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Abstract
This paper explores the effectiveness of predictors, including nine economic policy uncer-
tainty indicators, four market sentiment indicators and two financial stress indices, in
predicting the realized volatility of theS&P500 index.Weemploy theMIDAS-RVframework
and construct the MIDAS-LASSO model and its regime switching extension (namely, MS-
MIDAS-LASSO). First, among all considered predictors, the economic policy uncertainty
indices (especially the equity market volatility index) and the CBOE volatility index are
the most noteworthy predictors. Although the CBOE volatility index has the best predictive
ability for stock market volatility, its predictive ability has weakened during the COVID-19
epidemic, and the equity market volatility index is best during this period. Second, the MS-
MIDAS-LASSO model has the best predictive performance compared to other competing
models. The superior forecasting performance of this model is robust, even when distin-
guishing between high- and low-volatility periods. Finally, the prediction accuracy of the
MS-MIDAS-LASSOmodel even outperforms the traditional LASSO strategy and its regime
switching extension. Furthermore, the superior predictive performance of this model has not
changed with the outbreak of the COVID-19 epidemic.

Keywords Volatility forecasting · MIDAS-RV · LASSO · Regime switching · Predictors ·
COVID-19

JEL classification C22 · C53 · C58 · Q43 · G17

1 Introduction

Financial market volatility is not only a key factor in assessing the risk of financial assets
(see, e.g., Wang et al., 2015; Bee et al., 2016; Clements & Liao, 2017; Li & Wei, 2018;
Ji et al., 2021) but also an important parameter in the pricing of financial derivatives and
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asset allocation (Graham & Harvey, 1996; Zhu & Ling, 2015), as well as an important factor
in portfolio management (Ayub et al., 2015; Cederburg et al., 2020). Therefore, accurately
predicting the volatility of the stock market is particularly important for investors when
deciding on the sizes and timing of their investments.

Despite the many benefits of accurately predicting stock market volatility, improving pre-
dictive accuracy has proven challenging. First, the diversity of potential predictors poses a
great challenge to the selection of predictors. For example, studies have determined the predic-
tive abilities of macroeconomic and financial variables for stock market volatility (Nonejad,
2017; Paye, 2012). In recent years, with the introduction of economic policy uncertainty
indices, some studies have also determined the predictive power of some economic policy
uncertainty indicators (e.g., the economic policy uncertainty index, trade policy uncertainty
index, monetary policy uncertainty index, equity market volatility index and geopolitical risk
index) relative to stock market volatility (Alqahtani et al., 2020a; Gupta & Wohar, 2019; Li
et al., 2020a; Olasehinde-Williams, 2021; Paye, 2012; Yu et al., 2018). In addition, studies
have found evidence that the stock market can be driven by investors’ psychology (Daniel
et al., 2002; Tseng, 2006) and determined the predictive power of some market sentiment
indicators (see, e.g., Gupta et al., 2014; Perez-Liston et al., 2014; Oliveira et al., 2017; Jin
et al., 2020; Liang et al., 2020a; Wang et al., 2020a). Other indicators, such as financial stress
indices, have also been proven to have potential forecasting ability (Gupta et al., 2014; Singh,
2016; Sum, 2014). The predictive abilities of these potential predictors tend to change with
changes in various external factors, making it more difficult to find stable predictors.

Additionally, it is not appropriate to consider only one predictor and ignore the valid
information contained in other potential predictors; however, using a model with multiple
predictors leads to the problem of identification and/or convergence (Asgharian et al., 2013;
Li et al., 2020b). To solve these problems, some studies have used the key information
from multiple variables extracted by dimensionality reduction methods, such as principal
component analysis (PCA) and partial least-squares regression analysis (PLS) technology, to
construct a forecasting model for achieving information integration (Asgharian et al., 2013;
Cepni et al., 2019; Poncela et al., 2011), and they have discovered the ability of PCA- and
PLS-based prediction methods to improve the accuracy of volatility prediction. In addition,
forecast combination methods can also be used as information integration methods, and such
approaches have been proven to be helpful for producing accurate and stable forecasts (Liang
et al., 2020b; Paye, 2012; Yang et al., 2015; Zhang et al., 2020). In recent years, with the rapid
increase in computing power and the emergence of big data, machine learning techniques
have gained wide attention and application in the field of financial prediction. For example,
Ma et al. (2018) and Zhang et al. (2019b) employed the least absolute shrinkage and selection
operator (LASSO)method to forecast crude oil volatilitywith a large set of predictors, finding
that the out-of-sample forecasting performance of LASSO is significantly better than that of
models with individual predictors and combination approaches. Other studies have proven
the superior forecasting effect of LASSO technology (Ng, 2013; Siliverstovs, 2015), and
LASSO is also the focus of this paper.

In summary, finding the predictors with the most predictive power for stock market price
volatility and forecasting methods that can better utilize the forecasting information from
multiple predictors is of great importance to scholars, investors and policy makers. For these
considerations, this paper focuses on finding themost powerful predictor from a large number
of potential predictors, and explores the role of some newly constructed forecasting methods
in improving the forecasting accuracy of stock market volatility by making full use of the
forecasting information from a large number of potential predictors.
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In terms of potential predictors, researches have shown that economic policy uncertainty
indicators, market sentiment indicators and financial stress indices tend to contain richer and
more interesting information than traditional macroeconomic (GDP, CPI, etc.) and financial
variables (exchange rate, treasury bonds, etc.) (Asgharian et al., 2013; Gupta et al., 2014;
Li et al., 2020b; Wei et al., 2017). Meanwhile, existing studies have also identified the
advantages of economic policy indicators, market sentiment indicators and financial stress
indices in volatility forecasting (Asgharian et al., 2013; Gupta et al., 2014; Li et al., 2020b;
Wei et al., 2017). So, we refer to the work of Gupta et al. (2014) and forecast the US stock
market volatility with economic policy uncertainty indicators, investor sentiment indicators
and financial stress indices.

Refer to the existing literatures, we finalized the potential predictors included in the three
categories of indicators. The economic policy uncertainty indicators considered in this paper
include: (1) Global economic policy uncertainty index (GEPU); (2) US economic policy
uncertainty index (EPU); (3) US monetary policy uncertainty index (MPU); (4) US trade
policy uncertainty index (TPU); (5) US health care uncertainty index (HCU); (6) US equity
market volatility index (EMV); (7) US infectious disease equity market volatility tracker
(IDEMV); (8) Geopolitical risk index (GPR); and (9) US economic uncertainty related
queries (EURQ). The market sentiment indicators considered in this paper include: (10)
The CBOE volatility index (VIX); (11) ISEE sentiment index (ISEESI); (12) News senti-
ment index (NSI); and (13) US AAII retail investor sentiment index (AAII). The financial
stress indices considered in this paper include: (14) The financial stress index provided by
the Office of Financial Research (OFRFSI); (15) The financial stress index provided by St.
Louis Fed. (STLFSI). All of these indicators are proved in the existing literatures to have
significant impact on the price volatility of stock market, indicating that although not all of
these indicators are directly related to the stock market, they all contain the important infor-
mation that is significant enough to influence the stock market price volatility (Alqahtani
et al., 2020b; Arouri et al., 2016; Bai et al., 2021; Bekaert & Hoerova, 2014; Das et al., 2019;
Dua & Tuteja, 2016; Gupta et al., 2014; He et al., 2021a; Liang et al., 2020a; Piñeiro-Chousa
et al., 2022; Smales, 2017; Wang et al., 2020a; Wen et al., 2022; Yang & Yang, 2021; Yu
et al., 2018). Economic policy uncertainty indicators other than EMV and IDEMV capture
the level of macroeconomic uncertainty caused by different types of economic policies or
major events (Baker et al., 2016; Caldara & Iacoviello, 2018; Husted et al., 2018). In general,
the release of economic policies or the occurrence of major events often lead to stock market
price volatility by affecting real economic conditions (Al-Awadhi et al., 2020; Alqahtani
et al., 2020b; Arouri et al., 2016; Bai et al., 2021; Bontempi et al., 2021; He et al., 2021a;
Hoque & Zaidi, 2019; Megaritis et al., 2021; Wen et al., 2022; Yang & Yang, 2021; Yang
et al., 2021), so exploring the predictive power of different economic policy uncertainty indi-
cators is helpful for distinguishing the role of macroeconomic uncertainty caused by different
types of economic policies or major events in driving stock market price volatility. Market
sentiment is also closely related to stock market price volatility because it can reflect the
investment intentions or expectations of market participants. It affects investors’ subjective
judgment of their future returns, which in turn affects their investment behavior and ulti-
mately causes stock market price volatility (Bekaert & Hoerova, 2014; Liang et al., 2020a;
Oliveira et al., 2017; Perez-Liston et al., 2014; Shapiro et al., 2020). Financial markets are
necessarily interconnected, so stock market price volatility is also subject to the stress of the
whole financial market (Das et al., 2019; Gupta et al., 2014; Singh, 2016; Sum, 2014), this
is also why we examined the predictive power of FSIs on stock market volatility.

Although the out-of-sample forecasting ability ofmost of these indicators for stockmarket
volatility have been discussed by literatures (Alqahtani et al., 2020a; Gupta & Wohar, 2019;
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Gupta et al., 2014; Li et al., 2020a; Liang et al., 2020a; Olasehinde-Williams, 2021; Paye,
2012; Wang et al., 2020a; Yu et al., 2018), from the existing literatures, indicators that
have significant impact on stock market volatility may not have appreciable out-of-sample
predictive ability since different indicators usually impact the stock market price volatility
with different intensities and paths (Liang et al., 2020a; Liu & Wang, 2020; Nonejad, 2017;
Wang et al., 2020b). Meanwhile, some indicators, such as HCU and IDEMV, tend to have
stronger impact on stock market volatility only because of the occurrence of certain events
(e.g., COVID-19) (Bai et al., 2021; Li et al., 2020c). These are also why the out-of-sample
predictive power of some of the potential predictors considered in this paper, i.e. HCU,
IDEMV and EURQ, on stock market volatility has not yet been discussed.1 Besides, it also
means that the predictive power of some of the potential predictors selected in this paper may
not be robust. So, it is of certain implication for scholars and stock market participants to
explore the role of some newly constructed forecasting methods in improving the predictive
accuracy of stock market volatility by making full use of the predictive information of a
large number of potential predictors. Considering that combination forecasting methods,
dimensionality reduction methods and LASSO techniques are widely used in the studies
about forecasting asset volatility with a large number of potential predictors, this paper also
focus on comparing the role of these methods in improving the forecasting accuracy of stock
market volatility. However, different from the existing literatures, we mainly compare the
forecasting performance of these methods in the framework of MIDAS-RV model.

For years, several models including GARCH-class models, HAR-RV models and neural
networks etc. are widely used in predicting the volatility of financial assets (Bekaert &
Hoerova, 2014; Corsi, 2009; Litimi et al., 2019; Ma et al., 2019; Santos & Ziegelmann,
2014; Tian et al., 2017; Wang et al., 2020b; Yang et al., 2021). Among them, the HAR-
RV model is the most commonly used in high-frequency realized volatility forecasting (Ma
et al., 2019; Santos & Ziegelmann, 2014; Tian et al., 2017). However, different from most of
these literatures, we mainly use the MIDAS-RV model and its several extensions to forecast
stock market volatility. This paper is related to the work of Liu et al. (2020), who forecasted
the monthly stock market volatility with macroeconomic and financial variables, as well as
technical indicators using the AR based combination forecasting methods, dimensionality
reductionmethods and LASSO techniques. In contrast, we explore the abilities of 9 economic
policy uncertainty indicators, 4 market sentiment indicators and 2 financial stress indices to
predict daily stock market realized volatility. Besides, we construct aMIDAS-LASSOmodel
by combining the LASSO technique with the MIDAS-RV method, in reference to Marsilli
(2014), and compare its out-of-sample prediction performance with that of the MIDAS-RV-
X model (the MIDAS-RV model extended by an additional predictor X), MIDAS-RV-PCA
model (the MIDAS-RV model extended by PCA technology), MIDAS-RV-PLS model (the
MIDAS-RV model extended by PLS technology) and some commonly used combination
forecast methods (the mean, median, trimmed mean, DMSPE(1.0) and DMSPE(0.9), DMA
and DMS). However, studies have found that a model with regime switching can be more
efficient in forecasting asset volatility (Tian et al., 2016; Uddin et al., 2018; Wang et al.,
2016b) than a model without regime switching, making us curious whether the MIDAS-
LASSO model with regime switching can also improve the prediction accuracy for stock
market volatility to a greater extent. Therefore, we further build a MIDAS-LASSO model
with a Markov regime (MS-MIDAS-LASSO) and evaluate its prediction performance.

