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Abstract
The object of this paper is to study restricted cooperative games, that is, cooperative games
for which the worth of some coalitions is unknown. We consider a value for these restricted
cooperative games whose definition is based on the Harsanyi’s dividends approach, and can
therefore be seen as an extension of the Shapley value. We provide a characterization of this
value with three axioms: Carrier, Symmetric-partnership and Additivity, which are similar to
those proposed by Shapley (in: Kuhn and Tucker (eds) Contributions to the theory of games,
Princeton University Press, Princeton, 1953). In addition, we characterize this value on the
subclass of restricted cooperative simple games. Finally, we apply this value for restricted
cooperative games to analyze the power distribution of the Catalonian Parliament in 1980
and compare the results with those of the coalitional value in Carreras and Owen (Math Soc
Sci 15:87–92, 1988).

Keywords Restricted cooperative games · Shapley value · R-value · Conference structures

1 Introduction

When studying cooperative gameswith side-payments, it is generally assumed that theworths
of all coalitions are known. However, in real world applications there are situations in which
some of these worths are unknown or quite difficult to determine. This can happen when

The research reported in this paper has been partially supported by UPV/EHU (GIU17/0151 and
GIU20/019), and Ministerio de Ciencia, Innovación y Universidades (Grant No. PID2019-105291GB-I00).

B José M. Zarzuelo
josemanuel.zarzuelo@ehu.es

M. Josune Albizuri
mj.albizuri@ehu.eus

Satoshi Masuya
masuya@ic.daito.ac.jp

1 Faculty of Business Administration, Basque Country University (UPV/EHU),
Lehendakari Aguirre 83, 48015 Bilbao, Spain

2 Faculty of Business Administration, Daito Bunka University,
1-9-1, Takashimadaira, Itabashi-ku, Tokyo 175-8571, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-022-04768-3&domain=pdf
http://orcid.org/0000-0002-3317-5312


774 Annals of Operations Research (2022) 318:773–785

the amount of available information is very limited or extremely difficult to obtain, or some
coalitions are not viable. For instance, in contexts such as water resources development,
where estimates of benefits and costs are often unreliable (Loehman et al., 1979; Young et
al., 1982). In other scenarios, some coalitions cannot be formed due to the impossibility
of communication or incompatibilities between the agents. Some examples of this case are
the study of neural information processing (Keinan et al., 2004), the analysis of reactions
in metabolic networks (Sajitz-Hermstein & Nikoloski, 2012), or political contexts (Álvarez-
Mozos et al., 2013) see also Sect. 5 later in this paper).

These situations can be modeled through restricted cooperative games (or R-games for
short), also called partially defined games, which are defined only on a subset of feasible
coalitions whose worth is known. To our knowledge, Faigle (1989) was the first to system-
atically study R-games, and more precisely the core and the balancedness property of these
games. Although Faigle (1989) did not include any requirement on the set of feasible coali-
tions, in many subsequent works some kind of structure is usually assumed. Along this line
several works can be mentioned. For instance, Algaba et al. (2000, 2001a) consider union
stable systems that generalize the communication systems of Myerson (1977) and are related
to Myerson (1980) conference structures. In Algaba et al. (2001b) the relationship between
the line started by Faigle (1989) and the one introduced by Myerson (1977) was studied.
Algaba et al. (2003) studied the Shapley value of cooperative games on antimatroids, in
which the possibilities of coalition formation are determined by the positions of the players
in a antimatroid. On the other hand van den Brink (2012) characterized the set of connected
coalitions in a communication graph and compared the characterizing properties to those of a
hierarchical structure represented by an antimatroid and Lange and Grabisch (2009) address
a general framework leading to applications to games with communication graphs.

One of the most prominent solution concepts for side-payment games is the Shapley
(1953) value,1 that is endorsed by a well-known set of axioms characterizing it. The aim of
this work is to study and characterize an extension of the Shapley value to the general class
of R-games proposed by Calvo and Gutiérrez-López (2015).

