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Abstract
Hazardous healthcare waste (HCW) management system is one of the most critical urban
systems affected by the COVID-19 pandemic due to the increase in waste generation rate
in hospitals and medical centers dealing with infected patients as well as the degree of
hazardousness of generated waste due to exposure to the virus. In this regard, waste network
flowwould face severe problems without taking care of hazardous waste through disinfection
facilities. For this purpose, this study aims to develop an advanced decision support system
based on a multi-stage model that was combined with the random forest recursive feature
elimination (RF-RFE) algorithm, the indifference threshold-based attribute ratio analysis
(ITARA), and measurement of alternatives and ranking according to compromise solution
(MARCOS) methods into a unique framework under the Fermatean fuzzy environment.
In the first stage, the innovative Fermatean fuzzy RF-RFE algorithm extracts core criteria
from a finite set of initial criteria. In the second stage, the novel Fermatean fuzzy ITARA
determines the semi-objective importance of the core criteria. In the third stage, the new
Fermatean fuzzy MARCOS method ranks alternatives. A real-life case study in Istanbul,
Turkey, illustrates the applicability of the introduced methodology. Our empirical findings
indicate that “Pendik” is the best among five candidate locations for sitting a new disinfection
facility for hazardous HCW in Istanbul. The sensitivity and comparative analyses confirmed
that our approach is highly robust and reliable. This approach could be used to tackle other
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critical multi-dimensional problems related to COVID-19 and support sustainability and
circular economy.

Keywords COVID-19 · Healthcare waste · Fermatean fuzzy set · Random forest ·
Recursive feature elimination · MARCOS

1 Introduction

Waste Management (WM) is considered one of the major issues in modern urban commu-
nities that authorities and environmental organizations aim to address sustainably in order
to minimize its adverse effects and achieve relevant environmental, social, and economic
green targets (Tirkolaee et al., 2021; Torkayesh, Deveci, et al., 2021). With the high rate of
urbanization and population growth, WM has become a complicated strategic problem for
urban regions (Tirkolaee et al., in press). In addition, different characteristics of waste types,
e.g., hazardous healthcare waste (HCW), industrial waste, construction waste, and municipal
solid waste, have intensified the complexity of WM for large cities. Hence, the emergence
of concepts such as circular economy also prioritised waste treatment (Paul et al., 2022).

In terms of the importance of appropriate treatment of different waste types, hazardous
HCW is significant among all waste types due to its hazardous components that can have
costly consequences on society, the environment, and the economy (Farrokhizadeh et al., in
press). Moreover, most of the products used in healthcare centers are made of materials that
can be reused through recycling, such as plastic-based products or evenmetal products. That is
another reason for developing an appropriate treatment for hazardous HCW.A high degree of
urbanization and population growth have significantly affected the material consumption rate
in healthcare centers (Sazvar et al., in press). Additionally, the hazardous HCW generation
rate has increased noticeably during recent decades (Pradenas et al., 2020). As a result,
hazardous HCW generated in healthcare centers has a high potential for being recycled and
reused in the secondary markets for similar purposes in healthcare centers or other industries.

Recently, the rise of the COVID-19 pandemic has triggered an increase in material con-
sumption rate in healthcare centers due to high incidents of patients infected with the virus
(Goodarzian et al., in press). Consequently, the hazardous HCW generation rate has also
increased due to the higher utilization rate of plastic-based and other related materials such
as face shields and face masks (Lofti et al., in press). However, the increase in material
consumption rate in healthcare centers is not the only problem caused by the COVID-19
pandemic. COVID-19 has notoriously affected the degree of hazardous waste generated in
healthcare centers due to the high exposure of material and staff to the infected patients
(Das et al., 2021; Thakur, 2021). In this regard, the segregation process of hazardous HCW
affected by COVID-19 becomes a risky, complicated, and costly task for all stakeholders
(Klemeš et al., 2020; Zand & Heir, 2021). Empowering WM companies to treat hazardous
HCW considering sustainability and circular practices and developing a disinfection facility
to prepare affected hazardous HCW for the recycling, waste-to-energy, and disposal pro-
cesses can bring positive results (Das et al., 2021; Singh et al., 2020). However, locating a
disinfection facility on a waste network for a large city is a complicated, challenging, and
multi-dimensional decision-making problem that requires state-of-the-art and reliable tools.
Along with technical characteristics, such decision-making problems get into the big data
framework (Mishra and Singh, in press) by considering economic, social, and environmental
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criteria. In this regard, appropriate decision-making tools should also consider the big data
nature of the problem while making a decision.

Overall, this paper aims to address the following research questions:

(1) What is the importance of disinfection facilities in waste network flow?
(2) What are the required decision criteria to optimally locate a disinfection facility consid-

ering sustainability and circular economy concepts?
(3) How to empower real-life decision-makers to address a multi-dimensional decision-

making problem with a high number of decision criteria?
(4) What is the possible way to empower real-life decision-makers to express their uncertain

opinions within the decision-making processes?

In this regard, multi-criteria decision-making (MCDM) (Maghsoodi et al., 2018; Simic
et al., 2021; Torkayesh,Malmir, et al., 2021) andmachine learning algorithms (Bagheri et al.,
2019; Chhay et al., 2018; Lu et al., 2021; Maghsoodi et al., 2020) are reliable tools that can
unchain managers to tackle real-life multi-dimensional decision-making problems with a
large number of decision criteria. Thus, this study develops a novel decision support system
based on a multi-stage model that hybridizes the random forest recursive feature elimination
(RF-RFE) algorithm, the indifference threshold-based attribute ratio analysis (ITARA), and
the measurement of alternatives and ranking according to compromise solution (MARCOS)
methods into a unique framework under the Fermatean fuzzy environment. This decision
support system was utilized to locate a disinfection facility for hazardous HCW during the
COVID-19 pandemic considering a large number of decision criteria under technical, social,
economic, and environmental aspects.

1.1 Themotivation for using random forest recursive feature elimination

Oneof themost common and applied approaches inmany high-dimensionalmachine learning
problems is applying various statistical and knowledge discovery in data (KDD) techniques
to minimize noise and redundant data (Chen et al., 2020). One of the popular KDD and
data mining methods used in machine learning problems to reduce the number of features is
the recursive feature elimination (RFE) technique with various classifiers (Blum & Langley,
1997; Chen & Jeong, 2007). Rao and Rao (2021) described RFE as an effective method that
selects a subset of the most relevant features to train the model and removes the weakest
feature(s) until the specified number of features is reached. Evidence from the research
studies showed that this method helps remove dependencies and co-linearity of any model
(Guyon et al., 2002). One of the primary elements of the RFE method is the utilization of
different classifiers such as support vector machines (Guyon et al., 2002; Rtayli & Enneya,
2020), partial least squares (You et al., 2014), Kernel Fisher discriminant analysis (Louw
& Steel, 2006), Naïve Bayes (Artur, 2021), and random forest (RF) (Darst et al., 2018;
Zhou et al., 2014). Research studies have previously used the RFE technique with different
classifiers in various machine learning and data analytics problems (Guyon et al., 2002; Lin
et al., 2018; Zhou et al., 2014). This study innovatively utilizes the RF-RFE algorithm as
a pre-processing method to select core criteria of the analyzed disinfection facility location
selection problem. To the best of the authors’ knowledge, practical applications of the RF-
RFE algorithm inWMare unfortunatelymissing. None of the previous studies combined data
mining and machine learning algorithms with FFS-based models into a unique framework.
Furthermore, none of the previous studies used the RF-RFE algorithm as a pre-processing
method for feature selection combined withMCDMmethods.While developing a theoretical
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framework combining RF-RFE and MCDM methods is novel, this study has also applied
this feature elimination technique to a real-world problem.

1.2 Themotivation for using fermatean fuzzy sets

Senapati and Yager (2020) introduced the concept of Fermatean fuzzy sets (FFSs) as a
generalization of intuitionistic fuzzy sets (IFSs) (Atanassov, 1999) and Pythagorean fuzzy
sets (PFSs) (Yager & Abbasov, 2013) to deal with uncertainty. Compared to IFSs and PFSs,
the FFS theory is an advanced approach in order to handle imprecise and vague information
by expanding the spatial scope of membership and non-membership degrees (Yang et al.,
2021). Additionally, IFSs and PFSs have shortcomings in contradictory decision-making
environments in which the sum and quadratic sum of membership and non-membership
degrees could exceed 1. Differently, FFSs can provide a higher precision by satisfying the
criterion that the sum of cubes of membership and non-membership degrees is bounded by
1 (Yang et al., 2021). Therefore, the FFS theory is an exceptional approach for modelling
complex human preferences in the decision-making process (Garg et al., 2020). FFS-based
MCDMmodels have been used in diverse research areas, such as civil engineering (Senapati
& Yager, ), economics (Sergi & Sari, 2021), environmental engineering (Shahzadi et al.,
2021), logistics (Keshavarz-Ghorabaee et al., 2020),medicine (Akramet al., 2020;Garg et al.,
2020), and transportation engineering (Sahoo, 2021). Unfortunately, available FFS-based
models have not given any attention to complex WM problems. None of the previous studies
combined data mining, and machine learning algorithms with FFS-based decision-making
approaches into a unique framework. For the first time, this study proposes an approach based
on Fermatean Fuzzy MCDM and RF-RFE algorithm and applies it to locate a disinfection
facility for HCW.

1.3 Themotivation for using the ITARAmethod

Hatefi (2019) developed the ITARA method and presented its substantial superiority over
other weighting methods. The ITARA method directly obtains semi-objective quantitative
criteria importance from an initial decision matrix. This simple and logical method assigns
greater importance to the criteria with higher data dispersion since it is based on dispersion
logic.Moreover, it innovatively utilizes the concept of the indifference threshold. The ITARA
method has been applied for criteria importance determination in a few MCDM problems,
such as material selection (Sofuoğlu, 2019), power grid dispatching (Du et al., 2020), water
allocation management (Elshaboury et al., 2020), logistics equipment selection (Ulutaş et al.,
2020), supplier selection (Chang et al., 2021), and risk assessment (Lo et al., 2021). There-
fore, this unique method has not been applied for determining criteria importance in any
WM problem. On the other hand, the ITARA method has been extended only under the
intuitionistic standard cloud uncertain environment (Du et al., 2020). Hence, an extension of
the ITARAmethod into the Fermatean fuzzy environment is still missing. This extension can
be valuable for researchers and practitioners since the traditional ITARA method, which can
only process deterministic data, may generate erroneous results under contradictory decision-
making environments. As a result, to fill the previous research gaps, this study proposed the
Fermatean fuzzy ITARA method and applied it to determine the importance of criteria for
locating a disinfection facility for hazardous HCW.
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1.4 Themotivation for using theMARCOSmethod

MARCOS is one of the newest MCDM methods introduced by Stević et al. (2020), based
on the ratio and reference point sorting approaches. The MARCOS method provides robust
alternative ranking by definition of ideal/anti-ideal values, relationships between alternatives
and reference points, and utility degrees. Its utilization increases the accuracy of decision-
making systems anddelivers valuable ranking outputs to practitioners. TheMARCOSmethod
is mainly utilized with crisp parameters, e.g., Stević and Brković (2020), and Stević et al.
(2021). This method has been extended under various uncertain environments, such as D
number (Chakraborty et al., 2020), fuzzy (Stanković et al., 2020), picture fuzzy (Simić et al.,
2020), interval rough (Deveci et al., 2021), interval type-2 fuzzy (Gong et al., 2021), intu-
itionistic fuzzy (Ecer & Pamucar, 2021), and single-valued neutrosophic fuzzy (Pamucar,
Ecer, et al., 2021). Unfortunately, the MARCOS method has not been extended before under
the Fermatean fuzzy environment, significantly improving its applicability in real-life contra-
dictory decision-making environments. On the other hand, the MARCOS method has been
employed for solving various decision-making problems in agriculture (Maksimović et al.,
2021), civil engineering (Celik & Gul, 2021), computer science (Torkayesh & Torkayesh,
2021), economics (Arsu&Ayçin, 2021), energymanagement (Deveci et al., 2021;Gong et al.,
2021; Pamucar, Iordache, et al., 2021), human resources management (Stević & Brković,
2020), logistics (Chakraborty et al., 2020; Stević et al., 2020; Ulutaş et al., 2020), medicine
(Biswas et al., in press), tourism (Mijajlović et al., 2020), and transportation engineering
(Bakır et al., 2021; Bouraima et al., 2021; Pamucar, Ecer, et al., 2021; Simić et al., 2020;
Stanković et al., 2020). However, not a single previous study utilized the MARCOS method
in the WM research area. To fill these methodological and practical research gaps related to
this unique MCDM method, this study introduces the Fermatean fuzzy MARCOS method
and uses it to rank alternative candidate locations for a disinfection facility for hazardous
HCW.

