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Abstract
The anti-epidemic supply chain plays an important role in the prevention and control of the
COVID-19 pandemic. Prior research has focused on studying the facility location, inventory
management, and route optimization of the supply chain byusing certain parameters andmod-
els. Nevertheless, uncertainty, as a vital influence factor, greatly affects the supply chain. As
such, the uncertainty that comes with technological innovation has a heightened influence on
the supply chain. Few studies have explicitly investigated the influence of technological inno-
vation on the anti-epidemic supply chain under the COVID-19 pandemic. Hence, the current
research aims to investigate the influences of the uncertainty caused by technological inno-
vation on the supply chain from demand and supply, shortage penalty, and budget. This paper
presents a three-level model of the anti-epidemic supply chain under technological innova-
tion and employs an interval data robust optimization to tackle the uncertainties of the model.
The findings are obtained as follows. Firstly, the shortage penalty will increase the costs of
the objective function but effectively improve demand satisfaction. Secondly, if the shortage
penalty is sufficiently large, the minimum demand satisfaction rate can ensure a fair distri-
bution of materials among the affected areas. Thirdly, technological innovation can reduce
costs. The technological innovation related to the transportation costs of the anti-epidemic
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material distribution center has a greater influence on the optimal value.Meanwhile, the tech-
nological innovation related to the transportation costs of the supplier has the least influence.
Fourthly, both supply and demand uncertainty can influence costs, but demand uncertainty
has a greater influence. Fifthly, the multi-scenario budgeting approach can decrease the cal-
culation complexity. These findings provide theoretical support for anti-epidemic dispatchers
to adjust the conservativeness of uncertain parameters under the influence of technological
innovation.

Keywords Robust optimization model · Anti-epidemic supply chain · Technological
innovation · COVID-19 pandemic

1 Introduction

The novel coronavirus pneumonia is an inflammation of the lungs caused by a novel
coronavirus, called the SARS-CoV-2 virus, which is highly contagious. The first reported
public health emergency for an epidemic attributed to the novel coronavirus pneumonia was
in Wuhan in December 2019. Since then, the novel coronavirus pneumonia was succes-
sively detected worldwide (Chitrakar et al., 2021). The World Health Organization (WHO)
announced that the infectious disease caused by the SARS-CoV-2 virus would be officially
named Corona Virus Disease 2019, abbreviated as COVID-19, in February 2020 (Cucinotta
et al. 2020). Then,WHO officially classified COVID-19 as a global pandemic inMarch 2020
(Lai et al., 2020). The ferocity, impact, spread, and duration of the COVID-19 pandemic
have exceeded all expectations (Choi, 2021). The influence of the COVID-19 pandemic on
the humanitarian relief chain, especially the anti-epidemic supply chain, is more severe and
complex than that of previous outbreaks, such as the SARS epidemic and the H1N1 epi-
demic (Dubey et al., 2020a, 2020b; Guan et al., 2020). An anti-epidemic supply chain refers
to the process of producing, transporting, and distributing anti-epidemic materials, such as
masks, disinfectants, goggles, rubber gloves, and others, by linking suppliers, distribution
centers, and demanders of anti-epidemic materials into a whole through the flow of capital,
logistics, and information. The COVID-19 pandemic can be transmitted from person to per-
son through breathing, sneezing, or coughing (Salarpour & Nagurney, 2021). Consequently,
governments of various countries have increasingly taken strategies, including relying on
wearing masks and spraying disinfectants, to prevent the spread of the virus (Herron et al.,
2020). Under the influence of the COVID-19 pandemic, the demand for anti-epidemic mate-
rials has surged. The imbalance between the supply and demand of anti-epidemic materials,
such as masks, disinfectants, goggles, gloves, and protective clothing, has become a global
issue (Gereffi, 2020). The supply of anti-epidemic materials in some countries or regions is
seriously inadequate. In addition, people, including doctors, nurses, and patients, do not have
sufficient anti-epidemic materials, thus resulting in the shutdown of health centres (Jacobs
et al., 2020). Thus, medical resources have become more scarce. As a result, addressing
the shortage of anti-epidemic materials during the COVID-19 pandemic has become a hot
topic of widespread concern among officials, academics, and the public. A stable and certain
anti-epidemic supply chain is a prerequisite for the control of the COVID-19 pandemic and
placating the worries of the public.

Research on the humanitarian supply chain has been extensively investigated in the avail-
able literature, and their themes are concentrated in three primary areas. Firstly, studies have
been conducted on the facility location of the humanitarian supply chain (Mohammadi et al.,
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2020), such as the positioning of the distribution center and storage warehouse (Boonmee
et al., 2017; Cotes & Cantillo, 2019). Secondly, studies on the inventory management of the
humanitarian supply chain have focused on the stock levels of humanitarian relief products or
equipment before and after the event (Balcik et al., 2016; Kholidasari & Ophiyandri, 2018).
Thirdly, studies on the route optimization of the humanitarian supply chain have involved
the deployment of humanitarian relief products and personnel after a disaster (Bruni et al.,
2018; Mollah et al., 2018). Nevertheless, the parameters and data associated with the mod-
els in previous literature are mostly deterministic. The COVID-19 pandemic, as a public
health emergency, has many uncertainties that affect various aspects of the humanitarian
supply chain, particularly the anti-epidemic supply chain. However, the issue of uncertainty
in the anti-epidemic supply chain caused by the COVID-19 pandemic is scarcely discussed
in previous literature. Additionally, technological innovations, such as big data technology,
digital technology, and blockchain technology, present opportunities and challenges for the
humanitarian supply chain. These innovations play a critical role in the resilience, sustain-
ability, and effectiveness of the humanitarian supply chain (Akter & Wamba, 2019; Gupta
et al., 2019). Conversely, they also have the potential to impede the humanitarian supply chain
(Bag et al., 2020).Within the background of the COVID-19 pandemic, research on the impact
of technological innovation on the anti-epidemic supply chain is imperative. Nevertheless,
little investigation has been spearheaded on this issue in the available research. Technologi-
cal innovation involves corporate research and development, strategic planning, and resource
allocation (Yam et al., 2011). An organization can enhance its capabilities and create value by
utilizing technological innovation (Wang et al., 2008). Resource-based theory suggests that
organizations with sufficient technological innovation will promote inter-organizational col-
laboration and thus be willing to implement inter-organizational systems (Bresman, 2010).
Existing research proves that such innovation has changed inter-organizational partnerships
within the supply chain (Huang, 2011). Nevertheless, technological innovation may affect
the ability to integrate supply chains, which may generate negative consequences for the
organization. As a result, it has created more uncertainty for the anti-epidemic supply chain.
According to the available literature, uncertainty in supply chains is primarily reflected in
demand and supply, shortage penalty, and budget. Hence, technological innovation may
affect the uncertainty of demand and supply, shortage penalty, and budget. Uncertainty in
supply parameters emerges from the availability of technological innovation and the unpre-
dictability of supplier technological innovation. Uncertainty in cost parameters is caused by
the accessibility of material distribution routes under the influence of technological inno-
vation. Meanwhile, uncertainty in demand parameters results from inaccurate estimates of
technological innovation.

Some scholars have attempted to deal with uncertain parameters as their corresponding
discrete probabilities through scenario stochastic programming (Elçi et al., 2018; Zahiri et al.,
2017). Based on the existing literature, most humanitarian relief supply chains employ the
scenario-based stochastic programming approach to address uncertainty,which has two short-
comings. Firstly, this approach requires a probability distribution for uncertain parameters.
Nevertheless, insufficient historical data on the COVID-19 pandemic cannot sufficiently pro-
vide an accurate probability distribution for the uncertain parameters. Secondly, the solution
depends largely on the accuracy of the defined scenario and the preferences of the decision-
maker, and the final solution varies with the discrete probability of the scenario. The robust
optimization approach, proposed by Bertsimas and Sim (2005), focuses on its computational
intractability, strict conservatism, and impact on the complexity of the deterministic model.
Every uncertain parameter in this approach is simply represented by a specific interval, and
the feasibility of the solution can be guaranteed by a min–max approach. The use of less
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parametric information allows the degree of conservatism of the model to be controlled.
In addition, linear programming, mixed-integer linear programming, and semidefinite opti-
mization problems retain their original structure when using the approach.

