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Abstract
Forecast combinations are a popular way of reducing the mean squared forecast error when
multiple candidate models for a target variable are available. We apply different approaches
to finding (optimal) weights for forecasts of stock returns in excess of different benchmarks.
Our focus lies thereby on nonlinear predictive functions estimated by a fully nonparamet-
ric smoother with the covariates and the smoothing parameters chosen by cross-validation.
Based on an out-of-sample study, we find that individual nonparametric models outperform
their forecast combinations. The latter are prone to in-sample over-fitting and in consequence,
perform poorly out-of-sample especially when the set of possible candidates for combina-
tions is large. A reduction to one-dimensional models balances in-sample and out-of-sample
performance.

Keywords Forecasting · Machine learning · Forecast combinations · Nonlinear prediction ·
Stock returns

1 Introduction

Financial investment planning for long-term savings is highly relevant for the development of
new pension products (Merton, 2014; Gerrard et al., 2019, 2020). Therefore, understanding
the dynamics of the stock market is crucial in providing the long-term saver with sufficient
wealth at retirement. It is well-known from the empirical literature that model-based pre-
dictions for longer horizons can provide better forecasts than the simple historical mean
(Campbell & Thompson, 2008). However, a careful validation approach has to be applied
when predictions of stock returns are based on reasonable long-term economic drivers. In this
paper, we focus on nonlinear predictive functionswhich are estimatedwith a fully data-driven
local-linear smoother in combination with a leave-k-out cross-validation for the prediction of
stock returns in excess of different benchmarks as developed inKyriakou et al. (2021a). These
functions optimally incorporate the given information as they allow for complex interrela-
tions of the potential predictor variables.Weworkwith low-dimensional models and estimate
individually for each selection of variables the nonlinear predictive relationship. However,
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forecast combinations are known to potentially reduce the mean squared forecast error when
several individual candidates are available. Thus, we not only validate the predictive power
of the individual forecasts but also analyse whether it is beneficial to combine them in several
ways. Recently, machine learning (ML) algorithms have been proposed for this purpose and
we focus mainly on weighting schemes for the forecast combinations which are based on
such techniques like the Lasso, the Ridge, and the Elastic Net, as well as their egalitarian
variants, or recently introduced refinements (Combination Elastic Net).We employ historical
S&P500 returns in excess of different benchmarks, including the short-term interest rate and
the inflation, at the annual frequency for a sample period ranging from 1872 to 2022.

The contributions of this paper are manifold. First, we extend the nonlinear prediction
framework ofKyriakou et al. (2021a) to also considering three-dimensionalmodels.We show
that such complex models can have reasonable predictive power both in-sample and out-of-
sample. For example, under the short-term interest rate benchmark, three of the five models
with the largest out-of-sample predictive power are three-dimensional. Thereby, the model
based on time-lagged excess returns, dividends, and term spread is the second-best predictive
model for the risk-premium (in terms of a large out-of-sample R2 value). Under the inflation
benchmark, four of the five models with the largest out-of-sample predictive power are three-
dimensional. The model based on real-dividends, real-earnings, and term-spread performed
best in predicting real stock returns out-of-sample (cf. Tables 2, 6). Second, we find that
individual nonparametric forecasts usually outperform forecast combination methods based
on ML techniques. If we allow under the short-term interest rate benchmark only for one-
dimensional candidates, then the forecast combinations give slightly better predictions than
the best individual model. Thus, the complexity introduced in the prediction process when
using ML-based techniques does not pay off well enough and it is better to use simpler and
more transparent methods. Third, we highlight that the classical shrinkage methods are prone
to in-sample over-fitting when too many individual forecasts are used as possible candidates.
The consequence is that the suggested predictive power is spurious and the out-of-sample
performance very poor. However, using only the one-dimensional models balances in-sample
and out-of-sample behaviour. Note also that forecast combinations perform better than the
simple historical average. Fourth, considering all variables in real terms net of inflation
(the inflation double benchmark) results in a much more stable and consistent analysis both
between models and over time when compared to the prediction of the risk premium (short-
term interest rate single benchmark). This is especially important for the long-term pension
saver who is interested in adequate strategies for real-income protection.

The remaining of this paper is organized as follows. Section 2 presents the literature
review. In Sect. 3, we introduce our long-term predictive framework, outline the estimation
procedure using the local-linear smoother, describe different ways of combing the individual
forecasts, and give an overview of the US stock market data. Section 4 provides a discussion
about the results of the empirical study for the prediction of the risk-premium and real returns.
Section 5 summarizes the key points of our analysis and concludes the paper.

2 Literature review

In the last decades, numerous studies in the academic literature focus on answering the
question of whether asset returns are predictable or not. From an economic perspective, it
was commonly assumed until the mid-1980s that predictability would contradict the efficient
markets hypothesis (Fama, 1970). However, the seminal work by Fama (1988), Campbell and

123



Annals of Operations Research

Shiller (1988), or Stambaugh (1999) suggests the nowadays ‘common wisdom’ of long term
predictability (Lioui & Poncet, 2019). For more recent approaches regarding stock market
forecasts, see, for example, Scholz et al. (2015), Scholz et al. (2016), Lioui and Poncet (2019),
or Akyildirim et al. (2022) and the discussion therein.

From the statistical or econometric point of view, the prediction setup can be described in
the following very general way (Hastie et al., 2017):

min
f ∈H

{
L
(
yt+h, f (Zt )

) + p( f , τ )

}
, t = 1, . . . , T , (1)

where yt+h is the variable to be predicted h periods ahead, Zt the vector of predictors, H a
space of possible functions f that combine the data to form the prediction, p a penalty on
f , τ a set of hyper-parameters (for example, the λ in the Lasso), and L a loss function that
defines the optimal forecast.

In this article, we take the long-term actuarial perspective and base our empirical study on
annual observations. Thus, we are not in a big-data context where the number of observations
is huge. The set of possible predictive variable combinations is also rather small. In other
words, we canworkwith low dimensional models in (1), and shrinkage, dimension reduction,
or penalization are not necessary. However, sparsity could be an issue with our data set and
a careful imposition of structure in the statistical modelling process is helpful. Note further
that the use of nonlinear functions f in (1) has shown evidence of much stronger stock return
predictabilitywhen compared to their linear counterparts (Lettau&VanNieuwerburgh, 2008;
Chen & Hong, 2010; Yang et al., 2010; Cheng et al., 2019; Caldeira et al., 2020; Freyberger
et al., 2020). Thus, the local-linear smoother based on the standard L2-loss function is ideally
suited. Note that a linear function—the classical benchmark in this context—can be estimated
without any bias.