1.5 Contributions of the study

This is the first study that addresses the location problem for a disinfection facility for
hazardous HCW during the COVID-19 pandemic. Moreover, it introduces a novel decision
support system based onmachine learning andMCDM. For the first time, this study integrates
random forest recursive feature elimination forMCDMproblems to extract core decision cri-
teria. The RF-RFE algorithm has neither been coupled with any MCDMmethods. Although
various papers have used certain machine learning methods to extract core features (Huang
et al., 2018; Ustebay et al., 2018), none of the previous studies have used RFE for core
feature extraction. Also, none of the previous studies used RF-RFE for location selection of
a disinfection facility for hazardous HCW. In terms of the MCDM, this study is the first to
develop an integrated framework based on ITARA andMARCOS under the Fermatean fuzzy
environment. Additionally, the Fermatean fuzzy ITARA and the Fermatean fuzzy MARCOS
methods are proposed in this study. Finally, the Fermatean fuzzy ITARA-MARCOS model
is used for the first time to solve a WM problem in the context of locating a disinfection
facility.
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1.6 Organization of the study

This research is structured as follows: Sect. 2 provides a review of related state-of-the-art
research. Section 3 presents the approach based on the Fermatean fuzzy ITARA-MARCOS
and RF-RFE algorithm. Section 4 defines the context definition and the proposed case study.
Section 5 provides the results and discussion. Section 6 presents the conclusions of the study.

2 Literature review

This section is organized into three sub-sections; (a) available applications of data mining
and machine learning in decision-making, (b) state-of-the-art decision-making approaches
for HCW management, and (c) research gaps.

2.1 Applications of data mining andmachine learning in waste management

Different WM operations have faced treatment organizations with severe challenges due to
the high complexity ofWMprocesses and the high amount of data. Data mining andmachine
learning methods have attracted specific attention in recent years due to the increasing influ-
ence of data on the optimal treatment of waste in different sectors. Table 1 summarizes
applications of data mining and machine learning for WM problems. For a more detailed
review of similar studies, readers can also refer to a recent literature review by Abdallah et al.
(2020).

2.2 Decision-making approaches for healthcare waste management

HCWmanagement has gained a significant research interest in recent years. Table 2 provides
a comprehensive survey of the available decision-making approaches for HCWmanagement.

Chauhan and Singh (2016) explored the sustainable location selection problem in the
case of an HCW disposal site. Voudrias (2016) investigated systems for hazardous HCW
treatment, including incineration, steam disinfection, microwave disinfection, chemical dis-
infection, and reverse polymerization. Hariz et al. (2017) explored suitable areas for sitting a
centralized incinerator for HCW. Chauhan et al. (2018) ranked hospitals from the aspect of
HCWmanagement practices.Hinduja and Pandey (2019) evaluated incineration, steam steril-
ization, microwave disinfection, chemical disinfection, reverse polymerization, and pyrolysis
to determine the best treatment technology for HCW. Ishtiaq et al. (2018) prioritized factors
affecting the process of selecting an HCW disposal provider in developing countries.

Aung et al. (2019) assessed the performances of private and government hospitals in
terms of HCW management practices. Nursetyowati et al. (2019) investigated reduction,
sorting, storage, transportation, treatment, and burial management schemes for hazardous
HCWgenerated in community hospitals.Mishra,Mardani, et al. (2020) analyzed the disposal
assessment problem in theHCWcontext by consideringmicrowave disinfection, incineration,
steam sterilization, and landfilling. Mishra, Rani, et al. (2020) handled the facility location
problem in the context of recycling centers for hazardous HCW. Li et al. (2020) performed
a sustainability assessment of incineration, steam sterilization, landfilling, and microwave
disinfection in developing countries.

Recently, Azizkhani et al. (2021) compared the suitability of irradiation, microwave disin-
fection, steam sterilization, chemical disinfection, landfilling, and incineration for managing
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HCW in rural and urban areas. Chauhan and Singh (2021) investigated the selection of
an appropriate specialized HCW disposal firm in the single- and multi-sourcing contexts.
Chauhan et al. (2021) explored the tendency and relationships of key drivers of intelligent
HCWdisposal planning in developing economies. Liu et al. (2021) benchmarked the suitabil-
ity of incineration, chemical disinfection, microwave disinfection, steam sterilization, and
reverse polymerization processes for treatments of regulatedmedicalwaste.Makan andFadili
(2021) assessed incineration and non-incineration systems for HCW. Thakur et al. (2021)
explored the most critical factors influencing sustainable HCW management in developing
countries.

3 Research gaps

The primary research gaps of the current are formulated as follows:

(i) The design of contemporary HCW networks is a prerequisite for efficient management
of this top-priority waste flow. However, the problem of locating a disinfection facility
for hazardous HCW is not addressed and solved in the available studies. Although
disinfection facilities are inevitable HCW network entities, especially in the COVID-
19 era, the previous efforts only introduced decision-making approaches for locating
landfill sites, waste-to-energy plans, or recycling centers.

(ii) To the best of the authors’ knowledge, practical applications of the RF-RFE algorithm
inWM are unfortunately missing. None of the previous studies hybridized data mining
and machine learning algorithms with FFS-based models into a unique framework.
Furthermore, none of the previous studies have used the RF-RFE algorithm as a pre-
processing method for feature selection combined with MCDM methods.

(iii) Various decision-making approaches for HCW management have been proposed in
the literature. However, the available models can be employed only under crisp, fuzzy,
intuitionistic fuzzy, or Pythagorean fuzzy environments. This significantly limits their
applicability in real-life contradictory decision-making environments since they cannot
efficiently represent complex, imprecise, and vague management preferences.

(iv) The ITARA and MARCOS methods have not been utilized for solving any HCW
management problem. Also, not a single study has integrated these two exceptional
decision-making methods into a single framework under the Fermatean fuzzy environ-
ment.

This study proposes an approach based on the Fermatean fuzzy ITARA-MARCOS and
RF-RFE algorithm for locating a disinfection facility for hazardous HCW in the COVID-19
era to address the research gaps.

4 Methodology

This section provides some preliminaries of FFSs; i.e., the geometric meaning, operational
laws, the comparisonmethod, score and accuracy functions as well as two advanced aggrega-
tion operators. Then, preliminaries of the RF-RFE algorithm are given. Finally, the approach
based on the Fermatean fuzzy ITARA-MARCOS and RF-RFE algorithm is formulated and
explained in detail. A comprehensive flowchart of the proposed three-stage approach is illus-
trated in order to increase the clarity of the presentation.
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4.1 Preliminaries of Fermatean fuzzy sets

FFSs are a novel extension of IFSs and PFSs. Compared to IFSs and PFSs, FFSs provide
a more general perspective for two-dimensional, i.e., membership and non-membership,
information compared to IFSs and PFS since the sum of cubes of membership and non-
membership degrees of FFSs is in the unit interval (Fig. 1).

Definition 1 (Senapati & Yager, 2019a, 2019b, 2020). A Fermatean fuzzy set
�

F in a universe
X is an object having the form of:

�

F =
{〈
x, α�

F
(x), β�

F
(x)
〉
| x ∈ X

}
, (1)

where α�
F
(x) ∈ [0, 1] is the degree of membership of the element x in the set

�

F, β�
F
(x) ∈

[0, 1] in which the degree of non-membership of the element x in the set
�

F, and α�
F
(x) and

β�
F
(x) satisfy the following condition:

0 ≤
(
α�
F
(x)
)3 +

(
β�
F
(x)
)3 ≤ 1,∀x ∈ X . (2)

The degree of indeterminacy of the element x in the set
�

F is:

π�
F
(x) = 3

√
1 −

(
α�
F
(x)
)3 −

(
β�
F
(x)
)3

,∀x ∈ X . (3)

If X has only one element, then
�

F =
{〈
x, α�

F
(x), β�

F
(x)
〉
| x ∈ X

}
is called a Fermatean

fuzzy number (FFN) in which α�
F
, β�

F
∈ [0, 1], and 0 ≤ α3

�
F

+ β3
�
F

≤ 1. For convenience,

an FFN is denoted by
�

F =
(
α�
F
, β�

F

)
.

Fig. 1 The relationships between
intuitionistic, Pythagorean, and
Fermatean fuzzy sets
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Definition 2 (Garg et al., 2020). Let
�

F =
(
α�
F
, β�

F

)
,

�

F1 =
(

α�
F1

, β�
F1

)
, and

�

F2 =
(

α�
F2

, β�
F2

)
be three FFNs, the operational parameter η > 0, and τ > 0. The Yager T-norm

and T-conorm operations of FFNs are defined as follows:
(a) Addition “ ⊕ ”

�

F1 ⊕ �

F2 =
⎛
⎝ 3

√√√√min

[
1,

(
α
3η
�
F1

+ α
3η
�
F2

)1/η
]
, 3

√√√√1 − min

{
1,

[(
1 − β3

�
F1

)η

+
(
1 − β3

�
F2

)η]1/η}⎞
⎠, (4)

(b) Multiplication “ ⊗ ”

�

F1 ⊗ �

F2 =
⎛
⎝ 3

√√√√1 − min

{
1,

[(
1 − α3

�
F1

)η

+
(
1 − α3

�
F2

)η]1/η}
, 3

√√√√min

[
1,

(
β
3η
�
F1

+ β
3η
�
F2

)1/η
]⎞
⎠, (5)

(c) Scalar multiplication

τ
�

F =
⎛
⎝ 3

√√√√min

[
1,

(
τ α

3η
�
F

)1/η
]
, 3

√√√√1 − min

{
1,

[
τ

(
1 − β3

�
F

)η]1/η}⎞
⎠, (6)

(d) Power

�

F
τ

=
⎛
⎝ 3

√√√√1 − min

{
1,

[
τ

(
1 − α3

�
F

)η]1/η}
, 3

√√√√min

[
1,

(
τ β

3η
�
F

)1/η
]⎞
⎠, (7)

Definition 3 (Senapati & Yager, 2019a, 2019b, 2020). Let
�

F =
(
α�
F
, β�

F

)
be an FFN. The

complement is defined as follows:

�

F
c

=
(
β�
F
, α�

F

)
. (8)

Definition 4 (Keshavarz-Ghorabaee et al., 2020). Let
�

F =
(
α�
F
, β�

F

)
be an FFN. The

positive score function is defined as the following:

score

(
�

F

)
= 1 + α3

�
F

− β3
�
F
. (9)

Definition5 (Keshavarz-Ghorabaee et al., 2020).Let
�

F =
(
α�
F
, β�

F

)
be aFFN.The accuracy

function acc

(
�

F

)
∈ [0, 1] is distincted as follows:

acc

(
�

F

)
= α3

�
F

+ β3
�
F
. (10)