1 The forecasting ability of EURQhave not been discussedmainly because it is a newly constructed uncertainty
index (Bontempi et al., 2021).
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Our main reasons for constructing these extension models on the basis of the MIDAS-RV
model are as follows. First, compared with the widely used HAR-RV model, the MIDAS-
RV model can better reflect heterogeneity because the estimation process of the MIDAS-RV
model primarily utilizes a specific function to determine theweights of themulti-order lagged
RV series, while the HAR-RV model directly calculates the equally weighted average of the
1-week lagged and 1-month lagged RV series (Ghysels et al., 2006; Lu et al., 2020; Santos
& Ziegelmann, 2014). Second, modelling asset volatility using the MIDAS-RV model and
its extensions can better reflect the multi-order lagged effects of potential predictors on high-
frequencyvolatilitywith fewer parameter estimates than theHAR-RVmodel, and is less prone
to overfitting problems (Ghysels et al., 2006; Lu et al., 2020; Santos & Ziegelmann, 2014).
Thirdly, studies have proved that the MIDAS-RV model can obtain more valid prediction
information from predictors and has better prediction performance than the widely used
HAR-RV model (Ma et al., 2019; Santos & Ziegelmann, 2014). Finally, as far as we know,
there is no research that predicts stock market realized volatility by the MIDAS-LASSO
model and its regime switching extension.

To seek the best predictors and forecasting method, we evaluate the absolute and rela-
tive forecasting performance of the models described above by various assessment methods,
including themodel confidence set (MCS) test, out-of-sample R2, direction-of-change (DoC)
test, portfolio performance analysis andCumMSEdifference analysis. In addition, the robust-
ness of the evaluation results is checked by using an alternative benchmarkmodel, alternative
lag, and alternative rolling window.We also conduct some extension analyses. First, we com-
pare the forecasting performance of the MIDAS-LASSO framework proposed in this paper
(the MIDAS-LASSOmodel andMS-MIDAS-LASSOmodel) to that of the traditional HAR-
LASSO framework (the HAR-LASSO model and MS-HAR-LASSO model). In addition,
we explore the forecasting performance of the forecasting methods during high- and low-
volatility periods. Finally, we also discuss the forecasting performance of the forecasting
models during COVID-19.

In summary, this paper contributes to the extant literature in the following aspects. First,
we comprehensively explore the predictive power of economic policy uncertainty indicators,
market sentiment indicators and financial stress indices with respect to the realized volatility
of US equity markets. Second, we forecast the realized volatility of the stock market by
some MIDAS-RV extensions. In particular, we construct the MIDAS-LASSO model and its
regime switching extension, which, to our knowledge, have not yet been used in the literature
to forecast daily stock market realized volatility. Third, we further compare the prediction
performance of our MIDAS-LASSO framework with that of the traditional HAR-LASSO
framework. Finally, we discuss whether these forecasting models remain valid during high-
and low-volatility periods and during COVID-19.

Some noteworthy findings are obtained in this paper. First, compared to the financial
stress indices and the market sentiment indicators (except for the VIX), the economic policy
uncertainty indicators (especially the EMV) and the VIX are more noteworthy. Among these
predictors, VIX has the best predictive ability, but its predictive power has weakened during
the COVID-19 epidemic, making EMV the best predictor during this special period. The
financial stress indices and the market sentiment indicators except for VIX mainly play a
role in enhancing the accuracy of stock market volatility in periods of low volatility. Second,
across all considered forecasting methods, MS-MIDAS-LASSO has the best out-of-sample
forecasting performance, followed by the MIDAS-LASSO model. The forecasting accuracy
of the MS-MIDAS-LASSO model even outperforms the traditional HAR-LASSO model
and its regime switching extension. In addition, the MS-MIDAS-LASSO model still has the
highest prediction accuracy during the low-volatility period when the prediction accuracy
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of the MIDAS-LASSO model is significantly reduced. Finally, the predictive performance
of the MS-MIDAS-LASSO model remained the best, even during the special period of the
COVID-19 epidemic.

The remainder of the paper is organized as follows. Section 2 describes the related fore-
casting models. Section 3 summarizes the data utilized in this paper. Section 4 discusses
the results of out-of-sample forecasts. Section 5 presents an extension analysis, and Sect. 6
concludes this paper.

2 Methodology

2.1 MIDAS regression framework

We start with a definition of the realized volatility (RV) on a certain trading day t. According
to the definition of Andersen and Bollerslev (1998), the RV on day t is usually constructed
as the sum of the squares of the returns of the intraday high-frequency trading data:

RVt �
D∑

d�1

r2t,d , (1)

where RVt represents the realized volatility on day t, D represents the number of intraday
return observations, and r2t,d denotes the d-th intraday return on day t.

Then, the MIDAS framework and its several extensions are employed to forecast the RV
of the S&P 500 index. We first define a benchmark model as:

RVt+h � β0 + βRV

K∑

i�1

B(i, θ RV
1 , θ RV

2 )RVt−i+1 + εt+h, (2)

where RVt+h denotes the h-day-ahead RV at time t, RVt−i+1 represents the i-order lagged
RV , K is the largest order, and εt+h is the error item. In this paper, we consider the case when
h� 1 andK � 66. B(i, θ RV

1 , θ RV
2 ) is the weight term of RVt−i . Since studies have found that

the Beta polynomial is more suitable for time lags compared to other functions (Ghysels &
Qian, 2019; Ghysels et al., 2007; Zhang &Wang, 2019), we define B(i, θ RV

1 , θ RV
2 ) in Eq. (2)

as a Beta polynomial which is usually used in the realized volatility forecasting researches
(Ghysels et al., 2006; Lu et al., 2020; Ma et al., 2018):

B(i, θ RV
1 , θ RV

2 ) � f ( i
K , θ RV

1 , θ RV
2 )

∑K
i�1 f ( i

K , θ RV
1 , θ RV

2 )
, (3)

where f function in Eq. (3) is a Beta function which used to make sure the weight to be
positive. The f function in Eq. (3) is based on the Gamma function and can be expressed as:

f (x, a, b) � xa−1(1 − x)b−1�(a + b)

�(a)�(b)
, (4)

where the Gamma function, �(·), is defined as:

�(a) �
∫ ∞

0
e−x xa−1dx . (5)

In this paper, θ RV
1 in Eqs. (2) and (3) is set to be 1 following Ma et al. (2019) and Lu

et al. (2020). The model described above uses the lagged RV as the predictor and thus can be
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used as a benchmark model to evaluate the relative predictive performance of our extended
models.

In this paper, themaximum likelihood estimationmethod is used for the parameter estima-
tion process for the MIDAS-RV model. Assuming that RV is independently and identically
distributed and follow a normal distribution with mean μ and variance σ 2. When do a one-
day-ahead volatility forecast, the likelihood function is:

Likelihood�
∏

t

1√
2πσ 2

exp

{
−1

2

(RVt − μt )2

σ 2

}
, (6)

where

μt � β0 + βRV

K∑

i�1

B(i, θ RV
1 , θ RV

2 )RVt−i . (7)

The estimated parameter, β̂0, β̂RV and θ̂ RV
2 can then be obtained by solving the following

optimization problem:

[β̂, θ̂2] � argmax
β,θ2

ln(Likelihood). (8)

Using the parameter estimated at time t, the predicted RV of day t + 1, R̂V t+1, can be
calculated as:

R̂V t+1 � β̂0 + β̂RV

K∑

i�1

B(i, θ RV
1 , θ̂ RV

2 )RVt−i+1 (9)

To explore whether an additional predictor contains valuable predictive information for
stock volatility, we further construct theMIDAS-RV-Xmodel by adding a predictor of interest
as an additional variable for the benchmark model above. Since the predictors we consider
are sampled at different sample frequencies, we write the MIDAS-RV-X model as:

RVt+h � β0 + βRV

K∑

i�1

B(i, θ RV
1 , θ RV

2 )RVt−i+1 + βX

K∑

i�1

B(i, θ Xκ

1 , θ Xκ

2 )Xκ
t−i+1 + εt+h,

(10)

where Xκ
t−i+1 denotes a predictor on day t − i + 1 and κ denotes its original sampling

frequency. In this paper, we consider the predictors sampled at daily, weekly and monthly
frequencies, corresponding to κ � 1, 5 and 22, respectively, and we disaggregate the predic-
tors with low frequency to the daily frequency, inspired by Vinayagathasan (2014). The main
purpose of disaggregating the low-frequency predictors to high-frequency series is to facil-
itate the construction of the following information integration-based prediction technology
and make all forecasting methods have the same underlying structure so that the predictions
are comparable.2

In this paper, a relatively large number of predictors are considered. However, studies have
shown that in a data-rich environment, a forecasting model with only one predictor would
ignore the valuable predictive information of other possible predictors, while a model with
multiple predictors would cause the problem of identification and/or convergence (Asgharian
et al., 2013; Li et al., 2020b). As a well-known statistical process for feature extraction

2 Our empirical results also prove that this data processing method is reasonable because many of the monthly
sampling data have proven to be predictive.
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and dimensionality reduction, principal component analysis (PCA) and partial least-squares
regression analysis (PLS) technology can be used to collect the key information among
multiple variables and thus are used in some of the existing studies to solve the above
problems (Asgharian et al., 2013; Cepni et al., 2019; Poncela et al., 2011). Therefore, to
forecast with more valuable predictive information, we further construct a MIDAS-RV-PCA
model and aMIDAS-RV-PLS model. These two models obtain the key information/common
factors from all additional predictors by principal component analysis (PCA) and partial
least-squares regression analysis (PLS), respectively. The MIDAS-RV-PCA model can be
defined as below:

RVt+h � β0 + βRV

K∑

i�1

B(i, θ RV
1 , θ RV

2 )RVt−i+1

+ βPCA

K∑

i�1

B(i, θ PCA
1 , θ PCA

2 )PCAt−i+1 + εt+h, (11)

where PCAt−i+1 represents the key information/common factors (here, we use the first
principal component of all predictors) extracted from all additional predictors by PCA. The
MIDAS-RV-PLS model can be defined as:

RVt+h � β0 + βRV

K∑

i�1

B(i, θ RV
1 , θ RV

2 )RVt−i+1

+ βPLS

K∑

i�1

B(i, θ PLS
1 , θ PLS

2 )PLSt−i+1 + εt+h, (12)

where PLSt−i+1 denotes the key information/common factors (here, we use the first principal
component of all predictors) extracted from all additional predictors by PLS. For details about
the PCA and PLS technique, see Yan et al. (2022) and He et al. (2021b). The parameters
of MIDAS-RV-X, MIDAS-RV-PCA and MIDAS-RV-PLS models are still estimated by the
maximum likelihood estimation method. But this time, μτ in Eq. (6) are measured as:

μt � β0 + βRV

K∑

i�1

B(i, θ RV
1 , θ RV

2 )RVt−i + βX

K∑

i�1

B(i, θ Xκ

1 , θ Xκ

2 )Xκ
t−i (13)

μt � β0 + βRV

K∑

i�1

B(i, θ RV
1 , θ RV

2 )RVt−i + βPCA

K∑

i�1

B(i, θ PCA
1 , θ PCA

2 )PCAt−i (14)

μt � β0 + βRV

K∑

i�1

B(i, θ RV
1 , θ RV

2 )RVt−i + βPLS

K∑

i�1

B(i, θ PLS
1 , θ PLS

2 )PLSt−i (15)

Meanwhile, the RV of day t + 1 can be forecasted by:

R̂V t+1 � β̂0 + β̂RV

K∑

i�1

B(i, θ RV
1 , θ̂ RV

2 )RVt−i+1 + β̂X

K∑

i�1

B(i, θ Xκ

1 , θ̂ Xκ

2 )Xκ
t−i+1 (16)

R̂V t+1 � β̂0 + β̂RV

K∑

i�1

B(i, θ RV
1 , θ̂ RV

2 )RVt−i+1 + β̂PCA

K∑

i�1

B(i, θ PCA
1 , θ̂ PCA

2 )PCAt−i

(17)
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R̂V t+1 � β̂0 + β̂RV

K∑

i�1

B(i, θ RV
1 , θ̂ RV

2 )RVt−i+1 + β̂PLS

K∑

i�1

B(i, θ PLS
1 , θ̂ PLS

2 )PLSt−i

(18)

In addition, studies have shown that prediction combination methods are helpful for pro-
ducing more accurate and stable forecasts (Liang et al., 2020b; Paye, 2012; Yang et al.,
2015; Zhang et al., 2020). Therefore, we further use the combination approach suggested by
Rapach et al. (2010) to produce five combination volatility forecasts. Combination volatility
forecasts can be mathematically measured as:

R̂V c,t+h �
N∑

n�1

wn,t R̂V n,t+h (19)

where R̂V c,t+h represents the h-day-ahead combination forecast of the RV, R̂V n,t+h denotes
the nth individual forecast, and wn,t is the combined weight of the nth individual forecast.
The five considered combination methods include the following: (1) Mean combination.
This method calculates the equal weighed average of the N individual forecasts. (2) Median
combination. This method finds the median of the forecasts for the N individual models. (3)
Trimmed mean combination. For this method, we first set the weights wn,t of the largest
and smallest forecasts of the N individual models to zero and then calculate the weights
of the remaining individual forecasts as wn,t � 1/(N − 2). (4) Discount mean square
prediction error (DMSPE) [including DMSPE (1.0) and DMSPE (0.9)]. For the DMSPE
method, the wn,t of the nth individual forecast is measured as wn,t � φ−1

n,t /
∑N

n�1 φ−1
n,t with

φn,t �∑t
s�t0+1 δt−s(RVs − R̂V n,s)2, where t0 is the length of the initial training sample, δ

represents a discount factor, and RVs and R̂V n,s are the true RV and the n-th RV forecasts,
respectively. Following Li et al. (2020b)_ENREF_35 and Rapach et al. (2010), we consider
two values of δ, i.e., 1 and 0.9, in this paper.

