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Abstract
k-means clustering is a classic method of unsupervised learning with the aim of partitioning
a given number of measurements into k clusters. In many modern applications, however,
this approach suffers from unstructured measurement errors because the k-means clustering
result then represents a clustering of the erroneous measurements instead of retrieving the
true underlying clustering structure.We resolve this issue by applying techniques from robust
optimization to hedge the clustering result against unstructured errors in the observed data. To
this end, we derive the strictly and �-robust counterparts of the k-means clustering problem.
Since the nominal problem is already NP-hard, global approaches are often not feasible in
practice. As a remedy, we develop tailored alternating direction methods by decomposing
the search space of the nominal as well as of the robustified problems to quickly obtain
feasible points of good quality. Our numerical results reveal an interesting feature: the less
conservative �-approach is clearly outperformed by the strictly robust clustering method.
In particular, the strictly robustified clustering method is able to recover clusterings of the
original data even if only erroneous measurements are observed.
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1 Introduction

In statistical analyses, a typical assumption is that the used data is measured without error.
However, this assumption is often violated. One possible way to approach this problem is to
assume measurement errors in the observed variables. However, these measurement errors
often are not specifiable with distributional assumptions as nothing is known about them.
Measurement errors with unknown structure appear in many different application areas and
will be referred to as unstructured errors hereafter. For example, Rocke et al. (2009) state
four sources of such errors in the case of micro-array analysis. When using register data, a
typical source of errors are over- and undercounts, which are typically not detectable from
the register itself; see Burgard and Münnich (2012). Another example is the analysis of the
potential use of big data in public health research in Khoury and Ioannidis (2014), where the
authors strikingly state “‘Big Error’ can plague Big Data”.

The field of robust optimization treats this problem of unstructured, uncertain data by
robustifying optimization problems with uncertain parameters. In this setting, no additional
information about these parameters is required besides that they belong to a prescribed
uncertainty set. See Soyster (1973) for the first paper on robust optimization and the textbook
by Ben-Tal et al. (2009) or the survey article by Bertsimas et al. (2011) for a general overview.
For a recent application of these ideas to linear mixed models; see Burgard et al. (2020).
However, the most basic variant of robust optimization—usually called strict robustness—
was often criticized since it may lead to overly conservative solutions as they are explicitly
hedged against the worst-case. As a remedy, less conservative concepts of robustness have
been proposed in the last decades; see, e.g., recoverable robustness (Liebchen et al. 2009),
light robustness (Fischetti and Monaci 2009), adjustable robustness (Ben-Tal et al. 2004), or
�-robustness (Bertsimas and Sim 2004).

Asmotivated above, in statistics, there are several optimization problems, which should be
re-engineered to account for the unstructured error setting as it arises in big data sources. By
developing new robust optimization methodology for optimization problems from statistics
and/or classification, it is widely accepted that a major advancement in the analysis and
usability of large data sources can be achieved. For example, a very important and widely
used method is k-means clustering (MacQueen 1967; Lloyd 1982). It is used to find clusters
in an unsupervised learning setting and is widely applied in the context of big data analysis;
see, e.g., Grira et al. (2004) and Celebi and Aydin (2016). However, it does not compensate
for possible errors in the data set. Therefore, the clusters that are found are perturbed by
the unstructured errors and do not necessarily correspond to the true underlying structure of
interest.

The marriage of problems from classification or statistics with modern techniques from
mathematical optimization has been a field of very active research during the last years and a
comprehensive overview over this literature is out of the scope of this article. Thus, wemainly
focus on reviewing the literature at the interface of robust optimization, k-means clustering,
and classification problems. One of themost prominent methods for classification are support
vector machines (SVMs), which also have been considered from the point of view of robust
optimization; see, e.g., Bhattacharyya et al. (2005), Trafalis and Gilbert (2007), Pant et al.
(2011) and Bertsimas et al. (2019). The results obtained in these papers often illustrate that
robustified solutions can give higher accuracy than nominal ones, leading to improvements
in the SVM method. The most recent paper by Bertsimas et al. (2019) from the above list
also contains the application of robust optimization to two other major and widely used clas-
sification methods (besides SVMs): logistic regression and CART. The presented extensive
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computational results show that the robust formulations outperform nominal and regularized
models for most of the instances—especially in the case of high-dimensional instances and
instances that are hard to separate. Moreover, to the best of our knowledge, Bertsimas et al.
(2019) is the only paper that also uses the concept of �-robustness for classification. Interest-
ingly, the authors report that �-robustness is beneficial for robustifying SVMs. In contrast to
that, our results for �-robustified k-means clustering are clearly outperformed by the strictly
robustified models.

Our contribution is the following. We follow the way paved by Bertsimas et al. (2019)
but consider strictly and �-robust optimization for the k-means clustering problem. The
robustification of the underlying optimization problem allows us to consider erroneous input
data. As a consequence, it becomes possible to compute clusterings that are closer to the
clusterings of the original, i.e., error-free, data although only erroneous input data can be
considered. To the best of our knowledge, this issue has not been studied before in the
literature. Moreover, we develop tailored alternating direction methods (ADMs) to quickly
obtain solutions of good quality. Here, one of the main insights is that an ADM for the
nominal case can be generalized so that it becomes applicable to the robust counterparts
while keeping its convergence properties.

Classic ADMs are extensions of augmented Lagrangian methods and have been originally
proposed inGabay andMercier (1976) andGlowinski andMarroco (1975).Ageneral analysis
of the convergence theory of ADMs is presented in Bertsekas and Tsitsiklis (1989). The
particular case ofADMsapplied to convex objective functions f (u, v) over disjoint constraint
sets u ∈ U , v ∈ V , is discussed in Wendell and Hurter (1976). An extension to the case of a
biconvex f is given in Gorski et al. (2007). More recently, in Boyd et al. (2011), the authors
discuss applications of the alternating direction methods of multipliers (ADMMs), which are
closely related to ADMs, in the broad area of machine learning and highlight its possibility of
parallelization and distributed computing. ADMs are very broadly applied; for an application
of ADMs to solve nonconvex MINLPs in the context of gas transport, we refer to Geißler
et al. (2015) and Geißler et al. (2018). For an application in supply chain management, we
refer to Schewe et al. (2020). Furthermore, in Geißler et al. (2017) it is shown that idealized
feasibility pumps can be seen as an ADM and a penalty-based ADM for MIPs and MINLPs
is proposed. A similar method based on block coordinate descent and coordinate descent
has been applied recently in the context of optimal imputation in Bertsimas et al. (2017).
However, the authors do not consider clustering problems.

In general, these methods rely on a problem-specific decomposition of the variable space
of the robust counterparts. Using these decompositions, solutions of good quality can be
obtained by alternatingly solving two sub-problems that are significantly easier to solve than
the robust counterpart. For the nominal case, the applied ADM exactly mimics the classic
k-means clustering algorithm. However, our more abstract view on the decomposition of the
problem later allows to carry the idea of alternatingly solving easier subproblems over to
the robustified settings. Strictly robust counterparts for the k-means clustering problem are
also considered in Li et al. (2016) and Vo et al. (2016). However, there is no investigation
of structural properties of data sets that indicate whether a robustification of k-means might
be beneficial or not. Additionally, by explicitly framing our method as an ADM, we are also
able to provide a convergence result (both for the nominal and the two robustified clustering
methods), which is not done in Li et al. (2016) and Vo et al. (2016). We also extend our
ADM setting so that partial minima (delivered by the ADM) of bad quality can be detected
and improved so that the alternating algorithm can be restarted with a significantly improved
starting point.We show in our numerical results that this restart heuristic leads to significantly
better clustering results. In Li et al. (2016), the authors focus on clustering of incomplete
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data sets. Thus, in their computational study, the robust clustering results are evaluated by
comparing them to other existing k-means algorithms for incomplete data sets. In contrast
to this, the goal of this paper is to evaluate the quality of robustified solutions obtained and
to develop an understanding of structural properties of data sets for which robust clustering
is beneficial. It turns out that a robustification of the clustering approach is not required
if the underlying data points are already well separated. However, if this is not the case,
the robustified method is able to recover the true clustering although only erroneous data
is observed. Our analysis especially leads to an interesting result regarding the comparison
of strictly and �-robust clustering. The �-robust approach was developed to overcome the
criticism of strictly robust solutions that are often too conservative in practice. For k-means
clusteringwe observe the contrary: The conservatismof strict robustness leads to significantly
better clustering results when compared to the �-robust solutions.

The remainder of the paper is structured as follows. In Sect. 2 we formally introduce the
k-means clustering problem and state it as a mixed-integer nonlinear optimization problem
(MINLP).Afterward, Sect. 3 contains the strictly robust counterpart, followed by the�-robust
counterpart in Sect. 4. We state a generic ADM in Sect. 5 and discuss its basic convergence
properties that can also be applied if a tailored version is applied to nominal or robustified
clustering problems. By doing so, we can explicitly characterize the obtained clustering
solutions as so-called partial minima of the underlying MINLP. Moreover, we state the
specific sub-problems that need to be solved in every iteration of the ADM (if applied to
the nominal or one of the two robust clustering methods) and show that they can always be
solved efficiently. In Sect. 6, we describe the already mentioned restart heuristic and present
our numerical results in Sect. 7. The paper closes with some concluding remarks and notes
on future research topics in Sect. 8.

2 The k-means clustering problem and anMINLP formulation

Let X ∈ R
p×n be the matrix containing the data set for clustering, which consists of n data

points inRp . Here, the data point xi ∈ R
p , i = 1, . . . , n, corresponds to the i th column of X .

For given k, the goal of k-means clustering is to find mean vectors μ j ∈ R
p , j = 1, . . . , k,

of k clusters that satisfy

μ∗ = arg min
μ

h(X , μ), μ = (μ j ) j=1,...,k, (1)

where the loss function h is a sum of distances such as the squared Euclidean distance

h(X , μ) =
k∑

j=1

∑

xi∈S j
‖xi − μ j‖22, (2)

with S j ⊂ R
p being the set of data points that are assigned to cluster j .

By introducing binary variables bi, j ∈ {0, 1} for i = 1, . . . , n and j = 1, . . . , k, we can
reformulate the function h as

h(X , μ, b) =
k∑

j=1

n∑

i=1

bi, j‖xi − μ j‖22, b = (bi, j )
j=1,...,k
i=1,...,n ,
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where the binary variables have the meaning

bi, j =
{
1, if point xi is assigned to cluster S j ,

0, otherwise.

As xi ∈ R
p should belong to exactly only one cluster, we include the constraint

k∑

j=1

bi, j = 1 for all i = 1, . . . , n.

To simplify the presentation in what follows, we introduce the notations

N := {1, . . . , n}, P := {1, . . . , p}, K := {1, . . . , k}.
Thus, a reformulation of the k-means clustering problem as a mathematical optimization
problem is given by

min
μ,b

∑

j∈K

∑

i∈N
bi, j‖xi − μ j‖22 (3a)

s. t.
∑

j∈K
bi, j = 1 for all i ∈ N , (3b)

bi, j ∈ {0, 1} for all i ∈ N , j ∈ K , (3c)

b ∈ R
n×k, (3d)

μ ∈ R
p×k . (3e)

This is a mixed-integer nonlinear programming problem (MINLP); all constraints are linear
but the objective function is cubic.

3 The strict robust counterpart of the k-means clusteringMINLP

Up to now, we assumed that the data points in X are known exactly. However, in prac-
tice, often only erroneous measurements X̃ = X + E can be observed instead, where
E ∈ R

p×n describes the respective perturbation of the original data. We assume that there
is neither information on the expected value nor on any higher order moment of the additive
perturbation E . The error could even be a deterministic error as opposed to a stochastic one.

In statistics, measurement error correction methods typically assume that the errors are
random variables that follow a known distribution; see Carroll et al. (2006). For a recent
proposal on dealing with clustering in these classic measurement error settings; see Su et al.
(2018). By accounting for the error distribution in the estimation process, the influence of the
errors is reduced.However, this assumption is often very restrictive.Especiallywhenusingbig
data sources as in Davalos (2017) and Yamada et al. (2018), no meaningful error distribution
can be assumed. As it is shown in White (2011) for biomarker measures, errors can be due to
specimen collection and storage. Last but not least, in social science and econometric analysis,
the indicators used are typically estimates resulting form a long statistical production process
that is prone to different kind of errors; see, e.g., Alfons et al. (2013). All these different types
of errors can even extend to be systematic and thus are far frombeing described as a zero-mean
distributed error.
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In this paper we tackle the following situation: Although we can only observe erroneous
measures X̃ in practice, we want to compute a clustering that is as close as possible to the
clustering of the original data X ∈ R

p×n . Obviously, especially if E has a mean vector
different from 0 ∈ R

p over all observations in every cluster for every variable, the optimal
solution

μ̃∗ = arg min
μ

h(X̃ , μ), μ = (μ j ) j∈K ,

will differ from the optimal solution of Problem (1). Therefore, the optimization problem
has to be reformulated to account for the unobservable and unstructured error E . This can be
done by using the min-max problem

min
μ

max
D∈U h(X̃ − D, μ),

with U ⊆ R
p×n being the uncertainty set, which will be specified right below. In particular,

we assume that U can be chosen so that E ∈ U holds. Thus, given an uncertainty set U , we
minimize the function h considering the worst-case scenario w.r.t. all possible D ∈ U .

