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Abstract
Large-scale disasters occur worldwide, with a continuing surge in the frequency and severity
of disruptive events. Researchers have developed several optimization models to address the
critical challenges of disaster relief supply chains (e.g., emergency material reserving and
scheduling inefficiencies). However, most developed algorithms are proven to have low fault
tolerance, which makes it difficult for disaster relief supply chain managers to obtain optimal
solutions and meet the emergency distribution requirements within a limited time frame.
Considering the uncertainty and ambiguity of disaster relief information and using Interval
Type-2 Fuzzy Set (IT2TFS), this paper presents a collaborative optimization model based on
an integrative emergency material supplier evaluation framework. The optimal emergency
material suppliers are first selected using a multi-attribute group decision-making ranking
method. Multi-objective fuzzy optimization is then run in three emergency phases: early
-, mid-, and late-disaster relief stages. Focusing on a massive flash flood disaster event in
Yunnan Province as a case study, a comprehensive numerical analysis tests and validates the
developed model. The results revealed that the proposed optimization method can optimize
emergency material planning while ensuring that reserve material safety inventory is always
maintained at a reasonable level. The presented method suggests a fuzzy interval to prevent
emergencymaterials’ safety inventory shortage andminimize continuous life/property losses
in disaster-affected areas.
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1 Introduction

Every year, large-scale disasters (man-made and natural) severely affect human lives across
the globe, causing casualties, community disturbance, and property losses (Guha-Sapir et al.,
2016; Zheng & Ling, 2013; Zhou et al., 2017). Over the years, there has been a continuing
surge in the number and severity of such events. For instance, the intensity of hurricane
events has been increased by 70 percent over the past 60 years (Anderson & Bausch, 2006).
Flooding is another catastrophic event that has caused approximately US$ 185 billion in
economic losses in the first decade of the twenty-first century (Ali et al., 2020). In 2018,
the direct losses caused by weather-related disasters in the United States reached US$91
billion. The direct losses caused by weather-related disasters in China reached RMB 264.46
billion (Hu et al., 2019). It was recently estimated by SEIC Data Information Co. (CEIC)
that the economic impact of the COVID-19 pandemic could reach up to the US $8.8 trillion
worldwide − equal to 9.7 percent of GDP (Park et al., 2020).

Given the increasing number of disasters that have occurred over the past years (see Table
1), a growing concern is currently focused on developing knowledge and innovations forman-
aging disaster relief operations in a more effective and resourceful manner (Cogato et al.,
2019).As a result, developing swift and effective response plans tomanage suchunpredictable
emergency events has become a national priority for some governments (Seraji et al., 2021).
Researchers have developed different supply chain strategies to reduce human casualties
by ensuring the availability of essential supplies and timely delivery of medical/healthcare
assistance. For example, emergency resource scheduling (ERS) is developed as a key tool
for managing rescue operations, assisting disaster relief decision-makers in efficiently plan-
ning and allocating essential products and services (Zhou et al., 2017). Emergency response
activities for major disasters primarily rely on the on-demand information communicated

Table 1 Natural disasters’ sub-group classifications

Natural disaster category

Biological Geological Hydrological Meteorological

Epidemic
- Viral Infection
Disease
- Microbial Infection
Disease

- Parasitic Infection
Disease

- Prion Infection
Disease
Insect Infestation
Animal Stampede

Earthquake
Volcano
Mass Movements
(Dry)
- Rockfall
- Landslide
- Avalanche
- Subsidence

Flood
- General Flood
- Flash Flood
- Storm Surge/Coastal
Mass Movements
(Wet)
- Rockfall
- Landslide
- Avalanche
- Subsidence

Storm
- Tropical Cyclone
- Extra-Tropical
Cyclone

- Local Storm

Climatological

Extreme Temperature
- Heat Wave
- Cold Wave
- Extreme Winter
Conditions

Drought
Wildfire/Bushfire
- Forest Fire
- Land Fire

Hydro-Meteorological

Guha-Sapir et al. (2016)
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in a dynamic state, and this causes ongoing fluctuations in the emergency material reserve
(EMR) (Hu et al., 2019; Zhang & Chen, 2016; Zhou et al., 2017).

Nevertheless, large-scale disasters continue to occur, and developing enhanced disas-
ter response models which could contribute to effective relief operations is vital to save
lives. Only a few studies incorporate collaborative fuzzy optimization models to optimize
EMR and Emergency Material Scheduling (EMS) simultaneously. Given the uncertainty
and complexity of disaster relief information (Farahani et al., 2020), the present paper pro-
poses a collaborative optimization model based on emergency material supplier evaluation
using IT2TFS. This paper proposes a dynamic collaborative decision-making model based
on interval two trapezoidal fuzzy set EMR according to fuzzy uncertainty and complexity
characteristics in significant disaster events. This could meet the dynamic demands of emer-
gency disaster relief in the affected area, and fully consider the impact of “disaster relief
stage dynamic time factor” on the decision results, realize the coordination between the nor-
mal decision and abnormal decision making and fuzzy optimization decision making, it is
important to solve the EMR decision problem application value and practical significance.

The remainder of the paper is organized as follows: Sect. 2 provides a literature review
and the research background; Sect. 3 describes the EMR and optimization problems; Sect. 4
provides the key assumptions and a list of notations used in the proposed model; Sect. 5
describes the properties used to optimize the structure of EMR; Sect. 6 explains the impli-
cations and application of the constructed model in the emergency rescue practice; Sect. 7
provides a summary of key findings and concluding remarks.

2 Research background

The issues in disaster relief supply chains include inefficiencies currently existing across
various sectors, such as communication systems, pre-positioning resources, lack of integra-
tion between central governments and inter-state logistics systems, understaffed and lack of
skilled personnel, limited asset visibility, and lack of appropriate planning that could handle
and distribute donations and procurement compellingly. A basic set of suggestions corre-
sponding to the issues mentioned above were earlier made to generate optimization models
(Van Wassenhove, 2006). A comprehensive literature review on emergency inventory man-
agement in disasters was earlier published by Ozguven and Ozbay (2014) and will not be
discussed hereafter. However, brief overviews of disaster events and disaster events categories
with respective timelines are provided in Tables 1 and 2.

Humanitarian researchers recognize the lack of essential infrastructure support to plan
for a quick response to major disasters and uncertainties (Ghorbani & Ramezanian, 2020).
Some researchers argue that these organizations effectively use continuous aid to face dis-
asters (Venkatesh et al., 2019). The international relief agencies, such as Red Cross, use
these contractual arrangements to guarantee and stock the materials at the predetermined
locations involving stakeholders and donors (Balcik & Ak, 2014). Many works integrate
multi-objective stochastic programmingmodels (Mohammadi et al., 2016). EmergencyMate-
rial Scheduling (EMS) is another multi-objective and multi-constraint problem involving
complex factors and situations (Hu et al., 2019). Some emerging optimization algorithms
(e.g., conditional value-at-risk, paddy field algorithm, cuckoo search, biogeographic opti-
mization algorithm, bionic algorithm, fireworks algorithm) have been recently developed
(Faghih-Roohi et al., 2016; Hu et al., 2019; Lu et al., 2019; Somarin et al., 2016).
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Table 2 Disaster timeline since 2010