In addition to the combination predictionmethods above, we also try to generate combina-
tion forecasts by the dynamic model averaging (DMA) and dynamic model selection (DMS)
methods. The 1-day-ahead DMA and DMS processes start with the following time-varying
parameter (TVP) model:

RVt+1 � X (m)′
t ϕ

(m)
t+1 + ε

(m)
t+1, (20)

ϕ
(m)
t+1 � ϕ

(m)
t + η

(m)
t+1, (21)

where X (m)′
t ⊆ X

′
t form � 1, 2, ..., M represents a set of predictors, ε(m)

t+1 ∼ i .i .d.N (0, V (k)
t+1)

and η
(m)
t+1 ∼ i .i .d.N (0,W (k)

t+1). For an X
′
t with N predictors, there are usually M � 2N

combinations for these predictors. Then, the DMA and DMS approaches can dynamically
incorporate the M models as:

R̂V
DMA
t+1 �

M∑

m�1

π(t+1|t,m)X
(m)′
t ϕ

(m)
t (22)

and

R̂V
DMS
t+1 � X (m∗)′

t ϕ
(m∗)
t , (23)

where π(t+1|t,m) � Pr(Lt+1 � m|Yt ) in Eq. (22) is the weight of model m, Yt �
{RV1, ..., RVt }, and Lt+1 � m denotes that model m is selected at time t. m* in Eq. (13)
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indicates the model with the largest weight π(t+1|t,m∗). To solve the problem of heavy com-
putational complexity, we simplify the DMA and DMS processes using the Kalman filter
method following Raftery et al. (2010).3

In this paper, we take the N individual predictions as X
′
t and let M � N . By doing

so, the computational processes can be further simplified, and the DMA and DMS process
can dynamically combine the individual forecasts and be regarded as a dynamic forecast
combination method (Wang et al., 2016a; Wei et al., 2020). Here, Eqs. (12) and (13) are
rewritten as:

R̂V
DMA
t+1 �

N∑

n�1

π(t+1|t,n) R̂V
(n)′
t ϕ

(n)
t (24)

and

R̂V
DMS
t+1 � R̂V

(n∗)′
t ϕ

(n∗)
t . (25)

2.2 Lasso-augmentedMIDASmodel and regime switching

To solve the problem that models with large number of predictors are prone to problems
regardingmulticollinearity and overfitting, we refer to the work ofMarsilli (2014) and further
combine the least absolute shrinkage and selection operator (LASSO) technology introduced
by Tibshirani (1996)with theMIDAS-RVmodel, constructing aMIDAS-LASSOmodel. The
LASSO belongs to the penalized regression model family since it operates by penalizing an
optimization problem associated with the regression of a term that involves the �1-norm of
the coefficients. Studies have shown that the LASSO tends to have a lower misspecification
risk for forecasting models and has better out-of-sample forecasting accuracy than usual
information criteria (Ng, 2013; Siliverstovs, 2015). OurMIDAS-LASSO is defined as below:

RVt+h � β0 +
N+1∑

i�1

βi

K∑

j�1

B( j, θ Xκ,i

1 , θ Xκ,i

2 )Xκ,i
t− j+1 + εt+h (26)

where N denotes the number of additional predictors; when i � 1, Xκ,i
t− j+1 � RVt− j+1. Since

θ Xκ,i

1 is set to 1, this MIDAS regression is solved by proposing the optimization problem
below:

[β̂, θ̂2] � argmin
β,θ2

∑

t

⎛

⎝RVt+h − β0 −
N+1∑

i�1

βi

K∑

j�1

B( j, θ Xκ,i

1 , θ Xκ,i

2 )Xκ,i
t− j+1

⎞

⎠
2

+ λ
∑

i

|βi |,

(27)

where β̂ and θ̂2 are the shrinkage estimators and λ is an exogenous parameter that controls
the strength of the LASSO penalization.

3 Detailed about the Kalman filter method can be found in the work of Raftery et al. (2010).
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To solve this optimization problem using the maximum likelihood estimation method and
do a one-day-ahead forecast, we need firstly to convert Eq. (27) as

[β̂, θ̂2] � argmax
β,θ2

−
∑

t

⎛

⎝RVt − β0 −
N+1∑

i�1

βi

K∑

j�1

B( j, θ Xκ,i

1 , θ Xκ,i

2 )Xκ,i
t− j

⎞

⎠
2

− λ
∑

i

|βi |.

(28)

To associate it with the maximum likelihood estimation, we let

μt � β0 +
N+1∑

i�1

βi

K∑

j�1

B( j, θ Xκ,i

1 , θ Xκ,i

2 )Xκ,i
t− j , (29)

and multiply the function in Eq. (28) by a constant, 1
2σ 2 , that is always greater than 0:

[
β̂, θ̂2

]
� arg max

β,θ2

−
∑

t

(RVt − μt )
2 − λ

∑

i

|βi |

⇔ arg max
β,θ2

1

2σ 2

[
−
∑

t

(RVt − μt )
2 − λ

∑

i

|βi |
]
.

⇔ arg max
β,θ2

−1

2

∑
t (RVt − μt )

2

σ 2 − λ

2σ 2

∑

i

|βi | (30)

Then, adding themonotonically increasing exp in the function and transformation Eq. (30)
to be:

[
β̂, θ̂2

]
� arg max

β,θ2

−1

2

∑
t (RVt − μt )

2

σ 2 − λ

2σ 2

∑

i

|βi |

⇔ arg max
β,θ2

exp

{
−1

2

∑
t (RVt − μt )

2

σ 2

}
exp

{
− λ

2σ 2

∑

i

|βi |
}

.

⇔ arg max
β,θ2

∏

i

exp

{
−1

2

(RVt − μt )
2

σ 2

}
∏

i

exp

{
− λ

2σ 2 |βi |
}

(31)

Then, multiplying again by a constant greater than 0 and obtain the following optimization
problem:

[
β̂, θ̂2

]
� arg max

β,θ2

argmax
β,θ2

∏

t

exp

{
−1

2

(RVt − μt )
2

σ 2

}
∏

i

exp

{
− λ

2σ 2 |βi |
}

⇔ arg max
β,θ2

(
1√
2πσ 2

)T ∏

t

exp

{
−1

2

(RVt−μt )
2

σ 2

}(
λ

4σ 2

)N ∏

i

exp

{
− λ

2σ 2 |βi |
}
,

⇔ arg max
β,θ2

∏

i

(
1√
2πσ 2

)
exp

{
−1

2

(RVt − μt )
2

σ 2

}
∏

i

λ

4σ 2 exp

{
− λ

2σ 2 |βi |
}

(32)
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The final maximum likelihood estimation-based optimization problem can be obtained by
further logarithmic the optimization problem of Eq. (32):

[
β̂, θ̂2

]
� arg max

β,θ2

∏

i

(
1√
2πσ 2

)
exp

{
−1

2

(RVt − μt )
2

σ 2

}
∏

i

λ

4σ 2 exp

{
− λ

2σ 2 |βi |
}

⇔ arg max
β,θ2

ln

{
∏

i

(
1√
2πσ 2

)
exp

{
−1

2

(RVt − μt )
2

σ 2

}
∏

i

λ

4σ 2 exp

{
− λ

2σ 2 |βi |
}}

⇔ arg max
β,θ2

ln

{
Likelihood ×

∏

i

λ

4σ 2 exp

{
− λ

2σ 2 |βi |
}}

⇔ arg max
β,θ2

{
ln{Likelihood} + ln

{
∏

i

λ

4σ 2 exp

{
− λ

2σ 2 |βi |
}}}

(33)

In Eq. (33), ln{Likelihood}+ ln
{∏

i

λ
4σ 2 exp

{
− λ

2σ 2 |βi |
}}

is called a log Posterior,

ln{Likelihood} is a standard log likelihood. Specially, λ
4σ 2 exp

{
− λ

2σ 2 |βi |
}
is the prior den-

sity function when |βi | obey the prior distribution Laplace
(
0, 2σ 2

λ

)
, it can convent the prior

expressed of the original definition of Lasso into the maximum posterior estimation compat-
ible with the maximum likelihood estimate. Using the parameter of MIDAS-LASSO model
estimated at time t, the one-day-ahead forecast of RV can be measure as:

R̂V t+1 � β̂0 +
N+1∑

i�1

β̂i

K∑

j�1

B( j, θ Xκ,i

1 , θ̂ Xκ,i

2 )Xκ,i
t− j+1. (34)

Studies have shown that models with regime switching may be able to achieve improved
prediction accuracy to some extent (Tian et al., 2016; Uddin et al., 2018; Wang et al., 2016b).
For this consideration, we further consider regime switching for the MIDAS-LASSOmodel,
constructing anMS-MIDAS-LASSOmodel by considering high- and low-volatility regimes.
Here, Eqs. (26) and (27) are rewritten as:

RVt+h � β0,St +
N+1∑

i�1

βi,St

K∑

j�1

B( j, θ Xκ,i

1 , θ Xκ,i

2 )Xκ,i
t− j+1 + εSt+h (35)

and

[
β̂St , θ̂2

] � argmin
βSt ,θ2

∑

t

⎛

⎝RVt+h − β0,St −
N+1∑

i�1

βi,St

K∑

j�1

B( j, θ Xκ,i

1 , θ Xκ,i

2,St )X
κ,i
t− j+1

⎞

⎠
2

+ λ
∑

i

|βi,St |, (36)

where St is the state variable, St � 0 and 1 denote the low- and high-volatility states,
respectively, β0,St and βi,St are state parameters, and εSt ∼ (0, σ 2

St
).

In this research, St is assumed to follow a fixed two-state Markov process. Let ξ1t and ξ2t
denote the probability of the occurrence of St � 0 and St � 1:

ξ0t � P(St � 0), (37)
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ξ1t � P(St � 1), (38)

where ξ0t , ξ1t ∈ [0, 1] and ξ0t + ξ1t ≡ 1, the initial ξ0t and ξ1t are equal to 0.5. The Markov
Switching process assumes that the state of the next moment is only relevant to the state of the
previous moment. In other words, the state probability of the next moment is obtained only
by the transition of the state probability at the previous moment. According to the literatures
(BenSaïda et al., 2018; Lu et al., 2020; Ma et al., 2019), the transition probabilities are:

p00 � p(St � 0|St−1 � 0), (39)

p01 � p(St � 1|St−1 � 0), (40)

p10 � p(St � 0|St−1 � 1), (41)

p11 � p(St � 1|St−1 � 1). (42)

Since state St−1 is either transferred to St � 0 or St � 1, there must be p00 + p01 � 1 and
p11 + p10 � 1. So, we just need to estimate the two transition probabilities, p00, p11 ∈ [0, 1],
and the other two transition probabilities are measured as p01 � 1− p00 and p10 � 1− p11,
respectively. Then, the prior probabilities (or forecasted probabilities) can be measured as
p(St+1 � 0|t) � p00ξ0t + p10ξ1t and p(St+1 � 1|t) � p01ξ0t + p11ξ1t , p

0
t+1 + p1t+1 � 1.