As noted above, we assume that the error E is unstructured. Thus, we particularly
refrain from using distributional information. Instead, we consider the box-uncertainty set
U ⊆ R

p×n to be given as

Ubox := {D ∈ R
p×n : − �dil ≤ dil ≤ �dil , �dil ≥ 0, (l, i) ∈ P × N }. (4)

With this at hand, we can now state the strictly robust counterpart of Problem (3):

min
μ,b

max
D∈Ubox

∑

j∈K

∑

i∈N
bi, j‖x̃ i − di − μ j‖22 (5a)

s. t.
∑

j∈K
bi, j = 1, i ∈ N , (5b)

bi, j ∈ {0, 1} , i ∈ N , j ∈ K , (5c)

μ ∈ R
p×k . (5d)

This robust counterpart is an optimization problem that is not directly tractable as it is stated
in (5). The main reason for its hardness is the min-max structure of the objective function.
Fortunately, we can reformulate this problem without the inner maximization problem, as
shown in the following theorem.

Theorem 3.1 The robust counterpart (5) is equivalent to

min
μ,b,α

∑

j∈K

∑

i∈N
bi, j

(
‖x̃ i − μ j‖22 + ‖�di‖22 +

∑

l∈P

2�dil αi, j,l

)
(6a)

s. t. − αi, j,l ≤ x̃ il − μ
j
l ≤ αi, j,l , i ∈ N , j ∈ K , l ∈ P, (6b)

∑

j∈K
bi, j = 1, i ∈ N , (6c)

bi, j ∈ {0, 1}, i ∈ N , j ∈ K , (6d)

μ ∈ R
p×k . (6e)
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Proof First, we move the uncertainty from the objective function to the constraints by intro-
ducing an extra variable t ∈ R and by rewriting the robust counterpart (5) equivalently as

min
μ,b,t

t (7a)

s. t. max
D∈Ubox

⎧
⎨

⎩
∑

j∈K

∑

i∈N
bi, j‖x̃ i − di − μ j‖22

⎫
⎬

⎭ ≤ t, (7b)

∑

j∈K
bi, j = 1, i ∈ N , (7c)

bi, j ∈ {0, 1}, i ∈ N , j ∈ K , (7d)

μ ∈ R
p×k . (7e)

Now, the uncertainties only appear in Constraint (7b), which in turn is equivalent to

max
D∈Ubox

⎧
⎨

⎩
∑

j∈K

∑

i∈N
bi, j

(
‖x̃ i − μ j‖22 + ‖di‖22 − 2(x̃ i − μ j )	di

)
⎫
⎬

⎭ ≤ t

⇐⇒
∑

j∈K

∑

i∈N
bi, j‖x̃ i − μ j‖22 + max

D∈Ubox

⎧
⎨

⎩
∑

j∈K

∑

i∈N
bi, j

(
‖di‖22 − 2(x̃ i − μ j )	di

)
⎫
⎬

⎭ ≤ t .

Using the specific box-structure of the uncertainty set (4), we obtain

max
D∈Ubox

∑

j∈K

∑

i∈N
bi, j

(
‖di‖22 − 2(x̃ i − μ j )	di

)

= max
−�dil≤dil ≤�dil

∑

j∈K

∑

i∈N

∑

l∈P

bi, j
(
(dil )

2 − 2(x̃ il − μ
j
l )d

i
l

)

=
∑

j∈K

∑

i∈N

∑

l∈P

bi, j
(
(�dil )

2 + 2|x̃ il − μ
j
l |�dil

)
.

Thus, we get the constraint

∑

j∈K

∑

i∈N
bi, j

(
‖x̃ i − μ j‖22 +

∑

l∈P

(�dil )
2 + 2�dil |x̃ il − μ

j
l |

)
≤ t,

instead of (7b), which, in turn, can be re-written as

∑

j∈K

∑

i∈N
bi, j

(
‖x̃ i − μ j‖22 + ‖�di‖22 +

∑

l∈P

2�dilαi, j,l

)
≤ t,

− αi, j,l ≤ x̃ il − μ
j
l ≤ αi, j,l , i ∈ N , j ∈ K , l ∈ P,

αi, j,l ≥ 0, i ∈ N , j ∈ K , l ∈ P.

Thus, Problem (5) is equivalent to
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min
μ,b,t,α

t

s. t.
∑

j∈K

∑

i∈N
bi, j

(
‖x̃ i − μ j‖22 + ‖�di‖22 +

∑

l∈P

2�dilαi, j,l

)
≤ t,

− αi, j,l ≤ x̃ il − μ
j
l ≤ αi, j,l , i ∈ N , j ∈ K , l ∈ P,

αi, j,l ≥ 0, i ∈ N , j ∈ K , l ∈ P,
∑

j∈K
bi, j = 1, i ∈ N ,

bi, j ∈ {0, 1}, i ∈ N , j ∈ K ,

μ ∈ R
p×k,

and the result follows by eliminating t again. �

A standard criticism regarding strictly robust solutions (like those of Problem (6)) is that

they tend to be too conservative as they are hedged against theworst-case error that can appear
for all entries of the matrix X̃ . To obtain robust solutions that are practically meaningful but
less conservative, in Bertsimas and Sim (2004) the authors propose the so-called �-robust
approach, which allows to control the degree of conservatism. Thus, in the next section, we
apply this approach to the k-means clustering problem as well.

4 The 0-robust counterpart of the k-means clusteringMINLP

The �-approach proposed in Bertsimas and Sim (2004) does not assume that all parameters
will realize in a worst-case way but restricts the number of such parameters by � ∈ N, which
gives the approach its name. We now apply the technique proposed in Bertsimas and Sim
(2004) to the k-means clustering problem. This means that some observations x̃ il are not
perturbed and, in this case, x̃ il = xil and dil = 0 holds. Thus, the matrices X̃ and X only
differ in a subset of � many elements.

To state the �-robust counterpart of Problem (3), we consider the uncertainty set

U� :=
{
D ∈ Ubox :

∣∣∣
{
dil : dil �= 0, (l, i) ∈ P × N

}∣∣∣ ≤ �
}

.

Using this uncertainty set, we determine the maximum number of observations that may
realize in worst-case way. However, we do not state in advance which will do so. Hence, the
�-robust counterpart of Problem (3) is given by

min
μ,b,α

∑

j∈K

∑

i∈N
bi, j‖x̃ i − μ j‖22

+ max{I⊆P×N : |I |≤�}

⎧
⎨

⎩
∑

j∈K

∑

(l,i)∈I
bi, j

(
(�dil )

2 + 2�dil αi, j,l

)
⎫
⎬

⎭ (8a)

s. t. − αi, j,l ≤ x̃ il − μ
j
l ≤ αi, j,l , i ∈ N , j ∈ K , l ∈ P, (8b)

αi, j,l ≥ 0, i ∈ N , j ∈ K , l ∈ P, (8c)
∑

j∈K
bi, j = 1, i ∈ N , (8d)
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bi, j ∈ {0, 1}, i ∈ N , j ∈ K , (8e)

μ ∈ R
p×k, (8f)

where we already replaced the absolute values with additional variables and linear constraints
as in Theorem 3.1. This model can be reformulated as an equivalent problem without the
inner maximization problem as we show next.

Theorem 4.1 The �-robust counterpart (8) is equivalent to

min
μ,b,α,λ,β

∑

j∈K

∑

i∈N
bi, j‖x̃ i − μ j‖22 + �λ +

∑

(l,i)∈P×N

β i
l (9a)

s. t. λ + β i
l ≥

∑

j∈K
bi, j

(
(�dil )

2 + 2�dil αi, j,l

)
, i ∈ N , l ∈ P, (9b)

− αi, j,l ≤ x̃ il − μ
j
l ≤ αi, j,l , i ∈ N , j ∈ K , l ∈ P, (9c)

αi, j,l ≥ 0, i ∈ N , j ∈ K , l ∈ P, (9d)
∑

j∈K
bi, j = 1, i ∈ N , (9e)

bi, j ∈ {0, 1}, i ∈ N , j ∈ K , (9f)

λ ≥ 0, (9g)

β i
l ≥ 0, i ∈ N , l ∈ P, (9h)

μ ∈ R
p×k . (9i)

Proof First, we rewrite Problem (8) as

min
μ,b,α,t

t (10a)

s. t.
∑

j∈K

∑

i∈N
bi, j‖x̃ i − μ j‖22

+ max{I⊆P×N : |I |≤�}

⎧
⎨

⎩
∑

j∈K

∑

(l,i)∈I
bi, j

(
(�dil )

2 + 2�dil αi, j,l

)
⎫
⎬

⎭ ≤ t, (10b)

− αi, j,l ≤ x̃ il − μ
j
l ≤ αi, j,l , i ∈ N , j ∈ K , l ∈ P, (10c)

αi, j,l ≥ 0, i ∈ N , j ∈ K , l ∈ P, (10d)
∑

j∈K
bi, j = 1, i ∈ N , (10e)

bi, j ∈ {0, 1}, i ∈ N , j ∈ K , (10f)

μ ∈ R
p×k . (10g)

Note that the inner maximization problem that appears in Constraint (10b), can be re-written
by re-arranging the terms in the sums. By doing so, we obtain the following equivalent subset
selection problem

max{I⊆P×N : |I |≤�}

⎧
⎨

⎩
∑

(l,i)∈I

∑

j∈K
bi, j

(
(�dil )

2 + 2�dil αi, j,l

)
⎫
⎬

⎭ . (11)
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We now reformulate the latter problem as a linear optimization problem. For details, we
refer to Proposition 1 in Bertsimas and Sim (2004). From the cited result, it follows that an
equivalent formulation of Problem (11) is given by

max
z∈Rp×n

∑

(l,i)∈P×N

⎛

⎝
∑

j∈K
bi, j

(
(�dil )

2 + 2�dil αi, j,l

)
⎞

⎠ zil (12a)

s. t.
∑

(l,i)∈P×N

zil ≤ �, (12b)

0 ≤ zil ≤ 1, i ∈ N , l ∈ P. (12c)

This is a linear optimization problem in z and its dual problem reads

min
λ,β

�λ +
∑

(l,i)∈P×N

β i
l (13a)

s. t. λ + β i
l ≥

∑

j∈K
bi, j

(
(�dil )

2 + 2�dil αi, j,l

)
, i ∈ N , l ∈ P, (13b)

λ ≥ 0, (13c)

β i
l ≥ 0, i ∈ N , l ∈ P. (13d)

Here, λ is the dual variable corresponding to Constraint (12b) and β i
l are the dual variables

corresponding to the constraints in (12c). Since Problem (12) is feasible and bounded, we can
apply strong duality, which states that the dual problem (13) is also feasible and bounded and
that the primal and dual optimal objective function values coincide. We can thus replace the
inner maximization problem in (10b) by its dual minimization problem. In addition, notice
that we do not need the minimum here because if

t ≥
∑

j∈K

∑

i∈N
bi, j‖x̃ i − μ j‖22 + �λ +

∑

(l,i)∈P×N

β i
l ,

λ + β i
l ≥

∑

j∈K
bi, j

(
(�dil )

2 + 2�dil αi, j,l

)
, i ∈ N , l ∈ P,

λ ≥ 0,

β i
l ≥ 0, i ∈ N , l ∈ P,

is true, it also holds for the minimum value of

�λ +
∑

(l,i)∈P×N

β i
l

over the dual feasible set. Hence, we obtain

min
μ,b,t,λ,β

t

s. t. t ≥
∑

j∈K

∑

i∈N
bi, j‖x̃ i − μ j‖22 + �λ +

∑

(l,i)∈P×N

β i
l ,

λ + β i
l ≥

∑

j∈K
bi, j

(
(�dil )

2 + 2�dil αi, j,l

)
, i ∈ N , l ∈ P,

− αi, j,l ≤ x̃ il − μ
j
l ≤ αi, j,l , i ∈ N , j ∈ K , l ∈ P,
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αi, j,l ≥ 0, i ∈ N , j ∈ K , l ∈ P,
∑

j∈K
bi, j = 1, i ∈ N ,

bi, j ∈ {0, 1}, i ∈ N , j ∈ K ,

λ ≥ 0,

β i
l ≥ 0, i ∈ N , l ∈ P,

and the result follows by eliminating t . �


5 Alternating directionmethods for nominal and robust k-means
clustering

In this section,we propose tailored alternating directionmethods (ADMs) to compute approx-
imate solutions to Problems (3), (6), and (9). Note that all these problems areMINLPs, which
are in general NP-hard to solve to global optimality. Actually, the nominal k-means prob-
lem itself is an NP-hard problem even in the particular case of two dimensions; see, e.g.,
Dasgupta (2007), Aloise et al. (2009) and Mahajan et al. (2012). For such hard problems
it is usually considered appropriate to study primal heuristics to quickly compute feasible
points of good quality. The presented ADMs can be seen as such primal heuristics with the
additional advantage that they come with a formal convergence analysis. The key idea of the
ADMs is to decompose the set of variables into two blocks: the set of binary variables and the
set of continuous variables. Afterward, we alternatingly solve the problem in one direction
while keeping the other one fixed, which is a popular approach for clustering problems; see,
e.g., Li et al. (2016) or Ames (2014), Pirinen andAmes (2019), where an alternating direction
method of multipliers is used to solve semidefinite programming relaxations for computing
a clustering of weighted graphs.