No. Disaster event Location Year Death Toll

1 Earthquake Haiti 2010 316,000

2 Heat Waves Russia 2010 56,000

3 Heat Waves Japan 2010 2000

4 Tsunami Japan 2011 15,897

5 Tropical Cyclone Philippines 2012 1901

6 Middle East Respiratory
Syndrome (MERS)

South Korea,
Saudi Arabia

2012-Present 858

7 Tropical Cyclone Philippines,
Vietnam, Chin

2013 6340

8 Flood Afghanistan 2014 2655

9 Earthquake Nepal, India 2015 8964

10 Heat Waves India 2015 2500

11 Heat Waves Pakistan 2015 2000

12 Earthquake Ecuador 2016 676

13 Tropical Cyclone Puerto Rico, Dominica 2017 3059

14 Tsunami Indonesia 2018 4340

15 Tropical Cyclone Mozambique, Zimbabwe,
Malawi

2019 1,303

16 COVID-19 Worldwide 2019-Present* 5,382,546

Andharia (2020); Below and Wallemacq (2018); Guha-Sapir et al. (2016)
*According to the data released by theWorldHealth Organization (WHO), the number of deaths from covid-19
was 5,382,546 as of December 22, 2021

For example, a time window-based EMR and scheduling decision model was proposed
earlier by Haghani and Oh (1996), yet, the effect of upstream emergency suppliers on the
reserve strategy was not investigated. A case study by Guo et al. (2018) was performed on
risk aversion stochastic models and material replacement strategies for emergency material
inventory systems. Despite achievements made in identifying adequate boundary conditions
in the replacement mechanism (Guo et al., 2018), the primary focus was merely on single-
objective optimizationmodels-similar to other modeling reports (Zhou&Olsen, 2018) rather
than multi-modeling optimization modeling. Earlier reports on multi-objective optimization
modeling, reliability, and flexibility of EMR in dynamic disaster relief scenarios, were not
thoroughly investigated (Hu et al., 2019). Therefore, assumptions made in disaster relief
material scheduling with relevant corresponding optimization schemes often deviate from
reality, making the feasibility of previous methods unrealistic (Hu et al., 2019).

Different ERS models and algorithms have been proposed to tackle various aspects of
ERS, such as logistics, location, and demand forecast (Hu et al., 2019). However, previous
methods implementations are complicated, cumbersome, and poorly supportive of collabo-
rative decision-making environments. For example, in the Wenchuan earthquake, arbitrary
distribution of emergency material supplies led to cchaos as structured classification, and
various emergency supplies details were missing (Hu et al., 2019). Furthermore, inaccurate
demand forecast of emergency materials makes relief material delivery excessive, leading
to a certain extent of waste (Hu et al., 2019). In the Yushu disaster event, the geographical
altitudes of the region were not systematically taken into account, which resulted in medical
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emergency supplies shortages, and rescue efficiency being seriously affected (Hu et al., 2019).
In the Acapulco flood 2013 inMexico, many government agencies were employed to address
the problem, leading to high organizational costs and poor outcomes (Rodríguez-Espíndola
et al., 2018).

Prior examples imply that the EMS should be treated as a multi-objective and multi-
constraint problem where all complex situations and factors are involved. Currently, it is
difficult to obtain optimal solutions within a limited timeframe using existing optimization
algorithms. Most algorithms have a low fault tolerance rate, and the optimization results
cannot meet the distribution requirements. Therefore, algorithms tend to produce local and
sub-optimal solutions (Hu et al., 2019). Most algorithms are focused on common heuristics
to solve an EMS mode. Few studies are dedicated to developing new algorithms, but their
efficiency has not been adequately validated (Hu et al., 2019).

As emergency resource optimizations and decision-making are carried out in real-time
and uncertain settings, former model-based decision-making results could not ideally meet a
realistic rescue requirement. The interval type-2 fuzzy set (IT2TFS) algorithms have recently
become an essential tool for proposing a new probability measure. An IT2TFS with a three-
dimensional membership function can be represented by fuzzy sets in the [0, 1] interval,
providing a higher degree of freedom and flexibility than a type-1 fuzzy set (IT1TFS) (Qin
& Liu, 2019). IT2TFSs are generally considered suitable applications in areas where multi-
attribute group decision-making is involved. In modeling uncertainty, the IT2TFS offers
higher accuracy than IT1TFS (Qin & Liu, 2019). A comprehensive model based on the
IT2TFS reasoningmethod and analytic hierarchy process for the urban air quality assessment
was recently reported by Debnath et al. (2018).

When a large-scale disaster occurs, different stages require additional EMR resources.
Overmultiple periods of early-,mid-and late- disaster relief optimization stages, the efficiency
of rescue operations is necessary to minimize EMR waste to the greatest possible extent
(Zheng & Ling, 2013). Such measures are pivotal due to the ambiguous and multifaceted
nature of disaster relief information across different stages of emergency rescue missions. To
advance the existing body of literature, this paper presents a collaborative optimizationmodel
for the EMR structure, which operates based on an evaluation of the emergency material
supplier. A numerical analysis is also performed to evaluate the proposed model. The model
serves as a typical response strategy to EMR (living, medical, and biological material reserve)
and supplier selection (ESS) problems, aiming to optimize the delivery time for early-, mid-
and late- disaster relief optimization stages, the number of shipments, and reserve costs. An
IT2TFS model for ESS and a multi-objective fuzzy optimization (MOFO) model for EMR
have been constructed (see Fig. 1).

3 Problem description

Most solution algorithms developed so far have a low fault tolerance rate when applied
to solve the EMR optimization problems. As a result, the algorithm efficiency cannot be
accurately validated. Currently, most of the data are generated arbitrarily by computers (Tang
et al., 2018, and a small proportion of which originates from real-life datasets (Chen et al.,
2017; Anh Ninh et al., 2020). Only a few reports exist on the successful implementation of
heuristic algorithms for solving practical rescue operations. However, most of these solution
algorithms would not meet the expectations under ambiguous and uncertain situations.

123



1308 Annals of Operations Research (2024) 335:1303–1329

Fig. 1 A schematic of the proposed solution methodology

To address the above issues, this paper proposes a dynamic, collaborative decision-making
model based on the IT2TFS to solve the EMR decision problem practically. The proposed
model incorporates the fuzzy uncertainty and complexities which are inherent in significant
disaster events, making it challenging for planners to meet the dynamic demands of emer-
gency disaster relief in the affected area, fully consider the impact of the “disaster relief stage
dynamic time factor” on the decision results, realize the coordination between the normal,
abnormal, and fuzzy optimization decision-making.

4 Assumptions and definitions

Based on Zhang and Chen’s Definition of emergency materials (2016), the present work
assumes that emergencymaterials refer to the urgently required items in disaster-prone areas,
primarily categorized as living materials, medical materials, and biological resources. Con-
sidering the influence of dynamic time factors on planners’ collaborative decision-making,
the EMR process can be divided into three stages (early-, mid-, and late-disaster relief). Sub
objectives considered for each disaster relief stage include optimal delivery time, reserve
cost, and the number of shipments. We also assume that the urgent time requirements for
emergency supplies, the demand, and the cost of reserves fluctuate due to the changes in
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rescue phases. Based on the modeling of an uncertain disaster relief environment, our col-
laborative optimization process consists of two levels; (1) Evaluation of emergency material
suppliers and (2) Optimization of EMR structure. Further, the following assumption is made:

(1) A minimum amount of EMR should exist after the occurrence of a significant disaster
event,

(2) The reserve capacity of emergency suppliers is directly related to the effective control
of various emergencies,

(3) The amount of funds available to an EMR decision is associated with a significant
disaster event.