To fill these knowledge gaps, the current research focuses on the anti-epidemic supply
chain and incorporates the uncertainty of demand and supply, shortage penalty, and budget
caused by technological innovation into the analysis framework. On this basis, this research
constructs a robust optimizationmodel of the anti-epidemic supply chain under technological
innovation and uses an interval data robust optimization to tackle the uncertainties in this
model. Finally, the effectiveness of the model is verified by using Wuhan as a case study.

The contributions to this research are illustrated as follows. Firstly, this current research
constructs an anti-epidemic supply chain model under technological innovation, which
explores the uncertainty of technological innovation in the anti-epidemic supply chain.
Secondly, this current research explores the value relationship between the degree of data
volatility and theminimum demand satisfaction rate. Thirdly, this current research conducts a
sensitivity analysis of the uncertainty of supply and demand under the effect of technological
innovation. Moreover, it proves that demand uncertainty has a greater influence on supply
chain costs, while supply uncertainty has a greater influence on the demand satisfaction rate.

The remaining part of this paper is organized as follows. Section 2 states the literature
review. Then, Sect. 3 constructs an anti-epidemic supply chain model under no technological
innovation. Next, Sect. 4 expands an anti-epidemic supply chain model under technological
innovation,which primarily takes the uncertainty of demand and supply, shortage penalty, and
budget. The robust optimizationmodel of the anti-epidemic supply chain under technological
innovation is empirically tested by using Wuhan as a case study in Sect. 5. Afterward,
Sect. 6 delineates the discussion. Lastly, thefinal section summarizes conclusions, enumerates
implications, and provides limitations and future research opportunities.

2 Literature review

2.1 Influence of uncertainty environment on supply chain

The uncertainty of the supply chain is one of the important topics in the research of supply
chainmanagement, which has attracted the attention ofmany scholars. For instance, Chen and
Xiao (2009) examined the coordination problem of a supply chain consisting of a supplier, a
leading retailer, and multiple peripheral retailers when the demand has large fluctuations. In
this scenario, a quantity discount contract and awholesale price contract are used to coordinate
the supply chain. Furthermore, Gurnani et al. (2010) found that the uncertainty of market
demand faced by retailers will prevent their purchase quantity from reaching the optimal
level. In motivating retailers, suppliers use repurchase contracts to buy back unsold products
and evaluate the influence of price on demand. Merakli and Yaman (2016) set up a linear
mixed-integer programming model based on the location selection of a multimodal transport
hub and took the demand’s polyhedral uncertainty set into account. Then, they proposed the
corresponding precise solution algorithm. These studies have mainly focused on demand
uncertainty. In addition to demand uncertainty, random changes in supplier supply and cost
parameters are important aspects of uncertainty. Tang and Yin (2007) posited that the retailer
orders seasonal products from the supplier, and the product demand is a linear function of
the price. They found that the supplier’s output is uncertain, but obey the discrete probability
distribution. Therefore, the responsive price strategy and unresponsiveness were constructed.

123



Annals of Operations Research (2024) 335:1331–1361 1335

Nguyen and Chen (2018) analyzed the stability of biomass supply chain feedstock supply in
an uncertain environment and proposed an enhanced and regularizedL-shaped decomposition
algorithm to solve the model. Meanwhile, Cong et al. (2020) studied the optimal strategy
of a low-carbon supply chain with capital constraints and production uncertainties that are
characteristic of green finance and carbon quotas and trading plans.

2.2 Influence of COVID-19 pandemic on anti-epidemic supply chain

The COVID-19 pandemic has put unprecedented pressure on the supply chain of epidemic
prevention materials. As such, academicians have paid increasing attention to the influ-
ence of the COVID-19 pandemic on the anti-epidemic supply chain (Dubey et al., 2021).
Mosallanezhad et al. (2021) asserted that the COVID-19 pandemic has caused damage and
uncertainty to the anti-epidemic supply chain, such as gloves, gowns, respiratory, and eye
protection. Therefore, they adopted multi-objective metaheuristic algorithms to optimize the
total cost and shortage of the anti-epidemic supply chain. In addition, Goodarzian et al.
(2021) used a variety of algorithms, including colony optimization, fish swarm algorithm,
and firefly algorithm to analyze the production, inventory and distribution of anti-epidemic
drugs during the COVID-19 pandemic to evaluate superiority of their research approach. In
another study, Liu et al. (2021) determined the shortest time for the supply of anti-epidemic
materials during major public health emergencies. Moreover, they used a multiple dynamic
programming algorithm to calculate the number of anti-epidemic materials and the order of
vehicle transportation. The above literature has revealed to a certain extent that three main
problems persist in the anti-epidemic supply chain under the COVID-19 pandemic. Firstly,
the efficiency of raising anti-epidemic materials is low. In the early stage of the COVID-19
pandemic, the demand for anti-epidemic materials was highly concentrated, and the sup-
ply gap was large (Majumdar et al., 2020). Information on existing anti-epidemic materials
supplies and capacity is vague, and some supplies do not meet the use standards. Given the
asymmetry of information on the demand for anti-epidemic materials, the supply of anti-
epidemic materials lacks flexibility and cannot meet the demand for anti-epidemic materials
(Qin et al., 2021). This issue has led to the overproduction of personal epidemic prevention
supplies by some enterprises and the insufficient supply of special medical equipment. Sec-
ondly, the dispatch of epidemic prevention materials is difficult. The COVID-19 pandemic
has a long duration, a wide range of impact and a high level of harm. In the early stage of
the pandemic, the overall supply of anti-epidemic resources was limited, the severity of the
epidemic was different from region to region, and the intensity of material security was tilted
toward the hardest-hit areas. In this context, some non-key and local disaster-stricken areas
have experienced a serious shortage of anti-epidemic and medical supplies. Moreover, given
the update speed of donation information and the lag in follow-up, social donations provide
less assistance to these areas, and the problem of insufficient material security is prominent
(Martins et al., 2017). Thirdly, the transportation capacity of epidemic prevention materials
is insufficient. These problems, such as the lack of flexibility in the choice of transporta-
tion routes, the delay in tracking and monitoring the transportation status of anti-epidemic
materials and the low degree of automation and intelligence in the transportation process.
reduce the timeliness of the transportation of emergency supplies (Mardani et al., 2020).
Thus, emergency plans are impossible to adapt flexibly. The root of the above problems is
that the unpredictability of the COVID19 epidemic has exacerbated the uncertainty of the
anti-epidemic supply chain.
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2.3 Influence of technological innovation on supply chain