TheMS-MIDAS-LASSO is still estimated by themaximum likelihood estimationmethod,
and the likelihood function is obtained by mixing the probabilities. As observed in Eq. (33),
the likelihood function of MIDAS-LASSO consists of a standard log likelihood and a prior
density function. Similarly, in this paper, we also let the likelihood function of MS-MIDAS-
LASSO consists of a standard log likelihood and the prior density function. The standard log
likelihood component is expressed as:

Log Likelihood �
∑

t

p(St � 0|t − 1)L(RVt |St � 0) + p(St � 1|t − 1)L(RVt |St � 1),

(43)

where

L(RVt |St ) � ln

⎧
⎪⎨

⎪⎩
1√

2πσ 2
St

exp

⎧
⎪⎨

⎪⎩
−1

2

(
RVt − μ

St
t

)2

σ 2
St

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
, (44)

μ
St
t � β0,St +

N+1∑

i�1

βi,St

K∑

j�1

B( j, θ Xκ,i

1 , θ Xκ,i

2 )Xκ,i
t− j . (45)

Then, the log Posterior is expressed as:

Log Posterior � Log Likelihood + Prior (St � 0) + Prior (St � 1), (46)

where

Prior (St ) � ln

{
∏

i

λ

4σ 2
St

exp

{
− λ

2σ 2
St

|βSt
i |
}}

. (47)

Solving the following optimization problem can get the parameter estimation results:

[β̂, θ̂2] � argmax
β,θ2

(Log Posterior ). (48)
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According to the in-sample estimation results of the model parameters at time t, we can
use the following formula to obtain the predicted RV of time t + 1:

R̂V t+1 � p̂(St+1 � 0|t)R̂V St+1�0
t+1 + p̂(St+1 � 1|t)R̂V St+1�1

t+1 , (49)

where p̂(St+1|t) is the predicted probability of state St+1 occurring at time t + 1, besides,

RV St+1
t+1 � β̂0,St +

N+1∑

i�1

β̂i,St

K∑

j�1

B( j, θ Xκ,i

1 , θ̂ Xκ,i

2St )Xκ,i
t− j+1 (50)

It is worth noting that the likelihood function value, L(RVt |St ), can represent the prob-
ability density of the occurrence of a particular observation and also contains information
about the probability of the occurrence of the St state. So, refer to the work of Hamilton
and Susmel (1994), we use the Bayes formula to update the posteriori probability in our
forecasting process. The posteriori probability, ξ0t+1 and ξ1t+1 are updated by:

ξ0t+1 � L(RVt+1|St+1 � 0)P(St+1 � 0|t)
L(RVt+1|St+1 � 0)P(St+1 � 0|t) + L(RVt+1|St+1 � 1)P(St+1 � 1|t) , (51)

ξ1t+1 � L(RVt+1|St+1 � 1)P(St+1 � 1|t)
L(RVt+1|St � 0)P(St+1 � 0|t) + L(RVt+1|St � 1)P(St+1 � 1|t) . (52)

3 Data

In this paper, we try to explore the forecasting performance of the models discussed in Sect. 2
for the realized volatility of the US stock market. Following Liu et al. (2015) and Lu et al.
(2020), we use theRVdata of the S&P500 index constructed by 5-min high-frequency returns
obtained from the Realized Library of the Oxford-Man Institute of Quantitative Finance. The
trajectory of the RV of the S&P 500 index is drawn in Fig. 1. Then, three classes of predictors
are considered in this paper. The first nine predictors include economic policy uncertainty
indicators, which were often discussed in recent literature (Bai et al., 2021; Baker et al., 2016;
Caldara & Iacoviello, 2018; Gupta & Wohar, 2019; Husted et al., 2018; Li et al., 2020a).
They are:

(1) Global economic policy uncertainty index (GEPU) and (2) US economic policy uncer-
tainty index (EPU): According to the existing literatures (Arouri et al., 2016; Hoque & Zaidi,
2019), GEPU and EPU affect stock market price volatility mainly through three channels.
Firstly, they influence the decisions of economic agents regarding employment, consumption,
savings and investment, and directly affect stock market participation and price volatility.
Secondly, they annihilate the degree of economic freedom and the financing environment
that affect stock market price volatility by reducing the amount of both international and
local investors. Thirdly, they impact the commodity price and further affects stock market
price volatility;

(3) US monetary policy uncertainty index (MPU): As the existing literatures suggest,
MPU affect stock market volatility through two main channels (Wen et al., 2022). One the
one hand, it affects stock market price volatility by influencing the trade channel and, conse-
quently, the stock market. US monetary policy is generally accompanied by an appreciation
or depreciation of the US dollar. In a contractionary monetary policy environment, an appre-
ciating dollar will lead to an increase in import demand, which leads to a positive impact on
economic and further increase stock prices. On the other hand, MPU can also affect stock
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market by influencing interest rates. A decrease in real interest rates leads to the decrease in
the cost of capital and the increase in investment, which in turn has positive impact on stock
prices;

(4) US trade policy uncertainty index (TPU): TPU also has significant impact on the
stock market (He et al., 2021a). From a micro perspective, exporters are sensitive to TPU.
If tariffs increase in a country, exporters from other countries are less likely to enter the
market. Meanwhile, a reduction in TPU can change the mix of the export product, giving an
advantage to higher quality products with lower prices. These both have direct impact on the
stock market price performance of that exporter;

(5) US health care uncertainty index (HCU) and (6) US infectious disease equity market
volatility tracker (IDEMV): The choice of these two indicators is related to the outbreak of the
COVID-19. COVID-19 has a dramatic impact on the investment and business environment
in countries around the world, which in turn has huge impact on stock markets of various
industries (Al-Awadhi et al., 2020). Among the recently proposed uncertainty indices, HCU
can capture the level of uncertainty brought to the national economy by the occurrence of
various public health events and various health care policies, and IDEMV can capture the
level of uncertainty brought to stock market price volatility by the occurrence of various
public health events, both of which generally have significant impact on the stock market,
especially during COVID-19 (Bai et al., 2021; Megaritis et al., 2021);

(7) US equity market volatility index (EMV): EMV can reflect the uncertainty level in the
price volatility of the US stock market and is directly related to the volatility of the S&P 500
index (Alqahtani et al., 2020b; Yang & Yang, 2021);

(8) geopolitical risk index (GPR): Researches have pointed out that geopolitical risk is an
important factor in shaping macroeconomic and financial cycles and has important impact
on stock market price volatility (Yang et al., 2021). It can affect stock market in many ways.
First, the negative impact of an increase in GPR on demand and supply channels can push
up firms’ costs, which in turn affects stock prices. Second, as an uncertainty indicator, an
increase in GPR can also delay the decision-making process of market participants. Third,
an increase in GPR can also increase investment risk in stock market;

(9) US economic uncertainty related queries (EURQ): EURQ reflects the uncertainty
which are similar to GEPU and EPU, but it constructed in a different way from GEPU and
EPU. As discussed by Bontempi et al. (2021), it affects stock market price volatility with
similar channels to GEPU and EPU.4

Since various market sentiments often directly determine the investment behaviour of
stock market participants, studies have demonstrated the impact of market sentiment on
financial market volatility (Oliveira et al., 2017; Perez-Liston et al., 2014). Besides, the
existing literature finds that different types of sentiment indicators, such as stock market
sentiment, media sentiment and investor sentiment, are differ in their impact on stock market
price volatility (Liang et al., 2020a). For these considerations,we consider 4 additionalmarket
sentiment indicators reference to the existing literature (Liang et al., 2020a).

(10) CBOE volatility index (VIX): The VIX is commonly called the “fear index”, it is a
measure of the market’s expectation of US stock market volatility over the next 30 days and
is used as a stock market sentiment indicator in this work. Clearly, VIX is directly related to
the US stock market (Bekaert & Hoerova, 2014);

(11) ISEE sentiment index (ISEESI): The ISEESI is measured by looking at the ratio of
opening long call options to opening long put options purchased on the International Stock

4 All these economic policy uncertainty indicators are obtained from the website of Economic Policy Uncer-
tainty.
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Fig. 1 Realized volatility of the S&P 500 index

Exchange (ISE). Clearly, unlike the VIX, ISEESI quantifies stockmarket sentiment primarily
by the investment behaviour of stock market participants;

(12)News sentiment index (NSI): TheNSI is a high-frequencymeasure ofmedia sentiment
based on a lexical analysis of economics-related news articles (Shapiro et al., 2020). NSI is
an important proxy variable for media sentiment and has also been proved to be an important
driver of stock market price volatility (Liang et al., 2020a);

(13)USAAII retail investor sentiment index (AAII). TheAAII used in this papermeasures
the difference between the percentages of individual investors who are bullish and bearish.
AAII can reflect the expectations of individual investors in the US stock market and directly
influence the investment behaviour of individual investors in the stock market.5

Finally, since financial markets are interconnected and stock market price volatility can
also be impacted by the stress of the whole financial market (Das et al., 2019; Gupta et al.,
2014; Singh, 2016; Sum, 2014). As the result of global economic integration, the stock
markets of individual countries are subject to the stress of both the financial market of that
country and the global financial market (Das et al., 2019; Singh, 2016). So, we further
consider 2 financial stress indicators: (14) the financial stress index provided by the Office
of Financial Research (OFRFSI); (15) the financial stress index provided by St. Louis Fed.
(STLFSI). The OFRFSI is constructed from 33 global financial market variables, such as
yield spreads, valuation measures and interest rates. The STLFSI is constructed from 18
weekly financial variables in the US: seven interest rates, six yield spreads, and five other
indicators.6

Our original data contain three different sampling frequencies, i.e., daily, weekly and
monthly. The daily sampled data include the RV of the S&P 500, EPU, IDEMV, VIX,
ISEESI, NSI and OFRFSI. The weekly sampled data include the AAII and STLFSI. The
monthly sampled data include the GEPU, MPU, TPU, HCU, EMV, GPR, and EURQ. All
the predictors with low frequencies are disaggregated to the daily frequency. The daily data
cover the period from January 3, 2006, to August 28, 2020.7 The results of the descriptive
statistics are presented in Table 1. Table 1 shows that all variables except for the EPU, NSI

5 These data are downloaded from https://fred.stlouisfed.org; https://www.nasdaq.com; https://www.frbsf.org
and https://www.quandl.com, respectively.
6 The financial stress indices are obtained from https://www.financialresearch.gov and https://fred.
stlouisfed.org, respectively.
7 The data start from January 3, 2006, mainly because the ISEESI starts from that day.
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and AAII are right skewed (the EPU, NSI and AAII are left skewed). The RV of the S&P
500, EPU, EMV, IDEMV, EURQ, VIX, OFRFSI and STLFSI have kurtosis values larger
than 3, indicating that they have peaks and fat-tailed distributions. The J-B statistics reject
the null hypothesis of normality are rejected for all variables. The ADF statistics reject the
null hypothesis of the existence of a unit root. Finally, the Ljung-Box Q statistics reject the
null hypothesis of no serial correlation for all variables.

4 Empirical results

In this section, we evaluate the out-of-sample forecasting performance of the benchmark
MIDAS-RV model, 15 MIDAS-RV-X models, MIDAS-RV-PCA, MIDAS-RV-PLS, the
MIDAS-LASSO model, the MS-MIDAS-LASSO model, five combination forecasts [mean,
median, TMC,DMSPE (0.9) andDMSPE (1.0)], DMAandDMS.We perform out-of-sample
forecasts via the rolling window approach to avoid data overlap, and the length of the rolling
window is 2000. Some of the forecasting results are drawn in Fig. 2. To assess the predic-
tive performance, a model confidence set (MCS) test and the out-of-sample R2 are utilized.
In addition, we also perform a direction-of-change test, portfolio performance analysis and
CumMSE difference analysis. Finally, we also check the robustness of the predictive per-
formance by considering alternative benchmarks, alternative lags for the MIDAS regression
and alternative rolling window lengths.
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Fig. 2 Results of out-of-sample forecasts

123



Annals of Operations Research

4.1 Out-of-sample forecasting performance evaluation

4.1.1 Evaluation results of the MCS test

In this subsection, the out-of-sample forecasting performance of the models of interest is
evaluated by the model confidence set (MCS) test of Hansen et al. (2011). The MCS test
can be used to find the “best” models by testing the null hypothesis of equal forecasting
accuracy for any two models in a model set � and eliminating the worst predictive models
from � sequentially. In our work, two test statistics are considered for the MCS process,
i.e., TR � max

u,v∈�
(|duv|/√var(duv)) (range statistic) and TSQ � max

u,v∈�
((duv)2/

√
var(duv))

(semiquadratic statistic), where duv � 1/P
∑P

i�1 duv,i , duv � Lossu − Lossv , P is the
length of the out-of-sample forecasts, and Lossu and Lossv are the loss series of models u
and v (u, v ∈ �), respectively. For this MCS process, three loss functions are considered,
i.e., the quasi-likelihood loss (QLIKE), mean square error (MSE) and mean absolute error
(MAE). These loss functions are defined as:

QL I K E � 1

P

P∑

i�1

(
ln(R̂V i ) +

RVi
R̂V i

)
, (53)

MSE � 1

P

P∑

i�1

(RVi − R̂V i )
2, (54)

and

MAE � 1

P
|RVi − R̂V i |, (55)

respectively, wherêRVi is the i-th out-of-sample forecast and RVi is the true RV correspond-
ing to the i-th out-of-sample forecast. To find the “best” forecasting methods, the threshold
p-value of TR and TSQ is set to be 0.1 following Tian et al. (2017), Zhang et al. (2019a) and
Wang et al. (2020b). A p-value larger than 0.1 indicates that the corresponding model can
survive the MCS test, and a larger p-value corresponds to a model with better out-of-sample
forecasting performance.