A goal planning approach is an effective tool for solving multi-objective decision-making
problems, where multiple objectives of the decision-makers are considered in order of their
importance. Following the model developed by Chen and Hong (2014), in this paper, differ-
ent priority factors are assigned to each optimization objective as per the decision-maker’s
preferences. All symbols and variables are provided as follows:

˜̃xi jk Elements in the IT2TFS ( ˜̃xi jk ≥ ˜̃0)
˜̃A Reserve amount of emergency supplies associated with the kth emergency supplier in

the ith disaster relief stage
ti jk Timeliness index of the jth emergency supply item of the kth emergency material

supplier in the ith disaster relief stage
ui jk Quantity index of the jth emergency supply item delivered by the kth emergency

supplier in the ith disaster relief stage
wi First-order optimization sub-objective
wi jh Secondary fuzzy subobjective
Qi j Reserve capacity of the kth emergency supplier for the jth emergency item
θi j Impact factor of the jth emergency item in the jth disaster relief stage
T Restriction on funds available for EMR activities
Ai j Safety stock of the jth emergency item in the jth disaster relief stage (Ai j ≥ 0)
i Stage of disaster relief (i � 1, 2, 3)
j Type of emergency relief items ( j� 1, 2, 3)
h Timeliness reflected by the delivery volume, reserve cost, and other indicators

(h� 1, 2, 3)
k EMR mode number (k� 1, 2, 3, 4)
d+ Positive deviation variable (d+ > 0)
d− Negative deviation variable (d− > 0)
d+i jh Fuzzy positive deviation variables corresponding to each index for each category of

materials (d+i jh > 0)

d−
i jh Fuzzy negative deviation variables corresponding to each index for each category of

materials(d−
i jh > 0)

5 Methodology

5.1 Interval type-2 trapezoidal fuzzy set (IT2TFS)

Definition 1 If Aα denotes an interval type-1 fuzzy trapezoidal set, α denotes the degree of

membership α ∈ [0, 1] (Zadeh, 1975), then ˜̃A denotes an extension of the IT1TFS Aμ, as
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shown in Eq. (1). The IT2TFS is shown in Table 3 (Bortolan & Degani, 1985).. IT1TFS and
IT2TFS are shown in Figs. 2 and 3.

˜̃A �
{(

(x, u), u ˜̃A(x, u)
)∣∣∣∀x ∈ X ,∀u ∈ J ; x ⊆ [0, 1], 0 ≤ u ˜̃A(x, u) ≤ 1

}
(1)

In Eq. (1), let x denotes the domain of ˜̃A; U ˜̃A denotes secondary membership function;
Jx denotes the primary membership function,Jx ∈ [0, 1].

IT2TFS ˜̃A is expressed in Eq. (2).

˜̃A �
∫

x∈X
∫

u∈JX u ˜̃A(x, u)/(x, u) (2)

Table 3 Twelve fuzzy input sets

Fuzzy
set

Serial no Interval type-2 trapezoidal
blur

Fuzzy
set

Serial no Interval type-2 trapezoidal blur

Set1 ≈
A
1

≈
A
2

((0.35, 0.4, 0.4, 1; 1, 1), (0.35,
0.4, 0.4, 1; 1, 1))
((0.15, 0.7, 0.7, 0.8; 1, 1),
(0.15, 0.7, 0.7, 0.8; 1, 1))

Set 7 ≈
A
1

≈
A
2

((0.2, 0.5, 0.5, 0.8; 1, 1), (0.2,
0.5, 0.5, 0.8; 1, 1))
((0.4, 0.5, 0.5, 0.6; 1, 1),
(0.4, 0.5, 0.5, 0.6; 1, 1))

Set 2 ≈
A
1

≈
A
2

((0, 0.1, 0.5, 1; 1, 1), (0, 0.1,
0.5, 1; 1, 1))
((0.5, 0.6, 0.6, 0.7; 1, 1),
(0.5, 0.6, 0.6, 0.7; 1, 1))

Set 8 ≈
A
1

≈
A
2

≈
A
3

((0, 0.4, 0.6, 0.8; 1, 1), (0, 0.4,
0.6, 0.8; 1, 1))
((0.2, 0.5, 0.5, 0.9; 1, 1),
(0.2, 0.5, 0.5, 0.9; 1, 1))
((0.2, 0.6, 0.7, 0.8; 1, 1),
(0.2, 0.6, 0.7, 0.8; 1, 1))

Set 3 ≈
A
1

≈
A
2

((0, 0.1, 0.5, 1; 1, 1), (0, 0.1,
0.5, 1; 1, 1))
((0.6, 0.7, 0.7, 0.8; 1, 1),
(0.6, 0.7, 0.7, 0.8; 1, 1))

Set 9 ≈
A
1

≈
A
2

((0, 0.2, 0.2, 0.4; 1, 1), (0, 0.2,
0.2, 0.4; 1, 1))
((0.6, 0.8, 0.8, 1; 0.8, 0.8),
(0.6, 0.8, 0.8, 1; 0.8, 0.8))

Set 4 ≈
A
1

≈
A
2

≈
A
3

((0.4, 0.9, 0.9, 1; 1, 1), (0.4,
0.9, 0.9, 1; 1, 1))
((0.4, 0.7, 0.7, 1; 1, 1), (0.4,
0.7, 0.7, 1; 1, 1))
((0.4, 0.5, 0.5, 1; 1, 1), (0.4,
0.5, 0.5, 1; 1, 1))

Set 10 ≈
A
1

≈
A
2

((0.4, 0.6, 0.6, 0.8; 1, 1), (0.4,
0.6, 0.6, 0.8; 1, 1))
((0.8, 0.9, 0.9, 1; 0.2, 0.2),
(0.8, 0.9, 0.9, 1; 0.2, 0.2))

Set 5 ≈
A
1

≈
A
2

≈
A
3

((0.5, 0.7, 0.7, 0.9; 1, 1), (0.5,
0.7, 0.7, 0.9; 1, 1))
((0.3, 0.7, 0.7, 0.9; 1, 1),
(0.3, 0.7, 0.7, 0.9; 1, 1))
((0.3, 0.4, 0.7, 0.9; 1, 1),
(0.3, 0.4, 0.7, 0.9; 1, 1))

Set 11 ≈
A
1

≈
A
2

((0, 0.2, 0.2, 0.4; 0.2, 0.2), (0,
0.2, 0.2, 0.4; 0.2, 0.2))
((0.6, 0.8, 0.8, 1; 1, 1), (0.6,
0.8, 0.8, 1; 1, 1))

Set 6 ≈
A
1

≈
A
2

≈
A
3

((0.3, 0.5, 0.8, 0.9; 1, 1), (0.3,
0.5, 0.8, 0.9; 1, 1))
((0.3, 0.5, 0.5, 0.9; 1, 1),
(0.3, 0.5, 0.5, 0.9; 1, 1))
((0.3, 0.5, 0.5, 0.7; 1, 1),
(0.3, 0.5, 0.5, 0.7; 1, 1))

Set 12 ≈
A
1

≈
A
2

((0.2, 0.6, 0.6, 1; 1, 1), (0.2,
0.6, 0.6, 1; 1, 1))
((0.2, 0.6, 0.6, 1; 0.2, 0.2),
(0.2, 0.6, 0.6, 1; 0.2, 0.2))
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Fig. 2 An interval type-I
trapezoidal fuzzy set (IT1TFS)

a1 a2 a3 a4

H1(A)

H2(A)

Fig. 3 An interval type-2
trapezoidal fuzzy set (IT2TFS)

AU

AL

a1U a1L a2U a2L a3L a3U a4L a4U

H1(AU)

H2(AU)

H1(AL)

H2(AL)

Definition 2 If ˜̃A is an IT2TFS in the universal set U , ˜̃AL
α denotes the lower α-cut of ˜̃A,

˜̃AL
α�
{
x ∈ X|μ− ˜̃A(x)

≥ α
}
. ˜̃AH

α denotes the upper α-cut of ˜̃A, ˜̃AH
α �
{
x ∈ X|μ ˜̃A(x)

≥ α
}
.