Definition 6 (Senapati & Yager, 2019a, 2019b, 2020). Let
�

F1 =
(

α�
F1

, β�
F1

)
and

�

F2 =
(

α�
F2

, β�
F2

)
be twoFFNs, and score

(
�

Fi

)
and acc

(
�

Fi

)
(i= 1, 2) be the score and accuracy
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functions of
�

F1 and
�

F2, respectively. The comparison method of FFNs
�

F1 and
�

F2 can be
defined as:

(i)
�

F1 >
�

F2

∣∣∣∣∣∣∣∣

score

(
�

F1

)
> score

(
�

F2

)

score

(
�

F1

)
= score

(
�

F2

)
, acc

(
�

F1

)
> acc

(
�

F2

) , (11)

(i i)
�

F1 = �

F2

∣∣∣∣ score
(

�

F1

)
= score

(
�

F2

)
, acc

(
�

F1

)
= acc

(
�

F2

)
, (12)

(i i i)
�

F1 <
�

F2

∣∣∣∣∣∣∣∣

score

(
�

F1

)
< score

(
�

F2

)

score

(
�

F1

)
= score

(
�

F2

)
, acc

(
�

F1

)
< acc

(
�

F2

) . (13)

Definition 7 (Garg et al., 2020). Let
�

Fl =
(

α�
Fl

, β�
Fl

)
(l = 1, …, p) be a number of FFNs,

the operational parameter η > 0, and γ = (γ 1, …, γ p)T be the weight vector of them, with γ l

∈ [0, 1] and
∑p

l=1 γl = 1. A Fermatean fuzzy Yager weighted average (FFYWA) operator
is distincted as follows:

FFYW Aγ

(
�

F1, ...,
�

Fl , ...,
�

F p

)
= p⊕

l=1

(
γl

�

Fl

)

=
⎛
⎜⎝ 3

√√√√√min

⎡
⎣1,

( p∑
l=1

γl α
3η
�
Fl

)1/η
⎤
⎦, 3

√√√√√1 − min

⎧⎨
⎩1,

[ p∑
l=1

γl

(
1 − β3

�
Fl

)η
]1/η⎫⎬

⎭

⎞
⎟⎠. (14)

and aFermatean fuzzyYagerweighted geometric (FFYWG)operator is defined as follows:

FFYWGγ

(
�

F1, ...,
�

Fl , ...,
�

F p

)
= p⊗

l=1

�

F
γl

l

=
⎛
⎜⎝ 3

√√√√√1 − min

⎧
⎨
⎩1,

[ p∑
l=1

γl

(
1 − α3

�
Fl

)η
]1/η⎫⎬

⎭, 3

√√√√√min

⎡
⎣1,

( p∑
l=1

γl β
3η
�
Fl

)1/η
⎤
⎦
⎞
⎟⎠. (15)

4.2 Preliminaries of the random forest recursive feature elimination algorithm

Random Forest (RF) is a well-known machine learning technique developed by Breiman
(2001) that uses an ensemble of unpruned decision trees for classification or regression. The
RF algorithm is built by a bootstrap sampling of the data, and at each split, the candidate set
of variables is chosen randomly from all variables in a fixed number (Zhou et al., 2014). In the
RF algorithm, the final result (or prediction) of an input sample is determined by the majority
classification voting (classification) or averaging their outputs (regression) (Breiman, 2001;
Zhou et al., 2014). It is important to note that the RF classifier can determine different
measures of variable importance. Some input samples which are not used in the training
process are labeled as Out-of-Bag (OOB) samples which is the data excluded in each tree.
The excluded data are utilized to assess the generalization performance of classifiers and the
OOB error estimation to provide an unbiased evaluation of the accuracy. Zhang et al. (2016)
suggested while removing one feature at a time from the previous set, the subset of features
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is evaluated by the OOB error rate, and OOB error rates are stored to obtain the curve relating
feature sets and OOB error rates. From the curves of the graph, the OOB error rate is almost
not changed at the start because the excluded features are considered to not contribute to
classification ability.

Recursive Feature Elimination (RFE) is regarded as a greedy algorithm based on feature
ranking methods (Guyon et al., 2002; Zhou et al., 2014). For the RFE technique, the RF
algorithm can be utilized as an efficient filter and classifier for the feature ranking algorithm,
which runs fast and can scale to very high dimensional data. Although Zhang et al. (2016)
drew attention to the fact that "…the feature importance threshold cannot be calculated, which
decides how many features ranked ahead should be reserved. Since the threshold usually is
determined by manual, it may affect the validity of feature selection", Zhou et al. (2014)
suggested, "…according to a certain feature ranking standard, RFE starts from a complete
set and then eliminates the least relevant feature one by one to select the most important
features…". To describe the steps of the RF-RFE algorithm, the first step is to define the RF
classifier.

According to Chen et al. (2020), a decision tree with M leaves can divide the feature space
into M regions Rm considering 1 ≤ m ≤ M . In which Rm is a region appropriate to m, and
cm is a constant suitable for that m. The prediction function f (x) for each tree is defined as
Eq. (16).

f (x) =
∑M

m=1
cm
∏

(x, Rm),where
∏

(x, Rm) =
{

1, ifx ∈ Rm

0, otherwise
(16)

Each node of a decision tree will be split into two leaves, while a splitting attribute reduces
the impurity of a node during the RF algorithm, which is measured by Gini importance
(Breiman, 2001). Accordingly, in the node splitting procedure, i is the node impurity, and
p( j) is the proportion of the j input sample in that node. Hence, Gini importance can be
defined as Eq. (17).

i = 1 −
∑
j

p2( j) (17)

Furthermore, considering the node splitting procedure and node impurity decline, for each
feature Fi , the sum of the impurity decrement α	I in the k th (k = 1, 2, . . . , n) decision
tree is the Gini importance of Fi . In which, ile f t , iright , and i parent are Gini importance of
parent, left child (leaf) and left child (leaf) node, and ple f tandpright are sample proportion
of left child node and left child node, respectively (Zhang et al., 2016). Then, the importance
of every feature can be computed based on Eq. (18). F∗

i calculates the optimal features, or
the most important features.

F∗
i =

{
Fi |max

i
(α	I )

}
, where α	I =

∑
k

	ik, and 	ik

= (
iparent −

(
ileft · pleft + iright · pright

))
k (18)

Based on the mentioned preliminaries, the RF-RFE feature selection method to extract
core features and attributes can be conducted based on the pseudocode presented inAlgorithm
1.

Algorithm 1. Main algorithm for RF-RFE feature selection method.

123



1120 Annals of Operations Research (2023) 328:1105–1150

4.3 Approach Based on Fermatean Fuzzy ITARA-MARCOS and RF-RFE Algorithm

The proposed approach has three straightforward and logical stages (Fig. 2). In the first stage,
the innovative Fermatean fuzzy RF-RFE algorithm extracts core criteria from a finite set of
initial criteria. In the second stage, the novel Fermatean fuzzy ITARA determines the semi-
objective importance of the core criteria. It utilizes the concept of dispersion logic to extract
core criteria weights from a Fermatean fuzzy decision matrix. The Fermatean fuzzy ITARA
assigns greater weights to core criteria with higher data dispersion and vice versa.

Also, the concept of the indifference threshold is employed in this criteria weighting
method to determine considerable ordered distances. In the third stage, the new Fermatean
fuzzy MARCOS method ranks alternatives. This method extends the Fermatean fuzzy deci-
sion matrix by adding anti-ideal and ideal alternatives, and calculates utility degrees between
the alternatives and two extreme reference points. Finally, alternative ranking is defined based
on the utility functions of the alternatives. The FFS-based decision-making methodology is
based onYager T-norm and T-conorm enabling amore precise and flexible fusion of uncertain
information.

Let us denote by m the number of alternatives, by k the number of initial criteria, and by
h the number of experts. Let A = {A1, …, Ai, …, Am} (m ≥ 2) be a finite set of alternatives,
V = {V1, …, Vs, …, Vk} (k ≥ 2) be a finite set of initial criteria, and D = {D1, …, De, …,
Dh} (h ≥ 2) is a set of experts.

The approach mentioned above, based on the Fermatean fuzzy ITARA-MARCOS and
RF-RFE algorithm, contains the following stages:
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Step 2.1. Construct the Fermatean fuzzy decision matrix

STAGE 2: Fermatean fuzzy ITARA method

Step 2.2. Determine the normalized decision matrix

Step 2.4. Sort normalized aggregated assessments in increasing order

Step 2.5. Calculate the ordered distances

Step 2.6. Calculate the considerable ordered distances

Step 2.7. Determine the core criteria importance

Step 3.1. Determine the Fermatean fuzzy extended decision matrix

STAGE 3: Fermatean fuzzy MARCOS method

Step 3.2. Determine the Fermatean fuzzy normalized extended decision matrix

Step 3.3. Weight the Fermatean fuzzy normalized extended decision matrix

Step 3.4. Calculate the utility degrees of each alternative

Step 3.5. Calculate the utility functions

Step 3.6. Calculate the utility function of each alternative

Step 3.7. Rank the alternatives

Step 1.1. Construct the Fermatean fuzzy initial decision matrices

STAGE 1: Fermatean fuzzy RF-RFE algorithm

Step 1.2. Aggregate the Fermatean fuzzy initial decision matrices

Step 1.3. Determine the score initial decision matrix

Step 1.4. Identify a set of initial criteria criteria/features as RF-RFE input

Step 1.5. Sample 80% of the datasets as training data, and 20% as test data

Step 1.6. Initialize the RF-RFE algorithm

Step 1.7. Extract and rank a subset of core decision-making criteria

Fig. 2 The flowchart of the approach based on the Fermatean Fuzzy ITARA-MARCOS and RF-RFE algorithm

Stage 1: Fermatean fuzzy RF-RFE algorithm.

Step 1.1. Construct the Fermatean fuzzy initial decision matrices
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where
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e

is =
(

α�



e

is

, β�



e

is

)
(i = 1,…,m; s= 1,…, k; e= 1,…, h) is an FFN that represents

the assessment of the alternative Ai under the initial criterion Vs given by the expert De. An
initial decision matrix for each expert is defined by a Fermatean fuzzy linguistic assessment
scale. Table 3 gives the nine-point Fermatean fuzzy linguistic scale to present alternative
assessment preferences of experts.

Step 1.2. Aggregate the Fermatean fuzzy initial decision matrices:
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i = 1, . . . , m; s = 1, . . . , k; η > 0, (20)

where the aggregation is performed by the Fermatean fuzzy Yager weighted geometric oper-

ator (Definition 7) with the operational parameter η,
�

� is =
(

α�
�is

, β�
�is

)
as the Fermatean

fuzzy aggregated assessment of the alternative Ai under the initial criterion Vs, and δe = 1
/
h

(e = 1, …, h) is the weight of the expert De.
Step 1.3. Determine the score initial decision matrix Q = [Qis]m×k :

Qis = 1 + α3
�
�is

− β3
�
�is

, i = 1, . . . , m; s = 1, . . . , k, (21)

where Qis represents the score function of the Fermatean fuzzy aggregated assessment of
the alternative Ai under the initial criterion Vs.

Step 1.4. Identify a set of k initial criteria V= {V1,…,Vs,…,Vk} (a subset of featuresFi :
{F1, F2, F3, . . . , Fn}) for RF-RFE input.

Step 1.5. Randomly sample 80% of the input data associated with the initial subset of
features as the training dataset and the other 20% as the test dataset.