In the following, we first briefly review classic ADMs and afterward propose tailored
versions of ADMs to solve Problems (3), (6), and (9).

5.1 General ADM framework and convergence properties

We now consider the general problem

min
u,v

f (u, v) (15a)

s. t. g(u, v) = 0, c(u, v) ≥ 0, (15b)

u ∈ U ⊆ R
nu , v ∈ V ⊆ R

nv , (15c)

for which we make the following assumption.

Assumption 1 The objective function f : R
nu+nv → R and the constraint functions

g : Rnu+nv → R
m , c : Rnu+nv → R

q are continuous and the sets U and V are non-empty
and compact.

The feasible set of Problem (15) is denoted by �, i.e.,

� = {(u, v) ∈ U × V : g(u, v) = 0, c(u, v) ≥ 0} ⊆ U × V .
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Alternating direction methods are iterative procedures that solve Problem (15) by alter-
natingly solving two simpler problems. Given an iterate (ut , vt ), they solve Problem (15)
with v fixed to vt into the direction of u, yielding a new u-iterate ut+1. Afterward, u is fixed
to ut+1 and Problem (15) is solved into the direction of v, yielding a new v-iterate vt+1. The
algorithm is formally stated in Algorithm 1. The for-loop is repeated until a termination crite-
rion is reached. In order to state convergence results for Algorithm 1, we need the following
definition.

Algorithm 1 A standard ADM.

1: Choose initial values (u0, v0) ∈ U × V .
2: for t = 0, 1, . . . do
3: Compute

ut+1 ∈ arg min
u

{
f (u, vt ) : g(u, vt ) = 0, c(u, vt ) ≥ 0, u ∈ U

}
.

4: Compute

vt+1 ∈ arg min
v

{
f (ut+1, v) : g(ut+1, v) = 0, c(ut+1, v) ≥ 0, v ∈ V

}
.

5: Set t ← t + 1.
6: end for

Definition 5.1 Let (u∗, v∗) ∈ � be a feasible point of Problem (15). Then, (u∗, v∗) is called
a partial minimum of Problem (15) if

f (u∗, v∗) ≤ f (u, v∗) for all (u, v∗) ∈ �,

f (u∗, v∗) ≤ f (u∗, v) for all (u∗, v) ∈ �

holds.

Consider �(ū, v̄) being the set of possible iterates starting from point (ū, v̄), i.e.,

�(ū, v̄) = {
(u∗, v∗) : f (u∗, v̄) ≤ f (u, v̄), u ∈ U ; f (u∗, v∗) ≤ f (u∗, v), v ∈ V

}
.

The following general convergence result is taken from Gorski et al. (2007).

Theorem 5.1 Let {(ut , vt )}∞t=0 be a sequence generated by Algorithm 1 with (ut+1, vt+1) ∈
�(ut , vt ). Suppose that the solution of the first optimization problem (in Line 3) is always
unique. Then, every convergent subsequence of {(ut , vt )}∞t=0 converges to a partial minimum.
In addition, ifw andw′ are two limit points of such subsequences, then f (w) = f (w′) holds.

The sequence {(ut , vt )}∞t=0 generated by Algorithm 1 may not converge, but instead may
have several convergent subsequences. In particular, if {(ut , vt )}∞t=0 is contained in a compact
set, then there exists at least one convergent subsequence {(ut , vt )}t∈T . A partial minimum
may not be global minimum. However, as the problems that we need to solve are NP-hard,
we are willing to accept sub-optimal solutions. For more details on the convergence theory
of classic ADMs; see, e.g., Gorski et al. (2007) and Wendell and Hurter (1976).

5.2 An ADM for the nominal k-means clustering problem

In this section, we propose a tailored version of Algorithm 1 to compute partial minimum
of Problem (3). First, we define the sets U and V . For each attribute’s index l ∈ P , let

123



Annals of Operations Research

π−
l := min{xil : i ∈ N } and π+

l := max{xil : i ∈ N } be the minimum and maximum value
for this attribute, respectively, and let 	(X) := [π−

1 , π+
1 ]× · · ·× [π−

p , π+
p ] be the bounding

box of all data points. Thus, xi ∈ 	(X) holds for all i ∈ N .
Now,within the context ofAlgorithm1,we consider the following non-empty and compact

sets

U :=
⎧
⎨

⎩b ∈ R
n×k : bi, j ∈ {0, 1},

∑

j∈K
bi, j = 1, i ∈ N , j ∈ K

⎫
⎬

⎭ , (16)

V :=
{
μ ∈ R

p×k : μ j ∈ 	(X), j ∈ K
}

, (17)

which gives the variable splitting required for the application of the ADM. Note that, in
Problem (3),we do not have any coupling constraint such as g or c in the general Problem (15).
In what follows, we describe how we compute a partial minimum of Problem (3).

Suppose that initial mean vectors μ0 ∈ V are given. In each iteration t , the problem in
the direction of U reads

bt+1 ∈ arg min
b∈U

∑

j∈K

∑

i∈N
bi, j‖xi − (μ j )t‖22. (18)

The optimal solution to this binary problem can be obtained as follows. Consider a fixed
i ∈ N . Since bi, j ∈ {0, 1} for j ∈ K and only one bi, j is equal to 1, we set bi, j = 1 for j
that minimizes the norm. This is exactly the j with μ j being the center that is the closest to
the point xi . Thus, for each i ∈ N , we compute

Ji =
{
j : j ∈ arg min

j∈K
‖xi − (μ j )t‖22

}
. (19)

Note that there may exist more than one element in Ji . In this case, we break the tie by
choosing the smallest one. With bt+1 at hand, we update the mean vectors by solving the
problem in the direction of V , which is given by

μt+1 = arg min
μ∈V

∑

j∈K

∑

i∈N
bt+1
i, j ‖xi − μ j‖22.

This problem can be solved very effectively by using the formula

(μ j )t+1 = 1

|Ct+1
j |

∑

i∈Ct+1
j

x i , j ∈ K , (20)

with

Ct+1
j = {i ∈ N : bt+1

i, j = 1}.
In otherwords, in each iteration,weobtain the newcentersμt+1 ∈ V bycomputing the centers
for the given assignment bt+1. Now, we can summarize the main steps of our algorithm to
compute a partial minimum of Problem (3) in Algorithm 2. For details on how we choose
the initial centers we refer to Sect. 7.3.

Since the method in Algorithm 2 is a special case of the general ADM in Algorithm 1, the
general convergence result as stated in Theorem 5.1 can be applied, yielding that Algorithm 2
leads to partial minima. Let us finally mention that the presented ADM exactly mimics the
classic k-means clustering algorithm. However, this more abstract view on decomposing the
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Algorithm 2 ADM applied to the nominal k-means clustering problem (3).

1: Choose μ0 ∈ V .
2: for t = 0, 1, . . . do
3: for i ∈ N do
4: Compute Ji as in (19) and choose j∗ ∈ Ji .
5: Set bt+1

i, j = 1 if j = j∗ and bt+1
i, j = 0 if j �= j∗.

6: end for
7: Update μt+1 using (20).
8: Set t ← t + 1.
9: end for

problem can be nicely transferred to the robustified settings that we discuss in the following
sections.

5.3 An ADM for the strictly robust k-means clustering problem

In this section, we propose a tailored ADM to compute partial minima of Problem (6).
First, we describe how we choose the set V . Consider the bounding box of the erroneous
measures 	(X̃) as in Sect. 5.2. Thus, x̃ i , μ j ∈ 	(X̃) holds for all i ∈ N , j ∈ K . With this,
for all i ∈ N , j ∈ K , l ∈ P , we can set

|x̃ il − μ
j
l | ≤ (x̃ il − μ

j
l )

2 ≤ (π+
l − π−

l )2 =: Ml , M := max{Ml : l ∈ P}. (21)

For being a solution of Problem (6), α needs to be minimized while satisfying (6b). Thus,
we can conclude that M as defined in (21) is an upper bound for α, i.e., we can set

|x̃ il − μ
j
l | ≤ αi, j,l ≤ M, i ∈ N , j ∈ K , l ∈ P.

This leads to the compact sets

Vα :=
{
α ∈ R

n×k×p : 0 ≤ αi, j,l ≤ M, i ∈ N , j ∈ K , l ∈ P
}

, (22)

Vμ :=
{
μ ∈ R

p×k : μ j ∈ 	(X̃), j ∈ K
}

. (23)

Finally, let V := Vμ × Vα be the Cartesian product of the compacts sets Vμ and Vα . Thus,
the variable splitting is given by the non-empty and compact set (16) and V as just defined.
Note that, with this variable splitting, we again do not have any coupling constraints. Now,
we can apply Algorithm 1 to Problem (6).

Suppose that the continuous variables μ0 and α0 are given. In each iteration t , the first
subproblem to be solved is the binary optimization problem

bt+1 ∈ arg min
b∈U

∑

j∈K

∑

i∈N
bi, j‖x̃ i − (μ j )t‖22,

in which we already skipped all the constant terms in the objective function. This problem
can be solved in analogy to Problem (18). Suppose that we have computed bt+1. The new
iterates μt+1 and αt+1 are computed by solving

min
(μ,α)∈V

∑

j∈K

∑

i∈N
bt+1
i, j

(
‖xi − μ j‖22 + ‖�di‖22 +

∑

l∈P

2�dil αi, j,l

)
(24a)

s. t. − αi, j,l ≤ x̃ il − μ
j
l ≤ αi, j,l , i ∈ N , j ∈ K , l ∈ P. (24b)
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This is a convex quadratic optimization problem and can thus be efficiently solved by standard
state-of-the-art solvers; see, e.g., Ben-Tal and Nemirovski (2001) and Boyd and Vanden-
berghe (2004) for an overview of algorithms and complexity results for convex problems.
The overall method to compute a partial minimum of Problem (6) is formally given in Algo-
rithm 3. As in the last section, Theorem 5.1 can be applied again, yielding that Algorithm 3
leads to partial minima of the strictly robust counterpart.

Algorithm 3 ADM applied to the strictly robust counterpart (6).

1: Choose (μ0, α0) ∈ V .
2: for t = 0, 1, . . . do
3: Compute bt+1 as in Steps 3–6 of Algorithm 2 w.r.t. x̃ i .
4: Update μt+1 and αt+1 by solving problem (24).
5: Set t ← t + 1.
6: end for

5.4 An ADM for the 0-robust k-means clustering problem

As in Sect. 5.3 we now first discuss how to obtain the set V for applying Algorithm 1 to
Problem (9).

Note that in Problem (9), the continuous variables λ and β are always bounded in the direc-
tion of optimization since they are non-negative and minimized. Thus, there exist constants
Mλ and Mβ with

0 ≤ λ ≤ Mλ, 0 ≤ β i
l ≤ Mβ, i ∈ N , l ∈ P.

Now, we consider the following non-empty and compact sets

Vλ := {λ ∈ R : 0 ≤ λ ≤ Mλ} , Vβ :=
{
β ∈ R

p×n : 0 ≤ β i
l ≤ Mβ, i ∈ N , l ∈ P

}
.

With these sets and the sets in (22) and (23) at hand, we can define the non-empty and
compact set V as

V := Vμ × Vα × Vλ × Vβ . (25)

Thus, the variable splitting is represented by the sets (16) and (25). In this case now, we have
coupling constraints (9b). In the notation of (15), we define these constraints formally as
c : Rnu+nv → R

p×n with

c(l,i)(b, α, λ, β) = λ + β i
l −

∑

j∈K
bi, j

(
(�dil )

2 + 2�dil αi, j,l

)
, (l, i) ∈ P × N .

In the following, we describe how we solve the ADM subproblems. To solve Problem (9)
into the direction ofU , we first need to choose μ0, α0, λ0, and β0. Suppose that μ0 is given,
and we obtain b0 as in Steps 3–6 of Algorithm 2 w.r.t. x̃ i . Then, we can compute α0, λ0, and
β0 by solving the linear optimization problem

min
(α,λ,β)∈V �λ +

∑

(l,i)∈P×N

β i
l (26a)

s. t. c(l,i)(b
0, α, λ, β) ≥ 0, (l, i) ∈ P × N , (26b)

− αi, j,l ≤ x̃ il − (μ
j
l )

0 ≤ αi, j,l , i ∈ N , j ∈ K , l ∈ P. (26c)

123



Annals of Operations Research

With the initial values for μ0, α0, λ0, and β0 at hand, the problem in the direction of U in
iteration t reads

min
b∈U

∑

j∈K

∑

i∈N
bi, j‖x̃ i − (μ j )t‖22 (27a)

s. t. c(l,i)(b, α
t , λt , β t ) ≥ 0, (l, i) ∈ P × N , (27b)

where we already skipped all constant terms in the objective function.
Note that for t = 0, we obtain b1 = b0 by solving Problem (27). This is because b0 is

feasible for (27) and b0 leads to the optimal objective value since it has been obtained as in
Algorithm 2 w.r.t. x̃ i . Thus, there is no need to compute α0, λ0, as well as β0 and we can
directly proceed with the problem into the direction of V using b0, as described below.