Several studies are based on this technique. Most of them try to improve the prediction
utilizing additional structure in the estimation process and to reduce the impact of the curse
of dimensionality in a sparse data environment. Nielsen and Sperlich (2003) were the first
to introduce this nonparametric technique together with an adequate validation method into
the actuarial literature. Scholz et al. (2015) use bootstrap techniques to formally test the
null hypothesis of the non-predictability of returns and improve the smoothing through prior
knowledge using a multiplicative bias-reduction approach. Scholz et al. (2016) propose a
two-step procedure for the prediction of excess stock returns: (i) same-years bond yield is
constructed fully nonparametrically, and (ii) this additional predictor is used to forecast excess
stock returns. Mammen et al. (2019) focus on the prediction of the conditional variance of
long-term stock returns. They find that volatility forecastability is much less important at
longer horizons and that the homoscedastic historical average of the squared return predic-
tion errors give adequate approximations of the unobserved realised conditional variance.
Kyriakou et al. (2020) consider the 5-year horizon and corresponding econometric chal-
lenges like overlapping observations. They find that long-term forecasting performs well and
recommend drawing more attention to it when designing investment strategies for long-term
investors. Kyriakou et al. (2021a) propose the use of different benchmarks when predicting
stock returns. Their full benchmarking approach, that is, considering all variables net of infla-
tion, has important consequences for long-term saving strategies, where one is interested in
real value. Finally, Kyriakou et al. (2021b) propose an econometric model which combines
different horizons. Their method exploits the lower long-term variance to further reduce the
short-term variance, which is susceptible to speculative exuberance. As a consequence, the
long-term pension-saver avoids an over-conservative portfolio with implied potential upside
reductions given their optimal risk appetite. Our study analyses now the question of whether
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the combination of individual forecasts based onML techniques can improve predictability as
it was recently documented in the literature, for example, by Rapach and Zhou (2020). How-
ever, we find that this kind of complexity does not pay off well enough and we recommend
the use of simpler individual forecasts.

ML is one of the in-vogue topics in empirical finance and actuarial science (Asimit et
al., 2020; Dixon et al., 2020) for asset return prediction or portfolio choice (Coqueret &
Guida, 2020; Akyildirim et al., 2021, 2022). It is often seen as “ (i) a diverse collection
of high-dimensional models for statistical prediction, combined with (ii) so-called ‘regular-
ization’ methods for model selection and mitigation of overfit, and (iii) efficient algorithms
for searching among a vast number of potential model specifications” (Gu et al., 2020).
Mostly one of the following methods is well suited to address the three challenges men-
tioned earlier: linear models for regression (including regularization via shrinkage methods
with penalization, such as Ridge Regression, Lasso, or Elastic Nets), dimension reduction
via principal components regression and partial least squares, regression trees and forests
(including boosted trees and random forests), (deep) neural networks, and boosting (Oztekin
et al., 2016; Athey & Imbens, 2019; Coulombe et al., 2020; Gu et al., 2020; Hiabu et al.,
2020; Iworiso & Vrontos, 2020; Wu et al., 2020; Gambella et al., 2021).

Forecast combinations are a popularway of reducing themean squared forecast errorwhen
several individual predictive models (usually of low dimensionality) for a target variable
are available. The forecasting ability of individual predictive regression models could be
seriously impaired by model uncertainty and (parameter) instability (Rapach et al., 2010).
Several methods of finding the (optimal) combination forecast have been proposed in a
large body of literature: for example, a weighted average of forecasts, with the weights
adding up to unity (Granger & Ramanathan, 1984); trimming (Granger & Jeon, 2004); rank-
based approaches (Aiolfi&Timmermann, 2006); a least-squares forecast averaging (Hansen,
2008b); a complete subset regression (Elliott et al., 2013); iterated (Lin et al., 2018) or depth-
weighted combinations (Lee & Sul, 2021). Recently, ML techniques have been proposed to
select andweight appropriate individual forecasts using, for example,Lasso-basedprocedures
(Diebold & Shin, 2019; Mascio et al., 2020; Freyberger et al., 2020); a combining method
for sophisticated models with the historical average serving as shrinkage target (Zhang et al.,
2020); or the Combination Elastic Net (Rapach & Zhou, 2020). However, in many practical
applications, the simple average of candidate forecasts is more robust thanmore sophisticated
combination approaches (Qian et al., 2019), a phenomenonknownas the forecast combination
puzzle. A theoretical explanation for the latter is given in Claeskens et al. (2016) as well as
the warning that “ there is no guarantee that the ‘optimal’ forecast combination will be better
than the equal-weight case, or even improve on the original forecasts”.

3 Methodology andmaterials

In this section, we introduce the underlying financial model and the corresponding nonpara-
metric predictive long-term regressions. We follow the approach of Scholz et al. (2015) and
focus on (nonlinear) relationships between stock returns in excess of different benchmarks
and a set of predictor variables. We aim to compare individual models with several combina-
tion approaches in terms of their in-sample and out-of-sample predictability over the horizon
of 1 year. We consider the four benchmarks introduced in Kyriakou et al. (2021a): the short-
and the long-term interest rate, the earnings-by-price ratio, and the inflation rate.
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3.1 Predictive framework

Let Dt denote the (nominal) dividends paid during year t and Pt the (nominal) stock price
at the end of year t . We consider stock returns St = (Pt + Dt )/Pt−1 in excess (log-scale) of
a given reference rate or benchmark B(A)

t−1:

Y (A)
t = ln

St

B(A)
t−1

, (2)

where A ∈ {R, L, E,C} with, respectively,

B(R)
t = 1 + Rt

100
, B(L)

t = 1 + Lt

100
, B(E)

t = 1 + Et

Pt
, B(C)

t = CP It
C P It−1

,

Rt is the short-term interest rate, Lt the long-term interest rate, Et the earnings accruing to the
index in year t , and CP It the consumer price index for year t . The predictive nonparametric
regression model for the 1-year excess stock returns Y (A)

t is then given by

Y (A)
t = m(X (A)

t−1) + ξt , (3)

where
m(x (A)) = E(Y (A)|X (A) = x (A)), x (A) ∈ R

q , (4)

is the unknown conditional mean-function which is estimated with the local-linear smoother.
The error-terms ξt inEq. (3) formamartingale difference process and are serially uncorrelated
zero-mean random variables of an unknown conditionally heteroscedastic form σ(x).