Technological innovation,which has been the commonconcern of scholars and entrepreneurs,
is the power source of enterprise survival and development,mainly including product and pro-
cess innovation (Przychodzen & Przychodzen, 2018). It emphasizes that enterprises should
not only make full use of existing capabilities but also constantly explore new capabilities
(Chapman & Corso, 2005). For example, logistics technology innovation is a guarantee that
cannot be ignored when attempting to achieve a rapid response to the demand of the customer
(Altuntaş and Aktepe, 2021). Through the use of advanced technology, such as digital infor-
mation transmission, radio frequency identification, and intelligent decision-making, in the
logistics link of the supply chain, products can be intelligently stored, efficiently distributed,
positioned in real-time, and automatically tracked (Lee and Shen, 2020). It can realize the
intelligent allocation and optimization of logistics resources, which are beneficial to improv-
ing the flexibility of the supply chain (Yang et al., 2021). Logistics technology innovation
not only helps to improve the flexibility of the supply chain but also significantly enhances
the timeliness and effectiveness of corporate information sharing, which is conducive to
promoting supply chain collaboration. Supply chain collaboration is mainly reflected in the
resource integration and related business collaboration between member companies in the
supply chain (Yang & Lin, 2020). Furthermore, supply chain coordination is conducive to
improving the supply chain’s response speed and flexibility to the uncertainties of supply,
production, logistics, sales, and other links. Thus, it is the key to achieving supply chain flex-
ibility. However, innovation is accompanied by risks and uncertainty, and most innovative
enterprises have difficulty implementing innovation, especially breakthrough innovation, due
to the relative lack of resources and weak research and development strength (Chapman &
Corso, 2005). With the advent of the globalization of market competition, the technological
innovation environment of enterprises has changed greatly. To adapt to the diversity of mar-
ket demand, the task quantity and complexity of enterprise technological innovation have
increased sharply (Gershman et al., 2016). Enterprise technology innovation must be carried
out by supply chain collaboration with themode of combining between the enterprises for the
complementary advantages of product innovation resources. It improves product innovation
ability, shortens the development period of product innovation, and lowers the cost of new
products and innovation risk.

2.4 Supply chain optimization under uncertainty environment

Four main optimization approaches are used to study supply chain optimization under uncer-
tain environments. The first is the chance-constrained optimization approach. Chen et al.
(2017) used chance-constrained optimization to solve the large-scale opportunity-constrained
optimization problem of air traffic management. In a later study, Bianco et al. (2019) verified
that a chance-constrained optimization approach is more efficient and easier to implement
than the Project Evaluation and Review Technique and theMonte Carlo Simulation. The sec-
ond is the fuzzy programming approach. Wu et al. (2018) comprehensively considered the
uncertainty of customer product demand, recycled products, and facility opening costs and
designed a fuzzy interactive possibilistic programming model. Meanwhile, Hocine et al.
(2018) formulated a new multi-segment fuzzy goal programming model to analyze the
uncertainty of the multi-standard renewable energy portfolio. The third is the stochastic
programming approach. This approach uses probability distribution functions to describe the
uncertainty of supply chain parameters. Aiming at the uncertain factors of supply, demand,
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production, transportation, and inventory, Xu and Zhou (2009), Petridis et al. (2015), U-tapao
et al. (2016), and Budiman and Rau (2019) built a multi-objective expected value model, a
two-level stochastic optimization model, a probability constraint model, and a mixed integer
model, respectively. These scholars also designed the Benders decomposition algorithm, sub-
gradient algorithm, and LaGrange dual algorithm, respectively (Lau and Nakandala, 2012).
The fourth is the robust optimization approach, which is also the most widely used research
approach in supply chain research. Kim et al. (2020) used the robust optimization approach
to solve the negative impact of demand uncertainty and reverse logistics on the closed-loop
supply chain. Moreover, Shen et al. (2020) proposed deterministic and robust optimization
approaches for energy systemuncertainty. The research results found that although the energy
consumption value of the robust optimization approach is higher than that of the deterministic
research approach, it can adjust the optimization plan by changing the regularization parame-
ter. Additionally, Gholizadeh and Fazlollahtabar (2020) used robust optimization approaches
to model the closed-loop green supply chain network of the smelting industry. Then, they
used an improved genetic algorithm to solve the problem.

3 Anti-epidemic supply chainmodel under no technological innovation

3.1 Premise description

This current research considers a single-period three-level mathematical model of the anti-
epidemic supply chain, which is composed of suppliers, anti-epidemic material distribution
centers (AMDCs) and affected areas. Each level of the supply chain has multiple suppliers,
anti-epidemic material distribution centers, and affected areas. A variety of anti-epidemic
materials are involved in this model, and their deployment in a single-period three-level anti-
epidemic supply chain is monitored. The first level is the supplier of anti-epidemic materials
while the second level is the anti-epidemic material distribution center, whose role is to
obtain anti-epidemic materials from suppliers and supply them to affected areas. The third
level included the affected areas. The single-period three-level mathematical model has been
selected to investigate the research question because the three-level mathematical model
includes suppliers, anti-epidemic material distribution centers (AMDCs), and affected areas,
which describe the matching relationship between supply and demand. The model is set to
a single period, which is mainly an optimized calculation scheme for the initial stage of the
COVID-19 outbreak. Under the repeated outbreak of COVID-19, the implementation can be
superimposed on a rolling basis. In other words, this paper can use the above model as the
basis to confirm the new single-cycle time window based on the time node of the new round
of epidemics and re-optimize the calculation, which not only simplifies research questions
but also saves research time. In addition, following Siddiqui et al. (2011) and Zokaee et al.
(2016), this current research, combined with the particularity of the anti-epidemic supply
chain, determines the following assumptions in the process of constructing the mathematical
model of the anti-epidemic supply chain:

(1) The supplier can provide more than one anti-epidemic material, but its supply capacity
is restricted.

(2) When affected areas experience a shortage of anti-epidemic materials, corresponding
penalties will be imposed.

(3) AMDCs havemultiple alternative locations and the capacity of eachAMDC is restricted.
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(4) The transportation capacity of the AMDCs is not restricted, and it can reach various
affected areas using the existing transportation network.

(5) Each supplier can provide anti-epidemic materials for multiple AMDCs.
(6) Each AMDC can deliver anti-epidemic materials to multiple areas affected by the

COVID-19 pandemic.
(7) Anti-epidemic materials are allowed to pass through the anti-epidemic supply chain in

an orderly manner, but they are not allowed to be passed between different affected
areas.

(8) Each affected area has a corresponding minimum demand satisfaction rate for each
anti-epidemic material.

(9) In the optimal solution of the model, the satisfaction rate of the affected areas should at
least reach the minimum demand satisfaction rate.

3.2 Model construction

Based on the above basic assumptions, this current research constructs a single-period three-
level mathematical model of the anti-epidemic supply chain. The specific formulas are
expressed as follows.

MinF �
∑

j

f j z j +
∑

m,i, j

ci j gmxmi j+
∑

m, j,k

c jkgm ymjk+
∑

m,k

πmk Imk (1)

S.t . :

∑

j

xmi j ≤ smi ∀m, i (2)

dmk −
∑

j

ymjk ≤ Imk ∀m, k (3)

∑

j

ymjk ≥ ωdmk ∀m, k (4)

∑

j

xmi j �
∑

k

ymjk ∀m, j (5)

∑

m,i

(
vmxmi j

) ≤ Vj z j ∀ j (6)

xmi j ≥ 0 ∀m, i, j (7)

ymjk ≥ 0 ∀m, i, k (8)

z j ∈ {0, 1} ∀ j (9)

Objective formula (1) is a minimized function, which is mainly composed of four parts,
including the use cost of the AMDCs, the transportation costs from the supplier to the
AMDCs, the transportation costs from the AMDCs to the affected areas, and punishment for
shortages of the anti-epidemic materials in affected areas. Formula (2) is a supply constraint
function, which means that the amount of each anti-epidemic material m provided by the
supplier i does not exceed its supply capacity. Formula (3) is a shortage constraint function,
that is, the difference between the demand and supply of anti-epidemic materials in the
affected areas is the amount of the shortage. Formula (4) is the minimum satisfaction rate
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Table 1 A detailed description of each symbol

Symbol Specific Description

i Suppliers

j Anti-epidemic material distribution centers (AMDCs)

k Affected areas

m Anti-epidemic materials

f j Installation cost of AMDC j

ci j Transportation cost from Supply i to AMDC j

c jk Transportation cost from AMDC j to affected area k

πmk Shortage penalty of anti-epidemic material m in affected area k

vm Volume of anti-epidemic material m

gm Quality of anti-epidemic material m

Vj Capacity of AMDC j

ω The minimum degree of anti-epidemic material satisfaction that needs to be met

dmk Demand for anti-epidemic material m in affected area k

smi Supply for anti-epidemic material m by supplier i

xmi j Amount of anti-epidemic material m from supplier i to AMDC j

ymjk Amount of anti-epidemic material m from AMDC j to affected area k

z j Whether AMDC j has been constructed. It is represented by 0 and 1

Imk The affected area k lacks the number of anti-epidemic material m

constraint for anti-epidemic materials, and the number of materials supplied to the affected
areas should reach the minimum demand satisfaction rate. Formula (5) demonstrates that the
quantity of anti-epidemic materials transported into each AMDC is equal to the quantity of
anti-epidemicmaterials shipped out from eachAMDC. Formula (6) entails that the volume of
anti-epidemic materials transported into each AMDC does not exceed its volume. Formulas
(7) to (9) are the domain of decision variables.