Suppose that μ0 is given and b0 is obtained as in Algorithm 2. Thus, in each iteration t ,
we compute μt+1, αt+1, λt+1, and β t+1 by solving

min
(μ,α,λ,β)∈V

∑

j∈K

∑

i∈N
bti, j‖x̃ i − μ j‖22 + �λ +

∑

(l,i)∈P×N

β i
l (28a)

s. t. c(l,i)(b
t , α, λ, β) ≥ 0, (l, i) ∈ P × N , (28b)

− αi, j,l ≤ x̃ il − μ
j
l ≤ αi, j,l , i ∈ N , j ∈ K , l ∈ P, (28c)

which is a convex quadratic optimization problem. Having this problem solved, we obtain
the next b-iterate by solving Problem (27).

Algorithm 4 summarizes the main steps to compute a partial minimum of Problem (9).
Again, Theorem 5.1 ensures that Algorithm 4 computes partial minima of the �-robust
counterpart.

Algorithm 4 ADM applied to the �-robust counterpart (9)

1: Choose μ0 ∈ V .
2: for t = 0, 1, . . . do
3: if t = 0 then
4: Compute b0 by following Steps 3–6 of Algorithm 2 w.r.t. x̃ i .
5: else
6: Compute bt by solving Problem (27).
7: end if
8: Solve Problem (28) to obtain μt+1, αt+1, λt+1, and βt+1.
9: Set t ← t + 1.
10: end for

6 Restart heuristic

There are specific clustering instances forwhich theADMsdescribed so far obtain visibly bad
results; see, e.g., the clustering obtained for the instance Unbalance in Fig. 1. For the details
about the benchmark data sets we refer to Sect. 7.2. Observe that Algorithm 2 identified two
clusters, S1 and S2, where there should be only one, and identified one cluster, S3, where there
should be two. This leads to the situation that the loss within cluster S1 and within cluster S2
is much smaller than the one within cluster S3. Here and in what follows, we compute the
weighted value of the loss function h in (2) restricted to cluster S j by
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Fig. 1 Comparison between the ground truth clustering (left) and the clustering result of the ADM (right) for
the instance Unbalance. Obviously, the partial minimum is of low quality

h j = 1∣∣S j
∣∣

∑

xi∈S j
‖xi − μ j‖22. (29)

Suppose now that we join clusters S1 and S2 to form a new cluster S12. If the total loss
within cluster S12 is still smaller than the one within cluster S3, then our algorithm is actually
not minimizing the sum of total losses, because there exists a better point when we split
cluster S3 into two clusters and join clusters S1 and S2.

Based on these observations, we propose a heuristic to avoid that the ADMs in Algo-
rithms 2–4 get stuck in a partial minimum of bad quality as shown in Fig. 1; see Fraiman et
al. (2013) for a similar heuristic.

Suppose that we have a partial minimum and the h j values at hand. For each pair of
clusters (S j1 , S j2), we also compute their joint center and the corresponding total loss via

μ j1 j2 = 1∣∣S j1

∣∣ + ∣∣S j2

∣∣
∑

xi∈S j1∪S j2

xi (30)

and

h j1 j2 = 1∣∣S j1

∣∣ + ∣∣S j2

∣∣
∑

xi∈S j1∪S j2

‖xi − μ j1 j2‖22. (31)

Now, consider the set


 := {
(S j1 , S j2 , S j3) : h j1 j2 < h j3

}
, (32)

which is the set of all possible combinations of three clusters such that the total loss within
two joined clusters is smaller than the total loss within a third cluster. Note that the set 
 can
be empty. If so, this means that we cannot obtain a better partial minimum by joining two
clusters and splitting another one. On the other hand, i.e., if there exists (S j1 , S j2 , S j3) ∈ 
,
then the total loss of the joined clusters S j1 and S j2 is smaller than the total loss within
cluster S j3 . Thus, we obtain a better partial minimum by joining S j1 and S j2 and by splitting
cluster S j3 into two smaller clusters. To this end, we update the centers in such a way that the
clusters S j1 and S j2 are now one cluster with center μ j1 j2 , cluster S j3 receives two centers
which are the two furthest points in S j3 , and the other centers remain the same, i.e.,

μ̂ j1 ← μ j1 j2 , μ̂ j2 ← x̄ i , μ̂ j3 ← x̄ i
′
, (33)
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μ̂ j ← μ j for all j /∈ { j1, j2, j3}, (34)

with

(x̄ i , x̄ i
′
) ∈ arg min

xi ,xi ′ ∈S j3

{
‖xi − xi

′ ‖22
}

. (35)

Finally, if the set 
 has more than one element, then we repeat the process starting
with the element (S j1 , S j2 , S j3) that gives the minimum ratio h j1 j2/h j3 . Each time an ele-
ment (S j1 , S j2 , S j3) is used, we exclude all the elements that contain S j1 , S j2 , or S j3 , because
these clusters were already modified.

With μ̂ at hand, we compute a new partial minimum using μ̂ as the initial centers. Given
the new partial minimum, we repeat the process until a termination criterion is satisfied. In
Algorithm 5, we formally state the proposed heuristic as an additional part of Algorithms 2–4.
The termination criterion in our implementation is to stop if the restart heuristic does not
provide modified centers anymore and, as a consequence, if two consecutive partial minima
are the same (up to numerical tolerances).

Algorithm 5 Improved algorithms 2, 3, and 4.

1: Given initial centers μ0, compute a partial minimum with Algorithm 2, 3, or 4.
2: if termination criterion is not satisfied then
3: Compute h j as in (29) for all clusters j = 1, . . . , k.

4: Compute μ j1 j2 as in (30) and h j1 j2 as in (31) for all j1 �= j2 ∈ {1, . . . , k}.
5: Compute the set 
 as in (32).
6: if 
 = ∅ then
7: return the current partial minimum.
8: else
9: while 
 �= ∅ do
10: Compute ( j1, j2, j3) ∈ argmin{h j1 j2/h j3 : ( j1, j2, j3) ∈ 
}.
11: Compute μ̂ as in (33)–(35).
12: Update 
 by deleting all triples that contain either j1, j2, or j3.
13: end while
14: Set μ0 := μ̂ and go to Step 1.
15: end if
16: end if

7 Numerical results

In this section, we present our numerical studies, which have been carried out using the setup
described in Sect. 7.1. The goal here is to evaluate the performance of the proposedmethods in
Algorithms 2–5. To this end,wefirst describe in Sect. 7.2 the clustering problem instances and
the evaluation metrics that we use. For analyzing the performance of the different methods,
a ground truth labeling has to be defined. These labels are provided with the test data sets
used in the numerical evaluation. For the optimization, these ground truth labels are not used
as k-means clustering is an unsupervised learning method, i.e., the input data is not labeled.
Since all algorithms assume that initial centers are given, we briefly describe how they are
obtained in Sect. 7.3. In Sect. 7.4, we show that the proposed ADM performs very well for
typical nominal clustering problems. Moreover, we also evaluate the effectiveness of the
heuristic described in Sect. 6. In Sects. 7.5 and 7.6, we discuss the results that we obtain by
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robustifying these k-means clustering problems. Finally, in Sects. 7.7 and 7.8, we go further
and evaluate the performance of the proposed algorithms on real-world clustering instances.

As we will see, the strictly robust method clearly outperforms the nominal and �-robust
methods. In the appendix, we also present a comparison of the strictly robust method with the
spectral clustering method by Von Luxburg (2007), which is another state-of-the-art method
for clustering. By these results, the competitiveness of the strictly robust method is further
highlighted.

7.1 Software and hardware setup

We implemented the algorithms in Python 3.8.5 and solved the binary linear as well as the
convex quadratic optimization problems with Gurobi 9.1.0. We use the special Pythonmod-
ules sklearn.preprocessing.MinMaxScaler, sklearn.metrics.adjusted_rand_score, sklearn.
metrics.silhouette_score, and scipy.stats.wilcoxon to scale the data to the range [0, 1], to
compute theARI (see below), to compute the Silhouette score (see below), and to calculate the
p values for the Wilcoxon signed-rank test (see below as well), respectively. All the compu-
tations were performed on a computer with a 3.60GHz Intel(R) Core(TM) i3-8100 processor
and 16GB RAM. For Algorithms 2–4, the termination criterion is ‖μt+1 − μt‖∞ < 10−4.

7.2 Data sets and validationmetrics

To comprehensively compare the proposed algorithms on a variety of clustering problems,
we use (i) synthetically generated data for which we include some uncertainty by perturbing
the data points as well as (ii) real-world data sets, which naturally contain measurement
errors.

Since one of the goals of thiswork is to identify structural properties of clustering problems
for which a robustification is beneficial, we use six synthetic clustering benchmark data sets
(a, s, Unbalance, dim, g2, birch) proposed by Fränti and Sieranoja (2018). These data sets
provide a perfect benchmark since they cover a wide range of typical k-means clustering
problems with different degrees of overlap, density, and sparsity. Besides that, most of the
data sets are two-dimensional, so we can also visualize and compare the recovered nominal
and robust clustering results. For reasons of comparability,weuse these data sets as a reference
but exclude the data set birch with 100 clusters that leads to extremely large and challenging
problems.

It is also standard in the literature to test clustering algorithms on data sets from the UCI
Machine Learning Repository (Dua and Graff 2017); see, e.g., Li et al. (2016), Vo et al.
(2016) and Aloise et al. (2012). Thus, to also evaluate the quality of robust solutions on high-
dimensional and real-world data sets, we select 52 instances from this repository, forming a
sample of clustering problems with diverse sizes and difficulties.

For the synthetic data, the ground truth partition of all data sets is publicly available in
Fränti and Sieranoja (2018) and for the real-world instances, the true assignments (labels) of
each data point are given as well. Thus, we choose as external validity metrics the adjusted
Rand index (ARI) and the loss function value. The ARI (Hubert and Arabie 1985; Steinley
2004) measures the similarity between two assignments, ignoring permutations, within the
range [−1, 1]. Here, 1 means perfect agreement between the two assignments.

However, in some cases, the ground truth partition corresponds to lower quality solutions,
which may lead to a subjective validation if only external metrics are used as reference.
Therefore, we also use the Silhouette score as an internal validation metric (Rousseeuw
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1987). This score is shown to have a good performance for general clustering problems in
an extensive study over a variety of validation metrics done in Arbelaitz et al. (2013). The
Silhouette score measures the quality of the clustering in terms of cohesion and separation,
taking values within the interval [−1, 1], where a value close to 1 means that the data set is
well clustered, whereas a result close to −1 means that most of the data points have been
misclassified or that there is no natural clustering structure in the data set.

Further, to assess the significance of the obtained results, we apply the Wilcoxon signed-
rank test to calculate p values (Wilcoxon 1945). With this, we are able to quantify the
observed improvements in cluster quality when comparing the Silhouette score as well as
the ARI of nominal and robust models. If the resulting p value is smaller than the α-error
of 10%, we reject the null-hypothesis that the robust model is less or equally good as the
nominal one in terms of the Silhouette score or the ARI, respectively. Hence, a rejection
supports the hypothesis that we obtain improved clustering results for erroneous data when
using robustified models.

7.3 Starting point heuristic

It is well known that a poor initialization of the centers can cause a bad clustering result.
In Fränti and Sieranoja (2019), the authors study some popular initialization heuristics and
test them on a benchmark library, which is the same synthetic data that we use to test our
algorithms. On average, they conclude that the “furthest point heuristic”, also known as
“Maxmin”, reduces the clustering error of k-means. Based on their results, we decide to
compute the initial mean points μ0 with the “Maxmin” heuristic. The idea is to select the
first center randomly within the respective bounding box, and then obtain new centers one
by one. In each iteration, the next center is the point that is the furthest (max) from its nearest
(min) existing center.

