/0305-0548(75)90015-5
https://doi.org/10.1287/opre.6.6.791
https://doi.org/10.1016/s1007-0214(07)70068-8
https://doi.org/10.1016/s1007-0214(07)70068-8
https://doi.org/10.1002/net.3230260206
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1006/ijsl.2001.0152
https://github.com/riatelab/osrm

Annals of Operations Research (2023) 322:413–440 439

Guttmann-Beck, N., Hassin, R., Khuller, S., & Raghavachari, B. (2000). Approximation algorithms with
bounded performance guarantees for the clustered traveling salesman problem. Algorithmica, 28(4),
422–437. https://doi.org/10.1007/s004530010045

Hahsler, M., & Hornik, K. (2020). Traveling Salesperson Problem - R package. software. https://github.com/
mhahsler/TSP

Haseeb, K., Bakar, K. A., Abdullah, A. H., & Darwish, T. (2017). Adaptive energy aware cluster-based routing
protocol for wireless sensor networks.Wireless Networks, 23(6), 1953–1966.

Hougardy, S., Zaiser, F., & Zhong, X. (2020). The approximation ratio of the 2-Opt heuristic for the metric
traveling salesman problem.Operations Research Letters, 48(4), 401–404. https://doi.org/10.1016/j.orl.
2020.05.007

Jiang, H., Qian, J., & Zhao, J. (2009). Cluster head load balanced clustering routing protocol for wireless
sensor networks. In 2009 international conference on mechatronics and automation (pp. 4002–4006).
IEEE.

Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data. John Wiley & Sons Inc.
Kurdel, P., & Sebestyénová, J. (2013). Routing optimization for ATM cash replenishment. International

Journal of Computers, 7(4), 135–44.
Laporte, G. (2010). The traveling salesman problem, the vehicle routing problem, and their impact on combi-

natorial optimization. International Journal of Strategic Decision Sciences, 1(2), 82–92. https://doi.org/
10.4018/jsds.2010040104

Laporte, G., & Osman, I. H. (1995). Routing problems: A bibliography. Annals of Operations Research, 61(1),
227–262. https://doi.org/10.1007/bf02098290

Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of massive datasets (2nd ed.). Cambridge
University Press http://mmds.org

Maechler, M. (2019). R-packages - revision 7987:/trunk/cluster. software. https://svn.r-project.org/R-
packages/trunk/cluster

Malinen, M. I., & Fränti, P. (2014). Balanced k-means for clustering. In Lecture Notes in Computer Science
(pp. 32–41). Springer.

Mennucci, A. C. G. (2013). On asymmetric distances. Analysis and Geometry in Metric Spaces, 1, 200–231.
https://doi.org/10.2478/agms-2013-0004

Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman
problems. Journal of the ACM, 7(4), 326–329. https://doi.org/10.1145/321043.321046

Miranda-Bront, J. J., Curcio, B., Méndez-Díaz, I., Montero, A., Pousa, F., & Zabala, P. (2016). A cluster-
first route-second approach for the swap body vehicle routing problem. Annals of Operations Research,
253(2), 935–956. https://doi.org/10.1007/s10479-016-2233-1

Nallusamy, R., Duraiswamy, K., Dhanalaksmi, R., & Parthiban, P. (2010). Optimization of non-linear mul-
tiple traveling salesman problem using k-means clustering, shrink wrap algorithm and meta-heuristics.
International Journal of Nonlinear Science, 9(2), 171–177.

Open Source Routing Machine Project OSRM (2018). http://project-osrm.org/
Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle routing

problem. Annals of Operations Research, 41(4), 421–451. https://doi.org/10.1007/bf02023004
Park, H. S., & Jun, C. H. (2009). A simple and fast algorithm for k-medoids clustering. Expert Systems with

Applications, 36(2), 3336–3341. https://doi.org/10.1016/j.eswa.2008.01.039
Potvin, J. Y. (1996). Genetic algorithms for the traveling salesman problem. Annals of Operations Research,

63(3), 337–370. https://doi.org/10.1007/bf02125403
Raff, S. (1983). Routing and scheduling of vehicles and crews. Computers & Operations Research, 10(2),

63–211. https://doi.org/10.1016/0305-0548(83)90030-8
Rodríguez, A., & Ruiz, R. (2012). The effect of the asymmetry of road transportation networks on the traveling

salesman problem. Computers & Operations Research, 39(7), 1566–1576. https://doi.org/10.1016/j.cor.
2011.09.005

Rokach, L., & Maimon, O. (2005). Clustering methods. In Data mining and knowledge discovery handbook
(1st ed., pp. 321–352). Springer.

Rosenkrantz, D. J., Stearns, R. E., & Lewis, P. M. (1977). An analysis of several heuristics for the traveling
salesman problem. SIAM Journal on Computing, 6(3), 563–581. https://doi.org/10.1137/0206041

Rosenthal, R. E. (2007). GAMS - A User’s Guide. GAMS Development Corporation, Washington, DC, USA.
https://www.gams.com/latest/docs/UG_Tutorial.html

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster anal-
ysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-
0427(87)90125-7

123

https://doi.org/10.1007/s004530010045
https://github.com/mhahsler/TSP
https://github.com/mhahsler/TSP
https://doi.org/10.1016/j.orl.2020.05.007
https://doi.org/10.1016/j.orl.2020.05.007
https://doi.org/10.4018/jsds.2010040104
https://doi.org/10.4018/jsds.2010040104
https://doi.org/10.1007/bf02098290
http://mmds.org
https://svn.r-project.org/R-packages/trunk/cluster
https://svn.r-project.org/R-packages/trunk/cluster
https://doi.org/10.2478/agms-2013-0004
https://doi.org/10.1145/321043.321046
https://doi.org/10.1007/s10479-016-2233-1
http://project-osrm.org/
https://doi.org/10.1007/bf02023004
https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1007/bf02125403
https://doi.org/10.1016/0305-0548(83)90030-8
https://doi.org/10.1016/j.cor.2011.09.005
https://doi.org/10.1016/j.cor.2011.09.005
https://doi.org/10.1137/0206041
https://www.gams.com/latest/docs/UG_Tutorial.html
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7