Willson (1993) already proposed an extension of the Shapley value for a limited subfamily
of R-games, together with an axiom system similar to that of Shapley (1953). More precisely,
this author pays attention to R-games so that if the worth of a coalition is known, the worth of
all coalitionswith the same cardinality is also known.To extend the Shapley value toR-games,
Willson (1993) constructs an auxiliary game in which the worth of all coalitions is known,
and then the Shapley value of this auxiliary game is taken as the value of the original R-game.
This auxiliary game is defined in such a way that it coincides with the original R-game on
each feasible coalition, and assigns the worth zero to the unfeasible ones, which is not well
justified. On their part, Aguilera et al. (2010) offered two different frameworks to extend
the Shapley value to R-games. The first framework gives rise to the family of marginalist
solutions. In the second one, the authors define the unanimity solution by matching it to
the Shapley value on every unanimity game, without providing a justification, and then it
is extended by linearity to the whole class of R-games. Subsequently, these authors state
conditions under which the unanimity solution is marginalist.

In this paper we pay attention to an alternative extension of the Shapley value to general
R-games, proposed by Calvo and Gutiérrez-López (2015). This value for R-games is called
here the R-value, and it is based on Harsanyi (1963) procedure for finding a solution for
non-transferable utility games. Accordingly, each coalition is supposed to guarantee certain
payments to its members: the Harsanyi dividends. The peculiarity is that coalitions whose

1 In Algaba et al. (2019) it can be found a collection of recent works on the Shapley value.
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worth is not known allocate zero as a dividend to their players. The R-value assigns to each
player the sum of the dividends of the coalitions to which she belongs. It turns out that the
R-value coincides with the unanimity solution defined by Aguilera et al. (2010). In this work
we characterize the R-value by means of three axioms: Carrier, Symmetric-partnership and
Additivity, which are closely related to those of Shapley (1953). This characterization offers
alternative grounds for the R-value to the constructive definition by means of the Harsanyi
dividends. The axioms together with the characterization result will be presented in Sect. 3.

Simple games are those for which the worth of a coalition can only be 0 or 1. These games
are specially suitable for modeling voting systems in which a coalition can lose (worth 0)
or win (worth 1). In Sect. 4 we characterize the restriction of the R-value to the family of
simple R-games, similar to how Dubey (1975) did with the Shapley and Shubik (1954) index
of simple games. In Sect. 5, we consider an application of simple R-games to assess the
distribution of power in the Catalonian Parliament after the 1980 elections, that was already
examined by Carreras and Owen (1988).

It is worth mentioning that Myerson (1980) also analyzes the outcome of a side-payments
game when it depends on a subset of coalitions. However, Myerson’s approach is completely
different.Actually, this author dealswith full gameswhere theworth of all coalitions is known.
From a formal point of view, the main distinction is that Myerson (1980) fixes the game and
the value depends on the subset of permissible coalitions. In contrast, in our approach the
subset of feasible coalitions is fixed and the value depends on the game. For more details the
reader is referred to Sect. 6.

2 Restricted cooperative games. The R-value

In this section we present the general framework.
Let N = {1, 2, . . . , n} be afixed set of players.We assume that players can formcoalitions,

but not all coalitions are viable, except the total coalition that is always feasible. Accordingly
we say that a family K of subsets of N is a partial collection whenever ∅, N ∈ K, and every
member S ∈ K is called a feasible coalition.

A restricted cooperative game, or R-game for short, on a partial collection K is a set-
function v which maps every set S ∈ K to a real number v(S), such that v(∅) = 0.

As usual the number v(S) represents what the players in coalition S can guarantee for
themselves without cooperating with the other players. Traditionally, the characteristic func-
tion v is assumed to be defined on the the set of all coalitions, i.e. 2N , but in the present work
it is defined only for the elements of a partial collection K. This can be interpreted as that
only the worth of feasible coalitions is known, whereas the worth of the remaining coalitions
is unknown. Occasionally, when K = 2N we will refer to such a game as a full game.

The set of all R-games on a partial collection K is denoted GK.
Given a family of R-games F ⊆ GK, we define formally a solution for F to be any

function φ : F → RN . The real number φi (v) represents an evaluation of player i of her
“prospect that will arise as a result of a play” (Shapley, 1953).