The description of each symbol in the model is shown in Table 1.

4 Anti-epidemic supply chainmodel under technological innovation

Several studies have explicitly investigated whether technological innovation is beneficial to
alleviating the impact of the COVID-19 pandemic on supply chains (Chowdhury et al., 2021;
Gurbuz & Ozkan, 2020; Okorie et al., 2020). Therefore, this current research introduces
variables �γ fi , �γci j and �γc jk , which represent the range of change in three types of
costs, including the installation costs of AMDC j , the transportation costs of anti-epidemic
materials from supplier i to AMDC j and the transportation costs of anti-epidemic materials
from AMDC j to affected area k. For example, f̃ j is a true value, while f j is a theoretical
value. Thus, �γ f j is expressed by formula (10).

�γ f j � f̃ j − f j
f j

(10)
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This current research also introduces �γ fi , �γci j and �γc jk into objective formula (1)
to obtain objective formula (11). �γ fi , �γci j and �γc jk respectively affect the installation
cost and different transportation costs. Moreover, the corresponding cost parameters are only
reflected in the objective formula, and the constraints remain in formulas (2) to (9).

MinF �
∑

j

(
1 + �γ fi

)
fi z j +

∑

m,i, j

(
1 + �γci j

)
ci j gmxmi j +

∑

m, j,k

(
1 + �γc jk

)
c jk gm ymjk +

∑

m,k

πmk Imk

(11)

4.1 Uncertainty of demand and supply parameters under technological innovation

The robust approach, proposed by Bertsimas and Sim (2005), emphasizes the uncertainty of

technical coefficients. In this approach, the conservative parameter �
k
m and �

i
m take values in

the range of [0,1]. Many calculations are required to determine the most suitable conservative
parameters. Therefore, Bertsimas and Thiele (2006) recommended adopting a common con-
servative parameter to represent all conservative parameters uniformly. This paper assumes
that the conservative parameters of supply and demand are �k

m and �i
m respectively by using

this approach. Their specific forms are represented by formulas (12) and (13), respectively.

�k
m �

∑

K

�
k
m ∈ [0, K ] (12)

�i
m �

∑

I

�
i
m ∈ [0, I ] (13)

Given the uncertainty of supply and demand, this paper have set demand parameters (d̃mk)
and supply parameters (̃smi ) under uncertainty, which respectively represent the true value of
demand and supply under uncertain conditions. dm and sm are the nominal values of demand
and supply, respectively. Therefore, formulas (2), (3), and (4) need to be expanded to formulas
(14), (15), and (16).

∑

j

xmi j − s̃mi ≤ 0 (14)

d̃mk −
∑

j

ymjk ≤ Imk (15)

∑

j

ymjk − ωd̃mk ≥ 0 (16)

This paper assumes that d̃mk and s̃mi are all identical independent and symmetrical distri-
butions in ranges d̃m ∈ [

dm − d̂m, dm + d̂m
]
and s̃m ∈ [sm − ŝm, sm + ŝm]. According to the

expansion approach proposed by Bertsimas and Thiele (2006), conservative parameters are
introduced to obtain the expressions of d̃mk and s̃mi .

d̃m � dm +
�k
m

K
d̂m (17)

s̃m � sm +
�i
m

n
ŝm (18)

The goal of robust optimization is to determine the best solution in the worst case. Hence,
the worst case should be considered asmuch as possible. The situation is worse when demand
increases or supply decreases. Therefore, only the positive deviation of demand fluctuations
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and the negative deviation of supply fluctuations need to be taken into account. This paper
inputs formulas (17) and (18) into formulas (14) to (16) to obtain formulas (19) to (21).
Formulas (19) to (21) reflect the uncertainty of supply and demand.

∑

j

xmi j − sm+
�i
m

n
ŝm ≤ 0 (19)

(
dm +

�k
m

K
d̂m

)
−

∑

j

ymjk ≤ Imk (20)

∑

j

ymjk − ω

(
dm +

�k
m

K
d̂m

)
≥ 0 (21)

4.2 Uncertainty of the shortage penalty parameter under technological innovation

This paper has defined an auxiliary variable Hmk to facilitate the introduction of shortage
penalty into the anti-epidemic supply chain. Given that Hmk is related to constraint (20), it
satisfies formula (22) to add an auxiliary variable Hmk .

π̃mk

⎛

⎝dm +
�k
m

K
d̂m −

∑

j

ymjk

⎞

⎠ ≤ Hmk (22)

Consistent with the uncertainty of demand and supply, this paper has set the shortage
penalty parameter (π̃mk) under uncertainty, the nominal parameter of the shortage penalty
parameter (πmk), and the maximum shortage penalty (π̂mk). In addition, this paper defines a
new variable (wmk), which is in the range of [0, 1]. πmk ,π̃mk , π̂mk , and wmk satisfy formula
(23).

π̃mk � πmk + π̂mk × wmk (23)

To achieve robust optimization, the value wmk should be determined to maximize the
value Hmk . This determination can be achieved by formulas (24)-(26).

max π̂mkwmkdm +
�k
m

K
d̂m −

∑

j

y∗
mjk (24)

S.t . :

wmk ≤ �π
mk ∀k,m (25)

0 ≤ wmk ≤ 1 ∀k,m (26)

A dual transformation is performed from formulas (24) to (27), to ensure that the model
is linear. λπ

mk and μπ
mk are dual variables and non-negative.

min λπ
mk�

π
mk + μπ

mk ∀k,m (27)

S.t . :

λπ
mk + μπ

mk ≥ π̂mk

⎛

⎝dm +
�k
m

K
d̂m −

∑

j

ymjk

⎞

⎠ ∀k,m (28)
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According to formulas (23) and (24), formula (22) can be rewritten in the following form:

πmk

⎛

⎝dm +
�k
m

K
d̂m −

∑

j

ymjk

⎞

⎠ + λπ
mk�

π
mk + μπ

mk ≤ Hmk ∀k,m (29)

λπ
mk + μπ

mk ≥ π̂mk

⎛

⎝dm +
�k
m

K
d̂m −

∑

j

ymjk

⎞

⎠ ∀k,m (30)

Based on the principle of robust optimization, the maximum value �π
mk can be set to 1.

Formula (29) can be combined with formula (30) into formula (31).