Our individual predictive models use (subsets of) popular time-lagged predictive vari-
ables: the dividend-by-price ratio dt−1 = Dt−1/Pt−1; the earnings-by-price ratio et−1 =
Et−1/Pt−1; the short-term interest rate rt−1 = Rt−1/100; the long-term interest rate
lt−1 = Lt−1/100; the inflation rate πt−1 = (CP It−1 − CP It−2)/CP It−2; the term spread
st−1 = lt−1 − rt−1; and the excess stock return Y (A)

t−1. Note that we apply both the single
benchmarking approach (Kyriakou et al., 2021a), where only the dependent variable in Eq.
(2) is transformed with the benchmark, and the double benchmarking approach, where also
the predictive variables are transformed according to

X (A)
t−1 =

⎧⎪⎪⎨
⎪⎪⎩

1+Xt−1

B(A)
t−1

, X ∈ {d, e, r , l, π}
st−1

B(A)
t−1

= lt−1−rt−1

B(A)
t−1

Y (A)
t−1

, A ∈ {R, L, E,C}. (5)

The double benchmarking approach can be seen as a simple way of reducing dimensionality.
It allows to import more structure in the estimation process which can help to reduce or
circumvent problems caused by the curse of dimensionality. Remember that we apply our
methods to annual data, that is, we use sparsely distributed observations in higher dimensions
which limits the complexity of the fitted models.
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3.2 Estimation and evaluation procedure

In the empirical part, we estimate the unknown conditional mean function m of Eq. (3) with
the local-linear smoother which is based on the following minimization problem

min
a,b

T∑
t=1

(
Y (A)
t − a −

(
X (A)
t − x (A)

)�
b

)2

Kh

(
X (A)
t − x (A)

)
, (6)

where Kh denotes some kernel function, for example, the standard product kernel

Kh

(
X (A)
t − x (A)

)
= ∏q

s=1
1
hs
k

(
X (A)
t,s −x (A)

s
hs

)
which depends on a set of bandwidths h =

(h1, . . . , hq) and the kernels k of order ν. The latter are univariate symmetric functions
satisfying standard assumptions:

∫
k(u)du = 1,

∫
ulk(u)du = 0 (l = 1, . . . , ν − 1), and∫

uνk(u)du =: κν > 0. X (A)
t,s denotes the sth component of X (A)

t , s = 1, . . . , q . The solution
â = â(x (A)) of (6) is a consistent estimator of m(x (A)) which depends on the bandwidths
h. For a discussion of properties and references for proofs, see, for example, Section 3.1 in
Kyriakou et al. (2021a).

For the choice of the smoothing parameters h, we apply the local linear cross-validation
approach and select those bandwidths which minimize

CV (h) = min
h

T∑
t=1

(
Y (A)
t − m̂−t,h

)2
, (7)

where T is the number of observations in the estimation sample and m̂−t,h is the leave-k-
out estimator for the conditional mean function. It is computed by removing k observations
around the t th time point and depends on the horizon of the prediction. Here we focus on the
1-year horizon and use the classical leave-one-out estimator.

Based on the cross-validation criterion in Eq. (7), we introduce next our validationmeasure
used for in-sample model selection. It is a generalization of the validated R2 (Nielsen &
Sperlich, 2003) and is defined as

R2
V = 1 −

∑T
t=1

(
Y (A)
t − m̂−t,h

)2
∑T

t=1

(
Y (A)
t − Ȳ (A)

−t

)2 , (8)

where leave-k-out estimators (m̂−t,h and Ȳ (A)
−t ) are used for the conditional mean function

m and for the unconditional (historical) mean of Y (A)
t , respectively. The R2

V measures the
predictive power of a givenmodel compared to the cross-validated historical mean. A positive
R2
V implies that the predictor-based regression model (3) outperforms the corresponding

historical average excess stock return over T years. Thus, we use the R2
V to rank all possible

candidate models and prefer the one with the largest value. We can use the R2
V also for

bandwidth selection as maximizing the R2
V in Eq. (8) is equivalent to minimizing the cross-

validation criterion in Eq. (7). Note further thatwe apply the R2
V also to the linear counterparts

of the regression model (3). In this case, just replace m̂−t,h by the linear predictor based on
the leave-k-out OLS-estimate β̂−t .
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For out-of-sample evaluation, we use the last τ observations in our records to calculate
the classical out-of-sample R2 (Campbell & Thompson, 2008) which is defined as

R2
oos = 1 −

∑T+τ
t=T+1

(
Y (A)
t − m̂t

)2
∑T+τ

t=T+1

(
Y (A)
t − Ȳ (A)

t

)2 , (9)

where m̂t is the fitted value from the predictive regression estimated through period T (the
last observation in the estimation sample) and evaluated at X (A)

t−1 (t = T + 1, . . . , T + τ ),

and Ȳ (A)
t is the historical average return through period t − 1. In other words, we use the

estimation sample (t = 1, . . . , T ) to fix the model by choosing corresponding bandwidths
and evaluate through period t − 1 in the left out sample. A positive R2

oos indicates that the
predictive regression has a lower average mean squared prediction error than the historical
average return. As Campbell and Thompson (2008) point out, the historical average has an
advantage over predictive regressions because it is based on more observations and more
recently available information.

3.3 Forecast combinations

It is well documented in the literature that the combination of M individual forecasts Ŷ (A),m
t+1

(with m = 1, . . . , M), defined as

Ŷ comb
t+1 = w1Ŷ

(A),1
t+1 + . . . + wMŶ (A),M

t+1 , (10)

may perform better (in terms of higher out-of-sample predictability) than the individual
predictions itself (Bates & Granger, 1969; Granger & Ramanathan, 1984; Rapach et al.,
2010). A popular choice is, for example, the simple average of the M different predictors:

Ŷ av
t+1 = 1

M

M∑
m=1

Ŷ (A),m
t+1 . (11)

Each individual forecast gets the same weight wm = 1/M which shrinks, in case of a
multivariate linear predictive model, the estimated (and probably biased) coefficients by
the factor 1/M and reduces the role of multicollinearity when highly correlated predictors
are used (Rapach et al., 2010). The simple average (11) allows to incorporate information
of a large number of plausible predictors and helps to prevent from in-sample over-fitting
(Rapach & Zhou, 2020). However, equal weights can be sub-optimal as one usually wants to
give more weight to those forecasts with errors of lower variance (Diebold & Shin, 2019). In
addition, when a large number of potential predictors is available, the redundant ones should
be excluded, that is, have a weight of zero. Thus, several ML techniques have been applied to
select and weight the relevant predictors in Eq. (10). Popular regularization methods set some
weights to zero and shrink the remaining weights to zero [the ‘classical’ Lasso (Tibshirani,
1996), the ‘adaptive’ Lasso (Zou, 2006), the Ridge Regression (Hoerl & Kennard, 1970),
or the Elastic Net (ENet) (Zou & Hastie, 2005)) or toward equality [the ‘egalitarian’ Lasso,
the ‘egalitarian’ Ridge (Diebold & Shin, 2019), or the ‘combination’ Elastic Net (cENet)
(Rapach & Zhou, 2020)].
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The underlying penalization problem for the forecast combination methods used in this
paper can be summarized as follows:

ŵ = argminw

[ T∑
t=1

(
Y (A)
t −

M∑
m=1

wmŶ
(A),m
t

)2

+ λ

M∑
m=1

{
α|wm | + (1 − α)w2

m

}]
, (12)

that is, the Lasso (α = 1), the Ridge (α = 0), and the ENet (α ∈ (0, 1)) with wm (m =
1, . . . , M) restricted to be non-negative. In addition, we consider their ‘egalitarian’ versions
(eLasso, eRidge, and eENet) using a two-step procedure (Diebold & Shin, 2019): Solving
the standard problem (12), we (i) select the l important forecasts of the full set of M potential
candidates, that is, the M − l forecasts with weight zero are excluded; and (ii) shrink their
combining weights towards equality, that is, toward 1/l. Recently, Rapach and Zhou (2020)
proposed a further refinement, the so called ‘combination’ ENet (cENet). They split the
estimation sample into two parts: an initial in-sample period and an ‘holdout’ out-of-sample
period; and apply the eENet only on the latter instead on all available observations. Note
further that we use the multivariate regression approach introduced in Sect. 3.1. Therefore,
we also account formodel complexitymeasured by the number of included predictor variables
and combine the different forecasts based on complete subset regressionswith dimensionality
k ∈ {1, 2, 3} (Elliott et al., 2013).