Step 1.6. Initialize the RF-RFE algorithm using a subset of features Fi :
{F1, F2, F3, . . . , Fn} as the initial criteria Vs for i in {1 : p1} rank Fi using RF classi-
fier

∑M
m=1cm

∏
(x, Rm) and compute the importance of the features α	I = ∑

k 	ik . Then,
rank (p − i + 1) : FN P and replace and update the list of the initial subset of features
F∗
i ← F∗

i − FN P . Exclude the feature with minimum criterion rank from F∗
i and repeat

until the threshold is satisfied.
Step 1.7. Extract a subset of core features F∗

i as the core decision-making criteria, C =
{C1, …, Cj, …, Cn} (n ≥ 2) with a list of orders and accuracy measures.

Stage 2: Fermatean fuzzy ITARA method.

Step 2.1. Construct the Fermatean fuzzy decision matrix
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where
�

Pi j =
(

α�
Pi j

, β�
Pi j

)
(i = 1, …, m; j = 1, …, n) is an FFN that represents the

aggregated assessment of the alternative Ai under the core criterion Cj, and C = {C1, …, Cj,
…, Cn} is the set of core criteria that are extracted from the set of initial criteria V = {V1,
…, Vs, …, Vk} by using the Fermatean fuzzy RF-RFE algorithm, with C ⊆ V..

Step 2.2. Determine the normalized decision matrix R = [
Ri j
]
m×n :

Ri j =
1 + α3

�
Pi j

− β3
�
Pi j

∑m
l=1

(
1 + α3

�
Pl j

− β3
�
Pl j

) , i = 1, . . . , m; j = 1, . . . , n, � (23)

where Rij denotes the normalized aggregated assessment of the alternative Ai under the core
criterion Cj.

Step 2.3. Sort normalized aggregated assessments in increasing order:

O(1) j = min
1≤i≤m

Ri j < · · · < O(m) j = max
1≤i≤m

Ri j , j = 1, . . . , n, (24)

whereO(1) j andO(m) j denote the normalized aggregated assessments under the core criterion
Cj with the lowest (order one) and highest (order m) values, respectively.

Step 2.4. Calculate the ordered distances:


t j = O(t+1) j − O(t) j , t = 1, . . . , m − 1; j = 1, . . . , n, (25)

where
t j presents the ordered distance between adjacent normalized aggregated assessments
O(t+1) j and O(t) j under the core criterion Cj.

Step 2.5. Calculate the considerable ordered distances:

Gt j =
{


t j − ξ | 
t j > ξ

0 | 
t j ≤ ξ
, t = 1, . . . , m − 1; j = 1, . . . , n; ξ > 0, (26)

where ξ denotes the core criteria indifference threshold parameter. If 
t j > ξ then the
corresponding ordered distance Gtj must augment the importance of the core criterion Cj.
Otherwise, it is not seen as “considerable” and should be ignored by setting Gtj = 0.

Step 2.6. Determine the core criteria importance:

ω j =
(∑m−1

t=1 Gλ
t j

)1/λ

∑n
l=1

(∑m−1
t=1 Gλ

tl

)1/λ , j = 1, . . . , n; λ ∈ {1, . . . , ∞}, (27)

whereω = (
ω1, . . . , ω j , . . . , ωn

)T is the importance vector of the core criteria, withω j ∈
[0, 1] (j = 1, …, n), and

∑n
j=1 ω j = 1. The distance measurement parameter λ represents

the preferred metric. For instance, when λ is set to 1, 2, and ∞, the core criteria importance
are based on the Manhattan, the Euclidian, and the Tchebycheff distances, respectively.

Stage 3: Fermatean fuzzy MARCOS method.
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Step 3.1.Determine the Fermatean fuzzy extended decision matrix
�

W =
[

�

Wlj

]

(m+2)×n
:

C1 · · · Cn

�

W =

A0

A1
...

Am

Am+1
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W 0 1
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W 0 1

) · · · (α�
W 0 n
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W 1 n
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W 1 n

)

...
. . .

...

(α�
Wm 1

, β�
Wm 1

) · · · (α�
Wm n

, β�
Wm n

)

(α�
Wm+1 1

, β�
Wm+1 1

) · · · (α�
Wm+1 n

, β�
Wm+1 n

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
(28)

where A′ = {A0, A1, ..., Al , ..., Am, Am+1} (l = 0, ..., m + 1) denotes the extended
alternative set obtained by adding anti-ideal and ideal alternatives into the set of alternatives,

and
�

Wlj =
(

α�
Wlj

, β�
Wlj

)
(l = 1,…,m; j = 1,…, n) is an FFNwhich denotes the aggregated

assessment of the alternative Al under the core criterion Cj:

�

Wlj = �

Pl j =
(

α�
Pl j

, β�
Pl j

)
, l = 1, . . . , m; j = 1, . . . , n, (29)

In this step, the Fermatean fuzzy decision matrix is extended by adding the worst and the
best-aggregated assessment values to represent the anti-ideal and ideal alternatives, respec-
tively. The comparison of FFNs is based on Definition 6.

(i) The anti-ideal alternative A0 = { �

W 0 1, ...,
�

W 0 j , ...,
�

W 0 n}:

�

W 0 j =

⎧⎪⎨
⎪⎩

max
1≤i≤m

�

Pi j
∣∣ C j ∈ C−

min
1≤i≤m

�

Pi j
∣∣ C j ∈ C+ , j = 1, . . . , n, (30)

where
�

W 0 j =
(

α�
W 0 j

, β�
W 0 j

)
(j= 1,…, n) is the collection of FFNs that represents anti-ideal

aggregated assessments under each core criterion.

(ii) The ideal alternative Am+1 = { �

Wm+1 1, ...,
�

Wm+1 j , ...,
�

Wm+1 n} :

�

Wm+1 j =

⎧
⎪⎨
⎪⎩

min
1≤i≤m

�

Pi j
∣∣ C j ∈ C−

max
1≤i≤m

�

Pi j
∣∣ C j ∈ C+ , j = 1, . . . , n, (31)

where
�

Wm+1 j =
(

α�
Wm+1 j

, β�
Wm+1 j

)
(j = 1,…, n) is the collection of FFNs that represents

ideal aggregated assessments under each core criterion.

Step 3.2. Determine the Fermatean fuzzy normalized extended decision matrix
�

Y =
[�

Y l j ](m+2)×n :

�

Y l j =

⎧⎪⎨
⎪⎩

�

Wlj = (α�
Wlj

, β�
Wlj

) | C j ∈ C+

(
�

Wlj )
c = (β�

Wlj

, α�
Wlj

) | C j ∈ C− , l = 0, ..., m + 1; j = 1, . . . , n, (32)
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where only alternative assessments under the cost core criteria are transformed by the com-

plement operation (Definition 3),
�

Y l j = (α�
Y l j

, β�
Y l j

) is the Fermatean fuzzy normalized

aggregated assessment of the alternative Al under the core criterion Cj, C+ ⊆ C is the set of
benefit core criteria, C− ⊆ C is the set of cost core criteria, and C+ ∪ C− = C..

Step 3.3.Weight the Fermatean fuzzy normalized extended decision matrix:

�

Bl = FFYW Aω

(
�
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�
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Y ln

)
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j=1
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ω j
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)η
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⎦
1/η
⎫
⎪⎬
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⎞
⎟⎟⎠,

l = 0, ..., m + 1; η > 0, (33)

where the weighting is performed with the FFYWA operator (Definition 7) with the opera-

tional parameter η, and
�

Bl =
(

α�
Bl

, β�
Bl

)
is the Fermatean fuzzy Yager weighted average

score of the alternative Al.
Step 3.4. Calculate the utility degrees of each alternative.
(i) The first utility degree:

U−
l =

1 + α3
�
Bl

− β3
�
Bl

1 + α3
�
B0

− β3
�
B0

, l = 0, . . . , m + 1, (34)

where U−
l denotes the utility degree of the alternative Al to the anti-ideal alternative A0.

(ii) The second utility degree:

U+
l =

1 + α3
�
Bl

− β3
�
Bl

1 + α3
�
Bm+1

− β3
�
Bm+1

, l = 0, . . . , m + 1, (35)

where U+
l represents the utility degree of the alternative Al to the ideal alternative Am+1.

Step 3.5. Calculate the utility functions.
(i) The first utility function:

f
(
U−) = U+

0

U−
0 +U+

0

, (36)

where f
(
U−) presents the utility function of the anti-ideal alternative A0.

(ii) The second utility function:

f
(
U+) = U−

m+1

U−
m+1 +U+

m+1

. (37)

where f
(
U+) denotes the utility function of the ideal alternative Am+1.

Step 3.6. Calculate the utility function of each alternative:

f (Ui ) =
(
U−
i +U+

i

)[
f
(
U−) · f

(
U+)]

f
(
U−)+ f

(
U+)− f

(
U−) · f

(
U+) , i = 1, . . . , m, (38)
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where f (Ui ) represents the utility function of the alternative Ai.
Step 3.7.Rank the alternatives. The alternatives should be ranked according to the decreas-

ing values of their utility functions. The best alternative has the highest utility function.

5 Problem definition

This section presents detailed information on the problem and context description, goals,
and targets. A case study in Istanbul is investigated to show the applicability of the proposed
approach based on Fermatean fuzzy ITARA-MARCOS and RF-RFE algorithm in real-life
practices, and information about the alternative locations and decision criteriawere discussed.

5.1 Context definition

With the rise of COVID-19 around December 2019, industries around the world entered a
new era of vagueness, dynamicity, and uncertainties.While urbanmanagement organizations
such as municipalities were hardly hit by the effects of COVID-19 on different urban sectors,
hospitals andmedical centers are considered as top organizations thatwere negatively affected
by COVID-19 due to their role in the treatment of infected patients. High incidence cases
of COVID-19 faced medical centers with severe challenges in their capacity to address
different problems. Consequently, it is evident that due to the high range of problems, strategic
decisions should be taken tomitigate the irrecoverable effects ofCOVID-19 on human beings,
society, environment, and the economy.

In this regard, WM in medical and healthcare centers turned out to be one of the crucial
issues that both medical centers and other organizations had to deal with in order to decrease
the effects of hazardousHCW. In the COVID-19 era, the performance of hospitals and health-
care centers dramatically deteriorated due to a sudden increase in material consumption and
therefore increase in generated waste. Thus, real-life policymakers had to develop better
pathways to address COVID-19 issues related to infectious waste, pathological waste, phar-
maceutical waste, chemical waste, sharps, and other typical HCW such as genotoxic waste
and pressurized containers and radioactive waste.

Along with the highly infectious nature of these waste types in business-as-usual situa-
tions, COVID-19 has doubled the concerns on their infectious degree. Therefore, healthcare
centers and municipalities have faced a severe challenge of adequately eliminating such high
hazardous and infectious waste. Endeavors on developing a proper framework to address
hazardous waste rely on the fact that such waste types have a high potential to damage social
health status, cause exposure to the environment, and bring up economic challenges. Con-
sidering the waste network flow, one of the leading tasks to dispose of hazardous HCW is
to apply disinfection processes to mitigate the hazardousness to the minimum level. Nev-
ertheless, one of the significant challenges that cities are facing nowadays is the capacity
of the current disinfection facilities that are not suitable and enough for the treatment and
disinfection of hazardous HCW. One of the strategic decision-making problems for both
the healthcare sector and urban organizations is to establish a new disinfection facility in
an appropriate location. However, locating a new disinfection facility is not a simple task
and falls in the category of complicated urban planning decision-making affected by tech-
nical and sustainability criteria based on social, environmental, and economic perspectives.
Therefore, the disinfection facility location selection problem for hazardous HCW under
COVID-19 is a complicated and multi-dimensional task with many criteria requiring reliable

123



1128 Annals of Operations Research (2023) 328:1105–1150

Fig. 3 HCW network flow

and accurate tools to address. Figure 3 represents a network flow of HCW and the importance
of disinfection facilities on the network.

