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Abstract
This study investigates the impact of COVID-19 on theUS equitymarket during the first wave
of Coronavirus using a wide range of econometric and machine learning approaches. To this
end, we use both daily data related to theUS equitymarket sectors and data about the COVID-
19 news over January 1, 2020-March 20, 2020. Accordingly, we show that at an early stage of
the outbreak, global COVID-19s fears have impacted the US equity market even differently
across sectors. Further, we also find that, as the pandemic gradually intensified its footprint
in the US, local fears manifested by daily infections emerged more powerfully compared to
its global counterpart in impairing the short-term dynamics of US equity markets.

Keywords COVID-19 · The US equity market · Co-integration · Detrended
cross-correlation analysis · Machine learning
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1 Introduction

In November 2019, a new pandemic, called hereafter Coronavirus or COVID-19, was
announced in Wuhan in China, inducing several cases and deaths. While this virus retained,
firstly, less attention by the international community and the authorities, the World Health
Organization (WHO) qualified this Coronavirus as a pandemic hereafter inMarch 2020when
the statistics increased rapidly, showing 118 000 cases and 4291 deaths in 114 countries (Ali
et al., 2020) on 11th March 2020. Later, this pandemic was transmitted to several coun-
tries, implying an increasing number of cases and deaths. The high dimension of COVID-19
cases and deaths and its rapid contagion effects worldwide have implied an unprecedented
growing fear and an intense uncertainty across populations, policymakers, and nations. To
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limit the propagation of this virus and to fight against its contagion effects, several gov-
ernments announced multiple lockdown measures and imposed different social distancing
rules (school closing and online courses, teleworking, travel limitation, interdiction of social
activities, etc.). Accordingly, the coronavirus pandemic and these lockdown measures have
implied an important economic depression for several developed and emerging countries
yielding a serious economic crisis in 2020.

The financial sector has been negatively impacted by the coronavirus pandemic (Wang
et al., 2020), showing important losses. How did this COVID-19 outbreak impact finan-
cial markets? One can cite at least two channels that can explain the transmission of the
Coronavirus into the financial sector. On the one hand, the slowdown of real activities (less
consumption, less investment, fewer transactions, etc.) has negatively impacted the firm’s
production, the firm’s creation of value, and therefore on the firm’s fundamentals affecting
thus their equities’ prices. On the other hand, investors, being more anxious and uncertain
about this pandemic and its duration, have been less active and have reduced their investment
as a matter of precaution, which has had a negative effect on their trading.

Further, unlike other financial downturns (dot bubble in 2000, subprime crisis in 2007, the
global financial crisis in 2008–2009, etc.), the 2020 crash for the equity market is different
as it was induced by an external shock associated with the Coronavirus pandemic. This
COVID-19 crisis has typically been different across time and space. Indeed, while it had a
moderate effect onChina, its negative impact wasmuch pronounced in theUS, theUK, Japan,
Italy, Spain, and several member states of the European Union. Accordingly, the coronavirus
pandemic has appeared among themost important events for stockmarkets in the twenty-first
century. Interestingly, the COVID-19 effects have also been time-varying. For example, with
reference to the level of the US stock market on 19th February 2020, the S&P500 index lost
about 34% on 23rdMarch 2020; however, it reached 3213 points on 9th June 2020, erasing its
losses induced to be the COVID-19 outbreak. Further, the crash associated with the pandemic
is quite different from those of the 2008–2009 global financial crisis and the 2000 dot bubble.
Indeed, the COVID-19 has overall implied an abrupt downturn for the US stock market while
the market decrease in 2008–2009 lasts about eight months against 12 months for the market
decrease in 2000 (see Fig. 1 for more details).

Several economists and financial analysts (Levasseur, 2021) justify this stock market
dynamics during the COVID-19 episode by two important factors. First, the COVID-19 has
had a negative impact on dividends as several firms and banks either canceled or reduced
the payment of their dividends. Second, given the increase of uncertainty, the risk premium
has increased as investors are seeking higher returns. Overall, there was a balance between
dividend cuts and risk premium increases. Further, the stimulating actions of central banks
(decrease of interest rate, massive programs of Quantitative Easing and purchasing program
of financial assets, etc.) have provided abundant liquidity for governments to support their
economies, which has stimulated investor’s optimism and has had increased the attractiveness
of stocks, yielding a rapid recovery for equity markets. This rapid recovery can also be seen
as a consequence of learning from the management of previous financial crises.