This leads in total to 32 different ways of combining the individual forecasts: applying
the set of methods consisting of Lasso, Ridge, ENet, eLasso, eRidge, eENet, cENet, and
simple average to all available potential forecasts or restricting to the k-dimensional ones
with k ∈ {1, 2, 3}.

3.4 The data

In the empirical part of this paper, we apply the methods described in Sects. 3.2 and 3.3 to
annual US stock market data over the period 1872 to 2022. We use a revised and updated
version of the series described in Shiller’s Chapter 26 (Shiller, 1989) which consist of the
Standard and Poor’s (S&P) Composite Stock Price Index, dividends and earnings accruing
to the index, a 1-year interest rate, a long government bond yield, and the consumer price
index.1 Note that we had to replace the original risk-free rate series (which was discontinued
in 2013) by an annual yield based on the 6-month Treasury-bill rate,2 secondary market. This
new series is only available from 1958 onwards. Therefore, we regressed the Treasury-bill
rate on the original commercial paper rate from Shiller’s data and instrumented the risk-
free rate from 1872 to 1957 with corresponding predicted values. For more details, see, for
example, Kyriakou et al. (2020) or Mammen et al. (2019). Table 1 summarizes the available
variables with their basic descriptive statistics for both, the in-sample part of the data used
for estimation and the out-of-sample part of the data used for evaluation of predictability. It
is evident that most of the variables have a much larger mean and standard deviation in the
left-out part. However, we focus on the predictability of excess stock returns which are very
similar in both parts. Figure 1 exemplarily shows them in excess of the risk-free rate with the
out-of-sample period highlighted in red. Note that large positive returns have been realized
with higher probability in the in-sample part of the data.

1 http://www.econ.yale.edu/~shiller/data.htm.
2 https://fred.stlouisfed.org/series/TB6MS.
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Table 1 US market data (1872–2022)

Max Min Mean Sd Skew Exc. kurt

A: In-sample part of data (1872–1962)

S&P stock price index 69.07 3.25 13.16 13.24 2.47 5.81

Dividend accruing to index 2.13 0.18 0.63 0.49 1.51 1.29

Earnings accruing to index 3.67 0.16 1.04 0.93 1.52 1.13

Short-term interest rate 7.46 0.55 3.46 1.69 − 0.08 − 0.57

Long-term interest rate 5.58 1.95 3.56 0.82 0.29 − 0.28

Consumer price index 30.00 6.47 14.30 6.74 0.89 − 0.32

B: Out-of-sample part of data (1963–2022)

S&P stock price index 4573.82 65.06 863.33 999.28 1.65 2.64

Dividend accruing to index 60.4 2.28 17.16 15.96 1.30 0.73

Earnings accruing to index 197.84 4.02 40.70 41.55 1.49 2.05

Short-term interest rate 14.93 0.07 4.68 3.29 0.56 0.33

Long-term interest rate 14.59 1.08 5.87 2.97 0.63 0.03

Consumer price index 281.15 30.4 137.92 76.5 0.07 − 1.34

The S&P 500 Stock Composite Index in its current form was introduced in March 1957. Relevant series prior
to this date have been re-calculated or taken from several historical sources. For more details, see, Chapter 26
in Shiller (1989)

1900 1950 2000

on
e−

ye
ar

 e
xc

es
s 

st
oc

k 
re

tu
rn

In−sample period
Out−of−sample period

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

−0.6 −0.4 −0.2 0.0 0.2 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

excess stock returns

de
ns

ity

In−sample period
Out−of−sample period

Fig. 1 Stock returns in excess of the risk-free rate. In-sample part (black), out-of-sample part (red). Left:
Time-series plot, Right: Density estimates. Period: 1872–2022. Data: annual S&P 500. (Color figure online)

4 Results and discussion

In this section, we present and discuss the results of the empirical application. For ease of
presentation, we focus to the most important benchmark models of Kyriakou et al. (2021a),
the short-term interest rate (single benchmarking) and the inflation rate (double benchmark-
ing). Results for the other benchmarks (single and double benchmarking) are available upon
request. Note that the short-term interest rate benchmark directly corresponds to the classical
prediction of the risk premium (over a risk-free investment) and the inflation rate benchmark
refers to the forecast of real returns as led by Merton (2014).
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One primary goal of this study is to compare the in-sample predictive power of sev-
eral methods with the corresponding out-of-sample performance. For this reason, we split
the annual US stock market data into two parts: (i) an in-sample period (1872–1962) used
for (smoothing) parameter estimation and in-sample validation and (ii) an out-of-sample
period (1963–2022) of 60 years used for 1-year-ahead prediction and out-of-evaluation. We
estimated the nonparametric models with a local-linear kernel smoother using the quartic
(product) kernel. The smoothing parameters (bandwidths) were chosen by leave-one-out
cross-validation, that is, by maximizing the in-sample performance measure R2

V introduced
in Sect. 3.2. In other words, the in-sample period is just used to fix the smoothness of the
underlying conditional mean function. The prediction itself is then based on most recent
(time-lagged) information. The corresponding linear models were estimated with ordinary
least squares (OLS).

4.1 Prediction of the risk-premium

Numerous academic research articles rely on macroeconomic variables to forecast the
U.S. equity risk premium. We follow this road and present to begin with in Table 2 the
comparison of in-sample predictive power (measured by the R2

V ) and out-of-sample perfor-
mance (measured by the R2

oos) for several individualmodels. Based on the in-samplemeasure,
the best five nonparametric models ({sp}, {r}, {r , sp}, {l, sp}, {r , l}) have a R2

V in the range
of 8.8–6.9% and are one- or two-dimensional models with three of them including the term
spread as covariate. However, only two of those models ({sp},{l, sp}) perform convincingly
out-of-sample and are under the top five predictive models ({l, sp}, {Y , d, sp}, {e, in f , sp},
{l, in f , sp}, {sp}) demonstrating a R2

oos in the range of 15.5–9.1%. Note that the term-spread
is included in all of these models and that now also some of the three-dimensional models
perform reasonably out-of-sample. Nevertheless, most three-dimensionalmodels cannot beat
the historical mean over the considered 60 year out-of-sample period. For the linear models,
we find a similar set of five best performing (in-sample) models ({sp}, {r}, {r , l}, {r , sp},
{l, sp}) with a R2

V in the lower range of 7.9–6.6%. However, only three of those models can
beat the historical mean out-of-sample ({e, sp}, {r , sp}, {l, sp}with a R2

oos between 4.2% and
7.0%). The five best performing predictive models ({d, r , l}, {d, l, sp}, {e, r , l}, {e, r , sp},
{e, l, sp}) are all three-dimensional with R2

oos in the range of 13.2–9.3%. Here, the combi-
nation of earnings and spread together with an additional variable gives the most promising
results.