Next we present a solution for R-games proposed by Calvo and Gutiérrez-López (2015)
by means of the Harsanyi dividends. These dividends were introduced by Harsanyi (1963)
to define a bargaining solution for non-transferable utility games, which is in turn a gener-
alization of the Shapley value for side-payments games. According to Harsanyi’s procedure
all the members of a coalition S receive a dividend from S. Here two cases are considered,
depending on whether the coalition is feasible or not: (i) if S /∈ K, the dividend of S is
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zero; (ii) if S ∈ K, i.e. S is feasible, the total amount of the dividends allocated by all the
subcoalitions of S is v(S), as in Harsanyi (1963).

Formally the procedure can be described as follows. If v ∈ GK, define recursively a
function D : 2N → R by:

D(v,∅) = 0, and (1)

D(v, S) =
{
0, if S /∈ K;
v(S) − ∑

T�S D(v, T ), if S ∈ K.
(2)

The real number D(v, S) represents the total amount that coalition S distributes among its
members. Harsanyi (1963) proposed that a coalition S would share D(v, S) equally among

its members. So
D(v, S)

|S| is usually called the Harsanyi dividend of coalition S in v. And

a player will be assigned the sum of all the dividends of the coalitions to which he or she
belongs.

Consequently, we call R-value to the solution ψK : GK → Rn defined by:

ψK
i (v) =

∑
S⊆N :
S�i

D(v, S)

|S| , for all i ∈ N . (3)

3 Characterization of the R-value

Throughout this sectionwe fix the partial collectionK, that is the family of feasible coalitions.
Next we characterize the R-value ψK by means of three axioms: Carrier, Symmetric-

partnership, and Additivity. Before introducing these axioms some definitions are needed.
A coalition S is said to be a zero-coalition in v ∈ GK if

T ⊆ S and T ∈ K imply v(T ) = 0. (4)

That is, S is a zero-coalition if all its feasible subcoalitions are powerless.
A coalition M ∈ K is said to be a carrier of v ∈ GK if for all S ∈ K it holds:

(i) S ∩ M ∈ K implies v(S) = v(S ∩ M), and (5)

(ii) S ∩ M /∈ K implies S is a zero-coalition . (6)

According to this definition, players outside a carrier M have no influence in the game.
Indeed, the first condition above says that when a feasible coalition S is formed by joining
coalition S\M outside of M with the feasible coalition S ∩ M inside of M , then the players
outside of M do not make any contribution at all. While the second condition requires for
M to be a carrier that in case S ∩ M is an unfeasible coalition, then all feasible coalitions
included in S are powerless, so they do not make any contribution either.

Note that any feasible superset of a carrier of v is also a carrier of v, and consequently N
is always a carrier. Furthermore, in the case of full game, i.e. when K = 2N , condition (ii)
above does not apply, and a carrier coincides with the traditional definition of carrier for full
games (Shapley, 1953).

Axiom 1 (Carrier) If M is a carrier of v ∈ F , then∑
i∈M

φi (v) = v(M). (7)
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TheCarrier axiom states that the players in a carrier distribute the full income of the carrier
between them, since the rest of the players have no influence in the game.

A non-empty coalition P ⊆ N is said to be a coalition of partners, or a p-type coalition,
in v ∈ GK if for all S ∈ K such that P\S �= ∅ it holds:

(i) S\P ∈ K implies v(S) = v(S\P), and (8)

(ii) S\P /∈ K implies S is a zero-coalition. (9)

This definition can be interpreted as follows. If P is a p-type coalition in the R-game v, then
all its proper subcoalitions cannot make any contribution to any coalition outside P . That
is, coalition P behaves like one individual in the game, since all its proper subcoalitions are
completely powerless.

Note that if v is a full game, i.e.K = 2N , condition (ii) above is empty, and this definition
will coincide with the definition of partnership coalition, or p-type coalition, introduced by
Kalai and Samet (1988), when they characterized the weighted Shapley values.

Axiom 2 (Symmetric-Partnership) If P is a p-type coalition in v ∈ F , then

φi (v) = φ j (v) for all i, j ∈ P. (10)

One can expect that a p-type coalition P , that behaves as one individual in the R-game v,
will take its share and then its members will distribute this share equally among them. This
is what Symmetric-partnership requires. Moreover, note that in the case of full games, the
Symmetric-partnership axiom is weaker than the traditional Anonymity axiom [Axiom 1 in
Shapley (1953)]. Actually the Anonymity axiom is of little use when dealing with R-games,
since a partial collection may be not invariant under a permutation of N .