In the recent related literature, several on-going studies have questioned the impact of
COVID-19 on the stock markets. However, these studies are inconclusive and appear less
unanimous. Indeed, on the one hand, some studies pointed to the impressive financial down-
turn and volatility excess induced by this pandemic. For example, Jana andDas (2020) show a
significant effect of the pandemic in the Chinese market. Abuzayed et al. (2021) demonstrate
that the gradual surge in COVID-19 cases intensified spillovers in developed European and
North American markets. An empirical study by Bentes (2021) indicates that the persistence
of stock market volatility in G7 countries has not been uniform. In particular, while it was

123



Annals of Operations Research

Fig. 1 The COVID-19 crash versus the Global Financial Crisis (GFC) crash. Source The Conversation. Avail-
able at: https://theconversation.com/decryptage-pourquoi-les-bourses-nont-presque-pas-connu-la-crise-de-la-
covid-19-160936

imminently lower in the pre-pandemic regime, such persistence significantly increased dur-
ing the pandemic. Duan et al. (2021) develop two COVID-19 sentiment indices for China
based on textual data collated from official newsmedia and the SinaWeibo blogsite to predict
stock returns and turnover rates successfully. Liu et al. (2021) suggest that COVID-19 fear
sentiment exacerbated stock market crash risk in China, while Mensi et al. (2021) argue that
the COVID-19 pandemic induced strong spillover effects from US commodity markets to
stock markets in China. O’Donnell et al. (2021) strongly emphasize that inherent growth
in COVID-19 infections largely explained the changes in stock prices of six global stock
indices. Takyi and Bentum-Ennin (20201) use Bayesian methods to quantify the short-term,
medium to large impact of the COVID-19 pandemic on the stock market performance of 13
African countries. On the other hand, the empirical evidence shows that, unlike the global
financial crisis, some stock markets did not suffer a significant impact from the COVID-19
outbreak. For example, the French stock index (CAC 40) lost about 30% in March–April
2020, but gained more than 65% thereafter.

As Fig. 1 shows, it is apparent that COVID-19 news undoubtedly had detrimental effects
on financial markets across the world. Yet, despite a serious attempt to measure the influence
of the pandemic on stock markets, most of the abovementioned studies focus on the impact
of country-level, not global, market sentiment. Moreover, our study critically examines how
fear sentiments penetrate through various sectorial equity indices. Thus, the present research
aims to contribute to this literature gap by assessing the linkages between (US and global)
COVID-19newsondifferent industrial sectors in theUSduring thefirstwaveof the pandemic.

In order to investigate the influence of theCOVID-19outbreak, this paper aims at clarifying
the impact of COVID-19 on the US equity market. Interestingly, given that the COVID-19
crisis has had an impact that varies across sectors, we propose to carry out an analysis for
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20 sectorial equity indices, which might enable us to capture the effect of the COVID-19
outbreak on the wide spectrum of US business segments. These sectors have been chosen
to systematically gauge the impact of the pandemic on essential consumable items, logistic,
financial and real sectors, medical infrastructure, development, and internet services.1 This
is particularly relevant as the COVID-19 outbreak has had different effects that vary with
the sector under consideration. For example, the information and telecommunication sector
has shown a positive reaction to this outbreak in reasons of teleworking, online classes, and
meetings.

Further, from a methodological point of view, we apply two different but complementary
approaches to provide unbiased findings regarding the COVID-19 effects on the US equity
sectors. On the one hand, a Johansen co-integration test and a detrended cross-correlation
analysis (here forth, DCCA) are applied to investigate further co-movement between equity
prices and COVID-19 news; Also, a nonlinear Granger causality test is carried out to check
whether the COVID-19 fear-related components have had a lead-lag effect on the selected
equity sectors. On other hand, we apply two ensembleMachine Learning algorithms (i.e., the
gradient boosting and the random forest), which are especially designed to provide a concise
characterization of causality between COVID-19 news and equity indices.

Using daily data over the period January 1, 2020–March 20, 2020, our findings reveal
that, at an early stage of the outbreak, global fears had a significant effect on most secto-
rial equity indices and the Coronavirus stimulated the performance of a couple of sectors
(telecommunication, teleworking, etc.). However, as the pandemic gradually intensified its
footprint in the US, local fears became much more prominent and turned out to be the major
equity drivers.

The remainder of the paper is as follows. Section 2 briefly presents the data and preliminary
results. Section 3 describes the methodologies, while Sect. 4 analyses the main empirical
results. Finally, Sect. 5 concludes.

2 Data and preliminary analysis

We use daily COVID-19 infections data across the world and the US from January 1, 2020,
until March 20, 2020. These are denoted as Global Infections (GI) and Local Infections (LI),
respectively, and they are considered as proxies for global and local COVID-19 fears and
news. As for equity data, we rely on daily closing prices of 20 sectorial equity sectors of the
Dow Jones Industrial Average (here forth, DJIA) and the S&P 500 indices. These sectors,
which are reported in the first column of Table 1, encompass almost all major business
segments in the US, ranging from daily needs to high-end innovations.

To further deepen our analysis and provide significant insights, observations are portioned
into—(i) time horizon I (i.e., January 1, 2020 to January 31, 2020), during which local
infections are substantially lower than global infections; and (ii) time horizon II (i.e., February
1, 2020 to March 20, 2020), during which the number of both global and local infections
are significantly higher. These time horizons are denoted as TH-I and TH-II, respectively I,
Table 1.