In a next step, we consider the correlation between the individual forecasts. Figure 2
displays the correlation matrix of forecasts from all one- and two-dimensional nonparametric
models for both the in-sample (left) and out-of sample predictions (right). The ‘ideal’ or best
individual predictor would be (highly) positively correlated with the excess stock returns
in the out-of-sample period. To improve over such a forecast, the (linear) combination of
different individual predictors must be (i) positively correlated to the former and (ii) would
be composed of positively correlated candidates. When considering forecasts from the two-
dimensional models, the left-hand side of Fig. 2 shows for most of them a (high) positive
correlation. Thus, one would expect a large potential for improvements in predictive power
using forecast combinations when a strong selection (shrinkage) of only a few predictive
candidates based on the in-sample information occurs. However, for the corresponding out-
of-sample predictions the correlations are less pronounced and for some even negative. Using
now theweights fixed in the estimation samplewill not necessarily lead to an improved out-of-
sample performance. For a theoretical analysis on factors that determine the advantages from
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Fig. 2 Correlations of predictions for stock returns in excess of the risk-free rate (for nonlinear models of one
or two predictive variables). Left: In-sample, Right: Out-of-sample. Period: 1872–2022. Data: annual S&P
500

combining forecasts including a discussion on their correlation can be found, for example,
in Timmermann (2006). Note that there are only a few studies which directly account for the
possibility of correlation between forecasts (Guerrero & Pena, 2003).

As described in Sect. 3.3, forecast combinations are a popular method for further improv-
ing the forecast quality. Table 3 summarizes 32 different versions of such combinations
making use of the individual forecasts shown in Table 2. When using all 62 different non-
parametric forecasts, the ENet (25.1%), theRidge (22.3%), the Lasso (21.6%), and the eLasso
(8.8%) improve in-sample over the individual models. However, none of those combinations
produces forecasts that can beat the historical mean out-of-sample, that is, having any predic-
tive power. This finding shows that those methods are prone to in-sample over-fitting when
too many candidate models are available (even when these methods are validated against
the mean). The situation is different, when the possible candidates are restricted to be one-
dimensional. Now, the Enet, the Lasso, and the eLasso have both higher in-sample and higher
out-of-sample power than individual models (R2

V =13.1%, 11.4%, 9.2%, and R2
oos =17.1%,

17.0%, 16.1%). Note that all of those combine individual forecasts based on the term-spread
and the long-term interest rate. In terms of out-of-sample improvements, restrictions to two-
or three-dimensional individual forecasts are less successful strategies. For example, in the
two-dimensional case, the Enet (R2

V = 11.0%) selects the forecasts of the following four
individual models: {Y , sp}, {d, r}, {e, r}, and {e, in f }, which are highly correlated in-sample.
The combined forecast improves over the individual ones in-sample but is far away from the
out-of-sample predictive power of the best individual model. For the linear counterpart, only
a few of the forecast combination methods are able to increase the in-sample performance.
For example, the Ridge and the Enet restricted to three-dimensional individual models show
R2
V values of 9.5% and 8.0%. However, only one of the 32 ways of combining individual

forecastswas able to improve out-of-sample over the best individual three-dimensionalmodel
(eLasso with Roos = 13.6). Note also that in-sample over-fitting is not such an issue in the
linear case because the higher-dimensional models do not include interaction terms. This is
also the reason for having very similar results, when accounting for model complexity (that
is, similar R2

oos values in all the panels of Table 3). The nonlinear and linear case have in
common that the recently proposed refinement of the elastic net, the cEnet, was hardly able

123



Annals of Operations Research

Table 3 Comparison of
predictive power: in-sample
(measured by the R2

V ) versus
out-of-sample (measured by the
R2
oos )

Forecast combination Non-par Linear

Nr. Dim. type R2
V R2

oos R2
V R2

oos

64. All Lasso 0.216 − 1.013 − 0.001 0.112

65. All Ridge 0.223 − 1.116 0.072 0.053

66. All Enet 0.251 − 1.321 0.089 0.124

67. All eLasso 0.088 − 0.282 0.054 0.109

68. All eRidge 0.009 − 0.027 0.053 0.043

69. All eEnet 0.035 − 0.035 0.056 0.107

70. All cENet 0.022 0.000 0.054 0.095

71. All Average 0.054 0.072 0.053 0.043

72. 1D Lasso 0.114 0.170 0.062 0.095

73. 1D Ridge 0.117 − 0.067 0.063 0.029

74. 1D Enet 0.131 0.171 0.075 0.101

75. 1D eLasso 0.092 0.161 0.080 0.053

76. 1D eRidge 0.051 0.025 0.041 0.041

77. 1D eEnet 0.091 0.146 0.078 0.035

78. 1D cENet 0.033 0.046 0.022 0.000

79. 1D Average 0.051 0.025 0.041 0.041

80. 2D Lasso 0.067 0.099 0.024 0.116

81. 2D Ridge 0.087 0.090 0.067 0.046

82. 2D Enet 0.110 0.116 0.075 0.123

83. 2D eLasso 0.065 0.072 0.068 0.121

84. 2D eRidge 0.055 0.087 0.054 0.032

85. 2D eEnet 0.034 0.045 0.064 0.112

86. 2D cENet 0.022 0.000 0.044 0.098

87. 2D Average 0.055 0.087 0.054 0.032

88. 3D Lasso 0.254 − 1.124 0.057 0.128

89. 3D Ridge 0.217 − 1.496 0.095 0.058

90. 3D Enet 0.258 − 1.103 0.080 0.125

91. 3D eLasso 0.041 − 1.067 0.054 0.136

92. 3D eRidge 0.021 − 0.095 0.050 0.043

93. 3D eEnet 0.041 − 1.067 0.053 0.123

94. 3D cENet 0.045 0.098 0.052 − 0.289

95. 3D Average 0.049 0.060 0.050 0.043

One-year stock returns in excess of the short-term interest rateY (R)
t mod-

elled by forecast combinations based on individual forecasts of models
from Table 2 (the single benchmarking approach) applying the Lasso,
the Ridge, the Enet, the eLasso, the eRidge, the eEnet, the cENet, and the
simple average to all possible models or only to the k-dimensional ones
with k ∈ {1, 2, 3}. In-sample period: 1872–1962, out-of-sample period:
1963–2022. Improvements (column-wise) compared to largest measure
in Table 2 highlighted in bold
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to beat the historical mean at all. For the linear models, it was even the only of the eight
different ways of combining individual forecasts that produced negative R2