Then, it is easy to show that ˜̃AL
α ⊆ ˜̃AH

α for α ∈ [0, 1].

Definition 3 If ˜̃Aα �
( ˜̃AL

α ,
˜̃AH
α

)
, where ˜̃AL

α denotes the lower α-cuts of an IT2TFS ˜̃A, and
˜̃AH
α the upper α-cuts of an IT2TFS ˜̃A. Then ˜̃AL

α \
˜̃AH
α can reflect the uncertainties in ˜̃Aα at α

the level.

Definition 4 If ρ ˜̃A(α) denotes the uncertainty degree of ˜̃Aα , then, ρ ˜̃A(α) �
∣∣∣ ˜̃AH

α \ ˜̃AL
α

∣∣∣
˜̃AH
α

�

1 −
∣∣∣ ˜̃AL

α

∣∣∣
˜̃AH
α

.

Property 1 For an IT1TFS Ã, we have ρ Ã(α)� 0.

Property 2 For an IT2TFS ˜̃Aα , we have 0 ≤ ρ ˜̃A(α)
≤ 1.

Property 3 For two IT2TFSs ˜̃A and ˜̃B, if FOU
( ˜̃A
)

⊆ FOU
( ˜̃B
)
, then ρ ˜̃A(α) ≤ ρ ˜̃B(α). In

an IT2TFS, the union of all subranges is denoted as Footprint of Uncertainty (FOU).

Property 4 If ˜̃A ≈ ˜̃B, |s1| � 0, |s2| � 0, where s1 �
{
x ∈ X |μ ˜̃A(x) 	� μ ˜̃B (x)

}
, s2 �{

x ∈ X |μ ˜̃A(x) 	� μ ˜̃B (x)
}
, then ρ ˜̃A(α)�ρ ˜̃B(α).
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Definition 5 For an IT2TFS ˜̃Aα , 0 ≤ ρ ˜̃A(α)
≤ 1, the uncertainty degree of ˜̃A is

ρ ˜̃A� ∫ 10 2αρ ˜̃A(α)
dα.

Definition6 If L denotes a set of alternative emergency suppliers,where L � {l1, l2, l3..., ln};
R denotes a set of evaluation attributes, where R � {r1, r2, ..., rn}; The decision group
consists of decision-makers D1, D2, ..., Dk .Then, a group decision matrix Mγ consisting of
γ decision-makers is expressed in Eq. (3) (Vahdani & Hadipour, 2011).

Mγ � [ ˜̃Xγ

i j ]n×m �

⎡
⎢⎢⎢⎢⎣

˜̃Xγ
11

˜̃Xγ
12 · · · ˜̃Xγ

1m˜̃Xγ
21

˜̃Xγ
22 · · · ˜̃Xγ

2m
· · · · · · · · · · · ·
˜̃Xγ
n1

˜̃Xγ
n2 · · · ˜̃Xγ

nm

⎤
⎥⎥⎥⎥⎦

, (3)

where ˜̃Xγ

i j denotes the evaluation value of the group decision for the alternative emergency
material supplier li with an attribute r j (i � 1, ..., n; j � 1, ...,m;γ � 1, ..., k).

Definition 7 Let ˜̃Xi j � (( ˜̃X1
i j ⊕ ˜̃X2

i j ⊕. . .⊕ ˜̃Xk
i j )/k).We consider an average judgment matrix

Y �
[ ≈
Xi j

]

n×m
for the evaluation value ˜̃Xγ

i j of the group decision; So, the weight matrixWγ

is denoted asWγ �
[ ˜̃wγ

j

]
m×1

�
[ ˜̃wγ

1
˜̃wγ
2 ... ˜̃wγ

m

]T
, where ˜̃wγ

j is the weight of the assessment

of the jth attribute r j by the decision-maker (i � 1, ..., n; j � 1, ...,m;γ � 1, ..., k).

Definition 8 LetW denote an average weight matrix for the multi-attribute evaluation matrix
˜̃w j � (( ˜̃w1

j ⊕ ˜̃w2
j ⊕ . . . ⊕ ˜̃wk

j )/k), where W �
[ ˜̃w j

]
m×1

. A normalized matrix is shown as

N � [ ˜̃ni j ]n×m ; Y denotes the weighted normalized decisionmatrix; the weighted normalized

decision matrix E �
[

≈
e
i j

]

n×m
can be then determined by ˜̃ei j � ˜̃ni j ⊗ ˜̃w j (i � 1, ..., n; j �

1, ...,m;γ � 1, ..., k).

Definition 9 Let
≈
S
+i
denote the benefit attributes, ˜̃S+i � ( ˜̃e+i1⊕ ˜̃e+i2⊕ . . .⊕ ˜̃e+im),i � 1, ..., n,

and
≈
S−i
denote the non-benefit attributes ˜̃S−i � ( ˜̃e−i1 ⊕ ˜̃e−i2 ⊕ . . .⊕ ˜̃e−im),i � 1, ..., n. Then

≈
S
+i
and

≈
S−i
describe how close each emergency supplier is to the desired goal.

Property 5 Let Rankmin(
˜̃S−i )(i � 1, ..., n) denote theminimumvalue describing the relative

satisfaction of emergency suppliers. Then, the relative significance of the emergency supplier
Q can be determined using Eq. (4).

Qi � Rank(
≈
S
+i
) +

Rankmin(
≈
S−i
)
∑n

i�1

(
Rank(

≈
S−i
)

)

Rank(
≈
S−i
)
∑n

i�1

(
Rankmin(

≈
S−i
)
/

Rank(
≈
S−i
)

) , i � 1, ..., n (4)
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Furthermore, Eq. (4) can be simplified and converted to Eq. (5).

Qi � Rank(
≈
S
+i
) +

∑n
i�1

(
Rank(

≈
S−i
)

)

Rank(
≈
S−i
)
∑n

i�1

(
1
/

Rank(
≈
S−i
)

) , i � 1, ..., n (5)

The emergency utility supplier quantified by the utility value Ui can then be used to
determine the relative significance of the optimal solution, denoted asUi � (Qi/Qmax)×100,
where Qmax is the maximum value of the relative importance. The greater the value of Ui ,
the higher the priority of the emergency supply provider li (i � 1, ..., n).