7.4 Evaluation of the ADM applied to the synthetic nominal clustering problems

In this section, we discuss the performance of Algorithm 2 and its extension in Algorithm 5
applied to the synthetic data sets. To simplify the presentation here, we refer to Algorithm 2
as (“ADM2”) and to Algorithm 5 as (“ADM5”). As alreadymentioned at the end of Sect. 5.2,
the ADM in Algorithm 2 exactly mimics the classic k-means clustering algorithm. Neverthe-
less, we present the numerical results for the nominal cases here as well to assess the effects
of the restart heuristic and to have a proper baseline for a computational comparison of the
robustified versions later on. First, we evaluate the quality of the partial minima computed
by ADM2 and ADM5 for 12 instances from the synthetic data sets. The results are shown
in Table 1. The objective function value is denoted by h(X , μ). We both state the value of h
corresponding to the ground truth (“GT”) and the value of h in a partial minimum computed
with ADM2 and ADM5. The Silhouette score is computed for the ground truth assignment
as well as for the ADM2 and ADM5 assignment results. The two last columns show the
ARI, respectively. In Table 2, we state the size of the clustering problem, i.e., the number of
clusters k, the number of points n, and the number of attributes p. There we also present the
runtime (“Time”; in seconds) and the number of iterations (denoted by “It”) that the ADM2
and ADM5 require to compute a partial minimum. Since the initialization heuristic for the
centers is a random procedure, we apply the algorithm five times with different initializations
and report the average over all five runs.
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Table 1 Results of Algorithm 2 and its extended Algorithm 5 on the synthetic clustering data sets

Instance h(X , μ) Silhouette ARI

GT ADM2 ADM5 GT ADM2 ADM5 ADM2 ADM5

a1 6.945 7.685 6.747 0.566 0.544 0.572 0.890 0.954

a2 7.617 9.853 7.544 0.582 0.530 0.584 0.857 0.977

a3 6.995 8.434 6.992 0.601 0.566 0.601 0.927 0.997

s1 10.552 15.315 10.287 0.708 0.655 0.712 0.915 0.986

s2 16.098 20.725 14.929 0.609 0.559 0.626 0.826 0.938

s3 30.580 22.138 21.656 0.385 0.478 0.485 0.701 0.713

s4 34.544 20.437 20.125 0.321 0.466 0.468 0.602 0.608

Unbalance 4.247 22.913 4.247 0.833 0.667 0.833 0.612 1.000

dim 7.337 7.158 7.158 0.945 0.945 0.945 1.000 1.000

g2-2-30 42.065 41.479 41.479 0.625 0.629 0.629 0.961 0.961

g2-2-50 53.421 46.556 46.556 0.413 0.482 0.482 0.695 0.695

g2-2-70 60.112 49.540 49.540 0.278 0.397 0.397 0.487 0.487

Table 2 Information about the
synthetic data sets and the
performance of Algorithm 2 and
its extended Algorithm 5 on these
instances

Instance Model size ADM2 ADM5

k n p Time It Time It

a1 20 3000 2 2.2 15.8 5.4 31.6

a2 35 5250 2 7.7 18.8 14.4 28.2

a3 50 7500 2 14.8 18.2 31.8 32.2

s1 15 5000 2 1.6 8.6 3.3 12.0

s2 15 5000 2 3.2 17.8 6.0 26.4

s3 15 5000 2 4.5 25.4 7.5 36.6

s4 15 5000 2 7.9 44.8 9.9 34.2

Unbalance 8 6500 2 1.5 10.2 29.2 9.8

dim 16 1024 32 0.1 2.0 0.2 2.0

g2-2-30 2 2048 2 0.1 4.4 0.1 5.2

g2-2-50 2 2048 2 0.2 8.6 0.2 9.0

g2-2-70 2 2048 2 0.3 13.6 0.3 13.8

Looking at the results of ADM2 first, we note that for the instances a1, a2, a3, s1, s2, dim,
and g2-2-30, on average, the value of h and the Silhouette score in the partial minimum are
close to the ground truth and the ARI is also close to 1. This shows that the clusterings of the
partial minima are similar to the ground truth clusterings for these instances. One can also
see that the quality of the partial minima measured in terms of the objective function h and
in terms of the Silhouette score can both be worse (e.g., instances s1 or s2) or better (e.g.,
instance g2-2-30) compared to the ground truth.

On the other hand, for the instances s3, s4, Unbalance, g2-2-50, and g2-2-70, on average,
the ARI reveals that the corresponding clusterings have low similarity and also the value of h
in the partial minima is rather different to the ground truth. However, the Silhouette score is
better and the value of h is smaller for all these cases except for the instance Unbalance for
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Fig. 2 The ground truth clustering (left) and the ADM5 result (right) for the instance s4

which we obtain a partial minimum of very bad quality; see also Fig. 1. Due to this, in Sect. 6,
we proposed a heuristic to improve the quality of the partial minima that are computed by
the ADM2; see Algorithm 5.

Regarding the runtime and number of iterations, the ADM2 is very fast in computing
partial minima. The median average runtime is 1.9 s (with a maximum of less than 15 s) and
the ADM2 never requires more than 45 iterations on average.

Now, looking at the results of ADM5, we note that the extended algorithm is able to find
the ground truth clustering of the instance Unbalance. Furthermore, all the results improved
in terms of the objective function h and in terms of the Silhouette score. We also observe
that the results for all g2 instances (all having k = 2) remain the same because the heuristic
proposed in Sect. 6 is only applicable for k > 2.

Let us briefly discuss the instance s4 for which we get the lowest ARI (0.608). In this
case, the objective function value is significantly smaller in the ADM5 result (compared to
the ground truth; 20.125 vs. 34.544), and also the Silhouette score is better (compared to the
ground truth; 0.468 vs. 0.321). Both results are shown in Fig. 2, where it is easy to see that
the clusterings also qualitatively differ from each other. Nevertheless, the low values of the
Silhouette score reveal that this is a difficult instance for clustering.

Regarding the runtime and number of iterations that the ADM5, on average, requires to
find a partial minimum, both increase due to the restart heuristic. This is expected, because
in each “outer” iteration we may have new initial centers and, if this is the case, we apply
the ADM2 again leading to additional inner ADM iterations. Thus, the computational costs
of getting better partial minima is the increase of median average runtime from 1.9 to 5.7 s
(with a maximum of 32 s for the instance a3).

We conclude that the proposed Algorithm 2 combined with the restart heuristic proposed
in Algorithm 5, i.e., the combination that we denote here by ADM5, performs very well on
the synthetic data sets. The algorithm is able to find partial minima of very good quality with
objective function values close to or even better than the ground truth and Silhouette scores
always better than or equal to the ground truth.

7.5 Strictly robust clustering results for the synthetic data

Let us start the discussion of the strictly robust clustering results with an informal note. To this
end, consider the clustering instanceUnbalance in Fig. 1 again. For this instance, it is obvious
that the eight clusters are very well separated and not too close to each other. Only for a few
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points between the two clusters below and the middle cluster in the right part of the figure it
may be not clear to which cluster they belong. However, the specific assignment decision for
these data points will not qualitatively change the overall clustering result. In such a setting, it
cannot be expected that a slight perturbation of a certain percentage of data points by a certain
amount will lead to a qualitatively different result. Even if all data points are perturbed by,
e.g., 1%,1 the clustering will stay the same although the clusters may be blurred a bit. This
general observation is also supported by our preliminary numerical experiments: Clustering
of well separated sets of data points does not benefit from robustification. Moreover, in such a
situation there is also no need for robustified clustering if compared with the nominal results.

Due to this and to the fact that most of the instances from the twelve synthetic data
sets provided in Fränti and Sieranoja (2018) are practically well separated, we induce some
uncertainty in the data points by perturbing them. More precisely, we consider an amount
of perturbation of 10% and different quantities of perturbed data points: 5%, 30%, and
50%. Assuming now that the perturbed data set is the “new nominal” or given one, we apply
the nominal and the two robust models. Each data set is perturbed 10 times and every time
the three approaches are applied to an instance, they start with the same given centers. The
average results for all data sets over the 10 runs each are presented in Table 3, where we
show the Silhouette score as well as the ARI regarding the clustering results on the perturbed
data compared to the nominal ADM solution on the unperturbed set (notice that we do not
compare to the ground truth assignment here). For each instance and each validation metric,
the best average result is printed in bold. Moreover, since in some cases the differences
in terms of Silhouette and ARI among methods seem to be modest, we underline the best
robust average results for which the corresponding p values (calculated for each metric and
each two methods) are smaller than the α-error of 10% w.r.t. the nominal results. Therefore,
the underlined average results are statistically significantly better on a 10% level. All the
calculated p values are shown in the appendix in Table 10.

It can be directly seen that the advantage of the strictly robust model over the nominal and
�-robust models increases with the amount of perturbed data points. This is the case, e.g.,
for the instance Unbalance. As we induce a stronger perturbation, the clusters significantly
mix with each other and the performance of the strictly robust model becomes the best in
both evaluation metrics.

Let us now discuss the quality of the robustified clusterings for the instances s3, s4, a2,
and a3 for which the data points are not well separated or for which the clusters are close
to each other; see Fig. 3 (all other data sets are given in Fig. 8 in the appendix). To this end,
we consider Fig. 4 in which we display box-plots to analyze the quality of the robustified
clustering results. On the y-axes we plot the ARI regarding the strictly robustified clustering
results on the perturbed data compared to the nominal ADM solution on the unperturbed
set divided by the ARI regarding the nominal ADM clustering results on the perturbed data
compared to the nominal ADM solution on the unperturbed set. All ADMs always have been
applied using the restart heuristic described in Sect. 6.

For all four instanceswe see that the quality of the strictly robustified clustering is improved
if the errors (in terms of the amount of perturbed points) get larger. The detailed behavior also
depends on the specific instance. Thus, we discuss two exemplary ones. For a3we see that the
robustified clustering is advantageous only for the case of 50% perturbed data points. Taking
a look at Fig. 3 again we see that the data points in instance a3 are rather well separated but
the clusters are close to each other. Since all points are perturbed by 10% if they are perturbed

1 Note that before the computations the data is scaled to [0, 1]p and the amount of perturbation will be stated
in percent for better readability.
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Table 3 Nominal and robust results on the perturbed synthetic data sets

Instance Silhouette ARI

Nominal Strictly � Nominal Strictly �

a1 0.5592 0.5567 0.5511 0.9609 0.9520 0.9256

a2 0.5684 0.5683 0.5665 0.9583 0.9597 0.9491

a3 0.5776 0.5726 0.5791 0.9364 0.9261 0.9375

s1 0.6934 0.6934 0.6918 0.9905 0.9899 0.9866

s2 0.6119 0.6120 0.6096 0.9785 0.9779 0.9612

s3 0.4662 0.4645 0.4432 0.8956 0.8813 0.8059

s4 0.4556 0.4612 0.4326 0.7898 0.7734 0.6875

Unbalance 0.8026 0.8026 0.8002 0.9741 0.9744 0.9723

dim 0.9332 0.9332 0.9332 1.000 1.000 1.000

g2-2-30 0.6266 0.6266 0.6147 0.9926 0.9926 0.9116

g2-2-50 0.4810 0.4810 0.4710 0.9794 0.9746 0.8699

g2-2-70 0.3968 0.3971 0.3892 0.9627 0.9398 0.7993

a1 0.4964 0.4977 0.4584 0.7937 0.7999 0.7141

a2 0.4846 0.4874 0.4741 0.7379 0.7538 0.7180

a3 0.4894 0.4882 0.4867 0.6928 0.6914 0.6910

s1 0.6075 0.6075 0.5734 0.9407 0.9425 0.8783

s2 0.5371 0.5403 0.5163 0.8583 0.8684 0.8105

s3 0.4267 0.4264 0.3830 0.7514 0.7541 0.6204

s4 0.4218 0.4225 0.3477 0.6362 0.6465 0.5070

Unbalance 0.5815 0.5822 0.5455 0.6063 0.6123 0.4885

dim 0.8831 0.8831 0.8831 1.000 1.000 1.000

g2-2-30 0.6117 0.6117 0.5566 0.9617 0.9613 0.7324

g2-2-50 0.4732 0.4732 0.3625 0.8777 0.8758 0.3362

g2-2-70 0.4002 0.4002 0.3506 0.8199 0.8128 0.4087

a1 0.4435 0.4461 0.4091 0.6621 0.6709 0.5993

a2 0.4367 0.4360 0.4106 0.6147 0.6150 0.5665

a3 0.4386 0.4386 0.4237 0.5492 0.5526 0.5362

s1 0.5469 0.5469 0.5110 0.9020 0.9059 0.8311

s2 0.4795 0.4868 0.4429 0.7504 0.7745 0.6832

s3 0.3977 0.4009 0.3575 0.6337 0.6546 0.5333

s4 0.3958 0.3984 0.3676 0.5650 0.5798 0.5111

Unbalance 0.5082 0.5352 0.4599 0.5056 0.6041 0.4870

dim 0.8479 0.8479 0.8479 1.000 1.000 1.000

g2-2-30 0.6013 0.6013 0.5519 0.9353 0.9351 0.7221

g2-2-50 0.4695 0.4695 0.3596 0.8095 0.8084 0.2724

g2-2-70 0.4035 0.4036 0.2797 0.7179 0.7138 0.1496

The perturbation amount is 10%, and the quantity of perturbed data points is different in each block of the
table: the top block corresponds to 5%, the middle block to 30%, and the bottom block to 50%. The � values
are exactly the number of perturbed data points for each instance. For each instance and each validation metric,
the best average result is printed in bold. The best average result that is significantly better than the nominal
one, according to the calculated p value, is underlined
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Fig. 3 The four test instances for the strictly robustified clustering method

Fig. 4 Statistical performance of the strictly robust vs. the nominal k-means clustering methods measured as
the ratio of the respective ARIs. Values over 1 indicate higher ARI for the strictly robust than for the nominal
k-means clustering
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Table 4 Average runtime and iteration counts for the corresponding ADMs with restart heuristic for the
nominal, the strictly, and the � robust models on the perturbed (10%) synthetic data sets

Instance Time (s) Iterations

Nominal Strictly � Nominal Strictly �

a2 25.2 121.0 289.6 54.6 50.1 51.5

a3 56.7 216.7 575.0 59.2 47.9 54.8

s3 8.2 50.3 85.5 43.2 29.7 23.5

s4 7.8 94.4 89.4 31.9 46.9 22.6

Unbalance 23.2 47.0 62.4 9.3 8.7 8.6

a2 26.2 130.6 278.3 54.7 53.9 50.3

a3 71.0 296.3 733.3 72.5 69.8 74.3

s3 7.9 51.7 89.5 40.1 30.0 26.1

s4 12.4 95.4 103.1 52.4 57.2 30.9

Unbalance 8.0 36.3 44.0 13.5 12.4 10.1

a2 25.1 124.2 207.6 56.3 50.2 37.0

a3 53.8 239.4 551.0 58.3 55.3 55.6

s3 6.8 53.4 86.8 35.6 32.5 25.7

s4 9.3 78.0 91.1 48.5 53.7 27.2

Unbalance 8.7 51.2 60.2 14.2 17.3 9.3

The blocks are separated according to different amounts (5, 30, 50%) of randomly perturbed data points,
respectively

at all, a robustification is getting beneficial in the case that enough clusters mix with each
other. This does not seem to be the case for 30% of perturbed points but is the case for 50%.
We observed a similar behavior in our computations if the number of perturbed points stays
the same and if the points are perturbed by a varying amount like 10, 20, or 30%.