The p-values obtained from the MCS test are listed in Table 2. Table 2 prediction shows
first that theMS-MIDAS-LASSOmodel can pass theMCS testwith a p-value equal to 1 under
all loss function criteria, indicating that it has the best out-of-sample forecasting performance.
The other prediction models cannot survive the MCS test under both the criteria of QLIKE
and the MAE. However, under the MSE criterion, several individual models (the MIDAS-
RV models extended by the MPU, EMV, IDEMV, VIX, NSI, OFRFSI and STLFSI), the
MIDAS-LASSO model and several combination forecasts (MEAN, DMSPE (0.9), DMSPE
(1.0), DMA and DMS) can also pass the MCS test with p-values smaller than 0.15 but larger
than 0.1, implying their potential ability to improve the forecasting accuracy for stock market
RV . Among these models, theMIDAS-LASSOmodel passes theMCS test under both the TR
and TSQ statistics of the MSE, with an out-of-sample prediction performance that is second
only to that of MS-MIDAS-LASSO.
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Table 2 Results of the MCS test

QLIKE MSE MAE

TR TSQ TR TSQ TR TSQ

Benchmark 0.000 0.000 0.070 0.087 0.000 0.007

GEPU 0.000 0.000 0.018 0.086 0.000 0.007

EPU 0.000 0.000 0.018 0.086 0.000 0.005

MPU 0.000 0.000 0.102 0.088 0.001 0.007

TPU 0.000 0.000 0.018 0.085 0.000 0.007

HCU 0.000 0.000 0.076 0.088 0.000 0.007

EMV 0.001 0.001 0.130 0.088 0.001 0.007

IDEMV 0.000 0.000 0.107 0.088 0.000 0.005

GPR 0.000 0.000 0.018 0.086 0.001 0.007

EURQ 0.000 0.000 0.018 0.086 0.000 0.007

VIX 0.010 0.010 0.130 0.088 0.011 0.011

ISEESI 0.000 0.000 0.018 0.086 0.001 0.007

NSI 0.000 0.000 0.102 0.088 0.000 0.007

AAII 0.000 0.000 0.070 0.088 0.000 0.005

OFRFSI 0.000 0.001 0.130 0.088 0.001 0.007

STLFSI 0.000 0.001 0.130 0.088 0.000 0.005

MIDAS-RV-PCA 0.000 0.001 0.076 0.088 0.000 0.007

MIDAS-RV-PLS 0.000 0.001 0.070 0.088 0.000 0.007

MIDAS-LASSO 0.001 0.003 0.131 0.131 0.008 0.007

MS-MIDAS-LASSO 1.000 1.000 1.000 1.000 1.000 1.000

MEAN 0.000 0.001 0.102 0.088 0.001 0.007

MEDIAN 0.000 0.000 0.070 0.088 0.000 0.007

TMC 0.000 0.000 0.076 0.088 0.001 0.007

DMSPE (0.9) 0.000 0.001 0.130 0.088 0.008 0.007

DMSPE (1.0) 0.000 0.001 0.130 0.088 0.008 0.007

DMA 0.000 0.001 0.102 0.088 0.008 0.007

DMS 0.001 0.001 0.130 0.088 0.008 0.007

This table reports the p-values of the MCS test obtained by 10,000 bootstrap simulations. The p-values larger
than 0.1 are bolded, indicating that the corresponding models survive the MCS test. The p-values equal to 1
are bolded and underlined, indicating that the corresponding models have the best out-of-sample forecasting
performance

4.1.2 Evaluation results in terms of the out-of-sample R2

To determine how much the MIDAS-RV extensions improve the prediction accuracy, the
out-of-sample R2 (�R2

oos) is used in this subsection to further evaluate the relative out-of-
sample prediction performance of theseMIDAS-RV extensions.�R2

oos calculates the percent
reduction of the mean squared forecast error (MSFE) of the target model relative to that of
the benchmark model and is widely used to evaluate the relative predictive performance of
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forecasting models of interest (Liu & Wang, 2020; Wang et al., 2020c; Wei et al., 2020).
�R2

oos is defined as:

�R2
oos �

∑P
i�1 (RVi − R̂V benchmark,i )2 −∑P

i�1 (RVi − R̂V model,i )2∑P
i�1 (RVi − R̂V benchmark,i )2

, (56)

where R̂V benchmark,i denotes the i-th RV forecast of the benchmark model, R̂V model,i rep-
resents the i-th forecast of a model of interest, and RVi is the true RV corresponding to the
i-th out-of-sample forecast. According to the definition of�R2

oos , a positive �R2
oos indicates

that the model of interest has better forecasting accuracy than the benchmark model. To
further determine the statistical significance of the relative predictive performance of a target
model, the Clark andWest (2007) (CW) method is utilized to test the null hypothesis that the
MSFE of a model of interest is no larger than that of the benchmark. The CW statistic can
be statistically measured by defining:

fi � (RVi − R̂V benchmark,i )
2 − (RVi − R̂V model,i )

2 + (R̂V benchmark,i − R̂V model,i )
2.

(57)

Then, the CW statistic is conveniently derived by regressing { fi }Pi�1 on a constant.
�R2

oos , the CW statistics and the corresponding p-values are presented in Table 3. Table
3 shows that the MS-MIDAS-LASSO model has the best out-of-sample forecasting per-
formance, followed by the MIDAS-LASSO model, since they significantly improve the
prediction accuracy by 20.102% and 16.547% over that of the benchmark, respectively, but
the �R2

oos values of the other models are smaller than 10%. This result is consistent with
that found in Table 2. Across all considered predictors, only four economic policy uncer-
tainty indicators (the MPU, HCU, EMV, IDEMV) and the VIX can significantly improve
the prediction accuracy of the model for stock market RV. Among them, the �R2

oos of the
VIX and EMV are 8.410% and 6.273%, respectively, making them the best and second best
predictors, respectively. Finally, MIDAS-PCA, MIDAS-PLS and all combination forecasts
besides TMC can also significantly improve the forecasting accuracy of stock market RV,
but they cannot beat the MIDAS-RV model extended by the VIX and EMV.

4.1.3 Results of the direction-of-change test and portfolio performance analysis

Recently, the research of Degiannakis and Filis (2017) pointed out that the direction of
change (DoC) is the key to the timing of trades and asset allocation, suggesting that it is
also important for determining whether the direction of a volatility forecast is accurate.
Therefore, we perform the direction-of-change test in this subsection to further evaluate the
out-of-sample forecasting performance of all models of interest. The DoC test starts with
measuring the percentage of forecasts that correctly predict the direction of the volatility
change, which is defined by:

DoC � 1

P

P∑

i�1

Di , (58)
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Table 3 Results of the out-of-sample R2 (�R2
oos (%))

�R2
oos (%) Adjusted MSFE p-value

GEPU − 0.873 − 1.777 0.962

EPU 0.325 1.196 0.116

MPU 1.514*** 2.407 0.008

TPU − 1.493 − 2.489 0.994

HCU 0.518* 1.487 0.069

EMV 6.273*** 3.224 0.001

IDEMV 0.363** 1.705 0.044

GPR − 3.753 − 2.297 0.989

EURQ 0.045 0.756 0.225

VIX 8.410*** 4.656 0.000

ISEESI − 2.275 − 1.875 0.970

NSI − 3.453 − 1.353 0.912

AAII − 0.612 − 0.858 0.805

OFRFSI − 4.333 − 0.927 0.823

STLFSI − 3.134 − 1.447 0.926

MIDAS-RV-PCA 0.870*** 2.359 0.009

MIDAS-RV-PLS 0.250*** 2.637 0.004

MIDAS-LASSO 16.547*** 4.028 0.000

MS-MIDAS-LASSO 20.102*** 4.209 0.000

MEAN 1.412*** 3.575 0.000

MEDIAN − 0.786 − 1.468 0.929

TMC 0.605*** 2.341 0.010

DMSPE (0.9) 1.724*** 3.567 0.000

DMSPE (1.0) 1.550*** 3.713 0.000

DMA 0.733** 1.821 0.034

DMS 2.790** 2.261 0.012

This table lists the results of the out-of-sample R2 (�R2
oos (%)), the adjusted MSFE statistics and the corre-

sponding p-values. The results with p-values smaller than 0.1 are bolded, and results with the largest�R2
oos (%)

are bolded and underlined
*, ** and ***Denote rejections of the null hypothesis at the 10%, 5% and 1% significance levels, respectively

where

Di �

⎧
⎪⎨

⎪⎩

1, i f RVi > RVi−1 and R̂V i > RVi−1

1, i f RVi < RVi−1 and R̂V i < RVi−1

0, otherwise

.
(59)

Then, the nonparametric test proposed by Pesaran and Timmermann (1992) is used to test
the null hypothesis that the DoC ratio of a target model is no larger than that of a random
walk.
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Table 4 Results of the direction-of-change (DoC) test and portfolio performance

DoC Portfolio performance

Success ratio PT statistic p-value AUoW

Benchmark 0.640 11.541 0.000 3.430

GEPU 0.644 11.896 0.000 3.430

EPU 0.640 11.604 0.000 3.433

MPU 0.646 12.069 0.000 3.438

TPU 0.646 12.028 0.000 3.414

HCU 0.640 11.599 0.000 3.429

EMV 0.651 12.652 0.000 3.498

IDEMV 0.631 10.932 0.000 3.443

GPR 0.644 11.787 0.000 3.393

EURQ 0.642 11.689 0.000 3.415

VIX 0.673 14.335 0.000 3.527

ISEESI 0.650 12.253 0.000 3.399

NSI 0.651 12.391 0.000 3.422

AAII 0.644 11.976 0.000 3.436

OFRFSI 0.650 12.420 0.000 3.429

STLFSI 0.647 12.249 0.000 3.441

MIDAS-RV-PCA 0.639 11.584 0.000 3.457

MIDAS-RV-PLS 0.635 11.249 0.000 3.457

MIDAS-LASSO 0.673 14.330 0.000 3.554

MS-MIDAS-LASSO 0.687 15.414 0.000 3.582

MEAN 0.649 12.282 0.000 3.444

MEDIAN 0.646 12.022 0.000 3.431

TMC 0.647 12.178 0.000 3.437

DMSPE (0.9) 0.650 12.366 0.000 3.445

DMSPE (1.0) 0.649 12.282 0.000 3.446

DMA 0.653 12.466 0.000 3.402

DMS 0.655 12.622 0.000 3.428

This table presents the results of the direction-of-change test and the evaluation results regarding portfolio
performance. For the direction-of-change test, the success ratio, PT statistic and corresponding p-value are
reported in this table for each model. The success ratios larger than that of the benchmark are bolded, and
the largest success ratio is bolded and underlined. To evaluate the portfolio performance, the CER for a
mean–variance function is reported. The CERs larger than that of the benchmark are bolded, and the largest
CER is bolded and underlined

The results of the DoC test are listed in columns 2–4 of Table 4. The DoC results show that
all forecasting models except the MIDAS-IDEMV, MIDAS-PCA and MIDAS-PLS models
have greater success ratios than the benchmark.Among them, theMS-MIDAS-LASSOmodel
performs best in forecasting the direction of the stock market RV, as its success ratio is the
largest at 0.687. The MIDAS-LASSO model and MIDAS-VIX model take second place in
the rankings regarding the forecasting ability with respect to the direction of the stock market
RV, with success ratios of 0.673. This also suggests that the VIX can perform better than
other predictors in terms of forecasting stock market realized volatility.
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Existing research suggests that good asset volatility forecasts should be better applied in
practice and have better portfolio performance. Therefore, we further measure the portfolio
performance of all models of interest to evaluate their forecasting performance. Considering
that Fleming et al. (2001)’s method for portfolio testing depends on both the return and
volatility forecasts, we utilize the simple utility-based framework of Bollerslev et al. (2018)
to quantify the portfolio performance. Bollerslev et al. (2018)’s method assumes that an
investor with a mean–variance preference invests in an asset with time-varying volatility and
a constant Sharp ratio. The expected utility can be obtained by:

U (ω∗
i ) � SR2

2γ
Wi , (60)

where

ω∗
i � SR/γ√

Ei (RVi+1)
, (61)

Ei (RVI+1) is the expected RV , SR denotes the reward-to-risk ratio, γ represents the risk
aversion of the investor and Wi is the investor’s wealth at time i.8 Since Ei (RVi+1) is not
available in practice, we measure the expected utility per unit of wealth by the forecasts of
the RV for time i + 1 by:

UoWi � SR2

γ

(√
RVi+1√
R̂V i+1

− 1

2

RVi+1
R̂V i+1

)
(62)

and report the average UoW (AUoW ):

AUoW � 1

P

P−1∑

i�1

UoWi . (63)

The AUoW results are reported in the last column of Table 4. Table 4 shows that the
volatility forecasts yielded by the MS-MIDAS-LASSO model result in the highest expected
utility at 3.582%, followed by theMIDAS-LASSOmodel with an expected utility at 3.554%.
This further confirms the superior predictive performance of MS-MIDAS-LASSO for stock
market volatility. In terms of our predictors of interest, the AUoW results show that the
VIX and EMV have the best and second best predictive powers, respectively, compared to
the other predictors because the MIDAS-VIX and MIDAS-EMV models produce AUoW
values of 3.527% and 3.498%, respectively, and they can hardly be outperformed by other
forecasting methods other than the MIDAS-LASSO and MS-MIDAS-LASSO models.