oos values.
Now, we address the question of how the models best performing out-of-sample behave

during recessions and economic expansions. For this purpose, we calculate the out-of-sample
mean squared error during the aforementioned sub-samples based on the US business cycle
expansion and contraction data provided by the NBER3 and for the full period. Note that in
the 60-year out-of-sample period only 8 years have been classified as recessions years (that is,
with more than 6 months of a recession). Table 4 shows a comparison of these out-of-sample
measures for the individual models, while Table 5 focusses on the forecast combination
methods. It is evident that the (nonparametric and linear) models with the smallest out-of-
sample mean squared error over the full period (and thus largest R2

oos values) belong to
the best performing models during economic expansions. Note that such models perform
only slightly better than the historical mean during the recessions. There are several models
which perform reasonably well during the recessions (for example, {e, l, in f } or {d, l, in f }).
However, they have in common not to be able to beat the historical mean during economic
expansions. A similar conclusion can be drawn for the forecast combination methods. Only
a few of them can improve over the best individual models during the full period and the
expansions, while non of those methods improves during the recessions.

We finish the empirical analysis for the risk premium by checking the robustness of the
considered models over time. For this purpose, we increased the in-sample period stepwise
from 89 to 124 years (and reduced the out-of-sample evaluation period correspondingly from
60 to 35 years). Figure 3 shows the R2

V (left) and the R2
oos (right) for models with the largest

out-of-sample R2 (we show the best three nonparametric and the best three linear models,
resp.). Note that for the nonparametricmodels, only individualmodels give reasonable results
over time. The best three are: {sp}, {e, sp}, and {d, in f , sp}. However, the most forecast
combination models suffered from negative Roos during the out-of-sample periods 1975–
2022 or 1980–2022. For the linearmodels, the situation is quite different: only three individual
models but most forecast combination models performed steadily over time. The best three
in this case are: the Lasso and the Enet over all individual models, and the Lasso over all
3-dim. models. Figure 3 shows as well that (i) the in-sample performance of the displayed
models increases steadily over time and (ii) the out-of-sample performance for the first half of
the considered period remains stable but reduces sharply at their end. A possible explanation
could be the fact that when the out-of-sample period gets shorter and shorter it is highly
dominated by the large negative returns during the Great Recession which was caused by the
Global Financial Crisis (compare also Fig. 1). To summarize, the model which performed
best in terms of a high and stable R2

oos was the nonparametric model based on the term-spread
as covariate.

4.2 Prediction of real returns

Real-income protection is one of the main aspects in long-term pension planning (Merton,
2014; Gerrard et al., 2018, 2019). Therefore, the underlying financial model used when
optimizing the investment asset allocation for the long term should reflect these needs in
real terms. We apply here the double benchmarking approach of Kyriakou et al. (2021a)
with the inflation as the reference rate, that is, all variables are measured net of inflation.
Note that inflation itself cannot be included as a covariate because it is transformed to a
constant. Therefore, only 40 different models are possible under the inflation benchmark

3 https://fred.stlouisfed.org/series/USREC.
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Table 5 Comparison of predictive power: out-of-sample mean squared error for the full sample period (full),
during recessions (rec) and expansions (exp)

Forecast combination Non-par Linear

Nr. Dim. type Full Rec Exp Full Rec Exp

64. All Lasso 0.048 0.066 0.045 0.021 0.061 0.015

65. All Ridge 0.051 0.045 0.052 0.023 0.048 0.019

66. All Enet 0.056 0.052 0.056 0.021 0.051 0.016

67. All eLasso 0.031 0.057 0.027 0.021 0.048 0.017

68. All eRidge 0.025 0.058 0.019 0.023 0.050 0.019

69. All eEnet 0.025 0.057 0.020 0.021 0.052 0.017

70. All cENet 0.022 0.050 0.018 0.022 0.066 0.015

71. All Average 0.022 0.050 0.018 0.023 0.050 0.019

72. 1D Lasso 0.020 0.056 0.014 0.022 0.067 0.015

73. 1D Ridge 0.026 0.045 0.023 0.023 0.049 0.019

74. 1D Enet 0.020 0.056 0.014 0.022 0.063 0.015

75. 1D eLasso 0.020 0.059 0.014 0.023 0.057 0.017

76. 1D eRidge 0.023 0.061 0.018 0.023 0.058 0.018

77. 1D eEnet 0.020 0.059 0.014 0.023 0.057 0.017

78. 1D cENet 0.023 0.060 0.017 0.023 0.058 0.018

79. 1D Average 0.023 0.061 0.018 0.023 0.058 0.018

80. 2D Lasso 0.022 0.064 0.015 0.021 0.062 0.015

81. 2D Ridge 0.022 0.048 0.018 0.023 0.049 0.019

82. 2D Enet 0.021 0.051 0.017 0.021 0.051 0.016

83. 2D eLasso 0.022 0.054 0.017 0.021 0.056 0.016

84. 2D eRidge 0.022 0.051 0.017 0.023 0.051 0.019

85. 2D eEnet 0.023 0.057 0.018 0.021 0.054 0.016

86. 2D cENet 0.022 0.051 0.017 0.022 0.066 0.015

87. 2D Average 0.022 0.051 0.017 0.023 0.051 0.019

88. 3D Lasso 0.051 0.067 0.048 0.021 0.056 0.016

89. 3D Ridge 0.060 0.056 0.060 0.023 0.047 0.019

90. 3D Enet 0.050 0.067 0.048 0.021 0.052 0.016

91. 3D eLasso 0.049 0.064 0.047 0.021 0.049 0.016

92. 3D eRidge 0.026 0.050 0.023 0.023 0.048 0.019

93. 3D eEnet 0.049 0.064 0.047 0.021 0.052 0.016

94. 3D cENet 0.022 0.058 0.016 0.031 0.046 0.029

95. 3D Average 0.022 0.048 0.019 0.023 0.048 0.019

One-year stock returns in excess of the short-term interest rate Y (R)
t modelled by forecast combinations based

on individual forecasts of models from Table 4 (the single benchmarking approach) applying the Lasso, the
Ridge, the Enet, the eLasso, the eRidge, the eEnet, the cENet, and the simple average to all possible models
or only to the k-dimensional ones with k ∈ {1, 2, 3}. In-sample period: 1872–1962, out-of-sample period:
1963–2022. Improvements (column-wise) compared to smallest measure in Table 4 highlighted in bold