The sum of two R-games v,w ∈ GK is defined by (v + w)(S) = v(S) + w(S) for all
S ∈ K.

Axiom 3 (Additivity) If v,w ∈ F , then

φ(v + w) = φ(v) + φ(w). (11)

The axiom of Additivity is the adaptation of the corresponding axiom for conventional
cooperative games.

The main result in this paper is the following:

Theorem 1 There is a unique solution onGK that satisfies theCarrier, Symmetric-partnership
and Additivity axioms, and it is the R-value ψK.

We shall prove it through some lemmas and propositions.

Lemma 1 Let v ∈ GK.

(i) The R-value ψK satisfies
∑

i∈N ψK
i (v) = v(N ).

(ii) If S is a zero-coalition in v then D(v, S) = 0.
(iii) If M is a carrier of v and S is a coalition such that S ∩ M = ∅, then D(v, S) = 0.
(iv) If M is a carrier of v and S is a coalition such that S\M �= ∅, then D(v, S) = 0.

Proof (i) Observe first that D(v, T ) = 0 whenever T /∈ K, and hence from expression (2)
for the case S = N we get

∑
i∈N

ψK
i (v) =

∑
i∈N

∑
T∈K:
i∈T

D(v, T )

|T | =
∑
T∈K

D(v, T ) = v(N ). (12)

123



778 Annals of Operations Research (2022) 318:773–785

(ii) It is straightforward.
(iii) It follows immediately from the definition of carrier.
(iv) LetM be a carrier of v, and S a coalition such that S\M �= ∅. If S /∈ K, then D(v, S) = 0

by definition.
Assume now that S ∈ K. We show that D(v, S) = 0 by induction on the cardinality of S.
If |S| ≤ 1 it is immediate. So let |S| ≥ 2, and consider two possibilities:

1. S ∩ M /∈ K. Since M is a carrier then S is a zero-coalition and part (ii) of this lemma
applies.

2. S ∩ M ∈ K. By expression (2) we get

D(v, S) = v(S) −
∑
T�S

D(v, T ) = v(S) −
∑
T�S

T \M �=∅

D(v, T ) −
∑
T�S

T⊆S∩M

D(v, T ). (13)

By the induction hypothesis if T � S and T \M �= ∅ then D(v, T ) = 0. Moreover, by
expression (2),

∑
T⊆S∩M D(v, T ) = v(S ∩ M). So expression (13) becomes

D(v, S) = v(S) − v(S ∩ M). (14)

Since M is a carrier and S ∩ M ∈ K, we have v(S) = v(S ∩ M), and this concludes the
proof. ��
Lemma 2 The R-value ψK satisfies the Carrier axiom on GK.

Proof Let v ∈ GK and M a carrier of v.
If i /∈ M and i ∈ S, by parts (iii) and (iv) of Lemma 1, it must be D(v, S) = 0. So

ψK
i (v) = 0 for all i /∈ M . Consequently by part (i) of the same lemma, and the fact that M

is a carrier we have∑
i∈M

ψK
i (v) =

∑
i∈N

ψK
i (v) = v(N ) = v(M ∩ N ) = v(M), (15)

as desired. ��
Lemma 3 Let S be a p-type coalition of v ∈ GK. If T ∈ K is such that S ∩ T �= ∅ and
S\T �= ∅, then D(v, T ) = 0.

Proof By induction on |T |. If |T | = 1, then T \S = ∅ ∈ K, and by definition of p-type
coalition v(T ) = v(T \S) = v(∅) = 0, and hence D(v, T ) = 0.

Now assume |T | ≥ 2. From expression (2) we have

D(v, T ) = v(T ) −
∑
R�T

D(v, R) = v(T ) −
∑
R�T

R∩S �=∅

D(v, R) −
∑

R⊆T \S
D(v, R), (16)

If R � T , then S\T �= ∅ implies S\R �= ∅. And by the induction hypothesis we get∑
R�T

R∩S �=∅
D(v, R) = 0. Thus expression (16) becomes

D(v, T ) = v(T ) −
∑

R⊆T \S
D(v, R). (17)

Now consider two cases. If T \S ∈ K, since S is a p-type coalition we get v(T ) = v(T \S),
and the second term in the equality above is zero by expression (2). Otherwise, if T \S /∈ K,
then T is a zero-coalition and part (ii) of Lemma 1 applies. This completes the proof. ��
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Lemma 4 The R-value ψK satisfies the Symmetric-partnership axiom on GK.