5.2 Fuzzy optimizationmodel for EMRs

Let min f̃i denote the optimization objective of the ith disaster relief stage; αi jh denotes the
second-level optimization sub-objective of the hth indicator of the jth emergency item in
the ith disaster relief stage, where αi jk � ∑4

k�1 ti jk
˜̃xi jk/∑4

k�1
˜̃xi jk . If the EMR process is

divided into three stages: early, mid-and late-disasandelief stages, sub-objectives for design-
ing each disaster relief stage include the optimal delivery time, number of shipments, and
reserve cost. Thus, a first-level sub-objective fuzzy optimization model can be established as
follows:

Min pi1

13∑
j�1

θi j d
−
i j1 ∨ 0 + pi2

13∑
j�1

θi j d
+
i j2 ∨ 0 + pi3

13∑
j�1

θi j d
−
i j3 ∨ 0 (6)

Subject to

αi j1 + d−
i j1 ∨ 0 − d+i j1 ∨ 0 � Wi j1, i � 1, 2, · · · 3, j � 1, 2, ..., 13, (7)

αi j2 + d−
i j2 ∨ 0 − d+i j2 ∨ 0 � Wi j2, i � 1, 2, 3, j � 1, 2, ..., 13, (8)

αi j3 + d−
i j3 ∨ 0 − d+i j3 ∨ 0 � Wi j3, i � 1, 2, 3 j � 1, 2, ..., 13, (9)

x̃i jk ≥ 0̃, i � 1, 2, 3, j � 1, 2, ..., 13, k � 1, 2, 3, 4 , (10)

where pi1 denotes the time objective priority factor, pi2 denotes the reliability objective
priority factor, and pi3 denotes the cost objective priority factor. d+i j1, d

−
i j1 denote the fuzzy

positive and negative bias variables for Phase I with time prioritized; d+i j2, d
−
i j2 denote the

fuzzy positive and negative bias variables of Phase II with reliability prioritized, and d+i j3, d
−
i j3

denote the fuzzy positive and negative bias variables of Phase III with cost prioritized.
Themodel’s objective (6) is tominimize the delivery time, the reserve cost, and the optimal

number of shipments for emergencymaterial suppliers based on Eqs. (4) and (5). The priority
of the three objectives is to achieve the shortest time, the highest reliability, and the lowest
cost. The delivery time is the priority optimization factor in the optimization model where
constraint (7) ensures the delivery quantity is reliable. Constraint (8) is the fuzzy component
for the reserve cost, a soft constraint. Constraint (9) is another fuzzy constraint for the reserve
cost, also a soft constraint. Constraint (10) is to ensure all decision variables are non-negative.
To facilitate the optimization solution of the EMR structure and simplify the calculation steps,
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we establish a fuzzy optimization model as follows:

Min W �
3∑

i�1

p̃i .d
−
i ∨ 0 (11)

Subject to

min f̃ + d−
i ∨ 0 − d+i ∨ 0 � Wi (12)

d−
i ∨ 0 ≥ 0̃, d+i ∨ 0 ≥ 0̃ (13)

d−
i ∨ 0 · d+i ∨ 0 � 0̃ (14)

Model (11) ensures the optimality of a total fuzzy objective. Constraint (12) guarantees
the optimal allocation of emergencymaterial items in the three stages of an emergency rescue
while ensuring timely delivery. Constraint (13) ensures that all the fuzzy positive and negative
bias variables are non-negative. Constraint (14) indicates that the positive or negative bias
variable is zero. The total fuzzy objective optimization model of the EMR structure can be
rewritten as follows:

Min W �
3∑

i�1

p̃i .d
−
i ∨ 0 (15)

Subject to

min f̃i � pi1

13∑
j�1

θi j d
−
i j1 ∨ 0 + pi2

13∑
j�1

θi j d
−
i j2 ∨ 0 + pi3

13∑
j�1

θi j d
+
i j3 ∨ 0,

i � 1, 2, 3, j � 1, 2, ..., 13, (16)

min f̃i + d−
i ∨ 0 − d+i ∨ 0 � W , i � 1, 2, 3 (17)

4∑
k�1

ti jk ˜̃xi jk/
4∑

k�1

˜̃xi jk − d+i j1 ∨ 0 � Wi j1, i � 1, 2, 3, j � 1, 2, ..., 13, (18)

4∑
k�1

ui jk ˜̃xi jk/
4∑

k�1

˜̃xi jk − d+i j2 ∨ 0 � Wi j2, i � 1, 2, 3, j � 1, 2, ..., 13, k � 1, 2, 3, 4,

(19)
4∑

k�1

pi jk ˜̃xi jk/
4∑

k�1

˜̃xi jk − d+i j3 ∨ 0 � Wi j3, i � 1, 2, 3, j � 1, 2, ..., 13, k � 1, 2, 3, 4,

(20)
˜̃xi jk ≥ 0̃, i � 1, 2, 3, j � 1, 2, ..., 13, k � 1, 2, 3, 4, (21)

d−
i ∨ 0 ≥ 0̃, d+i ∨ 0 ≥ 0̃ (22)

d−
i ∨ 0 · d+i ∨ 0 � 0̃ (23)

where i indicates the number of the emergency rescue phase (i � 1, 2, 3); j indicates the
type of emergency material ( j � 1, 2, ..., 13). Model (15) ensures the optimality of the
total fuzzy objective. Constraint (16) is based on Eq. (6). Constraint (17) ensures optimality
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of the total objective and that the minimum positive and negative deviations are achieved.
Equations (18)-(20) ensure that the sub-objectives of the three rescue phases are optimized.
Constraint (21) is the same as Eq. (10). Constraint (22) ensures that all the fuzzy positive and
negative bias variables remain non-negative. Constraint (23) ensures that at least one fuzzy
positive and negative bias variable is zero.

5.3 Numerical analysis

To evaluate the performance of the proposed collaborative optimization method, a numerical
analysis of a massive flash flood disaster in Yunnan Province in 2012 is performed as a case
study. Located in southwest China, Yunnan Province is heavily influenced by the summer
monsoons (from East Asia and India) and air flows from the Qinghai-Tibet Plateau. The
region has a plateau monsoon climate characteristic and is particularly vulnerable to climate
change due to rainfall and monsoons (Shi & Chen, 2018).

The emergency response time in the Yunnan province disaster is divided into three disaster
relief phases: Phases I, II, and III, referred to as early-, mid-, and late-disaster, respectively.
The sub-objectives of the multi-objective decisions in each disaster stage are set as an opti-
mal reserve, optimal delivery time, and optimal delivery quantity. Five emergency material
supplier evaluation attributes (i.e., responsiveness, cost, defect rate, delivery reliability, and
flexible distribution) are used at different disaster relief stages. Twenty representatives hav-
ing profiles such as procurement experts, humanitarian organization executives, logistics
coordinators, distribution centre managers, and academicians were grouped into three anony-
mous decision-making groups (D1, D2, and D3) to evaluate the emergency material suppliers
(l1, l2, l3, l4, l5,l6). Their industry background and practical experience are the key grouping
attributes (See Appendix Table A1). Each group registered their feedback about the material
positioning and collaborations within humanitarian supply chains. Due to the diversity of
groups and reduced response bias, a fuzzy optimization model of the EMR structure based
on IT2TFS is constructed to examine the optimal reserve structure of emergency materials
(e.g., general goods, pharmaceuticals, and life-saving products). Tables 4, 5, and 6 detail the
deployment of the Fuzzy scales in this study.

The parameter α � 0.8 is set based on the work conducted by Chen and Hong (2014).
Therefore, fewer calculation steps are required for the fuzzy set than for other parameter

Table 4 Fuzzy scales and their corresponding fuzzy sets

Fuzzy scale Interval type-2 trapezoidal fuzzy set Fuzzy scale Interval type-2 trapezoidal
fuzzy set

Very low
(VL)

((0, 0, 0, 0.1; 1, 1),
(0, 0, 0, 0.05; 0.9, 0.9))

Medium high
(MH)

((0.5, 0.7, 0.75, 0.9; 1, 1),
(0.6, 0.7, 0.75, 0.8; 0.9,
0.9))

Low (L) ((0, 0.1, 0.15, 0.3; 1, 1),
(0.05, 0.1, 0.15, 0.2; 0.9, 0.9))

High (H) ((0.7, 0.85, 0.9, 1; 1, 1),
(0.8, 0.85, 0.9, 0.95; 0.9,
0.9))

Mid low
(ML)

((0.1, 0.3, 0.35, 0.5; 1, 1),
(0.2, 0.3, 0.35, 0.4; 0.9, 0.9))

Very high (VH) ((0.9, 1, 1, 1; 1, 1),
(0.95, 1, 1, 1; 0.9, 0.9))

Medium (M) ((0.3, 0.5, 0.55, 0.7; 1, 1),
(0.4, 0.5, 0.55, 0.6; 0.9, 0.9))
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Table 5 The weights given by the
decision-making groups for
multi-objective attributes

Attributes Decision-making groups

D1 D2 D3

Responsiveness VH H VH

Cost MH M M

Defect rate H H MH

Delivery reliability VH MH VH

Flexibility ML L M

types. Table 4 summarizes the survey outcome, illustrating the fuzzy scale and corresponding
fuzzy sets to evaluate emergency material suppliers’ group decision attributes. Table 5 shows
the weights provided by the decision-making groups for multi-objective attributes. Table 6
shows the fuzzy scale values provided by the decision-making groups for emergencymaterial
suppliers’ evaluation.