(πmk + π̂mk)

⎛

⎝dm +
�k
m

K
d̂m −

∑

j

ymjk

⎞

⎠ ≤ Hmk ∀k,m (31)

4.3 Budget uncertainty in different scenarios under technological innovation

Different conservative parameters will affect the solution of the robust model. In other words,
to obtain the most robust solution, an optimal combination of different conservative param-
eters is required. However, the calculation process will take considerable time and cannot
meet the needs of the anti-epidemic supply chain. Therefore, this paper uses the approach
proposed by Alem and Morabito (2012). Moreover, it introduces a set of scenarios (S),
where s ∈ S � {1, ..., S}. The decision-makers are assumed to be sufficiently experienced
to establish the uncertainty parameters of several most likely scenarios. Each scenario has a
corresponding probability of occurrence (

∑
s
ps � 1). At this time, the constraints change as

follows:

∑

j

xmi j − sm+
�i
ms

n
ŝm ≤ 0 (32)

∑

j

ymjk − ω

(
dm +

�k
ms

K
d̂m

)
≥ 0 (33)

(πmk + π̂mk)

⎛

⎝dm +
�k
ms

K
d̂m −

∑

j

ymjk

⎞

⎠ ≤ Hmk ∀k,m (34)

∑

s

ps Hmks ≤ Hmk (35)

Finally, a robust optimizationmodel of the anti-epidemic supply chain under technological
innovation can be written in the following form:

MinF �
∑

j

(
1 + �γ fi

)
fi z j +

∑

m,i, j

(
1 + �γci j

)
ci j gmxmi j +

∑

m, j,k

(
1 + �γc jk

)
c jk gm ymjk +

∑

m,k

Hmk

(36)

S.t . :

∑

j

xmi j − sm+
�i
ms

n
ŝm ≤ 0 (37)
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∑

j

ymjk − ω

(
dm +

�k
ms

K
d̂m

)
≥ 0 (38)

(πmk + π̂mk)

⎛

⎝dm +
�k
ms

K
d̂m −

∑

j

ymjk

⎞

⎠ ≤ Hmk ∀k,m (39)

∑

s

ps Hmks ≤ Hmk (40)

∑

j

xmi j �
∑

k

ymjk ∀m, j (41)

∑

m,i

(
vmxmi j

) ≤ Vj z j ∀ j (42)

xmi j ≥ 0 ∀m, i, j (43)

ymjk ≥ 0 ∀m, i, k (44)

z j ∈ {0, 1} ∀ j (45)

5 Case study: Wuhan City

5.1 Case description

A case study based on approachology research was carried out in Wuhan, China. The divi-
sion of administrative regions in Wuhan are Jiangan (J-A), Jianghan (J-H), Qiaokou (Q-K),
Hanyang (H-Y),Wuchang (W–C), Qingshan (Q-S), Hongshan (H–S), Dongxihu (D-H), Han-
nan (H-N), Caidian (C-D), Jiangxia (J-X), Huangpi (H-P), and Xinzhou (X–Z), this paper
has set 6 suppliers, 6 AMDCs, and 13 affected areas (see Fig. 1). In the actual epidemic
prevention process, masks(M), disinfectants (D), and protective clothing (P) are necessary

Fig. 1 The configuration diagram of the anti-epidemic supply chain in Wuhan
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anti-epidemic materials (Hartanto et al. 2021: Mallakpour et al., 2021). Therefore, this paper
uses masks, disinfectants, and protective clothing as typical anti-epidemic materials. Param-
eters are shown in Table 2.

Based on the population of each administrative area of Wuhan in 2019, this paper has
set the demand data of anti-epidemic materials and the supply data of suppliers in each
administrative area of Wuhan (see Table 3). Notably, the total supply of materials is assumed
to be only 80% of the total demand to simulate a shortage of materials. Furthermore, the
minimum satisfaction ratio of each anti-epidemic material requirement for each affected
area is 0.2 (ω � 0.2).

Regarding the parameters of anti-epidemic materials, this paper has established the fol-
lowing settings. A box of masks contains 15 masks with a volume of 0.02m3 and a mass
of 0.01 kg. A bottle of disinfectant has a specification of 150 ml, a volume of 0.2m3, and a

Table 2 Specific parameters of the anti-epidemic materials

Mask Disinfector Protective clothing

Unit Volume (m3) 0.01 0.2 0.25

Unit Mass (kg) 0.01 0.2 0.1

Penalty Penalty (10–2¥) 90 280 350

Table 3 Demand and supply of
anti-epidemic materials Demand Mask Disinfector Protective clothing

J-A 1,571,800 202,544 18,208

J-H 1,027,200 132,366 11,899

Q-K 1,079,800 139,144 12,508

H-Y 1,435,800 185,019 16,632

W–C 2,206,800 284,371 25,564

Q-S 919,200 118,449 10,648

H–S 2,439,200 314,319 28,256

D-H 710,000 91,492 8225

H-N 233,400 30,076 2704

C-D 939,000 121,001 10,877

J-X 1,293,800 166,721 14,987

H-P 2,326,600 299,809 26,951

X–Z 1,945,800 250,738 22,540

Supply Mask Disinfector Protective clothing

S-1 3,037,777 391,452 35,190

S-2 2,516,848 324,324 29,155

S-3 3,436,561 442,840 39,809

S-4 1,308,518 168,617 15,158

S-5 1,416,264 182,502 16,406

S-6 1,336,480 172,221 15,482
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mass of 0.2 kg. The volume of protective clothing is 0.25m3 and the mass is 0.1 kg. Shortage
penalties of masks, disinfectants, and protective clothing are 0.9, 2.8, and 3.5, respectively.

Based on the spatial location and geographic distance of each administrative district in
Wuhan, this paper estimates the transportation cost per unit of anti-epidemic materials from
suppliers to AMDCs and the transportation cost per unit of anti-epidemic materials from
AMDCs to affected areas. The specific parameters are shown in Table 4.

In addition, this paper gauges the construction costs and volume of AMDCs. The specific
parameters are present in Table 5.

5.2 Data acquisition

The divided administrative regions ofWuhan and the population of each administrative region
have been mainly derived from the Wuhan Statistical Yearbook in 2020. The specifications
of anti-epidemic materials, including masks, disinfectors, and protective clothing are set by
referring to their actual specifications. Furthermore, the demand and supply of anti-epidemic
materials and the construction cost and volume of AMDCs are designed by referring to the
research of Zokaee et al. (2016). The transportation cost per unit of anti-epidemic materials
has been obtained by multiplying the actual transportation distance and the cost of trans-
porting each unit of anti-epidemic materials per kilometer. The actual transportation distance
comes from Google Earth Satellite Map. The cost of transporting each unit of anti-epidemic
materials per kilometer is obtained.

5.3 Model solution

This paper assumes that all parameters are known and certain, under the condition that no
technological innovation has been made in the anti-epidemic supply chain. Therefore, it is
sufficient to set the parameters of the robust optimization model, which is �γ fi � �γci j �
�i
ms � �k

ms � 0,Ps � 1, and ω � 0.2. The optimal solution value of the original solution
is 1.1911 × 109, that is, the costs of the anti-epidemic supply chain are 1.1911 × 109 yuan.
The values of the corresponding decision variables xmi j , ymjk ,z j , and Hmk are shown in
Tables 6, 7, 8 and 9. The solution of the model in this scenario is called the original solution.
Furthermore, the sensitivity analysis of each parameter in the model will be conducted based
on the original solution in the follow-up study.