Proof Let S be a p-type coalition in v ∈ GK, and i ∈ S. If i ∈ T and S � T , from Lemma 3
it holds D(v, T ) = 0. Consequently

ψK
i (v) =

∑
T∈K:
i∈T

D(v, T )

|T | =
∑
T∈K:
S⊆T

D(v, T )

|T | . (18)

But this expression is the same for every player in S, thus the lemma is established. ��
Lemma 5 The R-value ψK satisfies the Additivity axiom on GK.

Proof Observe that D(v + w, S) = D(v, S) + D(w, S) for all S ⊆ N . Then the lemma
follows immediately. ��

We shall prove the uniqueness through the following lemmas and propositions.

Lemma 6 If M is a carrier on v ∈ GK, then N\M is a p-type coalition in v.

Proof Just notice that ifT is a coalition, thenT \(N\M) = M∩T , and the lemma immediately
follows from the definitions of carrier and p-type coalition. ��
Lemma 7 Let φ : GK → RN be a solution that satisfies the Carrier and Symmetric-
partnership axioms, and v ∈ GK. If M is a carrier of v, then φi (v) = 0 for every i ∈ N\M.

Proof Since M and N are both carriers we have∑
i∈M

φi (v) = v(M) = v(M ∩ N ) = v(N ) =
∑
i∈N

φi (v), (19)

and consequently ∑
i∈N\M

φi (v) = 0. (20)

On the other hand, ifM is a carrier then Lemma 6 together with the Symmetric-partnership
axiom implyφi (v) = φ j (v) for every i, j ∈ N\M . This togetherwith equality (20) completes
the proof. ��

For every T ∈ K, T �= ∅ define the unanimity R-game uKT for every S ∈ K by

uKT (S) =
{
1, if T ⊆ S;
0, otherwise.

(21)

Proposition 1 The set {uKT : T ∈ K} is a basis of the vector space GK.

Proof There are |K| − 1 unanimity R-games on K and the dimension of GK is also |K| − 1.
So it is enough to prove that these R-games are linearly independent. By contradiction,
assume that

∑
T∈K αT uKT = 0, with αT ∈ R not all zero. Let T0 be a minimal set in

{T ∈ K : T �= ∅, αT �= 0}. Then (∑
T∈K αT uKT

)
(T0) = αT0 �= 0, which is the desired

contradiction. ��
Proposition 2 Let φ : GK → RN be a solution that satisfies the Carrier and Symmetric-
partnership axioms, c ∈ R, and T ∈ K, then it holds

φi (c · uKT ) =
{
c/|T |, if i ∈ T ;
0, if i /∈ T .

(22)
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Proof First notice that T is a carrier on c · uKT , thus from Lemmas 6 and 7, we have φi (c ·
uKT ) = 0 for every i ∈ N\T . On the other hand T is also a p-type coalition for uKT , so
φi (c · uKT ) = φ j (c · uKT ) for every i, j ∈ T . Then the result easily follows from the Carrier
axiom. ��
Proof of Theorem 1 Lemmas 2, 4 and 5 show that ψK satisfies the three axioms. Uniqueness
follows from propositions 1 and 2 together with the Additivity axiom. ��
Remark 1 As mentioned in the Introduction, Aguilera et al. (2010) propose two approaches
to extend the Shapley value to R-games. The first one does not guarantee uniqueness and
gives rise to the family of marginalist solutions. In the second one, Aguilera et al. (2010)
define a particular solution on the unanimity games uKT and extend this solution by linearity
to the whole vector space GK. It turns out that this particular solution coincides with ψK on
every unanimity game. Therefore by Proposition 2, it is clear that the R-value ψK coincides
with the unanimity solution of Aguilera et al. (2010) on GK.