123



Annals of Operations Research

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

length in−sample period

in
−s

am
pl

e 
R

sq

89 94 99 104 109 114 119 124

nonpar 7
nonpar 22
nonpar 53
lin 64
lin 66
lin 88

0.
00

0.
05

0.
10

length out−of−sample period

ou
t−

of
−s

am
pl

e 
R

sq

60 55 50 45 40 35 30 25

nonpar 7
nonpar 22
nonpar 53
lin 64
lin 66
lin 88

Fig. 3 Robustness over time (increasing in-sample period) for selected models for stock returns in excess of
the risk-free rate. Left: R2

V , Right: R
2
oos . Period: 1872–2022. Data: annual S&P 500

(instead of the 62 when single-benchmarking with the risk-free rate in Sect. 4.1) because
all combinations which include inflation as a covariate are redundant. Table 6 presents the
comparison of in-sample performance (measured by the R2

V ) and out-of-sample predictive
power (measured by the Roos) for the individual models. Based on the in-samplemeasure, the
best five nonparametric models ({e, sp}, {Y , e, sp}, {r , sp}, {l, sp}, {r , l}) have a R2

V in the
range of 18.3–16.6%. We find again the term-spread to be included in most of these models.
However, only the model {e, sp} performs convincingly out-of sample (Roos = 13.9%) as
it is one of the five best predictive models ({d, e, sp}, {e, sp}, {e, r , sp}, {e, l, sp}, {e, r , l})
demonstrating a R2

oos in the range of 13.9–13.0%. Note that the combination of real earnings
and spread is included in four of those models. For the linear case, we find the same set of
five best performing (in-sample) models with a R2

V in the range of 18.5–16.9%. However,
only two of those models beat the historical mean out-of-sample ({e, sp}, {Y , e, sp} with
an R2

oos of 13.3% and 11.1%, resp.). The best five predictive models ({d, e, sp}, {e, sp},
{e, r , l}, {e, r , sp}, {e, l, sp}) include all the variable combination of real earnings and the
spread, in most cases together with an additional covariate. Their R2

oos values are in the range
13.4–12.9%.

When considering the correlation matrix of the in-sample forecasts from all one- and
two-dimensional nonparametric models which is displayed in Fig. 4 (left hand side), one can
observe that most predictors are highly positively correlated. The three exceptions are the
models Y , sp, and {Y , sp} which indeed are the models with the lowest R2

V values, that is,
the worst in-sample performance. The correlations for the out-of-sample forecasts shown in
Fig. 4 (right hand side) are less pronounced but remain mostly positive (in contrast to the
risk-free rate benchmark discussed above).

In the next step, we focus on the in- and out-of-sample performance of the 32 different
forecast combination models. The corresponding results are shown in Table 7. When using
all 40 available models, we find similar as before that the ENet (27.1%), the Ridge (23.8%),
and the Lasso (23.7%) largely improve in-sample over the individual models. However,
none of these forecast combinations produces forecasts with improved predictive power
out-of-sample compared to individual models. We confirm our finding from the risk-free
benchmark that those methods are prone to over-fitting. The restriction to one-dimensional
models reduces a bit the in-sample R2

V (ENet: 21.8%, Ridge: 20.1%, Lasso: 19.2%) but all
of these models have now R2

oos values larger than 12.7%. However, none of the forecast
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Fig. 4 Correlations of predictions for stock returns in excess of the inflation rate (for nonlinear models of one
or two predictive variables). Left: in-sample, Right: out-of-sample. period: 1872–2022. Data: annual S&P 500

combination models is able to improve out-of-sample over the best individual model. Note
that the cENet seems to perform reasonable under the double inflation benchmark. The reason
is that it selects only the single two-dimensional model based on real earnings and the term
spread, one of the best individual candidate models. For the linear counterpart, the situation is
similar. In-sample, mostly the ENet improves over the individual models. But out-of-sample,
non of the 32 ways of combining individual forecasts was able to increase the predictive
power over the best individual three-dimensional model.

For the performance during recessions or economic expansions, we find similar pattern
as under the risk-free rate benchmark. Table 9 shows the mean squared errors for the indi-
vidual models and Table 8 for the forecast combination models. One observes again that the
(nonparametric and linear) models with the smallest out-of-sample mean squared error over
the full period excellently perform during economic expansions but are only slightly able
to beat the historical mean during the recessions. There are again several models which are
performing very promising during recessions (for example, {Y , d, l} or {Y , d, r}). During
the economic expansions, however, these models cannot beat the historical mean at all.

We finish the empirical part with the robustness check over time. Figure 5 shows the R2
V

(left) and the R2
oos (right) for models with the largest out-of-sample R2 (we restrict ourselves

again to the best three nonparametric and the best three linear models, resp.). In contrast
to the risk-free benchmark, the performance over time is more stable under the inflation
benchmark. For the nonparametric models, 8 of the individual models and 18 of the forecast
combinations were able to beat the historical mean in each setting. However, the three best
performing models are {e, sp}, {d, e, sp}, and {e, l, sp}. For the linear models, a similar set
of 8 individual models and 28 of the forecast combinations yield positive R2

oos values over
time. Again, the three best performing models were individual models: {d, e, sp}, {e, r , l},
and {e, l, sp}. Figure 5 also shows that the in-sample performance is now quite stable over
time. However, the out-of-sample measure sharply drops at the end of the considered period.
Note also that nonparametric and linearmodels are close together in-sample as well as out-of-
sample.Nevertheless, the nonparametricmodels based on the covariates {e, sp} and {d, e, sp}
performed best in terms of largest and stable R2

oos , and are thus the preferred model choices.
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Table 7 Comparison of
predictive power: in-sample
(measured by the R2

V ) versus
out-of-sample (measured by the
R2
oos )