5.4 Sensitivity analysis

5.4.1 Shortage penalty

Figure 2 presents the sensitivity analysis of the shortage penalty parameters. The greater the
degree of change in the shortage penalty relative to the original shortage penalty is, the greater
the change in the optimal value relative to the original solution for different anti-epidemic
materials will be. The mask shortage penalty, followed by the disinfectant shortage penalty,
has the greatest impact on the optimal value, whereas the shortage penalty of protective
clothing has the least impact on the optimal value. When the three types of anti-epidemic
material shortage penalties change simultaneously, the degree of change of the shortage
penalty relative to the original shortage penalty is in the range of 0% to 7%. Moreover, the
demand satisfaction rate is just theminimumdemand satisfaction rate. Since then the shortage

123



1346 Annals of Operations Research (2024) 335:1331–1361

Ta
bl
e
4
T
ra
ns
po
rt
at
io
n
co
st
pe
r
un
it
of

an
ti-
ep
id
em

ic
m
at
er
ia
ls
(U

ni
t:1

0–
2
¥/
kg

)

T
ra
ns
po

rt
at
io
n
co
st
pe
r
un

it
of

an
ti-
ep
id
em

ic
m
at
er
ia
ls
fr
om

su
pp

lie
rs
to

A
M
D
C
s

A
-1

A
-2

A
-3

A
-4

A
-5

A
-6

S-
1

27
8

11
12

10
56

.4
41

7
12

51
33

3.
6

S-
2

30
5.
8

38
9.
2

33
3.
6

97
3

11
67

.6
83

4

S-
3

69
5

83
4

69
5

77
8.
4

77
8.
4

33
3.
6

S-
4

55
6

58
3.
8

22
2.
4

36
1.
4

10
56

.4
11

95
.4

S-
5

12
78

.8
13

90
11

39
.8

58
3.
8

33
3.
6

44
4.
8

S-
6

14
17

.8
15

29
91

7.
4

13
9

44
4.
8

63
9.
4

T
ra
ns
po
rt
at
io
n
co
st
pe
r
un
it
of

an
ti-
ep
id
em

ic
m
at
er
ia
ls
fr
om

A
M
D
C
s
to

af
fe
ct
ed

ar
ea
s

A
-1

A
-2

A
-3

A
-4

A
-5

A
-6

J-
A

30
5.
8

36
4.
18

36
4.
18

79
2.
3

10
59

.1
8

56
7.
12

J-
H

41
7

50
5.
96

39
1.
98

66
9.
98

97
8.
56

51
7.
08

Q
-K

55
6

58
3.
8

42
2.
56

64
4.
96

88
4.
04

45
5.
92

H
-Y

63
9.
4

61
1.
6

39
4.
76

53
3.
76

69
7.
78

42
2.
56

W
–C

55
6

44
4.
8

25
0.
2

41
9.
78

72
8.
36

46
9.
82

Q
-S

44
4.
8

31
1.
36

13
9

52
5.
42

75
6.
16

65
0.
52

H
–S

50
0.
4

33
9.
16

11
1.
2

31
1.
36

10
50

.8
4

83
6.
78

D
-H

36
1.
4

86
7.
36

77
8.
4

90
3.
5

73
6.
7

29
4.
68

H
-N

11
67

.6
11

95
.4

11
70

.3
8

63
9.
4

30
3.
02

33
3.
6

C
-D

88
9.
6

12
51

89
2.
38

66
9.
98

42
5.
34

25
0.
2

J-
X

10
28

.6
10

56
.4

58
3.
8

34
1.
94

54
2.
1

77
2.
84

H
-P

27
8

36
6.
96

86
1.
8

97
3

92
2.
96

82
2.
88

X
–Z

66
7.
2

33
6.
38

61
1.
6

11
67

.6
13

59
.4
2

97
3

123



Annals of Operations Research (2024) 335:1331–1361 1347

Table 5 The construction cost and
volume of AMDCs Cost (10–2¥) Volume (m3)

R-1 47,551,940 133,049.3

R-2 49,925,917 174,873.7

R-3 44,164,720 73,373.58

R-4 48,720,339 153,634

R-5 45,190,602 91,447.46

R-6 44,446,483 78,337.65

Table 6 The Value of xmi j

R-1 R-2 R-3 R-4 R-5 R-6

S-1 M 3,037,800 0 0 0 0 0

D 391,450 0 0 0 0 0

P 33,668 0 0 1522 0 0

S-2 M 0 2,516,800 0 0 0 0

D 0 324,320 0 0 0 0

P 0 2.9155 0 0 0 0

S-3 M 0 1,176,800 0 0 0 2,259,700

D 79,820 84,320 0 0 0 278,700

P 0 39,809 0 0 0 0

S-4 M 0 0 0 1,308,500 0 0

D 0 0 0 168,620 0 0

P 0 15,158 0 0 0 0

S-5 M 0 0 0 1,416,300 0 0

D 0 0 0 182,500 0 0

P 0 0 0 16,406 0 0

S-6 M 0 0 0 1,336,500 0 0

D 0 0 0 172,220 0 0

P 0 0 0 15,482 0 0

penalty has increased and the demand satisfaction rate has also continued to increase. When
the degree of change of the shortage penalty relative to the original shortage penalty is higher
than 17%, the marginal effect of the demand satisfaction rate decreases significantly, and the
demand satisfaction rate eventually reaches 72%.

5.4.2 Minimum demand rate

Shortage penalties (π) and minimum demand rates (ω) are fairly important driving factors
of demand satisfaction for anti-epidemic materials in affected areas. To meet the needs of
anti-epidemic materials in affected areas as much as possible, this paper has set a sufficiently
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Table 7 The value of ymjk

J-A J-H Q-K H-Y W–C Q-S

R-1 M 557,097 154,080 0 0 0 0

D 151,607 19,855 0 0 0 0

P 0 1785 0 0 0 0

R-2 M 828,669 0 0 0 0 919,200

D 39,460 0 0 0 0 118,449

P 18,208 0 1876 0 16,484 10,648

R-3 M 0 0 0 0 0 0

D 0 0 0 0 0 0

P 0 0 0 0 0 0

R-4 M 0 0 0 0 331,020 0

D 0 0 0 0 42,656 0

P 0 0 0 2495 0 0

R-5 M 0 0 0 0 0 0

D 0 0 0 0 0 0

P 0 0 0 0 0 0

R-6 M 0 0 161,970 215,370 0 0

D 0 0 20,872 27,753 0 0

P 0 0 0 0 0 0

H–S D-H H-N C-D J-X H-P X–Z

R-1 M 0 0 0 0 0 2,326,600 0

D 0 0 0 0 0 299,809 0

P 0 4933 0 0 0 26,951 0

R-2 M 0 0 0 0 0 0 1,945,800

D 0 0 0 0 0 0 250,738

P 14,365 0 0 0 0 0 22,540

R-3 M 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0

R-4 M 2,439,200 0 0 0 1,291,042 0 0

D 314,319 0 0 0 166,365 0 0

P 13,891 0 406 1632 14,987 0 0

R-5 M 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0

R-6 M 0 710,000 233,400 939,000 0 0 0

D 0 91,492 17,581 121,001 0 0 0

P 0 0 0 0 0 0 0
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Table 8 The Value of z j
Value

R-1 1

R-2 1

R-3 0

R-4 1

R-5 0

R-6 1

Table 9 The Value of Hmk
Mask Disinfector Protective clothing

J-A 16,743,058 3,213,532 0

J-H 78,580,800 31,503,108 3,539,953

Q-K 82,604,700 33,116,272 3,721,130

H-Y 109,838,700 44,034,522 4,948,020

W–C 168,820,200 67,680,298 3,177,870

Q-S 0 0 0

H–S 0 0 0

D-H 0 0 1,152,330

H-N 0 3,498,726 804,440

C-D 0 0 3,235,908

J-X 248,222 99,582 0

H-P 0 0 0

X–Z 0 0 0

large shortage penalty. At this time, the shortage penalty only plays a role in ensuring the fair
distribution of materials and avoids the demand for individual affected areas being satisfied
with 0% due to high transportation costs. Figure 3 explores the impact of the minimum
demand rate on the optimal solution when the shortage penalty is sufficiently large. Figure 3
shows that the optimal value is 99.73% of the original solution when the minimum demand
rate is 0%. Additionally, the degree of change in the optimal value increases significantly
when the minimum demand rate is higher than 67%.