4.1.4 Results of the CumMSE difference method

We find from the empirical results above that the MS-MIDAS-LASSO model has the best
out-of-sample forecasting performance, followed byMIDAS-LASSO. In this subsection, we
further compare the relative forecasting performance of these two models by a cumulative
MSE (CumMSE) method. The CumMSE for the i-th out-of-sample forecast is calculated as:

CumMSEi � MSEi + CumMSEi−1, i � 2, .., P, (64)

when i� 1 andCumMSEi � MSEi . Then,wemeasure theCumMSEdifference between
each target model (MIDAS-LASSO and MS-MIDAS-LASSO) and the benchmark model

8 Details about this expected utility framework can be found in Bollerslev et al. (2018).
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Fig. 3 CumMSE differences

(MIDAS-RV) to quantify the cumulative relative prediction performance. The smaller the
CumMSE is, the higher the relative predictive performance of the corresponding model. The
CumMSE difference between theMIDAS-LASSOmodel andMIDAS-RVmodel is drawn as
the red area in Fig. 3, and the CumMSE difference between the MS-MIDAS-LASSO model
and MIDAS-RV model is drawn as the blue area. Figure 3 shows that the MIDAS-LASSO
model andMS-MIDAS-LASSOmodel generally have better prediction performance than the
benchmark model, and MS-MIDAS-LASSO is better than MIDAS-LASSO in most cases.

4.2 Robustness tests

4.2.1 Alternative benchmark

Our empirical results above are evaluated with MIDAS-RV as a benchmark. To further deter-
mine the robustness of these findings, we use the MIDAS-RV model with regime switching
as a new benchmark, construct the MIDAS-RV-X, MIDAS-PCA and MIDAS-PLS models
with regime switching and various MS-MIDAS-RV-X-based combination forecasts, and re-
evaluate the out-of-sample forecasting performance of thesemodels and theMIDAS-LASSO
models (theMIDAS-LASSOmodel andMS-MIDAS-LASSOmodel). The evaluation results
are listed in Table 5. Table 5 shows that the MS-MIDAS-LASSO model still has the best
forecasting performance since it survives the MCS test with a p-value equal to 1 under all
loss function criteria and has the largest and most significant �R2

oos at 20.573%. The pre-
dictive performance of the MIDAS-LASSO model follows closely. It passes the MCS test
under both the TR and TSQ statistics of the MSE, and its �R2

oos is significant at 17.038%,
but the �R2

oos values of the other models are less than 10%. In terms of our predictors of
interest, the VIX and EMV still rank first and second in terms of their forecasting ability. This
time, all the combination prediction methods can achieve statistically significant forecasting
performance. These results confirm the robustness of the findings above.
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Table 5 Results of theMCS test and the corresponding out-of-sampleR2 values under an alternative benchmark

QLIKE MSE MAE �R2
oos (%)

TR TSQ TR TSQ TR TSQ

Benchmark 0.000 0.000 0.193 0.094 0.002 0.012

GEPU 0.000 0.000 0.193 0.094 0.002 0.014 1.424***

EPU 0.000 0.000 0.193 0.094 0.002 0.007 0.557*

MPU 0.000 0.000 0.193 0.094 0.002 0.012 0.838**

TPU 0.000 0.000 0.096 0.083 0.002 0.012 − 0.909

HCU 0.000 0.000 0.133 0.091 0.002 0.010 0.394*

EMV 0.000 0.002 0.193 0.094 0.002 0.014 7.017***

IDEMV 0.000 0.000 0.193 0.094 0.002 0.009 − 1.344

GPR 0.000 0.000 0.106 0.087 0.002 0.014 − 3.924

EURQ 0.000 0.000 0.193 0.094 0.002 0.014 3.038**

VIX 0.007 0.007 0.193 0.094 0.027 0.027 9.366***

ISEESI 0.000 0.000 0.193 0.094 0.002 0.014 − 0.232

NSI 0.000 0.000 0.193 0.094 0.002 0.012 − 2.725

AAII 0.000 0.000 0.193 0.094 0.002 0.008 0.047*

OFRFSI 0.000 0.001 0.193 0.094 0.002 0.014 − 3.137

STLFSI 0.000 0.001 0.193 0.094 0.002 0.014 − 1.039

MIDAS-RV-PCA 0.000 0.001 0.193 0.094 0.002 0.013 − 0.419

MIDAS-RV-PLS 0.000 0.001 0.193 0.094 0.002 0.014 1.735***

MIDAS-LASSO 0.003 0.002 0.193 0.131 0.004 0.014 17.038***

MS-MIDAS-LASSO 1.000 1.000 1.000 1.000 1.000 1.000 20.573***

MEAN 0.000 0.001 0.193 0.094 0.002 0.014 3.021***

MEDIAN 0.000 0.000 0.193 0.094 0.002 0.014 0.922**

TMC 0.000 0.001 0.193 0.094 0.002 0.014 2.107***

DMSPE (0.9) 0.000 0.001 0.193 0.094 0.004 0.014 3.353***

DMSPE (1.0) 0.000 0.002 0.193 0.094 0.004 0.014 3.201***

DMA 0.000 0.001 0.193 0.094 0.002 0.014 2.270**

DMS 0.003 0.002 0.193 0.094 0.004 0.014 3.712**

This table reports the p-values for the MCS test obtained by 10,000 bootstrap simulations as well as the out-

of-sample R2 values [�R2
oos (%)]. For the MCS test, p-values larger than 0.1 are bolded, indicating that the

corresponding models survive theMCS test. The p-values equal to 1 are bolded and underlined, indicating that
the corresponding models have the best out-of-sample forecasting performance. The statistical significance

for �R2
oos (%) is determined by Clark and West (2007)’s test method

*, ** and ***Denote rejections of the null hypothesis at the 10%, 5% and 1% significance levels, respectively.

Significant �R2
oos (%) values are bolded, and the largest �R2

oos (%) is bolded and underlined
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4.2.2 Alternative lag

In this section, we change the K value in the MIDAS-RV framework to perform another
robustness check. Our analysis above let K be 66 (i.e., one quarter), but considering that
the minimum initial sampling frequency of our predictors is 1 month, K is set to 22 in this
subsection. The p-values of the MCS test and the corresponding �R2

oos values are reported
in Table 6. The evaluation results show that the MIDAS-LASSO and MS-MIDAS-LASSO
models have better forecasting performance than the other forecasting models since only
these two models can survive the MCS test and have �R2

oos values larger than 10%. Among
them, theMS-MIDAS-LASSOmodel has the best forecasting performance because it passes
the MCS test with a p-value equal to 1 under all considered loss functions and has the largest
and most significant �R2

oos at 21.719%. The �R2
oos values of the MIDAS-RV-X models

further show that the VIX and EMV are the best and the second best predictors, respectively.
This time, the MIDAS-RV-PCA and MIDAS-RV-PLS models, as well as all combination
forecasts besides MEDIAN, can achieve statistically significant forecasting performance.
These findings also confirm the robustness of the findings in Sect. 4.1.

4.2.3 Alternative rolling window length

Studies have shown that different rolling window lengths may yield different out-of-sample
forecasts (Li et al., 2020b;Rossi& Inoue, 2012). Therefore,we change the length of the rolling
windowand re-evaluate the out-of-sample forecasting performance of our predictionmethods
of interest. Table 7 reports the evaluation results. Table 7 shows that theMS-MIDAS-LASSO
model passes the MCS test with a p-value equal to 1 under all loss functions and increases
the forecasting accuracy for stock market RV with the largest and most significant �R2

oos
(19.212%). These results further suggest that the MS-MIDAS-LASSO model has the best
prediction performance. MIDAS-LASSO increases the predictive accuracy a with significant
�R2

oos value of 14.256% and is the second-best forecastingmodel. For theMIDAS-EMV and
MIDAS-VIX models, their �R2

oos values are 6.317% and 6.504%, respectively, suggesting
that the VIX is the best predictor and that the EMV is second. These findings further support
the robustness of the findings in Sect. 4.1.

5 Extension analysis

5.1 Forecasting performance compared to that of the traditional HAR-LASSO
framework

Our empirical results above demonstrate the superior forecasting performance of the MS-
MIDAS-LASSO model. In this subsection, we further compare its predictive performance
with that of the traditional HAR-LASSO framework and its regime switching extension.
Before the comparison, we use the standard HAR-RV model as the benchmark, construct
HAR-RV-X-, HAR-RV-PCA-, HAR-RV-PLS-, HAR-LASSO-, MS-HAR-LASSO models
and various HAR-RV-X-based combination forecasts, and evaluate their out-of-sample fore-
casting performance. Meanwhile, we use the standard HAR-RV model as the benchmark
and further evaluate the out-of-sample forecasting performance of MIDAS-RV model and
its extensions. The evaluation results are reported in Table 8. Table 8 shows that the MS-
HAR-LASSO model has the best out-of-sample forecasting performance in the HAR-RV
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Table 6 Results of the MCS test and the corresponding out-of-sample R2 values obtained under an alternative
K

QLIKE MSE MAE �R2
oos (%)

TR TSQ TR TSQ TR TSQ

Benchmark 0.000 0.000 0.070 0.071 0.000 0.001

GEPU 0.000 0.000 0.070 0.071 0.000 0.001 − 0.559

EPU 0.000 0.000 0.036 0.069 0.000 0.001 0.337

MPU 0.000 0.000 0.085 0.071 0.000 0.001 1.501***

TPU 0.000 0.000 0.070 0.071 0.000 0.001 − 1.232

HCU 0.000 0.000 0.070 0.071 0.000 0.001 0.571*

EMV 0.000 0.000 0.085 0.071 0.000 0.001 6.301***

IDEMV 0.000 0.000 0.085 0.071 0.000 0.001 − 0.387

GPR 0.000 0.000 0.070 0.071 0.000 0.001 − 1.363

EURQ 0.000 0.000 0.070 0.071 0.000 0.001 0.941*

VIX 0.003 0.005 0.085 0.071 0.016 0.013 8.577***

ISEESI 0.000 0.000 0.085 0.071 0.000 0.001 − 1.946

NSI 0.000 0.000 0.085 0.071 0.000 0.001 − 1.573

AAII 0.000 0.000 0.070 0.071 0.000 0.001 0.157

OFRFSI 0.000 0.000 0.085 0.071 0.000 0.001 − 4.332

STLFSI 0.000 0.000 0.085 0.071 0.000 0.001 − 2.881

MIDAS-RV-PCA 0.000 0.000 0.070 0.071 0.000 0.001 0.910***

MIDAS-RV-PLS 0.000 0.000 0.070 0.071 0.000 0.001 0.286***

MIDAS-LASSO 0.253 0.253 0.099 0.099 0.752 0.752 18.912***

MS-MIDAS-LASSO 1.000 1.000 1.000 1.000 1.000 1.000 21.719***

MEAN 0.000 0.000 0.085 0.071 0.000 0.001 1.789***

MEDIAN 0.000 0.000 0.070 0.071 0.000 0.001 − 0.050

TMC 0.000 0.000 0.085 0.071 0.000 0.001 1.048***

DMSPE (0.9) 0.000 0.000 0.085 0.071 0.000 0.001 2.069***

DMSPE (1.0) 0.000 0.000 0.085 0.071 0.000 0.001 1.920***

DMA 0.000 0.000 0.085 0.071 0.000 0.001 0.877**

DMS 0.000 0.001 0.085 0.071 0.000 0.001 3.265***

This table reports the p-values for the MCS test obtained by 10,000 bootstrap simulations as well as the

out-of-sample R2 values (�R2
oos (%)). For the MCS test, p-values larger than 0.1 are bolded, indicating that

the corresponding models survive the MCS test. The p-values equal to 1 are bolded and underlined, indicating
that the corresponding models have the best out-of-sample forecasting performance. Statistical significance

for �R2
oos (%) is determined by Clark and West (2007)’s test method

*, ** and ***Denote rejections of the null hypothesis at the 10%, 5% and 1% significance levels, respectively.