Tables 1 and 2 report the main descriptive statistics of global and local infections, and
the considered equity sectors in TH-I and TH-II regimes, respectively. They reveal sev-
eral interesting insights. Mean and median figures show that daily local infections were

1 We restrict our study to the aforesaid sectors, as these are closely interlinked to livelihood and household
finance. Moreover, our work predominantly focuses on the impact of the first wave of the pandemic.
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Table 1 Descriptive statistics (TH-I period)

Mean Median Range Std. Dev Skewness Kurtosis

Global infections 463.05 18.50 2003 705.46 1.23 − 0.11376

Local infections 0.30 0.00 3 0.73 2.78 7.3795

Consumer goods 1290.80 1291.70 48.39 16.03 0.07 − 1.3699

Telecommunication 4275.40 4252.90 130.24 44.71 0.542 − 1.2751

Utility 3956 3922.80 301.33 116.18 0.28 − 1.5789

Transportation 65,351 65,319 1881.72 571.80 0.25 − 1.0283

Financial 1332.80 1330.70 38.17 11.20 0.29 − 0.93025

Customer service 1610.80 1612.20 45.89 12.72 − 0.44 − 0.52741

Bank 1092.60 1097.40 79.38 21.74 − 0.61 − 0.43451

Healthcare 1761.40 1754.50 59.07 19.46 0.47 − 1.2341

Internet commerce 1285.70 1288.90 83.87 24.41 − 0.45 − 0.81788

Internet service 310.31 312.50 22.86 6.63 − 0.72 − 0.65214

Energy 18.62 18.700 3.04 0.95 − 0.28 − 0.88391

Pharmaceutical 13,503 13,433 600.80 204.57 0.35 − 1.3666

Sustainability 1809.30 1807.30 48.59 14.80 0.18 − 1.1897

Space 362.05 363.41 24.79 6.44 − 1.23 1.0382

Auto 22,388 22,439 1308.24 353.57 − 0.67 0.0032091

IT 20,274 20,330 990.86 328.01 − 0.19 − 1.4542

Medical equipment 44,690 44,662 2222.79 642.39 0.00 − 1.0394

Agricultural 347.39 347.38 8.62 2.80 − 0.04 − 1.4752

Food and beverage 7584.20 7597.30 261.06 65.90 − 0.75 0.18175

Retail 5686.00 5689.70 198.33 53.86 − 0.45 − 0.35970

almost non-existent during the TH-I regime, despite reasonable global infections. However,
daily local infections saw a major increase during the TH-II regime alongside daily global
infections. By contrast, the means and medians of the 20 sectorial equity indices under con-
sideration experienced a substantial dip in the TH-II period compared to the TH-I period.

Additionally, the magnitude of the dispersion, range, and standard deviation has steadily
grown in the TH-II regime relative to the TH-I regime. Thus, it is apparent that owing to the
surge in local infections in the TH-II period, US financial markets started anticipating fears
reflected in the increase in risk and the lack of investors’ confidence and manifested through
dispersion statistics. Moreover, the Augmented Dickey-Fuller Test (ADF) test confirms that
all variables are non-stationary. Accordingly, we transform these series using a difference
filter to provide stationary series.2 Skewness and kurtosis metrics also suggest that sectorial
equity returns substantially deviate from the normal distribution in both periods.

2 For brevity, we do not provide the results of the unit root tests. However, these are available from the authors
upon request.
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Table 2 Descriptive statistics (TH-II period)

Mean Median Range Std. Dev Skewness Kurtosis

Global infections 6005.40 2837.00 33,529 8260.30 2.37 4.55

Local infections 593.44 4.50 7123 1628.80 3.08 8.14

Consumer goods 1225.50 1271.00 415.51 124.42 − 1.04 − 0.20

Telecommunication 4055.70 4168.40 1068.80 319.06 − 0.96 − 0.34

Utility 3885.80 4081.00 1382.84 390.20 − 1.26 0.33

Transportation 59,734 61,477 23,318.3 7386.50 − 0.89 − 0.49

Financial 1213.10 1273.60 537.64 175.57 − 0.90 − 0.57

Customer service 1514.40 1562.60 514.85 168.29 − 0.83 − 0.61

Bank 928.05 987.46 476.56 171.07 − 0.67 − 1.10

Healthcare 1657.30 1687.50 440.67 131.70 − 0.91 − 0.30

Internet commerce 1231.00 1273.30 447.17 139.48 − 0.92 − 0.42

Internet service 297.03 301.74 93.11 27.612 − 0.73 − 0.72

Energy 14.33 15.750 9.33 2.9103 − 0.96 − 0.98

Pharmaceutical 12,589 12,845 3546.10 1105.00 − 0.81 − 0.60

Sustainability 1723.70 1782.80 530.18 151.77 − 1.22 0.49

Space 326.46 344.77 155.84 51.152 − 0.99 − 0.40

Auto 20,143 21,099 7159.48 2029.80 − 0.86 − 0.32

IT 19,674 20,471 6241.55 1702.50 − 1.74 1.86

Medical equipment 41,595 42,482 13,178.45 4059.00 − 0.83 − 0.57

Agricultural 330.77 334.76 45.05 13.08 − 0.97 − 0.23

Food and BEVERAGE 6981.90 7146.90 1758.75 557.25 − 0.82 − 0.62

Retail 5017.40 5289.50 2288.63 731.79 − 0.99 − 0.40

3 Econometric methodology

Our proposed research framework, depicted in Fig. 2, features two major objectives. The
first one investigates the association between COVID-19 fears and the movement of sectorial
equity indices during TH-I and TH-II. This objective is achieved by carrying out the Johansen
co-integration test and estimating the DCCA (Detrended Cross-Correlation Analysis) coef-
ficients. The second objective is to evaluate the ability of global and local fears in explaining
(and forecasting) the future figures of chosen sectorial equities. To this end, we perform a
nonlinear Granger causality test, and we rely on two ensemble machine learning algorithms.
We briefly discuss hereafter these modeling steps.