5.4 Calculation steps

(1) According to Tables 3 and 4 and Eqs. (1)-(3), we first construct the decision matrix
structures M1, M2, and M3 for emergency supplies and l1, l2, l3, l4, l5, l6.

M1 �

⎡
⎢⎢⎢⎢⎢⎣

V L H H M H V H
V H ML L ML V L V L
M L ML V L M L
L H MH H M V H
V L MH M M H V H

⎤
⎥⎥⎥⎥⎥⎦

, M2 �

⎡
⎢⎢⎢⎢⎢⎣

L MH MH M H V H
V ML M L ML V L
ML L L ML V L V L
ML H M ML MH V H
L MH M MH MH MH

⎤
⎥⎥⎥⎥⎥⎦

,

M3 �

⎡
⎢⎢⎢⎢⎢⎣

ML V H MH ML MH H
H V L ML ML L L
M V L L L M V L
MH V H M H MH MH
ML H ML M M MH

⎤
⎥⎥⎥⎥⎥⎦

.

(2) According to the step 1 results and Definition 3–5, the average decision matrix Y is
obtained as follows:

Y �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

˜̃X11
˜̃X12

˜̃X13
˜̃X14

˜̃X15
˜̃X16

˜̃X21
˜̃X22

˜̃X23
˜̃X24

˜̃X25
˜̃X26

˜̃X31
˜̃X32

˜̃X33
˜̃X34

˜̃X35
˜̃X36

˜̃X41
˜̃X42

˜̃X43
˜̃X44

˜̃X45
˜̃X46

˜̃X51
˜̃X52

˜̃X53
˜̃X54

˜̃X55
˜̃X56

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Table 6 Fuzzy scales given by the decision-making group for emergency material supplier evaluation

Evaluation Index Emergency supplies Decision-making groups

D1 D2 D3

Responsiveness l1 VL L ML

l2 H MH VH

l3 H MH MH

l4 M M ML

l5 H H MH

l6 VH VH H

Cost l1 VH H H

l2 ML ML VL

l3 M M ML

l4 ML ML ML

l5 VL L L

l6 L L VL

Defect rate l1 M ML M

l2 L L VL

l3 ML L L

l4 VL VL L

l5 M ML M

l6 L VL VL

Delivery reliability l1 L ML MH

l2 H H VH

l3 MH M M

l4 H MH H

l5 M ML MH

l6 VH VH MH

Flexibility l1 VL L ML

l2 MH MH H

l3 M ML ML

l4 M MH M

l5 H MH M

l6 VH MH MH

(3) According to Table 6 and Definition 4, the weighting matrices W1,W2 and W3 are
obtained:

W1 �

⎡
⎢⎢⎢⎢⎢⎢⎣

V H

MH

H

V H

ML

⎤
⎥⎥⎥⎥⎥⎥⎦

,W2 �

⎡
⎢⎢⎢⎢⎢⎢⎣

H

M

H

MH

L

⎤
⎥⎥⎥⎥⎥⎥⎦

,W3 �

⎡
⎢⎢⎢⎢⎢⎢⎣

V H

M

MH

V H

M

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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(4) According to Definition 4, a normalized matrix is also constructed as follows:

N �

⎡
⎢⎢⎢⎢⎢⎣

˜̃n11 ˜̃n12 ˜̃n13 ˜̃n14 ˜̃n15 ˜̃n16
˜̃n21 ˜̃n22 ˜̃n23 ˜̃n24 ˜̃n25 ˜̃n26
˜̃n31 ˜̃n32 ˜̃n33 ˜̃n34 ˜̃n35 ˜̃n36
˜̃n41 ˜̃n42 ˜̃n43 ˜̃n44 ˜̃n45 ˜̃n46
˜̃n51 ˜̃n52 ˜̃n53 ˜̃n54 ˜̃n55 ˜̃n56

⎤
⎥⎥⎥⎥⎥⎦

.

Therefore, according to Definition 9, the weighted normalization decision matrix E

can be next obtained. The negative deviation
≈
S−i
of emergency resource suppliers use to

achieve optimization objectives is calculated in Table 7. The order of positive and nega-
tive deviations that emergency resource suppliers use to achieve optimization objectives
is sorted in Table 8.

(5) We calculate S ≈ +i and sort the values, as shown in Table 8.
According to Eq. 5, we calculate the quantitative utility value Ui as shown in Table 9,
which denotes the maximum relative importance value The greater the value of Ui , the
higher the priority of the emergency supply provider li (i � 1, 2, ..., 6).
As shown in Table 9, the relative significance order of the utility of the six emergency
material suppliers is U6 
 U2 
 U4 
 U3 
 U5 
 U1. Therefore, the emergency
material supplier 6 is the best choice.

5.5 Optimization results

To validate the proposedmodel, we borrow some of the input parameter values fromChen and
Hong (2014),where themin f values for the first-level sub-objectives in the three stages are set
as 0, 0, and 0.012. It is shown before that the emergency supplier l6 the best choice (see Table
9), hence we have k � 6. Following Zhang et al. (2018), we have ˜̃x116 � ((0,0.4,0.6,0.8;1,1),
(0,0.4,0.6,0.8;1,1)), ˜̃x216 � ((0,0,0,0.1;1,1), (0,0,0,0.05;0.9,0.9)), ˜̃x316 � ((0,0.1,0.15,0.3;1,1),
(0.05,0.1,0.15,0.2;0.9,0.9)), ˜̃x126 � ((0, 0.1, 0.15, 0.3; 1, 1), (0.05, 0.1, 0.15, 0.2; 0.9, 0.9)),
and ˜̃x136 � ((0.3, 0.5, 0.55, 0.7; 1, 1), (0.4, 0.5, 0.55, 0.6; 0.9, 0.9)). Other input parameter
values are drawn from the expert survey and are shown in Table 10.

The actual demand data for emergency materials in the three rescue stages is captured
from China’s Ministry of Civil Affairs (http://www.mca.gov.cn/). We set the fuzzy intervals
according to the actual demand data and compared the optimization results with the actual
demand data to verify the validity of the proposed collaborative optimization method. The
optimization results are summarized in Table 11.