Significant �R2
oos (%) values are bolded, and the largest �R2

oos (%) is bolded and underlined
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Table 7 Results of the MCS test and the corresponding out-of-sample R2 values obtained under alternative
rolling window lengths

QLIKE MSE MAE �R2
oos (%)

TR TSQ TR TSQ TR TSQ

Benchmark 0.000 0.001 0.231 0.168 0.112 0.166

GEPU 0.000 0.001 0.187 0.168 0.013 0.115 − 1.584

EPU 0.000 0.001 0.231 0.168 0.006 0.075 − 0.271

MPU 0.000 0.002 0.187 0.168 0.112 0.154 1.854**

TPU 0.000 0.001 0.187 0.168 0.112 0.247 − 1.908

HCU 0.000 0.002 0.187 0.168 0.013 0.125 0.859**

EMV 0.013 0.011 0.320 0.170 0.013 0.125 6.317***

IDEMV 0.000 0.002 0.231 0.168 0.006 0.073 0.793**

GPR 0.000 0.001 0.187 0.168 0.639 0.571 − 4.897

EURQ 0.000 0.001 0.187 0.168 0.112 0.163 0.423

VIX 0.195 0.195 0.320 0.170 0.639 0.571 6.504***

ISEESI 0.000 0.001 0.187 0.168 0.163 0.475 − 2.646

NSI 0.000 0.002 0.187 0.168 0.013 0.125 − 5.551

AAII 0.000 0.001 0.187 0.168 0.006 0.051 − 1.439

OFRFSI 0.000 0.002 0.187 0.166 0.013 0.111 − 7.337

STLFSI 0.000 0.002 0.187 0.168 0.006 0.051 − 5.654

MIDAS-RV-PCA 0.000 0.002 0.187 0.168 0.006 0.051 − 0.064

MIDAS-RV-PLS 0.000 0.002 0.187 0.168 0.006 0.051 − 1.515

MIDAS-LASSO 0.046 0.052 0.320 0.218 0.639 0.571 14.265***

MS-MIDAS-LASSO 1.000 1.000 1.000 1.000 1.000 1.000 19.212***

MEAN 0.000 0.002 0.231 0.168 0.163 0.475 1.108***

MEDIAN 0.000 0.002 0.231 0.168 0.112 0.163 − 0.993

TMC 0.000 0.002 0.231 0.168 0.112 0.264 0.231

DMSPE (0.9) 0.000 0.002 0.320 0.169 0.639 0.571 1.516***

DMSPE (1.0) 0.009 0.005 0.320 0.170 0.639 0.571 1.237***

DMA 0.000 0.001 0.187 0.168 0.006 0.051 − 3.586

DMS 0.000 0.002 0.187 0.168 0.006 0.073 − 1.217

This table reports the p-values for the MCS test obtained by 10,000 bootstrap simulations as well as the

out-of-sample R2 values (�R2
oos (%)). For the MCS test, p-values larger than 0.1 are bolded, indicating that

the corresponding models survive the MCS test. The p-values equal to 1 are bolded and underlined, indicating
that the corresponding models have the best out-of-sample forecasting performance. Statistical significance

for �R2
oos (%) is determined by Clark and West (2007)’s test method

** and *** denote rejections of the null hypothesis at the 5% and 1% significance levels, respectively. Signif-

icant �R2
oos (%) values are bolded, and the largest �R2

oos (%) is bolded and underlined
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Table 8 Results of the MCS test and the corresponding out-of-sample R2 values for the HAR extensions

HAR-RV framework MIDAS-RV framework

�R2
oos (%) Adjusted

MSFE
p-value �R2

oos (%) Adjusted
MSFE

p-value

RV 2.669*** 3.081 0.001

GEPU − 0.542 − 2.046 0.980 1.819*** 2.913 0.002

EPU 0.124 0.661 0.254 2.985*** 2.973 0.001

MPU 0.939** 2.122 0.017 4.144*** 3.104 0.001

TPU − 0.669 − 2.444 0.993 1.217*** 2.683 0.004

HCU 0.274* 1.316 0.094 3.174*** 3.041 0.001

EMV 6.031*** 3.083 0.001 8.775*** 3.410 0.000

IDEMV 1.933* 1.605 0.054 3.023*** 2.409 0.008

GPR − 0.764 − 2.256 0.988 − 0.983 1.569 0.058

EURQ 0.840 1.182 0.119 2.713*** 2.587 0.005

VIX 12.043*** 4.798 0.000 10.855*** 4.650 0.000

ISEESI − 1.034 − 1.836 0.967 0.455*** 2.407 0.008

NSI − 0.022 0.543 0.294 − 0.692 1.747 0.040

AAII − 0.202 − 0.269 0.606 2.074*** 2.970 0.001

OFRFSI − 2.805 − 0.585 0.721 − 1.548 1.492 0.068

STLFSI − 0.570 − 0.040 0.516 − 0.381 1.749 0.040

PCA 1.459** 2.015 0.022 3.516*** 2.643 0.004

PLS 1.208** 2.322 0.010 2.913*** 2.721 0.003

LASSO 19.841*** 4.527 0.000 18.775*** 3.937 0.000

MS-LASSO 20.057*** 4.539 0.000 22.235*** 4.268 0.000

MEAN 2.037*** 3.918 0.000 4.043*** 3.553 0.000

MEDIAN 0.278* 1.573 0.058 1.904*** 2.855 0.002

TMC 1.094*** 2.842 0.002 3.258*** 3.304 0.000

DMSPE (0.9) 2.409*** 3.915 0.000 4.348*** 3.593 0.000

DMSPE (1.0) 2.202*** 4.023 0.000 4.178*** 3.603 0.000

DMA 4.257*** 2.374 0.009 3.383*** 2.561 0.005

DMS 5.724*** 2.519 0.006 5.385*** 2.661 0.004

This table reports the p-values for the MCS test obtained by 10,000 bootstrap simulations as well as the

out-of-sample R2 values (�R2
oos (%)). For the MCS test, p-values larger than 0.1 are bolded, indicating that

the corresponding models survive the MCS test. The p-values equal to 1 are bolded and underlined, indicating
that the corresponding models have the best out-of-sample forecasting performance. Statistical significance

for �R2
oos (%) is determined by Clark and West (2007)’s test method

*, ** and ***Denote rejections of the null hypothesis at the 10%, 5% and 1% significance levels, respectively.

Significant �R2
oos (%) values are bolded, and the largest �R2

oos (%) is bolded and underlined
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Table 9 Out-of-sample forecasting performance of the HAR-LASSO and MIDAS-LASSO models

QLIKE MSE MAE

TR TSQ TR TSQ TR TSQ

HAR-LASSO 0.116 0.085 0.266 0.208 0.075 0.063

MS-HAR-LASSO 0.116 0.085 0.266 0.208 0.075 0.063

MIDAS-LASSO 0.002 0.002 0.266 0.208 0.002 0.002

MS-MIDAS-LASSO 1.000 1.000 1.000 1.000 1.000 1.000

This table reports the p-values for the MCS test obtained by 10,000 bootstrap simulations as well as the

out-of-sample R2 values (�R2
oos (%)). For the MCS test, p-values larger than 0.1 are bolded, indicating that

the corresponding models survive the MCS test. The p-values equal to 1 are bolded and underlined, indicating
that the corresponding models have the best out-of-sample forecasting performance

framework, followed by HAR-LASSO. Interestingly, in the case with the HAR-RV-Xmodel,
the VIX and EMV remain the best and second-best predictors, respectively, which further
demonstrates the robustness of the predictive power of the VIX and EMV. The evaluation
results of MIDAS-RV model and its extensions show that the MIDAS-RV model has a
�R2

oos(%) significantly greater than 0, indicating that the out-of-sample prediction accuracy
of the MIDAS-RV model surpasses that of the standard HAR-RV model. Also, most of the
MIDAS-RV extension models yielded �R2

oos(%) greater than those of the corresponding
HAR-RV extension models. These findings further confirmed the advantages of the MIDAS
model over HAR. The reason why the MIDAS model shows advantages are detailed in the
Introduction section. Finally, Table 8 shows that the out-of-sample forecasting performance
of the MS-MIDAS-LASSOmodel exceeds that of the MS-HAR-LASSOmodel, and the out-
of-sample forecasting performance of the MIDAS-LASSO model is close to HAR-LASSO
model, although it does not surpass that of the HAR-LASSO model.

Next, we compare the forecasting performance of the HAR-LASSO, MS-HAR-LASSO,
MIDAS-LASSO and MS-MIDAS-LASSO models by the MCS test. The evaluation results
are presented in Table 9. Table 9 shows that although all four models can pass the MCS
test under different loss functions, MS-MIDAS-LASSO exhibits the best out-of-sample pre-
diction performance, as it survives the MCS test with a p-value equal to 1 under all loss
functions. These findings further suggest that the MS-MIDAS-LASSO model can further
improve prediction accuracy for stock market RV on the basis of MS-HAR-LASSO.

5.2 Forecasting performance during high/low-volatility regimes

Studies have shown that the forecasting ability of a model may vary under different volatility
regimes (Li et al., 2020b; Wang et al., 2018). However, the MS-MIDAS-LASSO model is
constructed precisely by considering both high- and low-volatility regimes, and therefore,
it should have the best forecasting performance under both scenarios. To confirm this, the
prediction performance of all forecasting methods of interest during high- and low-volatility
periods is explored in this subsection.We distinguish the high- and low-volatility components
by the median of the out-of-sample true volatility. Table 10 presents the evaluation results of
the out-of-sample prediction performance during high-volatility regimes. During the high-
volatility period, theMS-MIDAS-LASSOmodel andMIDAS-LASSOmodel still have better
forecasting performance than the othermodels, and theMS-MIDAS-LASSOmodel performs
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Table 10 Results of the MCS test and the corresponding out-of-sample R2 values obtained during high-
volatility regimes

QLIKE MSE MAE �R2
oos (%)

TR TSQ TR TSQ TR TSQ

Benchmark 0.001 0.004 0.081 0.094 0.008 0.034

GEPU 0.001 0.004 0.052 0.094 0.005 0.034 − 0.901

EPU 0.001 0.004 0.046 0.094 0.002 0.029 0.253

MPU 0.001 0.004 0.151 0.094 0.008 0.034 1.510**

TPU 0.000 0.002 0.046 0.089 0.002 0.027 − 1.844

HCU 0.001 0.004 0.081 0.094 0.008 0.034 0.497*

EMV 0.039 0.077 0.151 0.094 0.090 0.103 6.965***

IDEMV 0.003 0.006 0.140 0.094 0.002 0.027 0.645**

GPR 0.000 0.000 0.046 0.086 0.002 0.017 − 4.951

EURQ 0.000 0.002 0.046 0.094 0.002 0.020 − 0.380

VIX 0.230 0.296 0.151 0.094 0.275 0.237 7.955***

ISEESI 0.000 0.001 0.046 0.083 0.002 0.023 − 3.191

NSI 0.001 0.004 0.052 0.094 0.005 0.034 − 4.046

AAII 0.001 0.005 0.112 0.094 0.008 0.034 − 0.539

OFRFSI 0.020 0.010 0.140 0.094 0.090 0.103 − 4.938

STLFSI 0.029 0.020 0.151 0.094 0.008 0.072 − 3.256

MIDAS-RV-PCA 0.003 0.006 0.081 0.094 0.005 0.034 0.799**

MIDAS-RV-PLS 0.003 0.005 0.052 0.094 0.004 0.033 − 0.224

MIDAS-LASSO 0.419 0.419 0.451 0.451 0.275 0.237 17.635***

MS-MIDAS-LASSO 1.000 1.000 1.000 1.000 1.000 1.000 19.658***

MEAN 0.001 0.005 0.112 0.094 0.008 0.072 1.169***

MEDIAN 0.000 0.003 0.046 0.094 0.005 0.034 − 1.079

TMC 0.000 0.003 0.081 0.094 0.008 0.036 0.353*

DMSPE (0.9) 0.001 0.005 0.151 0.094 0.109 0.104 1.478***

DMSPE (1.0) 0.003 0.006 0.151 0.094 0.109 0.103 1.302***

DMA 0.000 0.001 0.046 0.094 0.002 0.023 − 0.718

DMS 0.000 0.002 0.151 0.094 0.002 0.029 1.450**

This table reports the p-values for the MCS test obtained by 10,000 bootstrap simulations as well as the

out-of-sample R2 [�R2
oos (%)]. For the MCS test, p-values larger than 0.1 are bolded, indicating that the

corresponding models survive the MCS test. The p-values equal to 1 are bolded and underlined, indicating
that the corresponding models have the best out-of-sample forecasting performance. Statistical significance

for �R2
oos (%) is determined by Clark and West (2007)’s test method

*, ** and ***Denote rejections of the null hypothesis at the 10%, 5% and 1% significance levels, respectively.

Significant �R2
oos (%) values are bolded, and the largest �R2

oos (%) is bolded and underlined
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better than the MIDAS-LASSO model. In terms of our considered predictors, the EMV and
VIX have better out-of-sample forecasting ability than the other predictors, and the VIX
performs better than the EMV.