3.1 The Johansen co-integration test

We start by conducting the Johansen co-integration test (Johansen, 1991) to ascertain the
co-movement between sectorial equity indices and global and local COVID-19 infections.
The test can be thought of as a generalization of the ADF test in a multivariate environment
that allows one to investigate the presence of unit roots in a linear combination of variables.
Thus, it is useful in comprehending the dynamics of the equilibrium relationships between
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Fig. 2 The proposed research framework

equity indices and COVID-19 fears. The outcome of the co-integration test provides key
insights on the co-movement pattern of underlying sectorial equity indices with global and
local daily infections during TH-I and TH-II regimes, which portrays an estimate of future
movements.

3.2 Detrended cross-correlation analysis (DCCA)

All time-series included in the analysis display a non-stationary dynamics. Thus, the deploy-
ment of traditional correlation measures may fail to reflect the true picture of the prevailing
association between the variables of interest. Literature reports successful usage of theDCCA
analysis proposed by Podobnik and Stanley (2008) in unearthing the interaction of non-
stationary time series (Li et al., 2021). It can also uncover the nature of cross-correlation at
different time lags.

The main rationale behind resorting to the DCCA framework in addition to the Johansen
co-integration test is to find the direction of the association, which can be positive or neg-
ative at different time horizons. Thus, the DCCA methodology is appropriate for decoding
the dynamic association structure of daily COVID-19 infections and sectorial equity indices
across the TH-I and TH-II regimes. Being based on detrended covariances, it is a generaliza-
tion of the detrended fluctuation analysis (DFA). Consequently, it can be used to investigate
the power-law cross-correlation between pairs of non-stationary time series.

In this context, we adopt the DCCA cross-correlation coefficient approach by Zebende
(2011), which extends the DCCA analysis. It is well-designed to measure the magnitude of
the association between global and local fears with the selected financial sectors.3

The DCCA cross-correlation coefficient is estimated as follows:

ρDCCA(s) � F2
DCCA(s)

FDFA
(
x1i

)
(s) ∗ FDFA

(
x2i

)
(s)

(1)

where FDCCA denotes the traditional fluctuation function derived from the DCCA analysis,
while FDFA represents the fluctuation function generated from DFA, and x1i and x2i denote
the two-time series under consideration. The ρDCCA(s) coefficient measures the amount

3 Although the Johansen’s co-integration test can also capture the nature of the (linear) association among the
variables under consideration, it is restricted to strictly point-to-point association measurement. By contrast,
the DCCA analysis can gauge the association structure at forward and backward lag directions.
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of cross-correlation at the selected time-scale s, and it ranges between -1 (perfect negative
association) to 1 (perfect positive association).

3.3 Nonlinear Granger causality test

The conventional Granger causality test can effectively capture linear causality and identify
linear lead-lag effects. Nonetheless, the test is unable to track nonlinear forms of causality.
As corroborated in Tables 1 and 2, we are dealing with a relatively small set of highly volatile
data observations. The presence of a linear causal structure is highly unlikely. Therefore,
we rely on the nonlinear Granger causality test that Diks and Panchenko (2006) propose,
which is capable of nonparametric modeling. The test is also robust to the problem of the
over-rejection of the null hypothesis (Hiemstra & Jones, 1994). However, despite being able
to detect bidirectional causal influences, we have deployed the test in a strictly unidirectional
framework to capture the causal impact of global and local COVID-19 daily infections on 20
US sectorial equity sectors. Thus, the inspection of causality allows us to infer the predictive
ability of fears owing to the first wave of the COVID-19 pandemic at local and global levels
for different US sectorial equity indices.

3.4 Machine learning approach

Two ensemble machine learning algorithms—gradient boosting (Friedman, 2001) and ran-
dom forest (Breiman, 2001)—are used to assess the impact of global and local COVID-19
fears on the selected equity sectors.4 Gradient boosting comprises a series of different learning
algorithms applied in a forward-stage wise manner to generate the final predictions (Schapire
& Singer, 1999). As for the random forest, it is another ensemble predictive modeling algo-
rithm that employs a series of regression trees as base learners for drawing the final prediction
(Breiman, 2001).

Although nonlinear Granger causality tests allow us to uncover the explanatory capability
of local and global COVID-19 fears, the machine learning approach employed in this paper
carries out a rigorous forecasting exercise to duly rationalize causality. Thus, we rely on
gradient boosting and random forest algorithms to yield one-day ahead estimates of closing
prices of 20 US sectorial equity indices using global and local daily COVID infections
as explanatory variables. We consider these forecasting exercises for both TH-I and TH-
II regimes to check whether the degree of predictability varies during the two sub-sample
periods. Daily global and local infections are chosen as the explanatory variables to separately
predict the underlying target variables. Additionally, one-day, two-day, three-day, four-day,
five-day, six-day, and seven-day lagged global and local infections are used as independent
variables to account for the effect of the last week of infections.5 Our simulations are carried
out using the ‘sklearn’ library of Python programming language wherein several hyper-
parameters like the number of base learners, learning rate, and the number of features for
branching operations are automatically set by the ‘GridSearchCV’ tool of the same library.