5.4.3 Technical factor

This paper introduces variables �γ fi , �γci j and �γc jk , which represent the range of change
in three types of cost under the influence of technological innovation. These variables are
the installation costs of AMDCs, the transportation costs of anti-epidemic materials, and the
shortage penalty of anti-epidemic materials. Their values are within the range of [− 0.5,0.5].
Figure 4 shows the sensitivity analysis of the technical factor. As technical factors increase,
the optimal solution shows an upward trend, but the degree of influence is different.When the
three factors are all set to 0.5, �γ fi , �γci j and �γc jk respectively make the optimal solution
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Fig. 2 Sensitivity analysis of shortage penalty

Fig. 3 Sensitivity analysis of minimum demand rate
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Fig. 4 Sensitivity analysis of technical factor

account for 105.9%, 104.9%, and 106.2% of the original solution. The results show that
�γc jk has the greatest influence on the optimal solution. �γci j has the smallest influence.

5.4.4 Supply and demand

Supply uncertainty is determined by the data fluctuation parameter and the supply uncertainty
conservative parameter. Therefore, this paper explores the change in the optimal value under
the dual influence of two factors. Regarding supply, as the two factors increase, the optimal
value presents a nonlinear monotonic increasing trend (see Fig. 4). When the conservative
supply uncertainty parameter is 6 and the data fluctuation parameter reaches 0.5, the optimal
value reaches a maximum of 150.4% of the original solution.

Consistent with supply uncertainty, the data fluctuation parameter and the demand uncer-
tainty conservative parameter are fairly important parts of demand uncertaintyWhen � takes
the maximum value of 13, and the data fluctuation parameter is 0.5, the optimal value reaches
the maximum, which is 276.1% of the original solution (see Fig. 5).

Comparing demand with supply uncertainty, it is found that demand uncertainty has a
great influence on the optimal value. When the conservative demand uncertain parameter
takes the maximum value, the optimal value is 276.1% of the original solution. However,
when the conservative supply uncertainty parameter takes the maximum value, the optimal
value is only 150.7%. Supply uncertainty has a large impact on the demand satisfaction rate.
When the demand is uncertain and the conservative parameter takes the maximum value, the
demand satisfaction rate is 36%, which is a decrease of 36%. However, when the conservative
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Fig. 5 Sensitivity analysis of the supply

supply uncertainty parameter takes the maximum value, the optimal value is 48%, that is, it
only drops by 24%.

5.4.5 Budget scenarios

This paper has established ten scenarios and three groups of budgets based on decision
makers’ judgement of the epidemic. Specific parameters are shown in Table 10. P-1 is an

Table 10 Scenarios budget parameters

�γ fi �γci j �γc jk �i
ms �k

ms P-1 P-2 P-3

Scenario-1 −0.5 −0.5 −0.5 0 0 0.20 0.05 0.05

Scenario-2 −0.4 −0.4 −0.4 1 1 0.15 0.05 0.05

Scenario-3 −0.3 −0.3 −0.3 1 3 0.15 0.10 0.05

Scenario-4 −0.2 −0.2 −0.2 2 4 0.10 0.10 0.05

Scenario-5 −0.1 −0.1 −0.1 3 6 0.10 0.20 0.10

Scenario-6 0.1 0.1 0.1 3 7 0.10 0.15 0.10

Scenario-7 0.2 0.2 0.2 4 9 0.05 0.15 0.10
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Fig. 6 Sensitivity analysis of the demand

optimistic budget. P-2 is a balanced budget. P-3 is a negative budget. On this basis, this paper
explores the degree of change of the optimal value, and the results are shown in Fig. 6.

Figure 7 demonstrates that when the data fluctuation is 0.5, the optimal values of the three
groups of budgets are 420%, 460.2%, and 497.5% of the original solution, respectively. The
results reveal that a negative budget has the highest cost and an optimistic budget has the
lowest cost.

6 Discussion

Under the influence of the COVID-19 epidemic, technological innovation has brought more
uncertainty to the demand and supply, shortage penalty, and budget of the anti-epidemic
supply chain (Grida et al., 2020). Nevertheless, the dynamics, high dimensionality and
unpredictability of uncertain variables have long plagued the modeling and solving of
such problems (Almaraj & Trafalis, 2020; Sun et al., 2020). Given that no unified stan-
dard model and algorithm have been established, the application has limitations and needs
to meet a no after-effect (Gao & You, 2019; Gao et al., 2017). Although the optimization
approaches, including chance-constrained optimization, fuzzy programming, and stochastic
programming, are not troubled by the dimensionality of the status variables, they are prone
to the challenge of dealing with comprehensive indivisible constraints (Tordecilla et al.,
2021). Additionally, their role is limited to fewer optimizations. When the number of cycles
increases, it will be adversely affected by the exponential expansion of the number of events
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Fig. 7 Sensitivity analysis of budget scenarios

(Gholizadeh et al., 2021). In contrast to the above optimization approaches, robust optimiza-
tion is more suitable for the optimization problem of the uncertain impact of technological
innovation on the anti-epidemic supply chain. affected by the COVID-19 pandemic.

For the uncertain impact of technological innovation on the supply chain of anti-epidemic
materials under the COVID-19 pandemic, errors are inevitable in the process of obtaining
basic parameters of the supply chain. Furthermore, given the characteristics of the model,
the parameter probability distribution is also unknown (Liu et al., 2019a, 2019b). The robust
optimization approach is a replacement and supplement of the above research approach (Gao
& Ryan, 2014; Gilani et al., 2020). This approach uses uncertain parameters to describe
the uncertain impact of technological innovation in this paper on the anti-epidemic supply
chain and transforms it into a corresponding model. Then, the approach uses a heuristic
algorithm to solve the issue. This current research studied and constructed the anti-epidemic
supply chain model under technological innovation. Furthermore, this current research used
robust optimization approaches to solve the uncertainty problem so that the model has strong
anti-interference performance. Analogously, this current research attempted to improve the
responsiveness of the scheduling strategy for anti-epidemic materials by changing the accu-
racy of predicting uncertain parameters. Doing so ensures that the anti-epidemic materials
are timely and play a rescue role in meeting the maximum demand.

Based on the uncertainty influences caused by technological innovation for supply chains
in demand and supply, shortage penalty, and budget, this current research introduces relevant
variables to construct an anti-epidemic supply chain model under technological innovation.
By combining a variety of possible scenarios, a scenario budget solving approach is proposed,
and the effectiveness of the approach is verified in the example experiment,which enriches the
theoretical research in the anti-epidemic supply chain model under technological innovation.

This current research also presents a robust optimizationmodel of the anti-epidemic supply
chain under technological innovation, which can provide decision-making reference for the
distribution plan of anti-epidemic materials, and prompt relevant decision-makers to make
optimal decisions quickly. Transporting anti-epidemic materials to the infected areas during
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the golden period will help minimize casualties and the loss of economic property in the
infected areas.

7 Conclusions and implications

7.1 Conclusions

Based on a single-period three-level mathematical model of the anti-epidemic supply chain,
which is composed of suppliers, anti-epidemic material distribution centers, and affected
areas, this paper presents a robust optimizationmodel of the anti-epidemic supply chain under
technological innovation and uses MATLAB to solve the solution. The study has shown that
although the shortage penalty in the objective function increases the costs, it can also effec-
tively increase the demand satisfaction rate. When the shortage penalty is sufficiently large,
the supply will be sent to the affected areas to meet demand as much as possible. At this time,
the minimum demand satisfaction rate can ensure the fair distribution of materials among
affected areas, so that the demand satisfaction rate can reach theminimum requirement. How-
ever, the increase in the minimum demand satisfaction will also increase the costs slightly
in this case. Another conclusion is that technological innovation can reduce expenses. The
technical parameters related to the transportation costs of AMDCs have the greatest impact
on the optimal value. The technical parameters related to suppliers’ transportation costs have
the least impact on the optimal value. Furthermore, both supply uncertainty and demand
uncertainty will have a greater impact on spending. In contrast, demand uncertainty has a
greater impact on costs and a smaller impact on demand satisfaction rates. In addition, the
multi-scenario budget solution approach can effectively reduce the computational complex-
ity and obtain a reasonable feasible solution in a limited time. However, the budget setting
has a certain impact on the cost. Consequently, exploring ways to set a reasonable budget for
different scenarios is crucial.