5.2 Case study

This section clarifies the background of the WM system and the case study of the current
study in Istanbul, Turkey, in the recent year. A specific focus on HCW management and
treatment statistics is deeply considered. Reasons to investigate Istanbul, Turkey, as the case
study are elaborated below.

Istanbul is the biggest city in Turkey, with a population of over 15 million on both sides of
the Bosphorus strait. Considering the high population, the HCWgeneration rate is noticeably
high with a continuously growing trend. According to AtlasWaste,1 more than 4 million tons
of waste are generated per year in Istanbul, accounting for almost 416 kg per person per year.
İSTAÇ,2 one of the well-known local WM organizations in Istanbul, reports that roughly
28,000 tons of HCW are collected from 10,500 medical centers per year.

Turkey has passed a nonstable situation during the COVID-19 era with all its up and
down. Considering the high population of Istanbul, the number of COVID cases increased
to 31.000 around December 2020, and 61.000 around April 2021. Regarding these statistics
of a city with such a high population, hospitals and medical centers dealing with infected
patients face severe challenges, specifically in terms of increasing the demand rate formedical
products. Along with the increase in demand for medical products in healthcare centers,
the city faced another problem regarding medical face masks and face shields that people
are obliged to put on outside. Due to their single-use nature, the daily amount of wasted
masks and shields also has become another issue. Another source of medical waste related to
COVID-19 is vaccination waste. An advantage of HCW is its high potential for recoverability
and recyclability. However, a critical issue with waste from healthcare centers dealing with
COVID-19 is its hazardous nature due to being directly exposed to the virus. Thus, treating
these kinds of waste becomes more challenging from environmental, economic, and social
perspectives. Hence, the necessity of a specialized disinfection facility for hazardousHCWof

1 http://www.atlas.d-waste.com/.
2 www.istac.istanbul/.
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Fig. 4 Location alternatives for a new disinfection facility for hazardous HCW in Istanbul

COVID-19 is highly significant for a populated city such as Istanbul, with a high incidence
of cases. Disinfection facilities act as a critical entity in the network flow (Fig. 3), where
hazardous HCW is treated with specific technologies before being transferred to recycling
centers, waste-to-energy plants, or landfills.

5.2.1 Alternative candidate locations

Four experts in the field ofWMwere invited to disclose potential locations for the instalment
of a newdisinfection facility for hazardousHCWgenerated frommedical centers dealingwith
COVID-19 in Istanbul. Figure 4 presents five alternative candidate locations. These locations
are “Beylikdüzü” (A1), “Eyüp” (A2), “Sarıyer” (A3), “Ümraniye” (A4), and “Pendik” (A5).
The experts identify them based on the current status of HCW management in Istanbul and
the geographical characteristics and positions of existing medical centers, collection centers,
and recycling centers.

5.2.2 Identification of initial criteria

This section describes the initial criteria for locating a disinfection facility for hazardous
HCW under COVID-19 based on technical, social, environmental, and economic aspects.
Due to the high importance of a disinfection facility in HCW flow, a comprehensive review
was conducted to derive a set of criteria for the analyzed location selection problem.The initial
criteria are grouped based on technical, social, environmental, and economic perspectives.

(i) Technical criteria

The technical aspect includes 12 criteria dealing with technical features of the disinfec-
tion facility location selection problem for hazardous HCW under COVID-19. Proximity to
residential and urban areas (V1) measures the average distance of each alternative to the
closest residential and urban living environment (cost criterion). Proximity to waste collec-
tion point (V2) assesses how close an alternative is to the closest and reachable collection
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points for HCW (benefit criterion). Proximity to waste segregation points (V3) indicates the
average distance of each alternative to waste segregation centers (benefit criterion). Prox-
imity to waste recovery sites (V4) indicates how far recovery centers are located from each
alternative (benefit criterion). As HCW includes many recyclable products, the closeness to
recovery centers is an advantage. Proximity to waste disposal sites (V5) measures the close-
ness of each alternative to disposal sites to handle waste that is not recyclable and must be
treated differently (benefit criterion). Proximity to groundwater resources (V6) measures the
suitability of alternatives based on the closeness of groundwater resources and water pipes
(cost criterion).

In the same way, criterion proximity to underground water resources (V7) does the exact
measurement against underground water resources (cost criterion). Proximity to environ-
mentally protected zones (V8) assesses the average distance of location alternatives to the
protected area based on environmental or animal protection acts (cost criterion). Land avail-
ability (V9) considers the average availability of required land for the facility’s construction
based on geographical and geological characteristics (benefit criterion). One of the major
issues with waste network flow is the easiness of transportation routes between different
entities. Logistics convenience (V10) shows the suitability of transportation and logistics for
each location alternative (benefit criterion). In the same context, traffic congestion, rules,
and controls around each alternative location are considered through traffic congestion (V11)
(cost criterion). Professional workforce (V12) quantifies the easiness of finding and hiring a
professional workforce in the new facility as soon as possible (benefit criterion).

(ii) Social criteria

Social criteria cover five significant milestones within the social aspect of WM systems.
Adherence to local rules and regulations (V13) is one of the most critical concerns of waste
treatment companies and other related involved organizations in waste network flow. This
criterion measures how much opening a facility is aligned with local rules and regulations
of urban districts (benefit criterion). In the same context, the satisfaction level of residence
around the site (V14) is another crucial matter considered when installing a newwaste facility
(benefit criterion). Regional job opportunities (V15) consider the possible average number of
jobs created by opening a new facility (benefit criterion). Awareness level (V16) measures the
knowledge andwillingness of the people about sustainableWMpractices and the necessity of
appropriate treatment of infectious waste during the COVID-19 pandemic (benefit criterion).
Health & safety (V17) quantifies health & safety levels in each location alternative (benefit
criterion).

(iii) Environmental criteria

Environmental criteria aim to consider the impacts of emission and pollution within the
waste network flow. In this regard, three primary emission criteria and one pollution criterion
were considered as follows. Air emission (V18) shows the possibility of the impact of air
emission of a facility on the total air quality around each location alternative (cost criterion). In
the sameway, soil emission (V19) (cost criterion) andwater emission (V20) (cost criterion) are
used to evaluate location alternatives based on their possible roles and impacts on regional soil
and water contamination, respectively. Finally, noise pollution (V21) is crucial for residential
and industrial areas around location alternatives that should be considered when installing a
new waste facility (cost criterion).

(iv) Economic criteria

Nine critical economic criteria were also included in this category. Land price (V22) may
be considered one of the important concerns for opening a new waste facility, including land
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price and construction costs (cost criterion). Transportation cost (V23) calculates the average
transportation cost from collection points to the facility and from the facility to other entities
in the network (cost criterion). Operations and maintenance costs (V24) ensemble all costs
related to instalment, workforce cost, and periodic maintenance (cost criterion). Investment
cost (V25) involves the costs related to technologies required for the disinfection process (cost
criterion). Future expansion potential (V26) is one of the critical criteria considered during
the installation process of a new facility. Future expansion potential is essential for large
cities with a high waste generation rate (benefit criterion). Municipalities and environmental
organizations may enact regulations and rules to support sustainability and a circular econ-
omy based on sustainable practices in large cities. Thus, regional financial incentives (V27)
measure the relative level of financial incentives for such projects in each municipality where
each alternative location is placed (benefit criterion). Due to the high importance of HCW
flow among urban planning and sustainability practices, the system’s resiliency has become
an important measure. Therefore, three relevant resiliency factors are responsiveness (V28)
which measures resiliency of the facility in terms of the quality of reacting quickly to any
modification (benefit criterion), and flexibility (V29) which measures resiliency of the facility
in terms of responding to disruptions as well as risks (benefit criterion), and robustness (V30)
that assesses the resiliency of the facility to hold out against locational and natural disruptions
(benefit criterion).

6 Results and discussion

6.1 Experimental results

This sub-section presents the results of the proposed approach based on the Fermatean fuzzy
ITARA-MARCOS and RF-RFE algorithm for solving the disinfection facility location selec-
tion problem under COVID-19 in a real-life and practical case study in Istanbul. For this
purpose, four experts (three male and one female) with an average of eight years of expe-
rience were invited to participate in the evaluation process. The expert team has been all
involved in the managerial sector of WM systems of medical centers in Istanbul. Input data
from the expert team were collected through an online questionnaire.

Stage 1: Fermatean fuzzy RF-RFE algorithm.
Step 1.1. Four invited experts in the field of WM used FFN linguistic variables defined

in Table 3 to assess “Beylikdüzü” (A1), “Eyüp” (A2), “Sarıyer” (A3), “Ümraniye” (A4), and
“Pendik” (A5) under 30 initial criteria. Their assessments of five alternative candidate loca-
tions for a disinfection facility for hazardous HCW under COVID-19 in Istanbul are given in
Supplementary Table S1 (OnlineResource). Then, the Fermatean fuzzy initial decisionmatri-
ces (Supplementary Table S2) are constructed based on the experts’ input (Supplementary
Table S1) and the Fermatean fuzzy linguistic scale (Table 3) considering Eq. (19).

Step 1.2. Four Fermatean fuzzy initial decision matrices (Supplementary Table S2) were
aggregated by utilizing the FFYWG operator defined in Eq. (20) with the operational param-
eter η = 3. The aggregated Fermatean fuzzy initial decision matrix is provided in Table
4. For example, the Fermatean fuzzy assessments of the candidate location “Pendik” (A5)
under the initial criterion “proximity to environmentally protected zones” (V8) given by the
expert one, two, three, and four are (0.30, 0.80), (0.55, 0.50), (0.20, 0.90), and (0.10, 0.975),
respectively (Supplementary Table S2). The Fermatean fuzzy aggregated assessment of the
alternative A5 under the initial criterion V8 is computed as follows:
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Table 4 The aggregated Fermatean fuzzy initial decision matrix

Initial criterion Alternative

A1: Beylikdüzü A2: Eyüp A3: Sarıyer A4: Ümraniye A5:
Pendik

V1 (0.6236, 0.4843) (0.6662,
0.7716)

(0.7205,
0.4347)

(0.7939, 0.3457) (0.5911,
0.5680)

V2 (0.8185, 0.2908) (0.5911,
0.5680)

(0.5307,
0.6881)

(0.6585, 0.4405) (0.7049,
0.4351)

V3 (0.7185, 0.3733) (0.5788,
0.5681)

(0.5701,
0.5642)

(0.6007, 0.4695) (0.7318,
0.3719)

V4 (0.7049, 0.4351) (0.5733,
0.6023)

(0.4967,
0.6979)

(0.6338, 0.4665) (0.8442,
0.2782)

V5 (0.6007, 0.4695) (0.5443,
0.5687)

(0.5788,
0.5681)

(0.6007, 0.4695) (0.7586,
0.4291)

V6 (0.7232, 0.4347) (0.7564,
0.3507)

(0.8395,
0.2786)

(0.5701, 0.5642) (0.6007,
0.4695)

V7 (0.5782, 0.6880) (0.6706,
0.4401)

(0.8442,
0.2782)

(0.5911, 0.6871) (0.3581,
0.8841)

V8 (0.4732, 0.7978) (0.8709,
0.2586)

(0.8709,
0.2586)

(0.5570, 0.6872) (0.3581,
0.8841)

V9 (0.7205, 0.6858) (0.5171,
0.7761)

(0.2218,
0.9096)

(0.6338, 0.4665) (0.9219,
0.1852)

V10 (0.6363, 0.6869) (0.4667,
0.6987)

(0.4162,
0.7807)

(0.6212, 0.4843) (0.7318,
0.3719)

V11 (0.2777, 0.8734) (0.6038,
0.5636)

(0.7905,
0.3457)

(0.4758, 0.6298) (0.4453,
0.9109)