To elicit the predictive ability of both machine learning algorithms, we compute three per-
formance indicators, namely, the R-squared coefficient

(
R2

)
, the Nash–Sutcliffe Efficiency

4 The fundamentals of both algorithms are briefly mentioned in Appendix A.
5 Our simulations are carried out using the ‘sklearn’ library of Python programming language wherein several
hyper-parameters like the number of base learners, learning rate, and the number of features for branching
operations are automatically set by the ‘GridSearchCV’ tool of the same library.
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(NSE), and the index of agreement (IA):

R2 �
∑N

t�1

{
Ŷt − Yt

}2

∑N
i�1

{
Yt − Yt

}2 (2)

NSE � 1 −
∑N

t�1

{
Yt − Ŷt

}2

∑N
i�1

{
Yt − Yt

}2 (3)

T I �
[
1
N

∑N
t�1

(
Yt − Ŷt

)2]1/2

[
1
N

∑N
i�1

(
Ŷt

)2]1/2
+

[
1
N

∑N
i�1 (Yt )2

]1/2 (4)

where Yt , Yt , and Ŷt denote actual observations, their average, and their predicted values,
respectively. For an effective predictive model, the values of both R2 and NSE should be
close to 1, while the T I figures should be minimum.

4 Empirical analysis

4.1 Results of co-integration test

To evaluate the co-movement pattern between the US sectorial equity indices and global and
local COVID-19 infections, we start by applying the Johansen Co-integration test to both
regimes (see Table 3).6

During the TH-I period, the global fear is co-integrated with 11 equity sectors, namely,
auto, bank, consumer service, food and beverages, healthcare, IT, medical equipment, phar-
maceutical, retail, transportation, and utility. Barring the auto sector, local infections in theUS
are also co-integratedwith those ten equity sectors. Yet, consumer goods, telecommunication,
financial, internet commerce, internet service, energy, sustainability, space, and agricultural
sector fail to display statistically significant co-movements with the inherent scare owing to
the number of global and local infections.

As the co-integration test hints at a long-run relationship, sectorial indices identified as
co-moving with both global and local infection rates should exhibit the same behavioral
pattern in the TH-II regime. However, the test indicates that all equity sectors significantly
co-move with both global and local COVID-19 fears. Indeed, the sectors that did not exhibit
co-integrated patterns in the TH-I regime appear to be interconnected with both global and
local spread of infections during the TH-II period. Thus, with the increase in new infections,
the underlying sectors seem to be moving in accordance with the inherent outbreak fears.

At this stage, we note that the Johansen co-integration test cannot identify the dynamic
direction of the co-movement. As a result, we test whether global and local COVID-19 fears
have a positive or a negative impact on sectorial equity performance using theDCCAanalysis.

4.2 Results of DCCA

The DCCA enables us to identify lead-lag relationships, that is, the. the nature of the asso-
ciation among the variables of interest and how it evolves forward and backward. Thus, the

6 The optimal lag length of the Johansen co-integration test is set to 2, as based on the Akaike Information
Criteria (AIC).
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Table 3 Johansen’s co-integration test

Sector TH-I period TH-II period

Global infections Local infections Global infections Local infections

Consumer goods ✗ ✗ ✓ ✓

Telecommunication ✗ ✗ ✓ ✓

Utility ✓ ✓ ✓ ✓

Transportation ✓ ✓ ✓ ✓

Financial ✗ ✗ ✓ ✓

Consumer service ✓ ✓ ✓ ✓

Bank ✓ ✓ ✓ ✓

Healthcare ✓ ✓ ✓ ✓

Internet commerce ✗ ✗ ✓ ✓

Internet service ✗ ✗ ✓ ✓

Energy ✗ ✗ ✓ ✓

Pharmaceutical ✓ ✓ ✓ ✓

Sustainability ✗ ✗ ✓ ✓

Space ✗ ✗ ✓ ✓

Auto ✓ ✗ ✓ ✓

IT ✓ ✓ ✓ ✓

Medical equipment ✓ ✓ ✓ ✓

Agricultural ✗ ✗ ✓ ✓

Food and beverage ✓ ✓ ✓ ✓

Retail ✓ ✓ ✓ ✓

✓ indicates the presence of co-integration, while ✗ denotes absence of co-integration

deployment of DCCA provides additional insights on top of the pointwise co-movement
pattern detected by the Johansen’s co-integration test.