4 Simple R-games

Von Neumann and Morgenstern (1944) pioneered the use of simple games to study the
distribution of power in voting systems in their classic “Theory of Games and Economic
Behavior”. Later, Shapley and Shubik (1954) suggested to use the restriction of the Shapley
value to the domain of simple games to measure the voting power of the players. This
traditional way of measuring power, however, does not take into account that some coalitions
may not be feasible, possibly because of the issues at stake or the individual positions of the
players concerning these issues.An alternative to analyze these voting situations is to consider
simple R-games and make use of the restriction of the R-value ψK to simple R-games.

An R-game v on a partial collection K is called simple if: (1) it assumes only the values
0 and 1; (2) it is monotonic; that is S, T ∈ K together with S ⊆ T imply v(S) ≤ v(T ); and
(3) it is not identical to zero.

Coalitions whose worth is 1 are called winning, and losing otherwise.
The set of all simple R-games on K is denoted SK.
A power index on SK is any function η : SK → RN .
Let v,w ∈ SK, define the operations v ∧ w and v ∨ w by

(v ∧ w)(S) = min
{
v(S), w(S)

}
, (v ∨ w)(S) = max

{
v(S), w(S)

}
(23)

Let η be a power index on SK. Consider the following axiom.

Axiom 4 (Transfer) If v,w ∈ SK, then

η(v ∧ w) + η(v ∨ w) = η(v) + η(w). (24)

Dubey (1975) characterized on the class of full simple games the Shapley–Shubik index
by replacing the Additivity axiom in Shapley (1953) system with the Transfer axiom above.
One may wonder if it is possible to derive also the value ψK on SK by using the Transfer
axiom in Theorem 1, paralleling Dubey (1975) result. The answer is positive as it is shown
in the following theorem.2

2 It turns out that Dubey (1975) characterization for full simple games relies on the fact that every coalition
is feasible, and consequently his proof cannot be directly applied to the case of R-games.
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Theorem 2 Let K be a partial collection, then there is a unique index on SK that satisfies
the Carrier, Symmetric-partnership and Transfer axioms, and it is the restriction of ψK to
this subclass of R-games.

Proof Let K be a partial collection. By Lemmas 2 and 4 it is clear that ψK satisfies Carrier
and Symmetric-partnership on SK. The fact that ψK satisfies Transfer on SK follows from
Lemma 5 and the equality

(v ∧ w) + (v ∨ w) = v + w. (25)

Next, we turn to prove uniqueness. Let η be a power index on SK that satisfies Carrier,
Symmetric-partnership and Transfer axioms. We will prove that η(v) = ψK(v) for every
v ∈ SK by a double induction as follows. First notice that v has a finite number of minimal
winning coalitions, S1, S2, . . . , Sm , such that v = uKS1 ∨ uKS2 ∨ . . . ∨ uKSm . Define the 1st-
indicator I of v to be the minimum cardinality of the minimal winning coalitions of v. Define
the 2nd-indicator J of v the number of minimal winning coalitions of v whose cardinality
is the 1st-indicator I of v. We prove that η(v) = ψK(v) by backwards induction on the
1st-indicator I and forward induction on the 2nd-indicator J .

If I = n then v = uKN , and similarly to Proposition 2 we get η(uKN ) = ψK(uKN ). Assume
now that η(v) = ψK(v) whenever the 1st-indicator of v is at least I .

Now let v be any simple R-game that has 1st-indicator I − 1. We shall prove that η(v) =
ψK(v) by induction on the 2nd-indicator J of v.

If J = 1, then v has a unique minimal winning coalition of cardinality I − 1, say S1.
Denote v1 = uKS1 and v2 = uKS2 ∨ . . . ∨ uKSm . By Proposition 2 we have η(v1) = ψK(v1).
Moreover, the 1st-indicators of v2 and v1 ∧ v2 are clearly greater or equal than I , so by the
induction hypothesis on I , it holds η(v2) = ψK(v2) and η(v1 ∧ v2) = ψK(v1 ∧ v2). Hence
by the Transfer axiom, equality (25), and additivity of ψK we obtain

η(v) = η(v1 ∨ v2) = η(v1) + η(v2) − η(v1 ∧ v2)

= ψK(v1) + ψK(v2) − ψK(v1 ∧ v2) = ψK(v1 ∨ v2) = ψK(v). (26)