As a second example let us consider instance s4; see also Fig. 3. Here, all clusters are
not well separated. In such a situation, already a smaller amount of perturbed points leads to
a beneficial robustification but for larger amounts of perturbed points no significant further
improvements can be seen. If we take a look at Table 3 again, we see that this is also the
case for the Silhouette score. The reason most likely is that for 30% of perturbed points the
clusters significantly mix with each other and that this mix is not qualitatively increased for
more perturbed points.

Now we discuss the computational performance of the robust clustering methods for the
exemplary instances previously discussed, see Table 4 (all the other results are presented in
Table 9 in the appendix), where we report the average (over ten runs with different random
perturbations) runtimes and iteration counts for the ADMwith restart heuristic applied to the
nominal and the two robustified clustering models. (The � columns will be discussed in the
next section.) It is clearly visible that the solution of the strictly robust clustering problems
takes more time: the average factor is 5.9 with minimum 2.0 and maximum 12.1. Moreover,
the percentage of perturbed points does not have a clear impact on the runtime. In contrast to
runtimes, the number of required iterations does not change significantly and there are almost
as many instances with decreased average iteration counts as there are increased iteration
counts. Consequently, the main additional computational work is due to harder subproblems
that need to be solved in every iteration of the ADM.

123



Annals of Operations Research

Fig. 5 Nominal versus strictly robustified clustering results for the instance s3

Thus, the bottom line is as follows. The strictly robustified clustering method is harder
to compute but the additional computational effort is reasonable since we roughly stay in
the same order of magnitude compared to the runtime of the nominal method. Regarding
the outcome of the robustified clustering, the results always have to be analyzed with the
structure of the measured data points in mind, since different structures in the observed data
may lead to different robustified results as the two exemplary discussed instances show.

Let us close this section on the strictly robustified clustering method with a final numerical
result for the instance s3. In Fig. 5, the green triangles are the same in the left and the right
plot of the figure and represent the clustering obtained by the ADM including the restart
heuristic when applied to the unperturbed data set. Then, we perturb 50% of all points by
10% and again solve the ADM with restart heuristic considering these perturbed data points
as the given ones. This results in the black (crosses) centers in the left plot of Fig. 5. It is
obvious, that by considering the perturbed points as “new nominal” ones, one is not able to
detect the original centers of the clusters. In contrast, the strictly robustified clustering result
(right plot in Fig. 5) almost perfectly recovers the original centers.

7.6 0-robust clustering results for the synthetic data

We start with the analysis of the computational performance of the �-approach; see Table 4
again. First, one can observe that the number of iterations is again in the same order of
magnitude as the number of iterations required to solve the nominal as well as the strictly
robust clustering problems. Interestingly, the �-approach requires fewer iterations for 11 out
of 15 instances. However, the computation times are, on average, a factor of 9.4 longer then
for the nominal problems with a minimum factor of 2.7 and a maximum factor of 12.8. This
means that the computation times for the �-robustified models are roughly two times longer
than the ones for the strictly robust versions.

The motivation for �-robustness in Bertsimas and Sim (2004) was to introduce a concept
that leads to a less conservative notion of robustness—especially compared to strict robust-
ness. This less conservative concept had many applications and was also shown to be useful
for classification in Bertsimas et al. (2019), which is, to the best of our knowledge, the first
and only application of �-robustness in classification so far.

The question now is whether a�-robustification is also beneficial in the context of cluster-
ing problems. Unfortunately, an analysis comparable to the one given in Fig. 4 does not show
a benefit in general; see Table 3 again. Our analysis of the results revealed two major expla-
nations for this. First, the aim of the �-approach is to hedge against worst-case realizations
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Fig. 6 The instance g2-2-50

in � many parameters with the specific parameters being unknown beforehand. In particular,
these � many parameters do not need to correspond to those, e.g., 30% of the parameters
that are randomly chosen and perturbed in our simulations. Thus, it is likely to be the case
that the randomly perturbed ones are not the ones that the �-approach hedges against. Let
us discuss this on the example of instance g2-2-50, which is shown in Fig. 6. Here, the two
clusters are not well separated. The interesting data points for the �-approach most likely
are the ones near the diagonal of the plot. Thus, only a small percentage of points can be
expected to be the points for which a perturbation might lead to a beneficial behavior of the
�-approach. In Fig. 7, we analyze the performance of the �-approach. It can be seen that the
�-approach can lead to an improvement compared to the nominal and to the strictly robust
approach—but only if the parameter � is chosen appropriately; see, e.g., the case in which
� corresponds to 0.1% of the data points. Unfortunately, it is not clear on how to choose this
parameter appropriately in advance.

Let us also briefly comment on the results reported on beneficial �-robustifications in
case of SVMs in Bertsimas et al. (2019). There, the authors apply this approach in the case in
which the labels are subject to uncertainty, which is not the situation here since no labels are
considered. In the case that Bertsimas et al. (2019) call “feature-robust”, which corresponds
to our setting here, they also use strictly robustified models.

Figure 7 also makes another issue visible, namely that the �-robustified results do not
tend to the strictly robust solutions if � is getting larger. In theory, however, this should be
the case. Our experiments revealed that this is due to non-optimal partial minima computed
by the ADM in Algorithm 4—although we present here the results for which the restart
heuristic is used as well. This problem is not visible for the strictly robustified problems
that we also solve using a tailored ADM, which might be simply explained by the overall
increased complexity of the �-robustified models compared to the nominal or strictly robust
models.
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Fig. 7 Performance of the �-robustified vs. the nominal k-means clustering method measured as the ratio of
their respective ARIs

To sum up, we found an interesting case in which less conservatism does not lead to better
results—as it is often expected in robust optimization in general. Moreover, the advantageous
clustering results based on the strictly robust models are evenmore pronounced because these
models are also significantly easier to solve; see Table 4 again. Thus, if no specific value of
� is available, we strongly suggest to use the strictly robustified clustering method for data
sets with unstructured errors. Therefore, in Sect. 7.8, we only consider the strictly robustified
model for the real-world data sets.

7.7 Evaluation of the ADM applied to nominal real-world clustering problems

In this section, we evaluate the performance of Algorithm 2 with the restart heuristic applied
to a sample of 52 real-world data sets taken from Dua and Graff (2017). Considering the
starting point procedure described in Sect. 7.3, the ADM is applied five times considering
different initial centers. The average (over the five runs) runtimes and iterations counts are
present in Table 5, where we also give information on the size of the instances. Again, as seen
for the synthetic data, the ADM is very fast in computing partial minima. Themedian average
runtime is 0.1 s and the maximum number of required iterations is, on average, less than 57.
Interestingly, the ADM is significantly faster for these real-world instances compared to the
synthetic data sets. Thus, the proposed method seems to scale very well.

Let us now discuss the quality of the partial minima. To this end, we consider again the
ARI as external validation metric since the true labels are available and we also report the
Silhouette score to evaluate how good the clustering is in terms of separation and cohesion.
The average results over the five runs are shown in Table 6, where we additionally compute
the Silhouette score for the true labels. First, we can see that for some instances the clustering
result is very bad. Negative values for the ARI mean that the ADM assignment result has
little similarity with the true assignment. However, taking a closer look at the Silhouette score
in the true labels, the negative (or very small) values of the ARI happen exactly when this
score is also very small. The most likely explanation for this is that the data set simply does
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Table 5 Computational performance of Algorithm 2 using the restart heuristic on the real-world clustering
data sets

Data set information Time (s) Iterations

Instance n p k

balance-scale 625 4 3 0.1 13.4

banknote-authentication 1372 4 2 0.2 18.2

blood-transfusion 748 4 2 0.1 12.0

breast-cancer 683 9 2 0.0 6.2

breast-cancer-diagnostic 569 30 2 0.1 11.4

breast-cancer-prognostic 194 32 2 0.0 13.2

climate-model-crashes 540 18 2 0.1 15.6

connectionist-bench 990 10 11 1.2 29.8

connectionist-bench-sonar 208 60 2 0.0 5.4

contraceptive-method-choice 1473 9 3 0.8 28.4

dermatology 358 34 6 0.2 18.2

ecoli 336 7 8 0.1 14.0

fertility 100 9 2 0.0 4.2

glass-identification 214 9 6 0.0 6.2

haberman 306 3 2 0.0 8.2

heart-disease-cleveland 297 13 5 0.1 8.4

hepatitis 80 19 2 0.0 6.0

hill-valley 606 100 2 0.0 5.0

hill-valley-noise 606 100 2 0.0 5.8

image-segmentation 210 19 7 0.1 8.8

ionosphere 351 34 2 0.0 5.2

iris 150 4 3 0.0 7.8

libras-movement 360 90 15 0.2 11.2

magic-gamma-telescope 19020 10 2 4.5 25.0

mammographic-mass 830 5 2 0.0 5.0

monks-1 124 6 2 0.0 7.6

monks-2 169 6 2 0.0 10.2

monks-3 122 6 2 0.0 6.8

optical-recognition 3823 64 10 9.2 56.2

ozone-level-eight 1847 72 2 0.3 17.8

ozone-level-one 1848 72 2 0.3 17.0

parkinsons 195 21 2 0.0 18.2

pen-based-recognition 7494 16 10 9.1 35.0

planning-relax 182 12 2 0.0 12.2

qsar-biodegradation 1055 41 2 0.1 7.0

seeds 210 7 3 0.0 6.4

seismic-bumps 2584 14 2 0.1 3.0

soybean-large 266 35 15 0.1 5.8

soybean-small 47 35 4 0.0 4.8

spambase 4601 57 2 0.2 4.0
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Table 5 continued

Data set information Time (s) Iterations

Instance n p k

spect-heart 80 22 2 0.0 4.4

spectf-heart 80 44 2 0.0 2.4

statlog-german-credit 1000 24 2 0.1 6.8

statlog-landsat-satellite 4435 36 6 6.4 48.6

teaching-assistant-evaluation 151 5 3 0.0 5.4

thyroid-disease-ann 3772 21 3 0.6 7.0

thyroid-disease-new 215 5 3 0.0 5.8

wall-following-robot-2 5456 2 4 2.9 16.2

wall-following-robot-4 5456 4 4 0.8 10.0

wine 178 13 3 0.0 6.6

yeast 1484 8 10 1.2 27.6

zoo 101 16 7 0.0 3.6

not have an underlying clustering structure and, consequently, does not fit well the k-means
clustering idea.

In contrast to this, when the Silhouette score in the true labels is larger than, e.g., 0.2, then
the ARI is also closer to 1 in general. Thus, the ADM assignment result is more similar to
the true labeling. In other words, if the real-world data set possesses an underlying clustering
structure, then the proposed ADM combined with the restart heuristic performs very well
and is able to find partial minima of good quality.

7.8 Strictly robust clustering results on real-world data sets

As seen in the last section, several of the real-world data sets among the 52 instances turned
out to be instances that are not suitable for the k-means clusteringmethod because they do not
possess an underlying clustering structure. Moreover, our experiments reveal that applying
the strictly robustified k-means model to these instances does not significantly improve an
already bad nominal clustering result. Therefore, from now on, we only focus on those
instances for which the Silhouette score for the true labels is larger than 0.2 and we also
focus on the strictly robustified model here due to our previous results on synthetic data sets.