Table 4 reports the estimated DCCA coefficients computed for a time window of 3 days.
They imply that global COVID-19 fears are weakly positively associated with Financial,
Internet commerce, Internet service, IT, sustainability, transportation, and utility sectors.
Thus, during the first pandemic wave, these sectors remained relatively immune to fears
associated with new infections reported globally. By contrast, the Pharmaceutical sector
displayed a relatively strong and negative association with global fears, followed by the
food and beverage sector. Therefore, the penetration of COVID-19 fears on the selected
business segments remained mostly mild during the month of January 2020 (i.e., the TH-I
period). These results are relevant as they point to further heterogeneity in the transmission
of COVID-19 into financial sectors.

A different characterization of the empirical evidence is observed between February 1 and
March 20, 2020 (i.e., the TH-II period). Indeed, for all sectors, the impact of both global and
local COVID-19 fears prevailed as negative, and with substantially higher magnitudes than
in the TH-I period. In particular, auto, retail, and space sectors emerged as the sectors sharing
the strongest negative relationship with global fears, while the auto, IT, and retail sectors
stroke as those with the largest vulnerability to local fears. Hence, the auto sector was the
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Table 4 Estimates of DCCA coefficients

Sector TH-I period TH-II period

Global infections Local infections Global infections Local infections

Consumer goods − 0.0858 0.0295 − 0.5673 − 0.2866

Telecommunication − 0.0916 0.1220 − 0.5226 − 0.2402

Utility 0.2866 0.2579 − 0.5639 − 0.2408

Transportation 0.2701 0.3850 − 0.5437 − 0.2530

Financial 0.0556 0.1180 − 0.5920 − 0.2931

Consumer service − 0.0385 0.2608 − 0.5550 − 0.2664

Bank − 0.1783 − 0.1826 − 0.5626 − 0.2701

Healthcare − 0.2563 0.2039 − 0.5047 − 0.1959

Internet commerce 0.0975 0.2604 − 0.5536 − 0.2506

Internet service 0.1744 0.0973 − 0.5049 − 0.1829

Energy − 0.0028 0.1326 − 0.5024 − 0.2458

Pharmaceutical − 0.4923 0.3867 − 0.5557 − 0.2220

Sustainability 0.0297 0.0090 − 0.2324 − 0.1751

Space − 0.0354 0.0537 − 0.6434 − 0.3647

Auto − 0.2019 − 0.0262 − 0.7146 − 0.4735

IT 0.1671 − 0.2043 − 0.6832 − 0.4371

Medical equipment − 0.1884 − 0.2833 − 0.4834 − 0.1580

Agricultural − 0.0354 0.3741 − 0.3271 − 0.1695

Food and beverage − 0.3247 0.2813 − 0.6078 − 0.3238

Retail − 0.2812 0.2626 − 0.6529 − 0.3765

Cross-correlations are estimated with a window of 3 days

most negatively hit byCOVID-19 fears. This can also be explained by the restrictivemeasures
of social distancing, teleworking, and lockdown programs imposed by several governments.

Overall, the empirical evidence corroborates the view that when both global and local
fears of COVID-19 were relatively low during the first pandemic wave, their impact on
equity markets was somewhat muted. However, as global fears mounted, they appear to have
spilled to local fears, thus, dramatically shaping the dynamics of sectorial equities in the US.

4.3 Results of nonlinear Granger causality test

To infer the (potential) nonlinear links between global and local COVID-19 fears and sectorial
equity indices, we also conduct a nonlinear Granger causality test. This test is particularly
relevant to assessing asymmetry, nonlinearity, and complexity in these relationships. Table 5
summarizes the outcome of the causal inspection.

Our findings show that, during the TH-I period, the consumer goods, pharmaceuticals,
telecommunication, and utility sectors were affected by both fear components. Five sectors
namely, healthcare, energy, sustainability, IT, and medical equipment turned out to be sensi-
tive to global fears. Thus, it can be inferred that shocks emanating from the menacing world
outbreak would immediately affect these five sectors. Hence, the degree of efficiency of the
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Table 5 Nonlinear Granger causality tests

Sector TH-I period TH-II period

Global infections Local infections Global infections Local infections

Consumer goods ✓ ✓ ✓ ✓

Telecommunication ✓ ✓ ✓ ✓

Utility ✓ ✓ ✓ ✓

Transportation ✗ ✓ ✓ ✓

Financial ✗ ✗ ✓ ✓

Consumer service ✗ ✗ ✓ ✓

Bank ✗ ✗ ✓ ✓

Healthcare ✓ ✗ ✗ ✓

Internet commerce ✗ ✗ ✓ ✓

Internet service ✗ ✗ ✗ ✓

Energy ✓ ✗ ✓ ✓

Pharmaceutical ✓ ✓ ✓ ✓

Sustainability ✓ ✗ ✓ ✓

Space ✗ ✗ ✓ ✓

Auto ✗ ✗ ✓ ✓

IT ✓ ✗ ✓ ✓

Medical equipment ✓ ✗ ✓ ✓

Agricultural ✗ ✗ ✓ ✓

Food and beverage ✗ ✗ ✓ ✓

Retail ✗ ✗ ✓ ✓

✓ indicates the presence of nonlinearGranger causality,while✗ denotes absence of nonlinearGranger causality

equity sectors under investigation is not uniform, as some are more susceptible to react to
the arrival of new information than others.