And therefore the index η coincides with the R-value whenever J = 1.
Assume now that η coincides with the R-value for every game such that the number of

minimal winning coalitions of cardinality I − 1 is at most J . Now let v have 1st-indicator
I − 1 and J + 1 coalitions of cardinality I − 1. Then v can be written as v1 ∨ v2, where
v1, v2 ∈ SK have 1st-indicator at least I − 1 and 2nd-indicator at most J (for instance,
taking v1 = uKS1 and v2 = uKS2 ∨ . . . ∨ uKSm as before). Since the game v1 ∧ v2 has also a

1st-indicator at least I . Using the same argument as in (26) we get η(v) = ψK(v). And the
proof is complete. ��

5 One case study: the Catalonian Parliament, 1980–1984

In this sectionwewill apply the R-value in a real application: The Catalonian Parliament after
the 1980 elections. This was also analyzed in Carreras and Owen (1988), where they used
the Shapley value as a measure of the power. However, the ideological location of the parties
suggested that some coalitions were more likely than others. Consequently, these authors
also employed a modification of the Shapley value, the coalitional value (Owen, 1977), more
suitable for studying games with a priori unions of players. In this section, we will make use
of the R-value as a power index. That is, we model the Catalonian Parliament as a simple
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R-game, by considering that some coalitions might not actually form, because of the location
of the parties on the ideological map, and then will use the R-value as a power index.

First a brief description of the situation provided by Carreras and Owen (1988) is given.
The Catalonian Parliament consists of 135 seats, so any coalition of 68 members or more
wins. The results in the 1980 elections are in Table 1.

In Table 2 it is included a concise explanation of the parties ideology at that time taken
from Carreras and Owen (1988).

Theminimal winning coalitions of the corresponding simple game are five: namely, {CiU,
PSC}, {CiU, PSUC}, {CiU, CC, ERC}, {CiU,ERC,PSUC} and {PSC, PSUC, ERC}. Car-
reras and Owen (1988) calculated the Shapley value of this simple game, which can be found
in the first column of Table 3 as a first approximation to measure the influence of the parties
involved. More interestingly, they also calculated the coalitional Shapley value for several
coalition structures. The PSA party was a dummy player and was not taken into account
in the analysis. According to Carreras and Owen (1988), two protocoalitions could form
representing the right-center and the left-center of the map: {CiU,CC} and {PSC,PSUC}
respectively, thus leaving to ERC an enviable position. The indices associated with these two
cases of a priori unions are in the second and third columns of Table 3.

Instead, in this paperwe have considered the casewhere not all coalitions can be formed by
incompatibilities or different attitudes towards the issues at stake. Consequently, coalitions of
parties at the ends of the political spectrum have been considered non-feasible, unless some
other intermediate party is also present in the coalition. So we have discarded as non-viable
the coalitions to which PSUC (left) belongs but neither PSC nor ERC (both centered left)
belong. That is, we have considered as non-feasible the following coalitions: {CiU, PSUC},

Table 1 Results in the 1980
elections of the Catalonian
Parliament

Party CiU PSC PSUC CC ERC PSA

Members 43 33 25 18 14 2

Table 2 Ideological description of the parties at the Catalonian Parliament in 1980

CiU Nationalist right centered coalition

PSC Left centered party associated with the PSOE, the main opposition party in Spain

PSUC Communist party with similar policies to the PCE, the communist party at national level

CC Right centered party associated with the UCD, the governing party in Spain

ERC Moderate left centered nationalist party

PSA Radical left-wing party trying to represent the Andalusian immigrants in Catalonia

Table 3 Different power indices in the Catalonian Parliament in 1980

Initial game {{CiU ,CC}, ERC} {{PSC, PSUC}, ERC} R-value

CiU 0.4000 0.5000 0 0.3667

PSC 0.2333 0 0.3333 0.2833

ERC 0.0667 0.3333 0.3333 0.1167

PSUC 0.2333 0 0.3333 0.0333

CC 0.0667 0.1667 0 0.2

PSA 0 0 0 0
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{PSUC, CC}, {CiU, PSUC, CC}. Similarly we have excluded also the coalitions to which
CC (right) belongs, but CiU (centered right) does not. Thus we have also considered the
following coalitions as non-viable: {PSC, CC}, {CC, ERC}, {PSC, PSUC, CC}, {PSC, CC,
ERC}, and {PSC, PSUC, CC, ERC}. Furthermore, the PSA has not any influence in the
game,3 so for simplicity we have excluded all coalitions to which this party belongs.4