In order to compare the nominal method against its strictly robust counterpart, we apply
each method five times with different seeds for the initialization procedure and both methods
start with the same given initial centers. The average results over the five runs are presented in
Table 7, where the best ARI result for the data set is highlighted in bold. As for the synthetic
data sets, we calculated p values to assess the significance of the obtained results. Therefore,
we underline the average results for which the difference in the ARI of the nominal vs. the
strictly robust method is reasonable (p value smaller than an α-error of 10%). All calculated
p values are shown in Table 11 in the appendix.

Note that for the Silhouette score there is no big difference between the results. On the
other hand, the ARI is more telling here since we compare how similar the two assignment
results are to the true labeling. We can see that only for the instance mammographic-mass
the nominalmethod outperforms the strictly robust method. For 10 out of the 15 instances, the
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Table 6 Results of Algorithm 2 using the restart heuristic on the real world clustering data sets

Instance Silhouette ARI

True labels ADM

balance-scale 0.0888 0.1656 0.1584

banknote-authentication 0.2103 0.3308 0.0219

blood-transfusion 0.0445 0.4935 −0.0062

breast-cancer 0.5715 0.5968 0.8465

breast-cancer-diagnostic 0.3389 0.3845 0.7302

breast-cancer-prognostic 0.0041 0.1960 0.0318

climate-model-crashes 0.0264 0.0388 0.0158

connectionist-bench − 0.0024 0.1816 0.1709

connectionist-bench-sonar 0.0341 0.1986 0.0001

contraceptive-method-choice − 0.0218 0.2840 0.0144

dermatology 0.2373 0.2438 0.5024

ecoli 0.2403 0.3040 0.5389

fertility 0.0121 0.1731 0.0128

glass-identification − 0.0553 0.5078 0.2505

haberman 0.0324 0.3869 − 0.0040

heart-disease-cleveland 0.0231 0.2066 0.1492

hepatitis 0.0697 0.1860 0.2302

hill-valley 0.0033 0.8847 0.0006

hill-valley-noise − 0.0021 0.8505 − 0.0006

image-segmentation 0.2068 0.3685 0.4746

ionosphere 0.1614 0.3301 0.1073

iris 0.4570 0.5043 0.7163

libras-movement 0.0215 0.2493 0.2986

magic-gamma-telescope 0.1388 0.3185 0.0318

mammographic-mass 0.2775 0.5803 0.3421

monks-1 0.0388 0.1981 − 0.0018

monks-2 0.0013 0.2060 0.0129

monks-3 0.0594 0.1978 − 0.0043

optical-recognition 0.1728 0.1876 0.6181

ozone-level-eight − 0.0458 0.3209 − 0.0222

ozone-level-one − 0.0534 0.3210 − 0.0124

parkinsons 0.1041 0.3030 − 0.0588

pen-based-recognition 0.1928 0.3192 0.5196

planning-relax − 0.0101 0.1588 − 0.0029

qsar-biodegradation 0.0167 0.3640 − 0.0519

seeds 0.3823 0.4221 0.6980

seismic-bumps 0.3153 0.7691 0.0022

soybean-large 0.1415 0.2533 0.3475

soybean-small 0.3498 0.3498 1.0000

spambase 0.0441 0.6858 − 0.0045

spect-heart 0.0975 0.2973 0.1117
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Table 6 continued

Instance Silhouette ARI

True labels ADM

spectf-heart 0.0651 0.5671 0.0015

statlog-german-credit 0.0237 0.1456 0.0401

statlog-landsat-satellite 0.1977 0.3571 0.5309

teaching-assistant-evaluation − 0.0273 0.4817 0.0477

thyroid-disease-ann − 0.0459 0.4170 − 0.0276

thyroid-disease-new 0.4577 0.5624 0.6283

wall-following-robot-2 0.2334 0.6285 0.1275

wall-following-robot-4 − 0.0067 0.3948 0.0839

wine 0.2923 0.2998 0.8431

yeast 0.0040 0.2182 0.1905

zoo 0.3689 0.3727 0.8037

Table 7 Performance of the strictly robust versus the nominal k-means clustering method on real-world
clustering data sets

Instance Silhouette ARI

Nominal Strictly Nominal Strictly

banknote-authentication 0.3307 0.3314 0.0223 0.0264

breast-cancer 0.5968 0.5961 0.8465 0.8630

breast-cancer-diagnostic 0.3845 0.3787 0.7302 0.7354

dermatology 0.2481 0.2480 0.6211 0.7113

ecoli 0.2963 0.2984 0.5401 0.5458

image-segmentation 0.3467 0.3570 0.4276 0.4377

iris 0.4999 0.4995 0.7132 0.7188

mammographic-mass 0.5803 0.5795 0.3421 0.3336

seeds 0.4221 0.4221 0.6980 0.6980

seismic-bumps 0.7691 0.7691 0.0022 0.0022

soybean-small 0.3498 0.3498 1 1

thyroid-disease-new 0.5504 0.5451 0.5799 0.5932

wall-following-robot-2 0.6117 0.5447 0.1681 0.3567

wine 0.2995 0.3007 0.8409 0.8600

zoo 0.3735 0.3735 0.8167 0.8167

For each instance, the best average ARI result is printed in bold. The average result that is significantly better
than the nominal one according to the calculated p value is underlined

strictly robust model performs the best, yielding clustering results that have more similarity
to the true classes than the nominal clustering results do. Moreover, the underlined average
results reveal that the improvement in clustering quality attained with the strictly robust
method is significant. Thus, in the presence of potential measurement errors, the strictly
robustified k-means clustering method is able to give more accurate results than its nominal
counterpart.
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Table 8 Computational performance of the nominal and strictly robust models on real-world clustering data
sets

Instance Time (s) Iterations

Nominal Strictly Nominal Strictly

banknote-authentication 0.25 14.99 19.8 28.0

breast-cancer 0.04 3.78 5.4 5.0

breast-cancer-diagnostic 0.05 15.28 9.8 7.4

dermatology 0.19 38.15 15.0 16.6

ecoli 0.16 5.34 16.8 11.2

image-segmentation 0.04 7.11 6.2 7.0

iris 0.02 0.46 7.6 5.0

mammographic-mass 0.04 2.70 4.8 5.2

seeds 0.02 1.19 6.2 5.6

seismic-bumps 0.08 16.82 3.0 3.0

soybean-small 0.00 1.27 5.2 4.6

thyroid-disease-new 0.03 1.10 5.6 5.2

wall-following-robot-2 2.39 38.16 15.8 15.4

wine 0.01 1.95 5.8 6.0

zoo 0.01 1.91 3.8 3.4

The running times and iterations counts are listed in Table 8. Clearly, on average the strictly
robust method needs more time to find a partial minimum. However, it is still rather fast,
never requiring more than 39 s on average. In contrast to runtimes, the number of iterations
does not change significantly.

We conclude that the strictly robustified k-means clustering model is also beneficial for
real-world clustering instances, which likely contain uncertainties due tomeasurement errors.
Specifically, for almost all of the instances, the strictly robust model leads to improvements
regarding the recovery of the true assignment over the nominal model.

8 Conclusion

In this paper, we derived the strictly and �-robust counterpart of the k-means clustering
problem to hedge clustering results against errors without known structure in the observed
data. The robustificationmakes it possible to obtain clusterings that are closer to clusterings of
the original, i.e., error-free, data although only erroneous input data can be considered. Since
already the nominal problem is NP-hard, we develop tailored alternating direction methods
to quickly compute (robust) feasible solutions of good quality. Since these methods only
converge to so-called partial minima that may correspond to clusterings of bad quality, we
develop a restart heuristic for whichwe experimentally show that it significantly improves the
quality of the computed clusterings. Our comparison of the strictly and �-robust clustering
method reveals the interesting aspect that the less conservative �-approach is outperformed
by the classic concept of strict robustness.Most importantly, the strictly robustified clustering
method is able to recover clusterings of the original data even if only erroneousmeasurements
are observed. Thus, we see that the studied robustifications can lead to more reliable models.
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Fig. 8 Some of the synthetic clustering instances used for the experiments; originally proposed in Fränti and
Sieranoja (2018)

Let us finally sketch some open problems that we do not resolve in this paper. One issue
with the �-approach is that partial minima are obtained that do not correspond to globally
optimal clusterings. Consequently, the development of methods to compute global optima
of robustified clustering problems may be a worthwhile topic of future work. Moreover, we
do not answer the question on how to derive practically meaningful uncertainty sets for the
robustification, which may be done for practical applications by means of cross-validation.
Further, other uncertainty sets such as polyhedral and ellipsoidal sets should be considered
in future works as well.

Finally, one could study whether other clustering approaches such as spectral or hierar-
chical clustering can also be robustified so that they can cope with uncertain data. However,

123



Annals of Operations Research

these approaches are not based on a clear-cut optimization model so that new robust concepts
need to be developed that are maybe not directly based on robust optimization.
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Appendix

In this section, we present additional information that complement those given in Sect. 7.5
and Sect. 7.8. Specifically, in Fig. 8 we present the plots of the remaining instances, in Table 9
we present the computational performance for the instances not discussed in Sect. 7.5, and

Table 9 Average runtime and
iteration counts for the
corresponding ADMs with restart
heuristic for the nominal, the
strictly, and the �-robust models
on the perturbed (10%) synthetic
data sets

Instance Time (s) Iterations

Nominal Strictly � Nominal Strictly �

a1 4.5 37.5 61.1 29.4 33.7 24.4

s1 4.0 39.5 70.8 16.9 19.3 18.5

s2 6.1 43.4 93.2 28.1 22.9 26.0

dim 0.1 58.9 70.0 2.0 2.0 2.0

g2-2-30 0.1 2.7 4.3 5.5 5.0 4.7

g2-2-50 0.2 4.1 8.2 9.9 8.6 9.3

g2-2-70 0.3 6.6 11.2 13.4 15.3 13.1

a1 6.7 42.8 68.0 42.2 39.0 28.9

s1 4.7 41.8 77.7 20.4 21.0 21.9

s2 6.4 48.0 93.6 29.0 26.0 27.6

dim 0.1 60.0 68.8 2.0 2.0 2.0

g2-2-30 0.1 3.1 5.7 5.7 5.7 6.9

g2-2-50 0.2 4.6 6.6 10.1 9.4 8.1

g2-2-70 0.3 5.3 6.7 12.0 11.0 8.2

a1 6.3 42.6 55.2 40.9 40.0 23.0

s1 5.9 41.6 89.3 27.1 21.5 26.7

s2 5.4 47.1 75.1 27.5 25.6 21.5

dim 0.1 58.8 67.6 2.0 2.0 2.0

g2-2-30 0.1 3.1 5.9 6.4 5.9 7.6

g2-2-50 0.2 4.4 7.0 10.1 9.5 9.2

g2-2-70 0.3 5.8 7.1 13.1 12.6 9.3

The blocks are separated according to different amounts (5, 30, 50%) of
randomly perturbed data points, respectively
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Table 10 Calculated p values using the Wilcoxon signed-rank test for the synthetic data sets w.r.t. each
validation metric and each pair of methods

Instance p values Silhouette p values ARI

Nom. versus Str. Nom. versus � Str. versus � Nom. versus Str. Nom. versus � Str. versus �

a1 0.105 0.002 0.064 0.010 0.002 0.014

a2 0.004 0.002 0.002 0.064 0.002 0.002

a3 0.002 0.432 1.000 0.322 0.432 1.000

s1 – 0.004 0.004 0.002 0.010 0.027

s2 0.002 0.002 0.002 0.275 0.002 0.002

s3 0.375 0.027 0.037 0.375 0.020 0.037

s4 0.049 0.002 0.002 0.322 0.004 0.002

unbalance – 0.002 0.002 0.046 0.193 0.131

dim – – – – – –

g2-2-30 – 0.002 0.002 – 0.002 0.002

g2-2-50 – 0.002 0.002 0.002 0.002 0.002

g2-2-70 0.064 0.002 0.002 0.002 0.002 0.001

a1 0.695 0.002 0.004 0.064 0.002 0.004

a2 1.000 0.131 0.014 0.064 0.131 0.004

a3 0.846 0.492 0.625 0.922 0.770 0.922

s1 0.846 0.002 0.002 0.004 0.002 0.002

s2 0.557 0.131 0.027 0.002 0.131 0.027

s3 0.625 0.002 0.002 0.625 0.002 0.002

s4 1.000 0.002 0.002 0.625 0.020 0.002

unbalance 0.002 0.002 0.002 0.002 0.002 0.002

dim – – – – – –

g2-2-30 – 0.002 0.002 0.180 0.002 0.002

g2-2-50 0.176 0.002 0.002 0.237 0.002 0.002

g2-2-70 0.922 0.002 0.002 0.010 0.002 0.002

a1 0.375 0.002 0.002 0.064 0.002 0.002

a2 1.000 0.004 0.002 1.000 0.002 0.002

a3 0.770 0.010 0.006 0.625 0.049 0.020

s1 0.432 0.002 0.002 0.004 0.002 0.002

s2 0.105 0.010 0.004 0.064 0.010 0.004

s3 0.322 0.002 0.002 0.002 0.002 0.002

s4 0.625 0.002 0.002 0.020 0.002 0.002

unbalance 0.002 0.232 0.131 0.002 1.000 0.232

dim – – – – – –

g2-2-30 – 0.002 0.002 0.893 0.002 0.002

g2-2-50 0.735 0.002 0.002 0.463 0.002 0.002

g2-2-70 0.492 0.002 0.002 0.086 0.002 0.002

The (“–”) means that the average results are the same for both methods and so the p value is not calculated
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Table 11 Calculated p values using the Wilcoxon signed-rank test for the real-world data sets w.r.t. each
validation metric and each pair of methods

Instance Nominal versus strictly

p value Silhouette p value ARI

banknote-authentication 0.063 0.063

breast-cancer 0.063 0.063

breast-cancer-diagnostic 0.063 0.063

dermatology 0.625 0.813

ecoli 0.813 1.000

image-segmentation 0.285 0.285

iris 0.317 0.317

mammographic-mass 0.063 0.063

seeds – –

seismic-bumps – –

soybean-small – –

thyroid-disease-new 0.046 0.046

wall-following-robot-2 0.063 0.063

wine 0.083 0.083

zoo – –

The (“–”) means that the average results are the same and so the p value is not calculated

in Tables 10 and 11 we present the calculated p values for each validation metric and each
pair of methods.