Additionally, the causal structure has undergone a drastic change in the TH-II period.
Indeed, all sectors turned sensitive to local fears and, with the exception of healthcare and
internet service, they also became responsive to global fears. Thus, with a surge in the
number of COVID-19 infections, the local fear component intensified, affecting almost all
equity sectors.

In order to better assess for these interactions between global, local COVID-19 news and
sectorial equity indices, we apply aMachine Learning approach. This approach is particularly
helpful to measure the causal penetration of COVID-19 fears in the US financial markets.

4.4 Results of machine learning tests

Gradient boosting and random forest algorithms are applied for predictive modeling. We
segregate the data for bothTH-I andTH-II periods into training (80%) and test (20%) sets. The
predictive performance is evaluatedusing thedetermination-squared

(
R2

)
, theNash–Sutcliffe

Efficiency (NSE), and the index of agreement (IA) (Ghosh et al., 2019; Jana et al., 2020,
2021).
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Tables 6 and 7 report the predictive performance of gradient boosting and random forest,
respectively. The performance of gradient boosting and the random forest is similar. They
show the explanatory capability of global and local fears of COVID-19 during the TH-I
and TH-II periods. In particular, the results suggest that the overall predictive performance
of global and local infections is not impressive during the early phase of the COVID-19
pandemic (i.e., the TH-I period). Equity movements of consumer goods, energy, pharmaceu-
tical, and utility sectors are effectively explained by global infections. However, global fears
perform poorly in explaining the dynamics of auto and space equities. These two sectors
are also the least sensitive depending on the local fear as well. Moreover, local infections
fail to significantly capture equity sector movements except, to some extent, those of the
pharmaceutical sector. Thus, during the early stage of the outbreak, most of the US equity
sectors remained largely unaffected by COVID-19 fears.

In the TH-II period, though, the predictive performance has considerably improved, as
witnessed by the rise in the R2 statistic and the fall in the IA index. Indeed, retail, consumer
goods, consumer service, and space are the top four sectors that are effectively predicted by
global infections, whereas auto, IT, retail, and space sectors are forecasted by local infections.
Consequently, the performance indicators suggest that local fears became more prominent
in driving the US equity markets from February 2020 onwards.

Additionally, it can be inferred that during the TH-I regime, the degree of efficiency of
the underlying sectors played a significant role in the forecast accuracy. Local infection rates
were too weak to govern the dynamics of those equity sectors. Pharmaceutical and consumer
Goods have emerged to be relatively better explained by the local fear component compared
to other sectors. Thus, these US sectors appear to be more dependent on local demand. Auto,
space, food and beverage, retail, and agriculture remained immune to global and local fears
throughout the TH-I phase. Nevertheless, the equity performance of these sectors was highly
predictable in the TH-II phase. This is largely due to the fact that no curbs were initially
imposed on manufacturing and retailing operations in the initial phase of the COVID-19
infection footprint. Subsequently, lockdowns, logistic deadlocks, and supply chain disrup-
tions have severely influenced these activities. Such high prediction accuracy during the
second sub-sample period reflects the gradual downfall pattern, which our framework cap-
tures particularly well.

Finally, this characterization of the empirical evidence is confirmed by the Diebold and
Mariano (2002) paired comparison test (hereforth, DM) reported in Table 8. The DM test
performs a (paired) comparative predictive analysis for which it is essential to set the order of
the pair constituents. Thus, the order of the variables used in the comparison of the predictive
ability of global and local infections during the TH-I and TH-II regimes has beenmarkedwith
an index number in parenthesis. To the extent that the test statistic is significantly positive,
then, the variable indicated by the number 2 in parenthesis displays stronger predictive
ability than the variable marked by the number 1. By contrast, when the test statistic is
significantly negative, the variable marked with the number 1 in parenthesis exhibits larger
forecasting power than the variable market with the number 2. Our results clearly show that
the significance level and the sign of the test statistic indicate that the explanatory ability
of global infections is superior to that of local infections during the TH-I period. However,
local infections do not outperform global infections during the TH-II period. Additionally,
the predictive ability of global and local infections is significantly more powerful during the
TH-II period than the TH-I period.

The economic and practical implications of these findings are meaningful. As predictabil-
ity statistically improved with the intensification of the pandemic, there is a marginal scope
for hedging. On the one hand, business verticals that are highly interlinked with local demand
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can benefit from effective strategic management. On the other hand, sectors that rely on exter-
nal demand (thus, exports) for a major crunch of revenue may continue to suffer from the
ongoing pandemic. The improvement in overall predictability in the TH-II regime indicates
a deeper penetration of COVID-19 fears in the USmarket and a higher dependence on global
and local infections. This financial markets’ reaction was expected considering the timeline
of the first wave unfolding and the gradual fall in the influence of other macroeconomic
variables. As for the TH-I phase, it showed a marginally stronger resilience vis-à-vis daily
infections, suggesting that other factors might be at play. In this context and given the novelty
of the COVID-19 news’ effects, the forecasting outperformance of daily and local infections
in the TH-II period is unlikely to reflect a somewhat less efficient asset price discovery pro-
cess compared to the TH-I period. Indeed, if anything, investors should have been able to
exploit larger abnormal returns in the TH-I period than in the TH-II period in light of the
unprecedented circumstances. Thus, such outperformance should capture the pure effect of
daily and local infections on the dynamics of financial markets, which investors started to
factor in more heavily in the TH-II period.