With the viable coalitions we have constructed a R-game, in which the winnig coalitons
get 1 and the losing one get 0. In this R-game there are only four minimal winning coalitions:
{CiU, PSC}, {CiU, PSUC, ERC}, {CiU, CC, ERC} and {PSC, PSUC, ERC}. The R-value
for this partial collection is on the last column of Table 3.

By comparing the Shapley value of the initial game with the R-value, one can observe
that the more centered parties, i.e. CiU, PSC and ERC in those years, are assigned a higher
power index by the R-value than the less centered parties PSUC and CC. Furthermore, note
that despite of the fact that PSUC and CC had considerably more seats than ERC, the R-value
assigns a higher index to ERC, since its ideological location was less extreme. This seems
more reasonable than the Shapley value of the initial game.

The coalitional values (second and third columns) obtained by Carreras and Owen (1988)
refer to considerations in which the final coalitions have already been formed. In order
to compare the coalitional values with the R-value, it would be interesting to define the
“coalitional R-value”, but this is out of the scope of this work.

6 Conclusions

In this paper we have characterized a value proposed by Calvo and Gutiérrez-López (2015)
for games with restricted cooperation. We called this value the R-value, and its definition is
based on Harsanyi (1963) procedure for finding a solution in the context of non-transferable
utility games.

Some remarks are in order. Myerson (1977) characterized a value in the context of graph
communication situations by means of Component-Efficiency and Fairness. Later, Myerson
(1980) generalized this result to more general situations in which players are organized in
conference structures, that is non-empty coalitions that are not singletons. It is worth to note
that Algaba et al. (2001a) extended the Myerson value with graph communication situations
to union stable systems, and characterized this value also by means of Component-Efficiency
and Fairness. Union stable systems refer to situations in which the cooperation among the
players is restricted, but in such a way that if two feasible coalitions have some players in
common, they can act as intermediaries between these two coalitions, and hence the union of
two feasible coalitions will be also feasible. The relation between conference structures and
union stable systems is based on the relation of connectedness between players. According to
Myerson (1980), given a family Q of permissible coalitions,” two players are connected by Q
if they can be coordinated either by meeting together in some permissible coalition to which
they both belong, or by meeting in separate coalitions which have somemembers in common
to serve as intermediaries, or by some longer sequence of overlapping conferences“(see also
Definition 2.5 and Theorem 2.3 in Algaba et al. (2001a)).

3 Note that the fact that the PSA party was dummy in the full game does not imply that the PSA party is
dummy in any R-game obtained by restricting the full game to a partial collection of coalitions. The reason is
that the PSA party may have a non-zero marginal contribution by turning a non-feasible coalition in a feasible
coalition with its presence.
4 The exclusion of this party does not affect any calculation in this example.
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The aim of Myerson (1980) was to understand how players organize themselves in con-
ferences to negotiate and make joint plans that will ultimately determine the final result.
Consequently, in the definition of an allocation rule, this author fixes a full game and the
player’s payoffs depend on each conference structure. Unlike Myerson’s approach, in ours
the payoffs depends on the game at stake, whereas the feasible family of coalitionsK is fixed;
that is, the value represents an evaluation of player i of her prospect for playing a particular
game.

It is worthwhile also to compare the characterization offered in this paper with that of
Calvo and Gutiérrez-López (2015). These authors characterize the value using two axioms.
The first axiom is a modification of the Component Efficiency axiom where the dividends
appear explicitly in its definition. On the other hand, the axiom of Fairness requires that
the value will be fair similarly as in Myerson (1980), that is, two players should obtain the
same benefits (or losses) from their joint cooperation. Fairness is a complex requirement that
compares the value on different sets of feasible coalitions. The axiomatization presented in
this article offers the advantage of being formed by a more elementary and characteristic set
of axioms when the family of feasible coalitions is fixed.
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