V12 (0.5841, 0.7720) (0.4967,
0.6979)

(0.6338,
0.4665)

(0.5911, 0.6871) (0.6706,
0.4401)

V13 (0.6069, 0.6019) (0.4439,
0.6317)

(0.4599,
0.7067)

(0.7049, 0.4351) (0.7713,
0.3483)

V14 (0.5744, 0.7975) (0.4263,
0.7075)

(0.3810,
0.8753)

(0.6458, 0.4663) (0.7318,
0.3719)

V15 (0.7414, 0.4296) (0.6254,
0.4450)

(0.6585,
0.4405)

(0.6923, 0.4355) (0.7872,
0.3458)

V16 (0.6756, 0.6859) (0.4667,
0.6987)

(0.5856,
0.6022)

(0.5963, 0.7720) (0.6942,
0.4629)

V17 (0.6861, 0.5580) (0.5231,
0.7724)

(0.6338,
0.4665)

(0.6670, 0.4635) (0.7205,
0.4347)

V18 (0.3144, 0.8208) (0.6585,
0.4405)

(0.6670,
0.4635)

(0.5443, 0.5687) (0.5173,
0.5728)

V19 (0.2332, 0.8823) (0.7564,
0.3507)

(0.6793,
0.4632)

(0.6458, 0.4663) (0.5307,
0.6881)

V20 (0.6092, 0.4845) (0.8395,
0.2786)

(0.8442,
0.2782)

(0.4154, 0.8180) (0.5788,
0.5681)
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Table 4 (continued)

Initial criterion Alternative

A1: Beylikdüzü A2: Eyüp A3: Sarıyer A4: Ümraniye A5:
Pendik

V21 (0.6092, 0.4845) (0.7049,
0.4351)

(0.8709,
0.2586)

(0.6949, 0.6858) (0.4967,
0.6979)

V22 (0.2592, 0.8613) (0.6960,
0.3874)

(0.8773,
0.2579)

(0.5570, 0.6872) (0.3218,
0.8768)

V23 (0.7049, 0.4351) (0.7713,
0.3483)

(0.7713,
0.3483)

(0.5911, 0.6871) (0.4886,
0.7765)

V24 (0.5173, 0.5728) (0.5757,
0.4866)

(0.5757,
0.4866)

(0.5173, 0.5728) (0.5173,
0.5728)

V25 (0.5173, 0.5728) (0.6835,
0.3885)

(0.8709,
0.2586)

(0.6585, 0.4405) (0.5247,
0.6971)

V26 (0.7872, 0.3458) (0.5113,
0.6053)

(0.4732,
0.7978)

(0.5911, 0.6871) (0.9099,
0.1937)

V27 (0.6254, 0.4450) (0.4967,
0.6979)

(0.4967,
0.6979)

(0.5443, 0.5687) (0.6585,
0.4405)

V28 (0.6285, 0.5588) (0.4599,
0.7067)

(0.4817,
0.7414)

(0.6038, 0.5636) (0.7905,
0.3457)

V29 (0.7713, 0.3483) (0.4263,
0.7075)

(0.5470,
0.7408)

(0.5603, 0.6970) (0.7744,
0.3483)

V30 (0.7713, 0.3483) (0.4439,
0.6317)

(0.5003,
0.7066)

(0.6585, 0.4405) (0.8773,
0.2579)

�

�58 =
(

3

√
1 − min

{
1,
[
0.25

((
1 − 0.303

)3 + (
1 − 0.553

)3 + (
1 − 0.203

)3 + (
1 − 0.103

)3)]1/3}
,

3

√
min

[
1,
(
0.25

(
0.803·3 + 0.503·3 + 0.903·3 + 0.9753·3

))1/3]
)

= (0.3581, 0.8841).

Step 1.3. The score initial decision matrix is given in Supplementary Table S3. It is
determined with the help of Eq. (21) by taking into account the aggregated Fermatean fuzzy
initial decision matrix (Table 4).

Step 1.4. A set of 30 initial criteria V = {V1, …, V15, …, V30} as a subset of features Fi:
{F1, F2, F3, …, F30} were identified for RF-RFE input.

Step 1.5. Test and training samples were formed by randomly sampling 80% of the input
data associated with the initial subset of features as the training dataset and the other 20% as
the test dataset. To unify the random process of the RF-RFE technique, the random seed for
random sampling is set as the 2021st.

Steps 1.6–1.7. The RF-RFE recursive algorithm using a subset of features Fi: {F1, F2, F3,
…, F30} was utilized for the feature selection pre-processing procedures. The Classification
And REgression Training (CARET) package (Kuhn, 2008; Kuhn et al., 2020) and the RF
package (Breiman, 2001) in R programming language were used to conduct the RFE proce-
dure in which cross-validation and bootstrap sampling techniques were used as the external
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resampling method. The performance measures were computed by CARET’s accuracy mea-
sureμaccs (s= 1,…, k) andCohen’sKappa. Since the data gathered for the problemwas from
the experts, and random agreement among decision-makers is not available, this measure was
not considered. Consequently, the results of the RF-RFE algorithm are summarized in Table
5. Furthermore, a graphical representation of the criteria accuracy measures was presented in
Fig. 5. The core criteria are those with the highest importance measures considering accuracy
values.

Stage 2: Fermatean fuzzy ITARA method.

Table 5 Results of the cross-validated RF-RFE technique

Initial criterion μaccs Accuracy standard
deviation

RF-RFE importance
measure

Core criterion

V1 0.92 0.276 0.312 *

V2 0.64 0.489 0.289 *

V3 0.96 0.200 0.738 *

V4 0.92 0.276 1.523 *

V5 0.96 0.200 -

V6 0.92 0.276 -

V7 0.68 0.476 -

V8 0.92 0.276 2.008 *

V9 0.72 0.458 -

V10 0.64 0.489 -

V11 0.68 0.476 1.853 *

V12 0.64 0.489 -

V13 0.64 0.489 -

V14 0.64 0.489 -

V15 0.60 0.500 -

V16 0.60 0.500 -

V17 0.64 0.489 -

V18 0.64 0.489 -

V19 0.64 0.489 1.940 *

V20 0.64 0.489 -

V21 0.60 0.500 -

V22 0.60 0.500 2.114 *

V23 0.60 0.500 -

V24 0.60 0.500 1.737 *

V25 0.60 0.500 2.069 *

V26 0.60 0.500 1.872 *

V27 0.60 0.500 2.008 *

V28 0.60 0.500 -

V29 0.60 0.500 2.097 *

V30 0.60 0.500 1.737 *
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Fig. 5 Performance measure of the cross-validated RF-RFE technique

Step 2.1. The Fermatean fuzzy decision matrix is constructed using Eq. (22) by taking into
account the aggregated Fermatean fuzzy initial decisionmatrix (Table 4) and the results of the
Fermatean fuzzy RF-RFE algorithm (i.e., the core criteria for locating a disinfection facility
that is extracted from the set of 30 initial criteria). This matrix is given in Supplementary
Table S4.

Step 2.2. The normalized decision matrix is presented in Table 6. It is determined
based on the Fermatean fuzzy decision matrix (Supplementary Table S4) with the
help of Eq. (23). For example, under the core criterion “future expansion potential”
(C11), the Fermatean fuzzy aggregated assessments of the candidate locations “Bey-
likdüzü” (A1), “Eyüp” (A2), “Sarıyer” (A3), “Ümraniye” (A4), and “Pendik” (A5) are
(0.7872, 0.3458), (0.5113, 0.6053), (0.4732, 0.7978), (0.5911, 0.6871), and (0.9099,
0.1937), respectively (Supplementary Table S4). The normalized aggregated assessment
of the alternative A2 under the core criterion C11 is calculated as follows: R2 11 =(
1 + 0.51133 − 0.60533

)/(
1 + 0.78723 − 0.34583 + 1 + 0.51133

− 0.60533 + 1 + 0.47323 − 0.79783 + 1 + 0.59113 − 0.68713

+ 1 + 0.90993 − 0.19373
) = 0.1633.

Step 2.3. The sorted normalized aggregated assessments under the core criteria are pro-
vided in Supplementary Table S5. The normalized aggregated assessments (Table 6) are
sorted in increasing order under each core criterion by employing Eq. (24). Supplementary
Table S5 gives the sorting results.

Step 2.4. Table 7 provides the ordered distances under each core criterion. They were
calculated by subtracting two normalized aggregated assessments with adjacent orders, as
defined in Eq. (25).

Step 2.5. This step is built upon the concept of the indifference threshold to differentiate
ordered distances into “considerable” and “non-considerable”. It is adopted that the core
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Table 6 The normalized decision matrix

Core criterion Alternative

A1: Beylikdüzü A2: Eyüp A3: Sarıyer A4: Ümraniye A5: Pendik

C1: Proximity to
residential and
urban areas

0.1967 0.1457 0.2251 0.2542 0.1783

C2: Proximity to
waste collection
point

0.2610 0.1753 0.1411 0.2055 0.2172

C3: Proximity to
waste
segregation
points

0.2278 0.1746 0.1737 0.1923 0.2316

C4: Proximity to
waste recovery
sites

0.2204 0.1686 0.1360 0.2004 0.2746

C5: Proximity to
environmentally
protected zones

0.1176 0.3230 0.3230 0.1667 0.0698

C6: Traffic
congestion

0.0879 0.2577 0.3596 0.2124 0.0823

C7: Soil emission 0.0662 0.2824 0.2467 0.2373 0.1674

C8: Land price 0.0837 0.2828 0.3666 0.1875 0.0794

C9: Operations
and maintenance
costs

0.1900 0.2150 0.2150 0.1900 0.1900

C10: Investment
cost

0.1622 0.2151 0.2804 0.2048 0.1375

C11: Future
expansion
potential

0.2590 0.1633 0.1071 0.1579 0.3127

C12: Regional
financial
incentives

0.2361 0.1597 0.1597 0.1995 0.2450

C13: Flexibility 0.2747 0.1403 0.1468 0.1624 0.2758

C14: Robustness 0.2408 0.1420 0.1313 0.2040 0.2819

criteria indifference threshold ξ is 0.01. Table 7 provides the ordered distances under each
core criterion calculated with the help of Eq. (26). In Table 7 (Columns 6–9), zero values
denote “non-considerable” ordered distances that should be ignored, while non-zero values
present “considerable” ordered distances.

Step 2.6. Equation (27) determines the core criteria importance based on the considerable
ordered distances. The distance measurement parameter λ is set to 2 to use the Euclidean
distance as the preferred metric. The calculated importance vector of the core criteria can be
found in the last column of Table 7.

Stage 3: Fermatean fuzzy MARCOS method.
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Table 8 The Fermatean fuzzy extended decision matrix

Alternative Core criterion

C1 C2 C3 C4 ··· C14

A0: anti-ideal (0.7939,
0.3457)

(0.5307,
0.6881)

(0.5701,
0.5642)

(0.4967,
0.6979)

··· (0.5003,
0.7066)

A1: Beylikdüzü (0.6236,
0.4843)

(0.8185,
0.2908)

(0.7185,
0.3733)

(0.7049,
0.4351)

··· (0.7713,
0.3483)

A2: Eyüp (0.6662,
0.7716)

(0.5911,
0.5680)

(0.5788,
0.5681)

(0.5733,
0.6023)

··· (0.4439,
0.6317)

A3: Sarıyer (0.7205,
0.4347)

(0.5307,
0.6881)

(0.5701,
0.5642)

(0.4967,
0.6979)

··· (0.5003,
0.7066)

A4: Ümraniye (0.7939,
0.3457)

(0.6585,
0.4405)

(0.6007,
0.4695)

(0.6338,
0.4665)

··· (0.6585,
0.4405)

A5: Pendik (0.5911,
0.5680)

(0.7049,
0.4351)

(0.7318,
0.3719)

(0.8442,
0.2782)

··· (0.8773,
0.2579)

A6: ideal (0.6662,
0.7716)

(0.8185,
0.2908)

(0.7318,
0.3719)

(0.8442,
0.2782)

··· (0.8773,
0.2579)

Step 3.1. The anti-ideal and ideal alternatives are determined by using Eqs. (30)–(31).
Then, the Fermatean fuzzy decision matrix (Supplementary Table S4) is extended by adding
them to the set of alternative locations. Table 8 presents the resulting matrix.