5 Conclusion

Weassess the penetration of the firstCOVID-19wave in theUSequitymarket via econometric
andmachine learning approaches and usingworld andUSdaily infection counts as proxies for
global and local COVID-19 fears over January 1, 2020–March 20, 2020. We show that, at an
early stage of theCOVID-19 outbreak in January 2020, local fears had little penetration across
different sectors of US equity markets, while with the steep increase in daily US infections
since February 2020, local fears became much more prominent. In fact, the application of the
Johansen co-integration test and the DCCA analysis has successfully decoded the nature of
the dynamic interplay. In contrast, nonlinear Granger causality tests and a machine learning
modeling successfully expounded the predictive ability of global and local COVID-19 fears.

Some sectors, which were comparatively more exposed and sensitive to cross-country
trade (e.g., auto, consumer goods, pharmaceuticals, and space), appeared to be the main
recipients of spillovers from the global pandemic outbreak in January 2020. Manufacturing
sectors like auto, space, and sectors serving daily needs (e.g., food and agriculture, beverage,
and retail) were less sensitive to uncertainty owing to the initial outbreak. As new infections
in the US eventually increased from February onwards, clear evidence of fear havocking the
market becomes apparent. During this period, the surge in infections affected all sectors to a
large extent. The rise in local infections exhibited significantly more penetration capability
than global infections. Not surprisingly, we uncover a significant long-run co-movement,
which is corroborated by the persistence of the prevailing situation over time. That is, while
growing fears among investors were expected, our study clearly reveals that the structure of
association is mostly negative. In particular, we show that equity sectors that are more reliant
on domestic demand (e.g. consumer goods or pharmaceuticals) survived the initial onslaught
of the COVID-19 pandemic (action plans and strategies to revamp sectors accordingly in
new normal).

In this context, regulations may be framed to minimize the effects on other sectors before
the local outbreakhappens.Thus, it is extremely important to observe the timegapbetween the
surge in global and local fears. It critically provides awindowof opportunity for policymakers
to take necessary measures to avoid financial market crashes and economic slumps. In this
context, our research can be leveraged for practical policy formulation to combat such global

123



Annals of Operations Research

catastrophic events. Finally, we stress that the scope of our study is restricted to the US
equity market and confined to the first wave of the COVID-19 pandemic. Thus, it would
be interesting to check the differences in behavioral patterns of US sectorial equity indices
associated with COVID-19 news in the first and second waves. It is also possible to expand
the geographical coverage to ascertain the influence of the pandemic in other developed and
emerging economies. Investigating the penetration of COVID-19 fears over a longer period
could also help discover the time frame and conditions associated with a significant reduction
of the adverse pandemic effects.

Funding NIPE’s work is financed by the National Funds of the FCT—Portuguese Foundation for Science
and Technology within the project "UIDB/ECO/03182/2020".

Appendix A

Ensemblemachine learning

The algorithms associated with the two ensemble machine learning algorithms, i.e. the gra-
dient boosting (Friedman, 2001) and the random forest (Breiman, 2001) are described below.

Gradient boosting

The gradient boosting is a variant of the classical boosting algorithm that mimics the same
principle of identifying training samples via the determination of gradient-driven error rates.
Classical regression trees are used as base learners for carrying out the learning operation in
each stage sequentially in a forward direction.

The steps of the algorithm are as follows:
Step 1. For T training samples {(x1, y1), (x2, y2), . . . , (xT , yT )} in set S, initialize 1/d as

the weight of each sample, where d is the cardinality of S.
Step 2. For the base learner i, execute the following:
Step 2.1. Bootstrapped samples are picked to form the training set, Si.
Step 2.2. Training the modelMt using Si.
Step 2.3. Compute the error of Mt , Err(Mt) � ∑T

i�1 p
t
isign(||ht(xi) − yi||−�), where

ht(xi) is the predicted value of i-th sample by t-th modeler, yi is the actual response of the

i-th sample, � is a real number, and pti � wt
i∑T

i�1 w
t
i
, wt

i is the weight of i-th sample for t-th

modeler.
Step 2.4. Repeat steps 2.1-2.3, if the error is greater than 0.5; else, perform step 2.5.
Step 2.5. Update weights of each sample in Si.
Step 2.6. Normalize the weights.
Step 3. Compute each base learner’s accuracy.
Step 4. Obtain the final prediction from the weighted outcomes of the base learners.*

Random forest

In the random forest, decision trees are constructed based on a randomly selected subset of
the training dataset. At each node of the chosen tree, the best feature for splitting the operation
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is identified based on a randomly selected subset of features. The steps of the algorithm are
mentioned below:

Step 1. Draw a bootstrapped sample from training data.
Step 2. For each sample, build a regression tree. At each node of the tree:
Step 2.1. Randomly select a subset of features from all available features.
Step 2.2. Identify the best feature.
Step 2.3. Continue until the tree is fully grown.
Step 3. Generate the final prediction.
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