7.2 Theoretical implications

A steady supply of anti-epidemic materials is a necessary material condition to control the
spread of the COVID-19 pandemic and eliminate social panic. this current research differs
from previous research and contributes to the existing literature on responsible innovation in
three dimensions.

The first dimension is a multi-perspective exploration of the uncertain impact of tech-
nological innovation on the anti-epidemic supply chain in the context of the COVID-19
pandemic. The available literature on the mechanisms of the COVID-19 pandemic transmis-
sion, prevention and control approaches, and material deployment provides a solid research
basis for this paper. In contrast, the research perspective in this current research focuses on
the uncertain influence of technological innovation on the anti-epidemic supply chain in the
context of the COVID-19 pandemic, which is a research perspective that has been neglected
by available research.

The second dimension is the construction of an uncertainty model of technological inno-
vation affecting the anti-epidemic supply chain in the context of the COVID-19 pandemic.
Some decision models in existing research have considered the characteristics of infectious
diseases and predicted the demand for emergency supplies by utilizing infectious disease
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dynamics models, such as the model of susceptible-exposed-infected-recovered. Neverthe-
less, most research has not given adequate attention to the uncertainty model related to the
anti-epidemic supply chain in the evolutionary context of the COVID-19 pandemic. Hence,
this current research constructed an uncertainty model of technological innovation affecting
the supply chain of anti-epidemic materials under the COVID-19 pandemic, which provides
a new mathematical model for the research of uncertainty in the anti-epidemic supply chain.

The third dimension is the proposal of a scenario budget-solving approach and its validity
is proven by example experiments. Conventional solution approaches require first setting a
number of conservative degree parameters to obtain the most robust solution at that conser-
vative degree. Nevertheless, decision-makers have difficulty giving a set of parameters of
reasonable conservatism in the usual decision-making scenarios. Accordingly, this current
research proposes a scenario budget-solving approach, in which a set of conservative param-
eters is called a scenario. Its probability of occurrence is called a budget, while multiple
scenarios are introduced into the model to obtain a reasonable solution, thus avoiding the
disadvantage of excessive conservatism in the optimal solution. Where partial information
is known to the decision-maker, this approach can incorporate known information into the
model, thereby effectively reducing uncertainty and improving the quality of the decision.
Additionally, as the approach avoids the estimation of uncertain parameters, it can produce
a reasonable feasible solution in a limited time.

7.3 Practical implications

Research on the uncertain impact of technological innovation on the anti-epidemic supply
chain under the COVID-19 pandemic has great practical significance.

Firstly, technological innovation is a crucial part of anti-epidemic supply chain manage-
ment that cannot be ignored. Moreover, it plays an active role in the cost-efficient operation
the supply chain of anti-epidemic materials. Faced with the complex and changing environ-
ment of the COVID-19 pandemic, technological innovation should receive adequate attention
and corresponding measures should be taken to promote it. This current research verifies that
technological innovation has a greater impact on the transportation costs of the anti-epidemic
distribution centers than that of the anti-epidemic suppliers. Consequently, enterprises related
to the distribution center of anti-epidemicmaterials should strengthen the introduction, diges-
tion, absorption, and self-development of technological innovation, and drive the synergy and
linkage of various parties in the anti-epidemic supply chain through technological innova-
tion to reduce the costs of the anti-epidemic supply chain. As the leader and coordinator
of epidemic prevention and control, the government should adopt the strategy of focusing
on epidemic prevention and distribution centers, supplemented by epidemic prevention and
supply suppliers. Moreover, it should provide appropriate financial subsidies for the techno-
logical innovation of all parties in epidemic prevention and supply chain. These studies can
stimulate the technological innovation of all parties in the epidemic prevention and supply
chain and ensure that their technological innovation is adequately funded.

Secondly, reducing uncertainty in supply and demand plays a key role in reducing supply
chain costs for the anti-epidemic supply chain. This current research finds that both sup-
ply uncertainty and demand uncertainty have a greater negative influence on costs, with the
former having a significantly lower negative impact than the latter. As a result, technologi-
cal innovation in the anti-epidemic supply chain should be demand-driven. Additionally, it
should focus on information sharing and collaboration between suppliers of anti-epidemic
materials, distribution centers, and affected areas. By sharing and collaborating information
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across the anti-epidemic supply chain, costs and operational processes can be greatly opti-
mized.While technological innovation creates challenges for supply and demand uncertainty
in the anti-epidemic supply chain, it also provides the potential for information sharing and
collaboration across the anti-epidemic supply chain. Technological innovation, especially
digital technology innovation, can enhance the information processing capability of the sup-
ply chain of materials for epidemic prevention, and provide timely monitoring and feedback
on various aspects of this supply chain. Moreover, Technological innovation can improve
dynamic risk response capability and help the epidemic-prevention supply chain to respond
quickly in the face of the COVID-19 pandemic.

Thirdly, in the context of the COVID-19 pandemic, technological innovation has brought
about uncertainty in the anti-epidemic supply chain in various ways. Hence, the elemental
support system of the anti-epidemic supply chain must be strengthened. From the policy
perspective, risk and crisis management methods and management mechanisms for the anti-
epidemic supply chain must be developed. From the system perspective, the division of
labor among departments based on the anti-epidemic supply chain should be clarified, key
nodes should be grasped, and the supply chain system should be emphasized, to achieve
a coordinated and smooth transition of the anti-epidemic supply chain from peacetime-
crisis-wartime-peacetime. From the financial perspective, the financial guarantee mechanism
should be improved for the networked and systematic construction of supply chain emergency
reserves and emergency facilities. Doing so can ensure the regular maintenance, intelligence,
and modern development of facilities and equipment, as well as the rotation of emergency
agricultural reserves. From the talent perspective, a team of emergency personnel must be
established. This team can rely closely on the industrial system and industry-specific tech-
nologies to give full play to the role of a think tank for risk prevention in the anti-epidemic
supply chain.7. 4 Limitations and future research opportunities.

This research has several limitations that must be addressed in future research. Firstly, this
paper focuses on a single-period three-level anti-epidemic supply chain. Thus, it is only suit-
able for anti-epidemic material dispatching for the first time after the COVID-19 pandemic.
Follow-up research may look into multiperiod supply chain scheduling, which can address
the problem regarding the continuous supply of materials. In a practical decision situation,
uncertainty in demand and supply decreases as the number of deployments increases. Hence,
a dynamic robust optimization model can be used to estimate the uncertainty parameters
and optimize the deployment decision in multiple cycles simultaneously, with the uncer-
tainty decreasing and the conservatism of the optimal solution decreasing as the number of
deployments increases. Secondly, this paper did not take vehicle routing and scheduling opti-
mization into account. Hence, the issue of vehicle path and scheduling optimization can be
considered in further research. Moreover, path planning, location-allocation, and decision-
making in transportation selection can be integrated to make the anti-epidemic supply chain
more realistic. Thirdly, the premise of the multi-scenario budget solution approach in this
current research is that the decision-maker is sufficiently experienced to give limited sets
of uncertain parameters. If no such assumption exists, heuristic algorithms can be used to
optimize the uncertainty parameters to find a better combination of uncertainty parameters
in a limited time. Fourthly, the trade-off between cost and demand fulfillment is primarily
assessed in this research. However, in practice, the speed of response is also a factor to
take into account. In humanitarian supply chains, the speed of response is critical, and a
faster response means more lives saved. Therefore, in future research, the trade-off between
cost, demand fulfillment, and response speed can be simultaneously examined through a
multi-objective optimization approach.
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