The evaluation results regarding the out-of-sample predictive performance during low-
volatility regimes are reported in Table 11. We find that the MS-MIDAS-LASSO model
still has the highest forecasting accuracy, but the prediction accuracy of the MIDAS-LASSO
model is substantially reduced, and its �R2

oos does not exceed the �R2
oos values of other

forecasting methods such as MIDAS-PCA and DMSPE (0.9). This further suggests that the
MS-MIDAS-LASSO model performs better than the MIDAS-LASSO model in capturing
regime switching with respect to stock market volatility. In terms of the predictors, the VIX
is still the best predictor, but the forecasting ability of the EMV decreases substantially and
can no longer improve the forecasting accuracy for stock market RV. However, different
from the findings in Sect. 4, the forecasting performance of the MIDAS-VIX model can no
longer exceed that of DMA and DMS. Finally, although our findings in Sect. 4 find that
the three market sentiment indicators other than the VIX and the financial stress indicators
have nearly no ability to improve the predictive accuracy for stock market RV, during low-
volatility regimes, we find that the ISEESI, NSI and OFRFSI have the ability to improve the
forecasting accuracy.

5.3 The impact of the COVID-19 pandemic

Our out-of-sample forecasts cover the period after the outbreak of the COVID-19 epidemic.
The outbreak of COVID-19 has had a great impact on the global economy and society; as a
result, the US stock market has experienced turbulence. For example, the US stock market
experienced four meltdowns in less than ten days from March 9 to March 19, 2020. The
dramatic volatility of the US stock market during the COVID-19 epidemic poses a significant
challenge to investors’ volatility forecasting since some effective forecastingmethodsmay no
longer be valid during this period. Therefore, it is also particularly important to examine the
forecasting performance of the tested forecasting methods in this paper during the COVID-
19 epidemic. Table 12 shows the evaluation results regarding the out-of-sample prediction
performance of all models during the COVID-19 epidemic.9 We find that the MS-MIDAS-
LASSO model can still pass the MCS test with a p-value equal to 1 under all three loss
functions and can also significantly increase the forecasting accuracywith the highest�R2

oos ,
indicating that the superior forecasting performance of this model has not changed with
the outbreak of the COVID-19 epidemic. This time, the MIDAS-LASSO model still has a
smaller �R2

oos than that of MS-MIDAS-LASSO but larger than those of the other models,
indicating that the prediction performance of this model is also unaffected by the COVID-
19 epidemic. However, the predictive powers of the EMV and VIX have changed during
this period. This time, the ability of the VIX to improve out-of-sample prediction accuracy
diminishes, and the EMV replaces it as the best predictor. In fact, the outbreak of COVID-19
has caused great uncertainty in the global economy, trade, imports and exports as well as
market sentiment, etc. The stock market price volatility during this period are also the result
of multiple uncertainties. However, the VIX can only capture the changes of the stock market
sentiment so its information content is not sufficient enough to predict stock market volatility
during the COVID-19 pandemic. Meanwhile, since EMV quantifies multiple uncertainty

9 Referring to Lu et al. (2020), the sample period start from December 08, 2019, and ends on August 28,
2020.
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Table 11 Results of theMCS test and the corresponding out-of-sampleR2 values obtained during low-volatility
regimes

QLIKE MSE MAE �R2
oos (%)

TR TSQ TR TSQ TR TSQ

Benchmark 0.000 0.000 0.000 0.000 0.000 0.000

GEPU 0.000 0.000 0.000 0.001 0.000 0.000 − 0.557

EPU 0.000 0.000 0.000 0.000 0.000 0.000 1.140***

MPU 0.000 0.000 0.000 0.000 0.000 0.000 1.565***

TPU 0.000 0.000 0.000 0.005 0.000 0.000 2.495***

HCU 0.000 0.000 0.000 0.000 0.000 0.000 0.765***

EMV 0.000 0.000 0.000 0.001 0.000 0.000 − 1.581

IDEMV 0.000 0.000 0.000 0.000 0.000 0.000 − 2.842

GPR 0.008 0.010 0.077 0.079 0.029 0.028 9.856***

EURQ 0.000 0.000 0.003 0.009 0.000 0.000 4.874***

VIX 0.009 0.038 0.145 0.207 0.029 0.027 13.581***

ISEESI 0.000 0.003 0.009 0.026 0.001 0.003 8.126***

NSI 0.000 0.000 0.000 0.003 0.000 0.000 3.281***

AAII 0.000 0.000 0.000 0.000 0.000 0.000 − 1.435

OFRFSI 0.000 0.000 0.000 0.001 0.000 0.000 2.544***

STLFSI 0.000 0.000 0.000 0.000 0.000 0.000 − 1.749

MIDAS-RV-PCA 0.000 0.000 0.000 0.001 0.000 0.000 1.683***

MIDAS-RV-PLS 0.000 0.000 0.003 0.008 0.000 0.000 5.629***

MIDAS-LASSO 0.000 0.001 0.022 0.052 0.001 0.002 4.189***

MS-MIDAS-LASSO 1.000 1.000 1.000 1.000 1.000 1.000 25.147***

MEAN 0.000 0.000 0.000 0.001 0.000 0.000 4.162***

MEDIAN 0.000 0.000 0.000 0.000 0.000 0.000 2.534***

TMC 0.000 0.000 0.000 0.001 0.000 0.000 3.461***

DMSPE (0.9) 0.000 0.000 0.000 0.002 0.000 0.000 4.522***

DMSPE (1.0) 0.000 0.000 0.000 0.001 0.000 0.000 4.365***

DMA 0.009 0.038 0.389 0.253 0.391 0.401 17.202***

DMS 0.376 0.376 0.389 0.290 0.487 0.487 18.016***

This table reports the p-values for the MCS test obtained by 10,000 bootstrap simulations as well as the

out-of-sample R2 values [�R2
oos (%)]. For the MCS test, p-values larger than 0.1 are bolded, indicating that

the corresponding models survive the MCS test. The p-values equal to 1 are bolded and underlined, indicating
that the corresponding models have the best out-of-sample forecasting performance. Statistical significance

for �R2
oos (%) is determined by Clark and West (2007)’s test method

***denotes rejections of the null hypothesis at the 1% significance level. Significant �R2
oos (%) values are

bolded, and the largest �R2
oos (%) is bolded and underlined
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Table 12 Results of the MCS test and the corresponding out-of-sample R2 values obtained during COVID-19

QLIKE MSE MAE �R2
oos (%)

TR TSQ TR TSQ TR TSQ

Benchmark 0.002 0.050 0.380 0.369 0.777 0.827

GEPU 0.002 0.039 0.380 0.346 0.777 0.778 − 2.310

EPU 0.002 0.056 0.380 0.369 0.120 0.565 0.621

MPU 0.002 0.067 0.510 0.369 0.945 0.945 3.309**

TPU 0.002 0.047 0.380 0.337 0.777 0.753 − 2.885

HCU 0.002 0.065 0.380 0.369 0.777 0.827 1.485**

EMV 0.002 0.067 0.510 0.369 0.120 0.565 8.199**

IDEMV 0.002 0.067 0.380 0.369 0.120 0.389 1.481**

GPR 0.002 0.054 0.380 0.309 0.120 0.565 − 7.824

EURQ 0.002 0.055 0.380 0.369 0.120 0.565 0.990

VIX 0.002 0.067 0.380 0.369 0.120 0.529 4.575***

ISEESI 0.002 0.044 0.380 0.324 0.768 0.682 − 4.314

NSI 0.002 0.067 0.380 0.315 0.120 0.463 − 8.164

AAII 0.002 0.055 0.380 0.358 0.120 0.565 − 2.018

OFRFSI 0.002 0.067 0.380 0.304 0.120 0.565 − 10.727

STLFSI 0.002 0.067 0.380 0.298 0.120 0.457 − 9.122

MIDAS-RV-PCA 0.002 0.067 0.380 0.369 0.120 0.271 0.781*

MIDAS-RV-PLS 0.002 0.067 0.380 0.358 0.120 0.316 − 0.434

MIDAS-LASSO 0.035 0.067 0.510 0.446 0.120 0.565 14.635**

MS-MIDAS-LASSO 1.000 1.000 1.000 1.000 1.000 1.000 17.680***

MEAN 0.002 0.067 0.380 0.369 0.777 0.778 1.068*

MEDIAN 0.002 0.055 0.380 0.331 0.120 0.565 − 2.573

TMC 0.002 0.067 0.380 0.369 0.768 0.710 0.076

DMSPE (0.9) 0.002 0.067 0.510 0.369 0.777 0.827 1.622*

DMSPE (1.0) 0.002 0.067 0.380 0.369 0.777 0.805 1.194*

DMA 0.002 0.067 0.380 0.369 0.120 0.565 1.100

DMS 0.035 0.067 0.413 0.369 0.120 0.565 3.746**

This table reports the p-values for the MCS test obtained by 10,000 bootstrap simulations as well as the

out-of-sample R2 values [�R2
oos (%)]. For the MCS test, p-values larger than 0.1 are bolded, indicating that

the corresponding models survive the MCS test. The p-values equal to 1 are bolded and underlined, indicating
that the corresponding models have the best out-of-sample forecasting performance. Statistical significance

for �R2
oos (%) is determined by Clark and West (2007)’s test method

*, ** and ***Denote rejections of the null hypothesis at the 10%, 5% and 1% significance levels, respectively.

Significant �R2
oos (%) values are bolded, and the largest �R2

oos (%) is bolded and underlined
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information related to stockmarket price volatility during its construction (Baker et al., 2019),
it is not surprising that it exhibits strong predictive power during COVID-19 pandemic.

6 Conclusions

In this paper, we explore the effectiveness of 9 economic policy uncertainty indices, 4 market
sentiment indicators and 2 financial stress indices in predicting the realized volatility of the
S&P 500 index. We use several MIDAS-RV-X models to determine the predictive power
of individual predictors and further construct PCA-, PLS- and LASSO-based MIDAS-RV
extensions, a MIDAS-LASSO model with regime switching and various combination fore-
casts to find the optimal forecasting strategy. The out-of-sample forecasting performance of
our forecasting models of interest is evaluated mainly by the MCS test and out-of-sample R2

statistics.
The empirical results first show that the economic policy uncertainty indicators (espe-

cially the EMV) and the VIX are more likely to produce better forecasting accuracy than the
three market sentiment indicators and two financial stress indices. Among these predictors,
the VIX has the strongest predictive power, followed by the EMV. Second, the combination
forecasts and MIDAS-LASSO models usually have statistically significant relative forecast-
ing performance. Across all forecasting models of interest, the MIDAS-LASSO model with
regime switching has the best forecasting performance, followed by the MIDAS-LASSO
model, indicating that LASSO technology can capture more valuable information from a
large set of predictors than other information integration methods. The forecasting accuracy
of MIDAS-LASSO with regime switching is also superior to that of the traditional HAR-
LASSOmethod and its regime switching extension. When distinguishing between high- and
low-volatility regimes, we find that the VIX is the best predictor under both scenarios. In
addition, the economic policy uncertainty indicators other thanGEPU either help predict high
stock market volatility or low stock market volatility, but the market sentiment indices other
than the VIX and the financial stress index (OFRFSI) exhibit statistically significant relative
predictive performance only during low-volatility regimes. Across all considered forecasting
methods, theMS-MIDAS-LASSOmodel still exhibits the best predictive performance during
both high- and low-volatility regimes, but the MIDAS-LASSO model can outperform other
forecasting methods except for MS-MIDAS-LASSO only during high-volatility regimes.
We finally consider the impact of the COVID-19 epidemic. During the COVID-19 epidemic,
the predictive power of the VIX diminished, and it was no longer the best out-of-sample
predictor, while the predictive power of the EMV increased, making it the best predictor
during this special period. However, the MIDAS-LASSO model with regime switching still
exhibited the best forecasting performance across all considered forecasting models during
the COVID-19 epidemic.

This paper has important practical implications. Firstly, theMIDAS-RV extension models
(especially the MS-MIDAS-LASSO model) constructed in this paper are important exten-
sions to existing volatility forecasting research methods and helps researchers and market
participants to make full use of key information from multiple potential predictors to gen-
erate more accurate forecasts of asset volatility. Secondly, this paper explores the predictive
validity of multiple indicators for stock market price volatility, which can help stock market
investors to better utilize available information to predict possible stock market volatility and
thus adjust their portfolios in time to reduce losses. Meanwhile, this paper is also helpful for
derivatives market participants to make better use of the available information to price stock
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market derivatives more accurately and thus achieve higher returns. Finally, the empirical
findings can also help the policy makers to make better use of the available information to
formulate strategies timely to prevent and control possible risks in the stock market and make
certain contributions to the stable and healthy development of the national economy.
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