Additionally, we also present a comparison of our nominal as well as strictly robust
clustering method with a spectral clustering method. To this end, we further apply spectral
clustering to the test sets that we consider in this paper. The setup for the experiment is
the following. We apply each method to the same instance and assess the quality of the
clustering by computing the Silhouette index and the ARI. Here, we always compare the
clustering result to the ground truth labels instead of comparing to the ADM results. To
assess the significance of the obtained results, we apply the Wilcoxon signed-rank test to
calculate p values. If the resulting p value is smaller than the α-error of 10%, we reject the
null-hypothesis that the strictly robust result is less or equally good as the spectral one in
terms of the Silhouette score or the ARI, respectively. To compute the spectral clustering, we
use the Python module sklearn.cluster.SpectralClustering. The results w.r.t. the synthetic
instances are presented in Table 12 and the results w.r.t. the real-world instances are shown
in Table 13; the respective computed p values are presented in Tables 14 and 15.
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Table 12 Performance of the nominal, strictly robust, and spectral clustering methods on the perturbed syn-
thetic data sets

Instance Silhouette ARI Time (s)

Nom. Str. Spec. Nom. Str. Spec. Nom. Str. Spec.

a1 0.50 0.55 0.33 0.81 0.91 0.50 5.2 92.4 66.9

a2 0.51 0.57 0.22 0.83 0.94 0.31 16.1 194.0 120.2

a3 0.53 0.57 0.25 0.83 0.91 0.30 49.4 334.8 152.8

s1 0.66 0.69 0.45 0.94 0.98 0.72 5.3 53.1 24.8

s2 0.58 0.61 0.34 0.86 0.92 0.59 9.5 90.0 151.9

s3 0.46 0.48 0.23 0.66 0.70 0.45 14.2 137.5 88.2

s4 0.46 0.46 0.22 0.58 0.60 0.41 17.3 196.5 240.5

Unbalance 0.66 0.77 0.80 0.64 0.90 0.98 2.5 101.7 12.7

dim 0.93 0.93 0.93 1.00 1.00 1.00 0.2 140.3 1.7

g2-2-30 0.63 0.63 0.63 0.96 0.96 0.96 0.2 4.0 2.4

g2-2-50 0.48 0.48 0.48 0.69 0.69 0.69 0.6 9.5 4.4

g2-2-70 0.40 0.40 0.40 0.48 0.48 0.48 0.5 9.3 2.3

a1 0.47 0.49 0.29 0.72 0.76 0.41 6.0 84.3 60.1

a2 0.46 0.49 0.20 0.68 0.74 0.29 20.3 233.4 134.4

a3 0.47 0.49 0.22 0.66 0.70 0.27 45.7 438.0 168.2

s1 0.54 0.61 0.39 0.82 0.93 0.67 8.9 103.6 64.9

s2 0.52 0.54 0.30 0.78 0.83 0.54 5.0 95.6 116.0

s3 0.42 0.43 0.21 0.59 0.60 0.40 10.9 109.9 111.3

s4 0.42 0.42 0.18 0.51 0.52 0.35 19.3 171.7 195.5

Unbalance 0.56 0.62 0.66 0.55 0.70 0.87 1.8 73.7 10.8

dim 0.88 0.88 0.88 1.00 1.00 1.00 0.1 95.9 1.7

g2-2-30 0.61 0.61 0.61 0.93 0.93 0.93 0.2 5.2 2.2

g2-2-50 0.47 0.47 0.47 0.64 0.64 0.64 0.3 7.5 2.4

g2-2-70 0.40 0.40 0.40 0.44 0.45 0.44 0.4 8.2 2.1

a1 0.44 0.45 0.25 0.63 0.66 0.37 5.6 62.1 54.5

a2 0.43 0.44 0.19 0.61 0.63 0.28 22.9 222.6 106.2

a3 0.43 0.44 0.20 0.54 0.55 0.24 37.0 447.9 153.9

s1 0.53 0.55 0.31 0.85 0.89 0.60 4.4 81.9 126.1

s2 0.47 0.49 0.31 0.72 0.76 0.56 11.2 143.8 134.0

s3 0.40 0.40 0.21 0.53 0.54 0.39 15.7 125.8 177.0

s4 0.39 0.40 0.18 0.46 0.46 0.33 10.1 191.3 211.4

Unbalance 0.50 0.51 0.54 0.48 0.53 0.77 2.1 46.0 9.3

dim 0.85 0.85 0.85 1.00 1.00 1.00 0.1 78.7 1.1

g2-2-30 0.60 0.60 0.60 0.92 0.92 0.92 0.2 4.5 2.0

g2-2-50 0.47 0.47 0.47 0.62 0.62 0.61 0.3 6.4 2.1

g2-2-70 0.40 0.40 0.40 0.41 0.41 0.41 0.3 7.0 2.1

The perturbation amount is 10%, and the quantity of perturbed data points is different in each block of the
table: the top block corresponds to 5%, the middle block to 30%, and the bottom block to 50%. For each
instance and each validation metric, the best average result is printed in bold. According to the calculated p
value (presented in Table 14), the average result of the strictly robust method that is significantly better than
the spectral one is underlined. The average results are based on 10 runs
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Table 13 Performance of the nominal, strictly robust, and spectral clustering methods on the real-world
clustering data sets

Instance Silhouette ARI Time (s)

Nom. Str. Spec. Nom. Str. Spec. Nom. Str. Spec.

banknote-authentication 0.33 0.33 0.32 0.02 0.03 0.06 0.3 15.1 1.6

breast-cancer 0.60 0.60 0.58 0.85 0.86 0.72 0.1 6.1 0.6

breast-cancer-diagnostic 0.38 0.38 0.40 0.73 0.74 0.50 0.1 31.2 0.7

dermatology 0.23 0.24 0.24 0.61 0.61 0.56 0.1 86.5 0.4

ecoli 0.33 0.33 0.25 0.61 0.60 0.43 0.2 12.1 0.4

image-segmentation 0.33 0.35 0.28 0.38 0.41 0.39 0.1 23.3 0.3

iris 0.49 0.50 0.49 0.60 0.73 0.62 0.1 2.9 0.4

mammographic-mass 0.58 0.58 0.58 0.34 0.33 0.34 0.1 7.7 2.1

seeds 0.42 0.42 0.35 0.70 0.70 0.67 0.1 2.8 0.3

seismic-bumps 0.77 0.77 0.59 0.00 0.00 0.19 0.2 40.3 3.5

soybean-small 0.35 0.35 0.35 1.00 1.00 1.00 0.0 4.3 0.1

thyroid-disease-new 0.56 0.56 0.59 0.63 0.64 0.39 0.1 7.1 0.3

wall-following-robot-2 0.63 0.54 0.51 0.12 0.36 0.37 2.5 85.8 8.4

wine 0.30 0.30 0.30 0.86 0.86 0.93 0.1 9.0 0.5

zoo 0.37 0.36 0.40 0.80 0.75 0.92 0.0 10.4 0.3

For each instance and each validation metric, the best average result is printed in bold. According to the
calculated p value shown in Table 15, the best average result of the strictly robust method that is significantly
better than the spectral one is underlined. The average results are based on five runs
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Table 14 Calculated p values
using the Wilcoxon signed-rank
test for the synthetic data sets

Instance Nom. vs. Str. Nom. vs. Spec. Str. vs. Spec.

a1 0.01/ 0.01 0.01/ 0.01 0.01/0.01

a2 0.01/ 0.01 0.01/ 0.01 0.01/0.01

a3 0.01/ 0.01 0.01/ 0.01 0.01/0.01

s1 0.11/ 0.04 0.01/ 0.01 0.01/0.01

s2 0.01/ 0.01 0.01/ 0.01 0.01/0.01

s3 0.01/ 0.01 0.01/ 0.01 0.01/0.01

s4 0.57/ 0.14 0.01/ 0.01 0.01/0.01

unbalance 0.02/ 0.01 0.01/ 0.01 0.39/ 0.39

dim –/– –/– –/–

g2-2-30 –/ 0.32 –/– –/ 0.32

g2-2-50 –/ 0.86 –/ 0.46 –/ 0.40

g2-2-70 0.51/ 0.72 0.17 / 0.72 0.96 / 0.44

a1 0.01/ 0.01 0.01/ 0.01 0.01/ 0.01

a2 0.01/ 0.01 0.01/ 0.01 0.01/0.01

a3 0.01/ 0.01 0.01/ 0.01 0.01/0.01

s1 0.01/ 0.01 0.01/ 0.01 0.01/0.01

s2 0.01/ 0.01 0.01/ 0.01 0.01/0.01

s3 0.20/ 0.03 0.01/ 0.01 0.01/0.01

s4 0.51/ 0.07 0.01/ 0.01 0.01/0.01

unbalance 0.00/ 0.01 0.01/ 0.01 0.21/ 0.01

dim –/– –/– –/–

g2-2-30 –/ 0.47 –/ 1.0 –/ 0.72

g2-2-50 0.60/ 0.17 0.26/ 0.76 0.48/ 0.02

g2-2-70 0.28/ 0.02 0.51/ 0.21 0.14/ 0.02

a1 0.01/ 0.01 0.00/ 0.00 0.01/0.01

a2 0.01/ 0.01 0.00/ 0.00 0.01/0.01

a3 0.01/ 0.01 0.00/ 0.00 0.01/0.01

s1 0.04/ 0.01 0.00/ 0.00 0.01/0.01

s2 0.07/ 0.01 0.00/ 0.00 0.01/0.01

s3 0.09/ 0.01 0.00/ 0.00 0.01/0.01

s4 0.39/ 0.14 0.00/ 0.00 0.01/0.01

unbalance 0.01/ 0.01 0.07/ 0.00 0.09/ 0.01

dim –/– –/– –/–

g2-2-30 –/ 0.07 0.04/ 0.02 0.22/0.69

g2-2-50 –/ 0.61 0.01/ 0.73 0.06/0.59

g2-2-70 0.01/ 0.11 0.04/ 0.64 0.01/0.96

For each instance and each pair of methods, the first number represents
the p value w.r.t. the Silhouette index and the second number represents
the p value w.r.t. the ARI. The (“–”) means that the average results are
the same for both methods and so the p value is not calculated
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Table 15 Calculated p values using the Wilcoxon signed-rank test for the real-world data sets

Instance Nom. versus Str. Nom. versus Spec. Str. versus Spec.

banknote-authentication 0.06/ 0.06 0.06/ 0.06 0.06/0.06

breast-cancer 0.06/ 0.06 0.06/ 0.06 0.06/0.06

breast-cancer-diagnostic 0.06/ 0.06 0.06/0.06 0.06/0.06

dermatology 0.31/ 0.63 0.31/ 0.31 0.06/0.31

ecoli 1.00/ 1.00 0.06/ 0.06 0.06/0.13

image-segmentation 0.19/ 0.81 0.31/ 1.00 0.06/0.44

iris 0.14/ 0.07 0.31/ 0.81 0.31/0.06

mammographic-mass 0.06/ 0.06 0.06/ 0.06 0.06/0.06

seeds –/– 0.06/ 0.06 0.06/0.06

seismic-bumps –/– 0.06/ 0.06 0.06/0.06

soybean-small –/– –/– –/–

thyroid-disease-new 0.06/ 0.06 0.06/ 0.06 0.06/0.06

wall-following-robot-2 0.06/ 0.06 0.06/ 0.06 0.06/0.31

wine 0.46/ 0.46 0.81/ 0.06 0.31/0.06

zoo 0.65/ 0.65 0.19/ 0.19 0.06/0.06

For each instance and each pair of methods, the first number represents the p value w.r.t. the Silhouette index
and the second number represents the p value w.r.t. the ARI. The (“–”) means that the average results are the
same and so the p value is not calculated
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