Table 11 shows that the results of collaborative optimization are more consistent with
the actual demand for emergency materials, while the individual optimization results devi-
ate from the actual demand. Comparing the optimization results (Table 11) with the actual
demand data provided by the Ministry of Civil Affairs of China, we observe that the collabo-
rative optimization method can effectively optimize the reserve materials structure in various
rescue stages, ensuring that a safety inventory is maintained at the most reasonable level.
The presented plan meets the emergency response requirements of disaster-affected areas
and the relevant demand characteristics. Although the proposed collaborative optimization
method based on IT2TFS does not yield a specific value, it still provides a fuzzy interval
based on which the safety inventory can effectively meet the demand in the affected area.
Fuzzy optimization decisions associated with the EMR are next simulated separately. In this
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Table 8 The order of positive and negative deviations to achieve optimization objectives

i
Rank

(≈
s
+i

)
Rank

(≈
s−i

)
i

Rank

(≈
s
+i

)
Rank

(≈
s−i

)

1 0.2028 0.2665 4 0.2556 0.2324

2 0.2661 0.2336 5 0.2604 0.2607

3 0.2603 0.2552 6 0.2658 0.2239

Table 9 Relative significance of the alternative emergency suppliers

i Qi Ui (%) i Qi Ui (%)

1 0.4188 78.8 4 0.5035 94.7

2 0.5126 96.4 5 0.4811 90.5

3 0.4856 91.3 6 0.5315 100

Table 10 Other parameters in the EMR structure optimization model

Emergency phase Target level Secondary sub-objective Primary
sub-objective

Wi jh pih Wi pi

Pre-rescue Time efficiency index 0.8 0.6 0.45 0.375

Number of shipments 0.35 0.35

Reserve cost 2.2 0.05

Mid-rescue Time efficiency index 0.65 0.41 0.35 0.375

Number of shipments 0.75 0.41

Reserve cost 1.5 0.18

Late rescue Time efficiency index 0.35 0.15 0.2 0.25

Number of shipments 1.0 0.35

Reserve cost 0.85 0.5

approach, individual optimizations are separately run without including emergency supplier
selection. To compare the two methods, affected areas were divided into three classes: Mild,
Moderate, and Severe. The corresponding collaborative decisions are then made according
to collaborative optimization results and the individual choices according to the optimization
results. The two decision types are compared, and the results are shown in Figs. 4–6.

Because the selection of emergency material suppliers influences the subsequent opti-
mization, the comparison of results can also be recognized as a sensitivity analysis for the
most relevant parameters. The responsiveness attribute of the emergency supplier affects
the time efficiency index in reserve structure optimization. We assume the index setting of
time efficiency in the individual optimization method depends on the average responsiveness
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Fig. 4 Equilibrium analysis in severe disaster areas under individual and collaborative decision schemes

attribute of the six considered suppliers. Accordingly, the index setting of time efficiency in
collaborative optimization is based on the optimal emergency supplier l6.

Comparing the effects of the collaborative decisions indicated above and the individual
decisions on the supply and demand, the balance time of EMR and demand is evaluated.
This result is used to explore the advantages of collaborative optimization. As can be seen in
Figs. 3–5, there is a point (the intersection of the red and blue curves) at which the EMR is
precisely equal to the demand; that is, the sooner the balance time of the EMR and demand is
realized, the better the emergency resource allocationwill be, therebymeeting the established
optimization objectives and yielding effective emergency rescue work.

Figure 4a shows that when decisions are made separately, the EMR balance times and
demand in severe disaster areas are 18 and 25 days, respectively. Figure 4b illustrates EMR
results and demand when collaborative optimization decision-making is used. The balance
time points are 15 and 23 days, respectively. Hence, the primary emergency control in the
disaster area can be done at least three days ahead of schedule. The EMR is greater than the
demand data from 23 to 25 days.
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Fig. 5 Equilibrium analysis in moderate disaster areas under individual and collaborative optimization
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Fig. 6 Equilibrium analysis in mild disaster areas under individual and collaborative decision schemes

Figure 5a illustrates the balance time points of the EMR and demand in moderate disaster
areas (15 and 22 days) when the optimization decisions are made individually. Figure 5b
shows the emergency disaster area employed in the collaborative optimization decision
scheme. The balance times are 11 and 18 days, and hence the primary essential control
of the emergency in the disaster area can be achieved four days ahead of that in the individual
scheme. The EMR is greater than the demand from 18 to 22 days.

Figure 6a shows the balance time with the demand is between 12 and 18 days. Figure 6b
shows that emergency disaster reserve in mild disaster areas is coordinated. The balance
time with the demand is eight and 14 days, and the disaster primary control is achieved
four days before the individual scheme. The EMR is higher than the demand from 14 to
28days. Therefore, froma timeliness perspective, collaborative decision-making outperforms
individual decision-making processes.

6 Discussion and implications

Given the uncertainty of flood disasters and the urgency for a fast response, a flood disaster
response plan or standard operating procedure needs to be carefully arranged for managing
rescue equipment, resources, and rescue teams. Once a disaster event has occurred, a rescue
plan should be launched to prevent chaos. Regardless of the differences in organizational
structures of rescue teams in different countries, flood rescue operations should follow stan-
dard guidelines that suggest how to classify disaster-affected areas, plan group distributions,
and inter-group backups. Under such systems, a flood emergency logistics network can be
viewed as a multi-group and multi-level structure. Given the uncertain demands, planning
appropriately for emergency logistics is complex. The existing optimization algorithms have
reported low fault tolerance rates, under which optimization results cannot meet the distri-
bution requirements (Hu et al., 2019).

In our study, the issue with flood emergency logistics preparation under uncertainty sce-
narios is formulated as a collaborative multiple objective fuzzy optimization problem to
develop an optimal distribution plan for urban flood disasters. The proposed model considers
multiple objectives in managing humanitarian logistics operations during a disaster event
and optimizes the structure of the reserve materials in each emergency rescue stage where
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a safety inventory should be maintained at a reasonable level. This model assigns a fuzzy
interval to avoid the safety inventory error of emergency materials being too large. The col-
laborative optimization model proposed is proven efficient in meeting emergency response
requirements in disaster-affected areas and minimizing life/property losses.

Our case study shows that the reserves of various emergency materials continue to change
at different stages of emergency relief as the disaster relief process evolves. Therefore, the
following suggestions are made when employing an EMR strategy. The EMR should be
kept within a reasonable range when dealing with significant disaster events. In addition,
emergencymaterial suppliers should be included in the material reserve optimization process
to deal with major disasters. Also, an EMR contact should be employed, under which the
emergency materials suppliers are allocated specific orders and are responsible for building
the sufficient capacity, enabling them to meet demand when the EMR is insufficient.

7 Conclusion

Dynamic time factors have been widely applied in humanitarian logistics optimization and
decision-making problems. However, most manage random or uncertain situations, where
fuzzy information is gradually collected from different sources and analyzed over time.
This paper proposes a collaborative optimization model of the EMR structure to evaluate
the emergency material suppliers and optimize the logistics operations. Two models such
as IT2TFS for ESS and MOFO or EMR, are investigated. First, the IT2TFS was defined,
and a multi-objective group decision-making algorithm for emergency material supplier
evaluation was developed; Secondly, we ran the developed fuzzy optimizationmodel in early,
middle, and late relief stages; Finally, a case study of sudden flood disasters in 2012 was
considered to examine the feasibility and performance of the proposed collaborative decision-
makingmodel under dynamic disaster relief environments. Themodel can be employed as an
integrative response to EMR (living, medical, and biological material reserve) and supplier
selection problems, aiming to optimize the delivery time, the number of shipments, and
reserve costs. Given the uncertainty and complexity of the disaster relief information, the
collaborative optimization method for EMR structures was designed based on IT2TFS. The
performance of the collaborative optimizationmethodwas validated using a data set obtained
from a significant disaster event in Yunnan Province.