Forecast combination Non-par Linear

Nr. Dim. type R2
V R2

oos R2
V R2

oos

64. All Lasso 0.237 0.119 0.164 0.115

65. All Ridge 0.238 0.089 0.180 0.113

66. All Enet 0.271 0.097 0.199 0.113

67. All eLasso 0.171 0.092 0.178 0.111

68. All eRidge 0.165 0.029 0.171 0.103

69. All eEnet 0.169 0.100 0.175 0.120

70. All cENet 0.154 0.063 0.177 0.055

71. All Average 0.171 0.099 0.171 0.103

72. 1D Lasso 0.192 0.129 0.182 0.113

73. 1D Ridge 0.201 0.129 0.171 0.110

74. 1D Enet 0.218 0.127 0.209 0.111

75. 1D eLasso 0.119 0.079 0.113 0.082

76. 1D eRidge 0.141 0.057 0.138 0.064

77. 1D eEnet 0.119 0.079 0.113 0.082

78. 1D cENet 0.159 −0.025 0.156 0.107

79. 1D Average 0.141 0.057 0.138 0.064

80. 2D Lasso 0.236 0.037 0.153 0.116

81. 2D Ridge 0.228 0.091 0.184 0.115

82. 2D Enet 0.273 0.036 0.212 0.109

83. 2D eLasso 0.156 0.021 0.188 0.085

84. 2D eRidge 0.171 0.092 0.170 0.098

85. 2D eEnet 0.159 0.030 0.166 0.091

86. 2D cENet 0.143 −0.055 0.180 0.082

87. 2D Average 0.171 0.092 0.170 0.098

88. 3D Lasso 0.263 0.127 0.196 0.114

89. 3D Ridge 0.260 0.124 0.210 0.108

90. 3D Enet 0.274 0.123 0.212 0.107

91. 3D eLasso 0.154 0.121 0.180 0.027

92. 3D eRidge 0.168 0.124 0.171 0.107

93. 3D eEnet 0.168 0.124 0.178 0.089

94. 3D cENet 0.022 0.000 0.155 − 0.015

95. 3D Average 0.168 0.105 0.171 0.107

One-year stock returns in excess of the inflation rate Y (C)
t modelled

by forecast combinations based on individual forecasts of models from
Table 6 (the double benchmarking approach) applying the Lasso, the
Ridge, the Enet, the eLasso, the eRidge, the eEnet, the cENet, and the
simple average to all possible models or only to the k-dimensional ones
with k ∈ {1, 2, 3}. In-sample period: 1872–1962, out-of-sample period:
1963–2022. Improvements (column-wise) compared to largest measure
in Table 2 highlighted in bold
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Table 8 Comparison of predictive power: out-of-sample mean squared error for the full sample period (full),
during recessions (rec) and expansions (exp)

Forecast combination Non-par Linear

Nr. Dim. type Full Rec Exp Full Rec Exp

64. All Lasso 0.021 0.052 0.016 0.021 0.051 0.016

65. All Ridge 0.021 0.051 0.017 0.021 0.051 0.016

66. All Enet 0.021 0.052 0.016 0.021 0.048 0.017

67. All eLasso 0.021 0.050 0.017 0.021 0.046 0.017

68. All eRidge 0.023 0.049 0.019 0.021 0.052 0.016

69. All eEnet 0.021 0.053 0.016 0.021 0.052 0.016

70. All cENet 0.022 0.047 0.018 0.022 0.047 0.018

71. All Average 0.021 0.052 0.016 0.021 0.052 0.016

72. 1D Lasso 0.020 0.048 0.016 0.021 0.046 0.01

73. 1D Ridge 0.020 0.054 0.015 0.021 0.055 0.016

74. 1D Enet 0.021 0.046 0.017 0.021 0.046 0.017

75. 1D eLasso 0.022 0.068 0.015 0.022 0.069 0.014

76. 1D eRidge 0.022 0.066 0.015 0.022 0.067 0.015

77. 1D eEnet 0.022 0.068 0.015 0.022 0.069 0.014

78. 1D cENet 0.024 0.051 0.020 0.021 0.063 0.014

79. 1D Average 0.022 0.066 0.015 0.022 0.067 0.015

80. 2D Lasso 0.023 0.052 0.018 0.021 0.055 0.016

81. 2D Ridge 0.021 0.053 0.017 0.021 0.054 0.016

82. 2D Enet 0.023 0.052 0.018 0.021 0.044 0.017

83. 2D eLasso 0.023 0.053 0.018 0.022 0.047 0.018

84. 2D eRidge 0.021 0.054 0.016 0.021 0.054 0.016

85. 2D eEnet 0.023 0.054 0.018 0.021 0.053 0.016

86. 2D cENet 0.025 0.046 0.022 0.022 0.046 0.018

87. 2D Average 0.021 0.054 0.016 0.021 0.054 0.016

88. 3D Lasso 0.021 0.050 0.016 0.021 0.048 0.017

89. 3D Ridge 0.021 0.053 0.016 0.021 0.050 0.017

90. 3D Enet 0.021 0.054 0.015 0.021 0.044 0.017

91. 3D eLasso 0.021 0.049 0.016 0.023 0.039 0.020

92. 3D eRidge 0.021 0.052 0.016 0.021 0.047 0.017

93. 3D eEnet 0.021 0.052 0.016 0.021 0.043 0.018

94. 3D cENet 0.021 0.047 0.017 0.024 0.041 0.021

95. 3D Average 0.021 0.047 0.017 0.021 0.047 0.017

One-year stock returns in excess of the inflation rate Y (C)
t modelled by forecast combinations based on

individual forecasts of models from Table 4 (the single benchmarking approach) applying the Lasso, the
Ridge, the Enet, the eLasso, the eRidge, the eEnet, the cENet, and the simple average to all possible models
or only to the k-dimensional ones with k ∈ {1, 2, 3}. In-sample period: 1872–1962, out-of-sample period:
1963–2022. Improvements (column-wise) compared to smallest measure in Table 4 highlighted in bold
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Fig. 5 Robustness over time (increasing in-sample period) for selected models for stock returns in excess of
the inflation rate. Left: R2

V , Right: R
2
oos . Period: 1872–2022. Data: annual S&P 500

5 Conclusion

In this paper, we analyse whether forecast combinations of stock returns in excess of different
benchmarks are able to improve over the individual models. Our focus lies thereby on non-
linear predictive functions estimated by a fully nonparametric smoother with the covariates
and smoothing parameters chosen by cross-validation. We extent the approach of Kyriakou
et al. (2021a) to three-dimensional models and find for some of them a reasonable perfor-
mance both in-sample and out-of-sample. However, the low number of observations in the
estimation sample limits the complexity of the fitted models. This reduces the probability of
choosing such models as the in-sample measure is worse when compared to simpler models
of lower dimensionality. Note that the reason lies in the fact that the rate of convergence
of the local-linear smoother is slower than, for example, in parametric regression (Hansen,
2008a).

We find further that the classical shrinkage methods (Lasso, Ridge, ENet) are prone to
in-sample over-fitting when all individual forecasts are used as possible candidates. As a
consequence, the suggested predictive power is spurious and the out-of-sample performance
is indeed very poor. The restriction to one-dimensional candidates helps to balance in-sample
and out-of-sample behaviour and improves the out-of-sample predictive power. We also
find that forecast combinations perform better than the simple historical average. However,
the individual nonparametric models outperform linear models and combination forecasts
throughout. Finally, the double inflation benchmark results in a more stable performance
compared to the single risk-free benchmark.

Recently, there has been a fast growth ofmethodology to process data for financial applica-
tions. This again provides us with the challenge of making sure that more and more complex
methodology is indeed also better than simpler methods. It is well-known that complexity
often comes with a price. With this current study, we get to the conclusion that a simple
benchmark methodology is indeed as good as a selected collection of the most popular, but
also more complex and less transparent, modern ML-type approaches. Also for the financial
practitioner, implementing the model and communicating results are simply easier carried
out with a simpler methodology. So, it is important for policy making and financial plan-
ning of long-term saving that complexity and lack of transparency are only introduced to
the econometric modelling when it is absolutely necessary. In the important challenge of
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understanding long-term financial returns based on econometric modelling, the conclusion
of this study seems to be that complexity does not pay off well enough and that it is better to
use simpler benchmark methods.
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