Step 3.2. The Fermatean fuzzy normalized extended decision matrix is given in Supple-
mentary Table S6. It is determined with the help of Eq. (32) by taking into account the type of
the core criteria and the Fermatean fuzzy aggregated assessments (Table 8). Cost-type core
criteria are “proximity to residential and urban areas” (C1), “proximity to environmentally
protected zones” (C5), “traffic congestion” (C6), “soil emission” (C7), “land price” (C8),
“operations and maintenance costs” (C9), and “investment cost” (C10); i.e., C− = {C1, C5,
C6, C7, C8, C9, C10}. The other seven core criteria are benefit-type.

Step 3.3. The FFYWA operator defined in Eq. (33) with the operational param-
eter η = 3 is used to weight the Fermatean fuzzy normalized extended deci-
sion matrix (Supplementary Table S6) by taking into account the importance vec-
tor of the core criteria (Table 7). The FFYWA scores are provided in Table 8.

For example, the FFYWA score of the location “Beylikdüzü” (A1) is:
�

B1 =(
3

√
min

[
1,
(
0.0319 · 0.48439 + 0.0411 · 0.81859 + · · · + 0.0590 · 0.77139)1/3

]
,

3

√
1 − min

{
1,
[
0.0319

(
1 − 0.62363

)3 + 0.0411
(
1 − 0.29083

)3 + · · · + 0.0590
(
1 − 0.34833

)3]1/3}
)

= (0.8162, 0.3819).

Step 3.4. The utility degrees of the anti-ideal alternative and the ideal alternative are
calculated using Eqs. (34) and (35), respectively. The obtained values are given in Table 9
(Columns 3–4).

Steps 3.5–3.6. Firstly, according to Eqs. (36)–(37) and the corresponding utility degrees
from Table 9, the utility functions of the anti-ideal alternative and the ideal alternative are
calculated as 0.285 and 0.715, respectively. Then, a utility function for each primary potential
location (Table 9, Column 5) is determined with the help of Eq. (38).
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Table 9 The FFYWA scores, utility degrees, utility functions, and ranks of the candidate locations

Alternative FFYWA score Utility degree Utility function Rank

First Second

A0: anti-ideal (0.4498, 0.7700) 1.0000 0.3984 – –

A1: Beylikdüzü (0.8162, 0.3819) 2.3453 0.9343 0.8393 2

A2: Eyüp (0.5570, 0.6790) 1.3551 0.5398 0.4850 4

A3: Sarıyer (0.4744, 0.7623) 1.0462 0.4168 0.3744 5

A4: Ümraniye (0.6333, 0.5785) 1.6713 0.6658 0.5981 3

A5: Pendik (0.8500, 0.4038) 2.4403 0.9721 0.8733 1

A6: ideal (0.8640, 0.3738) 2.5103 1.0000 – –

Step 3.7. The assessed candidate locations are ranked according to the decreasing values
of their utility functions. The generated ranking order is as follows (Table 9, Column 6):
A5 (Pendik) � A1 (Beylikdüzü) � A4 (Ümraniye) � A2 (Eyüp) � A3 (Sarıyer). Therefore,
the proposed approach determined “Pendik” as the best location for setting up a disinfection
facility for hazardous HCW under COVID-19 in Istanbul since it has the highest utility
function of 0.8733.

6.2 Sensitivity analyses

This sub-section provides comprehensive sensitivity analyses of the intrinsic parameters
of the proposed methodology. High flexibility is one of the significant advantages of the
introduced approachbasedon theFermatean fuzzy ITARA-MARCOSandRF-RFEalgorithm
compared to the available decision-making approaches for HCW management. Our model
has several built-in parameters that provide high flexibility to decision-makers when locating
a disinfection facility for hazardous HCW in the COVID-19 era.

The operational parameter η of the FFYWA and the FFYWA operators represents the first
built-in parameter of the formulated approach. The FFYWG operator is utilized to aggregate
Fermatean fuzzy initial decision matrices in the first stage (i.e., the Fermatean fuzzy RF-
RFE algorithm) of the developed methodology. On the other hand, the FFYWA operator is
employed for weighting the Fermatean fuzzy normalized extended decision matrix in the
Fermatean fuzzy MARCOS method. As a result, the first sensitivity analysis aims to explore
the influence of this vital parameter on the results. In the base scenario, η is set to 3. Nine
additional scenarios are created (Fig. 6).

As shown in Fig. 6, the increase of the operational parameter produces a lower utility
function only for “Beylikdüzü” (A1), which secures the top rank for “Pendik” (A5). The util-
ity function of “Eyüp” (A2) grows much faster than the utility function of “Ümraniye” (A4).
However, A2 stays the second-worst location for sitting a new disinfection facility for haz-
ardous HCW in Istanbul because this growth is not sufficient to improve its ranking. The first
sensitivity analysis confirmed the initial location ordering since changes in the operational
parameter η do not produce any notable ranking variation in the additional scenarios.

The second sensitivity analysis aims to investigate the effects of the distance measurement
parameter λ ∈ {1, 2, …, ∞}. This built-in parameter represents the preferred metric for
determining the core criteria importance in the Fermatean fuzzy ITARA method. In the base
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Fig. 6 Influence of the operational parameter η on the alternative utility functions

scenario, the results are obtained using the Euclidean distance (λ = 2). Fifteen different
scenarios are generated, including extreme instances based on the Manhattan distance (λ
= 1) and the Tchebycheff distance (λ≈∞). Figure 7 shows the influence of the distance
measurement parameter on the results. According to Fig. 7, it is found that the initial ordering
of the alternative locations for opening a newdisinfection facility for hazardousHCWremains
unchanged under the variety of analyzed metrics.

The core criteria indifference threshold ξ presents another intrinsic parameter of the for-
mulated approach. It calculates the considerable ordered distances in the Fermatean fuzzy

Fig. 7 Influence of the distance measurement parameter λ on the alternative utility functions
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Fig. 8 Influence of the indifference threshold parameter ξ on the alternative utility functions

ITARAmethod. As a result, the concept of the indifference threshold is effectively integrated
into the developed FFS-based methodology. The third sensitivity analysis aims to determine
how the parameter ξ influences the results. In the base scenario, the core criteria indifference
threshold parameter is set to 0.01. The values of ξ are varied in the interval [0, 0.1] with an
increment value of 0.01. The effect of the third built-in parameter on the results is illustrated
in Fig. 8. The increase of ξ generates a slightly higher utility function for “Beylikdüzü”
(A1), “Ümraniye” (A4), and “Pendik” (A5). At the same time, it significantly deteriorates the
utility functions of the two worst-ranked alternatives, i.e., “Eyüp” (A2) and “Sarıyer” (A3).
Nevertheless, the initial location ordering A5 � A1 � A4 � A2 � A3 is preserved.

According to the performed sensitivity analyses, it can be concluded that the initial rank-
ing of five alternative candidate locations is successfully validated. Also, “Pendik” (A5)
stands out as the best location for a new disinfection facility for hazardous HCW in Istanbul.
Besides, three presented sensitivity analyses confirmed that the proposed approach based
on the Fermatean fuzzy ITARA-MARCOS and RF-RFE algorithm could generate highly
robust solutions in uncertain and contradictory real-life decision-making environments. On
the other hand, the sensitivity analyses only explored robustness to changes in the intrinsic
parameters. Robustness to changes in core criteria weights could also be checked. In this
sense, additional scenarios could be simulated by changing the weight of the essential core
criterion while adjusting the weights of the other core criteria.

6.3 Comparative analysis

This sub-section presents a comparison of the results obtained by the introduced approach
based on the Fermatean fuzzy ITARA-MARCOS and RF-RFE algorithm with the three
available state-of-the-art FFS-based approaches; i.e., FFS-WPM (Senapati & Yager, 2019b),
FFS-WASPAS (Keshavarz-Ghorabaee et al., 2020), and FFS-TOPSIS (Senapati & Yager,
2020). The objectives of the comparative analysis are to check the reliability of our three-
stage approach and outline its significant differences and advantages.
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Pendik (A5)

Ümraniye (A4)

Sarıyer (A3)
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Our approach FFS-WPM FFS-WASPAS FFS-TOPSIS

Fig. 9 Ranks of the alternative candidate locations are based on different approaches

Figure 9 shows the ranks of five candidate locations for sitting a new disinfection facility
for hazardous HCW in Istanbul generated by different Fermatean fuzzy approaches. The
FFS-WPM approach provides a slightly different location ordering by putting “Beylikdüzü”
(A1) in the first place and “Pendik” (A5) in the second place. The FFS-WASPAS and FFS-
TOPSIS approaches provide the same ordering results as ours, i.e., A5 � A1 � A4 � A2 �
A3.

The ranking similarity is investigated using Spearman’s rank correlation coefficient (rho)
and the WS coefficient (Sałabun & Urbaniak, 2020). According to rho and WS coefficients,
our approach has 97% and 93% of ranks matched. As a result, it can be outlined that the
proposed three-stage approach can generate highly consistent ranking results.

The significant differences between our approach and three existingFFS-based approaches
are as follows:

(a) The framework proposed in this study and the FFS-WASPAS approach are applicable in
the group decision-making context, while the FFS-WPM and FFS-TOPSIS approaches
do not support the aggregation of multi-expert input preferences.

(b) All existing FFS-based approaches utilize algebraic operations of FFNs. Differently,
our approach is based on Yager T-norm and T-conorm operations to increase decision-
making flexibility by adding an intrinsic parameter in both aggregation operators and
providing a more precise fusion of uncertain information.

(c) The FFS-WPM and FFS-TOPSIS approaches have low application flexibility since they
do not have built-in parameters. The one-parametric FFS-WASPAS approach offers
medium–low flexibility to decision-makers with its built-in balancing parameter. In
contrast, the proposed approach of the current study offers high flexibility in real-life
applications with three built-in parameters. The operational parameter η is for fine-
tuning of the FFYWA and the FFYWA operators, the distance measurement parameter
λ is for setting preferred metrics, and the parameter ξ is for selecting an indifference
threshold value.

(d) The FFS-WPM, FFS-WASPAS, and FFS-TOPSIS approaches assume that criteria
weights are fully known in advance. Since this is not the case in most real-life appli-
cations, our three-stage approach can provide the semi-objective importance of criteria
for decision-makes based on the newly developed Fermatean fuzzy ITARA method.
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(e) The existing approaches can hardly tackle multi-dimensional problems with a high
number of criteria. These FFS-based approaches are unable to extract core features
and efficiently reduce the computation burden of real-life problems. In contrast, the
Fermatean fuzzy RF-RFE algorithm, which presents the first stage of the introduced
methodology, offers an efficient method to screen out criteria having core importance.
As a result, our approach can consider the big data nature of problems to empower
researchers and practitioners when investigating real-life problems andmaking complex
decisions.