The results demonstrate that the developed fuzzy optimization decision-making method
can effectively capture the impact of the dynamic time factors on decision-making results and
enhance interactions between groups who deal with normal and abnormal decision-making
tasks. Testing the presented model, it was observed that the method could be confidently
employed to optimize the structure of the reserve materials in different emergency rescue
stages to ensure that the safety inventory can be maintained at the most reasonable level.
We also showed that the method meets the emergency response requirements of disaster-
affected areas. By comparing the group and individual optimization schemes, we showed that
employing collaborative optimization outperforms the individual method, ensuring material
reservesmeet the requirement of each emergency rescue stage and saving considerable rescue
time.

Apart froBesidesntages of using fuzzy models in uncertain situations, several limitations
exist. For instance, it is challenging to tackle all aspects of disaster relief supply chains with
fuzzy models, particularly the prediction and pattern recognition aspects. Instead, machine
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learning and AI-based models can train datasets to improve the optimal solutions and pro-
vide an ideal disaster response model that can integrate into a package with a user-friendly
interface. The reasoning details associated with the IT2TFS approach used in the developed
optimization model are not sufficiently discussed. It is, therefore, of interest for future studies
to develop methodologies and expand IT2TFS theories to fill the gap.
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Appendix 1

Proofs of all of the properties described in the present study are detailed below.

Proof of Property 1 Using Eq. (1), this theorem is based on the fact that for any IT1TFS,
ÃL

α � ÃH
α which indicates there is no second-order uncertainty in the α-cuts of IT1TFS, as

the upper and lower ranges are the same. This completes the proof.

Proof of Property 2 Using Eq. (2), it is easy to show that 0 ≤ ρ ˜̃A(α) ≤ 1 for ˜̃AL
α ⊆ ˜̃AH

α .This
completes the proof.

Proof of Property 3 According to Definition 4, for two IT2TFSs ˜̃A and ˜̃B, if FOU
( ˜̃A
)

⊆
FOU

( ˜̃B
)
, then μ ˜̃A(x) ⊆ μ ˜̃B (x). Hence ρ ˜̃A(α) ≤ ρ ˜̃B(α).

This completes the proof.

Proof of Property 4 If IT2TFS ˜̃A and ˜̃B are equivalent, i.e., ˜̃A ≈ ˜̃B, |s1| � 0, |s2| � 0,

and where s1 �
{
x ∈ X |μ ˜̃A(x) 	� μ ˜̃B (x)

}
and s2 �

{
x ∈ X |μ ˜̃A(x) 	� μ ˜̃B (x)

}
, then we

can obtain ρ ˜̃A(α)�ρ ˜̃B(α), μ ˜̃B (x) ⊆ μ ˜̃A(x),
˜̃BL
α ⊆ ˜̃AL

α ,
˜̃AH
α ⊆ ˜̃BH

α . Hence,
∣∣∣ ˜̃BL

α

∣∣∣ ⊆
∣∣∣ ˜̃AL

α

∣∣∣,
∣∣∣ ˜̃AH

α

∣∣∣ ⊆
∣∣∣ ˜̃BH

α

∣∣∣, so that
∣∣∣ ˜̃BL

α

∣∣∣∣∣∣ ˜̃BH
α

∣∣∣
≤
∣∣∣ ˜̃AL

α

∣∣∣∣∣∣ ˜̃AH
α

∣∣∣
. Hence, ρ ˜̃A(α) ≤ ρ ˜̃B(α).

This completes the proof.

Proof of Property 5 Let Rankmin(
˜̃S−i ) denote the minimum value describing the relative

satisfaction of emergency suppliers. Then, based on Chen and Hong (2014), the relative
significance of the emergency supplier Q is determined as shown in Eq. (24):

Qi � [ ˜̃ni j ]n×m ·
⎛
⎜⎝
[ ˜̃wγ

1
˜̃wγ
2 ... ˜̃wγ

m

]T
+
[ ˜̃ni j ]n×m −

[ ˜̃wγ
1

˜̃wγ
2 ... ˜̃wγ

m

]T

[ ˜̃ni j ]n×m ·
[ ˜̃wγ

1
˜̃wγ
2 ... ˜̃wγ

m

]T

⎞
⎟⎠, γ � 1, ..., k (24)
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If N � [ ˜̃ni j ]n×m , using N to replace [ ˜̃ni j ]n×m in (24) and obtain Eq. (25):

Qi � N

⎛
⎜⎝
[ ˜̃wγ

1
˜̃wγ
2 ... ˜̃wγ

m

]T
+
N −

[ ˜̃wγ
1

˜̃wγ
2 ... ˜̃wγ

m

]T

N
[ ˜̃wγ

1
˜̃wγ
2 ... ˜̃wγ

m

]T

⎞
⎟⎠, γ � 1, ..., k (25)

Then, we can obtain:

Qi�RankNW +
rankminN (1 − W )(

∑m
j�1

˜̃nim − NW )

RankN (1 − W )(
∑n

i�1 rankminN (1 − W )/
∑m

j�1
˜̃nim − NW ))

(26)

If W �
[ ˜̃w j

]
m×1

, N � [ ˜̃ni j ]n×m and E �
[

≈
e
i j

]

n×m
(i � 1, ..., n; j � 1, ...,m) are

determined for ˜̃ei j � ˜̃ni j ⊗ ˜̃w j , i � 1, ..., n; j � 1, ...,m,then we can obtain Eq. (27):

Qi � Rank( ˜̃e+i1⊕, . . . , ˜̃e+im )

+
Rankmin( ˜̃e−i1⊕, . . . , ˜̃e−im )

∑n
i�1 (Rank( ˜̃e−i1⊕, . . . , ˜̃e−im ))

Rank( ˜̃e−i1⊕, . . . , ˜̃e−im )
∑n

i�1

(
Rankmin( ˜̃e−i1⊕, . . . , ˜̃e−im )

/
Rank( ˜̃e−i1⊕, . . . , ˜̃e−im )

)

(27)

If
≈
S
+i

� ( ˜̃e+i1⊕, . . . , ˜̃e+im), and ˜̃S−i � ( ˜̃e−i1⊕, . . . , ˜̃e−im),i � 1, ..., n,then we can sub-

stitute terms and obtain Eq. (28).

Qi � Rank(
≈
S
+i
) +

Rankmin(
≈
S−i
)
∑n

i�1 (Rank(
≈
S−i
))

Rank(
≈
S−i
)
∑n

i�1

(
Rankmin(

≈
S−i
)
/

Rank(
≈
S−i
)

) , i � 1, ..., n (28)

Hence,the formula can be simplified as follows:

Qi � Rank(
≈
S
+i
) +

∑n
i�1 (Rank(

≈
S−i
))

Rank(
≈
S−i
)
∑n

i�1

(
1
/

Rank(
≈
S−i
)

) , i � 1, ..., n (29)

This completes the proof.
(See Table 12).
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Table 12 The profile of all 20 participants

S. no. Group Expert profile Experience in years

1 D1 Procurement expert 18

2 D1 Procurement expert 20

3 D1 Academician 15

4 D1 Distribution center manager 19

5 D1 Logistics coordinator 17

6 D1 Logistics coordinator 15

7 D1 Humanitarian organization executive 18

8 D2 Humanitarian organization executive 15

9 D2 Logistics coordinator 19

10 D2 Logistics coordinator 16

11 D2 Academician 12

12 D2 Distribution center manager 15

13 D2 Distribution center manager 18

14 D2 Procurement expert 20

15 D3 Distribution center manager 16

16 D3 Humanitarian organization executive 15

17 D3 Humanitarian organization executive 17

18 D3 Procurement expert 15

19 D3 Logistics coordinator 19

20 D3 Academician 15
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