440 Annals of Operations Research (2023) 322:413–440

Schubert, E., & Rousseeuw, P. J. (2019). Faster k-medoids clustering: Improving the PAM, CLARA, and
CLARANS algorithms. In G. Amato, C. Gennaro, V. Oria, & M. Radovanović (Eds.), Similarity search
and applications (pp. 171–187). Springer International Publishing.

Scott, M. S. (2001). Robbery at automated teller machines (Vol. 8). Office of Community Oriented Policing
Services: US Department of Justice.

Simovici, D. A.: The PAM clustering algorithm. https://www.cs.umb.edu/cs738/pam1.pdf
Snyder, L. V., & Daskin, M. S. (2006). A random-key genetic algorithm for the generalized traveling salesman

problem.European Journal of Operational Research, 174(1), 38–53. https://doi.org/10.1016/j.ejor.2004.
09.057

Sutton, T., Dassau, O., & Sutton, M. (2009). A gentle introduction to GIS. Tech. rep., Spatial Planning &
Information, Department of LandAffairs, Eastern Cape, South Africa.

Svestka, J. A., & Huckfeldt, V. E. (1973). Computational experience with an M-salesman traveling salesman
algorithm. Management Science, 19(7), 790–799. https://doi.org/10.1287/mnsc.19.7.790

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the Number of Clusters in a Data Set Via the Gap
Statistic. Journal of the Royal Statistical Society Series B, 63, 411–423. https://doi.org/10.1111/1467-
9868.00293

GAMS (2020) UN: tsp5.gms: TSP Solution with Miller et. al. Subtour Elimination (un). https://www.gams.
com/32/gamslib_ml/tsp5.345

Varese, F. (2001). The Russian mafia: Private protection in a new market economy. Oxford University Press.
Yu, D., Liu, G., Guo, M., & Liu, X. (2018). An improved k-medoids algorithm based on step increasing and

optimizing medoids. Expert Systems with Applications, 92, 464–473. https://doi.org/10.1016/j.eswa.
2017.09.052

Zadegan2013 Zadegan, S. M. R., Mirzaie, M., & Sadoughi, F. (2013). Ranked k-medoids: A fast and accurate
rank-based partitioning algorithm for clustering large datasets. Knowledge-Based Systems, 39, 133–143.
https://doi.org/10.1016/j.knosys.2012.10.012

Zahedi, Z. M., Akbari, R., Shokouhifar, M., Safaei, F., & Jalali, A. (2016). Swarm intelligence based fuzzy
routing protocol for clustered wireless sensor networks. Expert Systems with Applications, 55, 313–328.
https://doi.org/10.1016/j.eswa.2016.02.016

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://www.cs.umb.edu/cs738/pam1.pdf
https://doi.org/10.1016/j.ejor.2004.09.057
https://doi.org/10.1016/j.ejor.2004.09.057
https://doi.org/10.1287/mnsc.19.7.790
https://doi.org/10.1111/1467-9868.00293
https://doi.org/10.1111/1467-9868.00293
https://www.gams.com/32/gamslib_ml/tsp5.345
https://www.gams.com/32/gamslib_ml/tsp5.345
https://doi.org/10.1016/j.eswa.2017.09.052
https://doi.org/10.1016/j.eswa.2017.09.052
https://doi.org/10.1016/j.knosys.2012.10.012
https://doi.org/10.1016/j.eswa.2016.02.016

	Heuristics for a cash-collection routing problem with a cluster-first route-second approach
	Abstract
	1 Introduction
	2 Data sources and estimation
	3 Answering Q.1: clustering
	3.1 Partitioning around medoids
	3.1.1 Background
	3.1.2 Computational experiments

	3.2 Fast partitioning around Medoids
	3.2.1 Background
	3.2.2 Computational experiments

	3.3 Simple and fast k-Medoid
	3.3.1 Background
	3.3.2 Computational experiments

	3.4 Ranked k-Medoid
	3.4.1 Background
	3.4.2 Computational experiments

	3.5 Improved k-Medoids
	3.5.1 Background
	3.5.2 Computational experiments

	3.6 Summary of computational experiments

	4 Answering Q.2: number of clusters
	4.1 Elbow method
	4.1.1 Background
	4.1.2 Computational results

	4.2 Average Silhouette method
	4.2.1 Background
	4.2.2 Computational results

	4.3 Gap statistic method
	4.3.1 Background
	4.3.2 Computational results

	4.4 Summary of computational results

	5 Answering Q.3: routing within clusters
	5.1 Nearest neighbor
	5.1.1 Background
	5.1.2 Computational experiments

	5.2 Nearest insertion, farthest insertion, cheapest insertion, and arbitrary insertion
	5.2.1 Background
	5.2.2 Computational experiments

	5.3 Two-Opt
	5.3.1 Background
	5.3.2 Computational experiments

	5.4 Choice of the best heuristic
	5.5 Shortest tours
	5.5.1 Background
	5.5.2 Computational experiments

	5.6 A tour without clustering
	5.6.1 Background
	5.6.2 Computational experiments

	6 Conclusion
	Acknowledgements
	References