6.4 Managerial implications

For a megacity like Istanbul, with a population of over 15 million, HCW management is
among the top priorities of the provincial municipality and environmental organizations
dealing with various types of waste. Considering the destructive effects of the COVID-19
pandemic on the healthcare sector, the hazardousness degree of HCW increased more and
more due to exposure of medical materials and staff with the virus. Therefore, a crucial step
in treating hazardous HCW rises due to negative social, healthcare, and environmental issues
that such waste can bring up. In this regard, disinfection facilities in waste network flow
become highly important in addressing issues and risks related to hazardous HCW during
the pandemic. However, the complexity and dimension of the location selection problem for
a disinfection facility increase considering concepts and standards such as sustainability and
circular economy. Moreover, the recent rise of COVID-19 cases pointed out the significance
of establishing adequate waste disinfection facilities to handle large waste mass medical
centers. Since the beginning of the pandemic, Istanbul has been almost the top city with the
highest number of COVID-19 cases and deaths. The establishment of a disinfection facility
has higher importance for the city compared to other cities in Turkey.

Thus, we considered all required decision criteria in all dimensions to provide a reli-
able framework for addressing a large-scale decision-making problem for the city. Using
the developed methodology, the core criteria were extracted based on experts’ opinions on
the performance of five location alternatives under the initial criteria. Additionally, FFSs are
used to provide a decision-making environment for experts to express their opinions with a
specific degree of uncertainty. Five alternatives, “Beylikdüzü” (A1), “Eyüp” (A2), “Sarıyer”
(A3), “Ümraniye” (A4), and “Pendik” (A5), are all evaluated to determine the best location
to establish a disinfection facility to mitigate challenges and issues of hazardous HCW. The
findings indicate that “Pendik” is the best option for locating a disinfection facility. Consider-
ing the real-life characteristics of the urban districts of Istanbul, “Pendik” can provide a very
economic transportation process and a higher possibility of future expansion. This candidate
location is also very far from the city center and high populated residential areas; therefore,
establishing a waste facility would have the least social disadvantages.
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6.5 Theoretical implications

While various methods have used different data mining and knowledge discovery in data
methodologies to address multi-dimensional problems with a high number of criteria, this is
the first study that used an RF-RFE algorithm as an efficient method to screen out criteria
having core importance. Other research studies can use this method individually and/or com-
bine it with other methodologies to tackle such big data problems for practical and real-world
complex decision-making problems. Another theoretical implication is implementing differ-
ent classifiers such as support vector machines, genetic algorithms, and simulated annealing
algorithms instead of RF. Finally, one may develop the ITARA-MARCOS model under
other well-known uncertain environments such as neutrosophic sets, fuzzy rough numbers,
and Z-numbers.

7 Conclusions

This study introduced a three-stage approach for locating a disinfection facility for hazardous
HCW in the COVID-19 era. In the first stage, the innovative Fermatean fuzzy RF-RFE algo-
rithm extracted core criteria from a finite set of initial criteria. In the second stage, the novel
Fermatean fuzzy ITARA determined the semi-objective importance of the core criteria. In the
third stage, the new Fermatean fuzzy MARCOS method ranked alternatives. Three sensitiv-
ity analyses confirmed that the proposed approach could generate highly robust solutions in
uncertain and contradictory real-life decision-making environments. The comparative anal-
ysis with the existing state-of-the-art Fermatean fuzzy approaches also approved its high
reliability.

Themajor advantages of the developed approach are (a) the advanced aggregation ofmulti-
expert input preferences, (b) the precise fusion of uncertain information, (c) high flexibility
in real-life applications with three built-in parameters, (d) efficient generation of criteria
weights when they are not fully known in advance, and (e) the ability to extract core features
and reduce the computation burden of large-scale problems. Therefore, it can be concluded
that it goes well beyond the available state-of-the-art FFS-based approaches.

A real-life case study for Istanbul to locate a disinfection facility for hazardous HCW
during the COVID-19 pandemic showed the applicability and efficiency of the developed
decision-making approach. Results of the developed methodology showed high accuracy
and efficiency in handling the large-scale nature of the problem, uncertainties involved in the
weight determination process, and ranking of alternatives. According to the results, “Pendik”
is the top alternative for locating a disinfection facility in Istanbul, Turkey.

This study can be extended in several directions for future studies. The most plausible
direction is to use the developedmethodology for other large-scale decision-making problems
in waste management, supply chain management, environmental planning, transportation
planning, healthcare management, and sustainability assessment. Also, the proposed three-
stage approach could be utilized to solve the addressed disinfection facility location selection
problem under COVID-19 in different geographical contexts, e.g., other regions of Turkey
and other countries.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s10479-022-04822-0.
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the competitiveness of spa-centers in order to achieve sustainability using a fuzzy multi-criteria decision-
making model. Sustainability, 12(20), 8584. https://doi.org/10.3390/su12208584

Mishra, A. R.,Mardani, A., Rani, P.,&Zavadskas, E.K. (2020). A novel EDAS approach on intuitionistic fuzzy
set for assessment of health-care waste disposal technology using new parametric divergence measures.
Journal of Cleaner Production, 272, 122807. https://doi.org/10.1016/j.jclepro.2020.122807

Mishra, A. R., Rani, P., Mardani, A., Pardasani, K. R., Govindan, K., & Alrasheedi, M. (2020). Healthcare
evaluation in hazardouswaste recycling using novel interval-valued intuitionistic fuzzy information based
on complex proportional assessment method.Computers & Industrial Engineering, 139, 106140. https://
doi.org/10.1016/j.cie.2019.106140

Mishra, S., & Singh, S. P. (in press). A stochastic disaster-resilient and sustainable reverse logistics model in
big data environment. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03573-0.

Nursetyowati, P., Nadifameidita, F. Q., Fairus, S., Irawan, D. S., & Rohajawati, S. (2019). Optimization
of medical hazardous waste management in community health centers of depok city using analytical
hierarchy process (AHP) method. Journal of Physics: Conference Series, 1364(1), 012040. https://doi.
org/10.1088/1742-6596/1364/1/012040

Pamucar, D., Ecer, F., & Deveci, M. (2021). Assessment of alternative fuel vehicles for sustainable road
transportation of United States using integrated fuzzy FUCOM and neutrosophic fuzzy MARCOS
methodology. Science of the Total Environment, 788, 147763. https://doi.org/10.1016/j.scitotenv.2021.
147763

Pamucar, D., Iordache, M., Deveci, M., Schitea, D., & Iordache, I. (2021). A new hybrid fuzzy multi-criteria
decision methodology model for prioritizing the alternatives of the hydrogen bus development: A case
study from Romania. International Journal of Hydrogen Energy, 46(57), 29616–29637. https://doi.org/
10.1016/j.ijhydene.2020.10.172

Paul, A., Pervin, M., Roy, S. K., Maculan, N., &Weber, G. W. (2022). A green inventory model with the effect
of carbon taxation. Annals of Operations Research, 309(1), 233–248. https://doi.org/10.1007/s10479-
021-04143-8

Pradenas, L., Fuentes, M., & Parada, V. (2020). Optimizing waste storage areas in health care centers. Annals
of Operations Research, 295(1), 503–516. https://doi.org/10.1007/s10479-020-03713-6

Rao, K. E., & Rao, G. A. (2021). Ensemble learning with recursive feature elimination integrated software
effort estimation: A novel approach. Evolutionary Intelligence, 14(1), 151–162. https://doi.org/10.1007/
s12065-020-00360-5

Rtayli, N., & Enneya, N. (2020). Enhanced credit card fraud detection based on SVM-recursive feature
elimination and hyper-parameters optimization. Journal of Information Security and Applications, 55,
102596. https://doi.org/10.1016/j.jisa.2020.102596

Sahoo, L. (2021). A new score function based Fermatean fuzzy transportation problem. Results in Control
and Optimization, 4, 100040. https://doi.org/10.1016/j.rico.2021.100040

123

https://doi.org/10.1016/j.csda.2005.12.018
https://doi.org/10.1016/j.wasman.2021.08.012
https://doi.org/10.1016/j.cie.2018.03.011
https://doi.org/10.1016/j.knosys.2020.105749
https://doi.org/10.1177/0734242X20947162
https://doi.org/10.5513/JCEA01/22.2.2946
https://doi.org/10.1016/j.heliyon.2019.e02810
https://doi.org/10.3390/su12208584
https://doi.org/10.1016/j.jclepro.2020.122807
https://doi.org/10.1016/j.cie.2019.106140
https://doi.org/10.1007/s10479-020-03573-0
https://doi.org/10.1088/1742-6596/1364/1/012040
https://doi.org/10.1016/j.scitotenv.2021.147763
https://doi.org/10.1016/j.ijhydene.2020.10.172
https://doi.org/10.1007/s10479-021-04143-8
https://doi.org/10.1007/s10479-020-03713-6
https://doi.org/10.1007/s12065-020-00360-5
https://doi.org/10.1016/j.jisa.2020.102596
https://doi.org/10.1016/j.rico.2021.100040


Annals of Operations Research (2023) 328:1105–1150 1149

Sałabun W., & Urbaniak K. (2020). A new coefficient of rankings similarity in decision-making problems. In
ICCS 2020, vol 12138, 3–5 June, the Netherlands, Springer, Cham. https://doi.org/10.1007/978-3-030-
50417-5_47.

Sazvar, Z., Zokaee, M., Tavakkoli-Moghaddam, R., Salari, S. A. S., & Nayeri, S. (in press). Designing a
sustainable closed-loop pharmaceutical supply chain in a competitive market considering demand uncer-
tainty, manufacturer’s brand and waste management. Annals of Operations Research. https://doi.org/10.
1007/s10479-021-03961-0.

Senapati, T., & Yager, R. R. (2019a). Fermatean fuzzy weighted averaging/geometric operators and its appli-
cation in multi-criteria decision-making methods. Engineering Applications of Artificial Intelligence, 85,
112–121. https://doi.org/10.1016/j.engappai.2019.05.012

Senapati, T., & Yager, R. R. (2019b). Some new operations over Fermatean fuzzy numbers and application
of Fermatean fuzzy WPM in multiple criteria decision making. Informatica, 30(2), 391–412. https://doi.
org/10.15388/Informatica.2019.211

Senapati, T., & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of Ambient Intelligence and Humanized
Computing, 11(2), 663–674. https://doi.org/10.1007/s12652-019-01377-0

Sergi, D., & Sari, I. U., et al. (2021). Fuzzy capital budgeting using Fermatean fuzzy sets. In C. Kahraman,
S. Cevik Onar, & B. Oztaysi (Eds.), Intelligent and Fuzzy Techniques: Smart and Innovative Solutions
(Vol. 1197, pp. 448–456). Cham: Springer. https://doi.org/10.1007/978-3-030-51156-2_52

Shahzadi, G., Muhiuddin, G., Arif Butt, M., & Ashraf, A. (2021). Hamacher interactive hybrid weighted
averaging operators under Fermatean fuzzy numbers. Journal of Mathematics, 2021, 5556017. https://
doi.org/10.1155/2021/5556017

Simic, V., Karagoz, S., Deveci, M., & Aydin, N. (2021). Picture fuzzy extension of the CODAS method for
multi-criteria vehicle shredding facility location. Expert Systems with Applications, 175, 114644. https://
doi.org/10.1016/j.eswa.2021.114644

Simić, V., Soušek, R., & Jovčić, S. (2020). Picture fuzzy MCDM approach for risk assessment of railway
infrastructure. Mathematics, 8(12), 2259. https://doi.org/10.3390/math8122259

Singh, D., & Satija, A. (2018). Prediction of municipal solid waste generation for optimum planning and
management with artificial neural network—Case study: Faridabad City in Haryana State (India). Inter-
national Journal of System Assurance Engineering and Management, 9(1), 91–97. https://doi.org/10.
1007/s13198-016-0484-5

Singh, N., Tang, Y., Zhang, Z., & Zheng, C. (2020). COVID-19 waste management: Effective and successful
measures in Wuhan, China. Resources, Conservation, and Recycling, 163, 105071. https://doi.org/10.
1016/j.resconrec.2020.105071
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