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Abstract
Quantum Bridge Analytics relates to methods and systems for hybrid classical-quantum
computing, and is devoted to developing tools for bridging classical and quantum computing
to gain the benefits of their alliance in the present and enable enhanced practical application
of quantum computing in the future. This is the second of a two-part tutorial that surveys key
elements of Quantum Bridge Analytics and its applications. Part I focused on the Quadratic
Unconstrained Binary Optimization (QUBO) model which is presently the most widely
applied optimization model in the quantum computing area, and which unifies a rich variety
of combinatorial optimization problems. Part II (the present paper) introduces the domain of
QUBO-Plus models that enables a larger range of problems to be handled effectively. After
illustrating the scope of these QUBO-Plus models with examples, we give special attention to
an important instance of these models called the Asset Exchange Problem (AEP). Solutions
to the AEP enable market players to identify exchanges of assets that benefit all participants.
Such exchanges are generated by a combination of two optimization technologies for this
class of QUBO-Plus models, one grounded in network optimization and one based on a new
metaheuristic optimization approach called combinatorial chaining. This combination opens
the door to expanding the links to quantum computing applications established by QUBO
models through the Quantum Bridge Analytics perspective. We show how the modeling
and solution capability for the AEP instance of QUBO-Plus models provides a framework
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for solving a broad range of problems arising in financial, industrial, scientific, and social
settings.

Keywords Quantum Bridge Analytics · Combinatorial chaining · Network optimization ·
Asset Exchange Technology · Quantum computing · Blockchain

1 Introduction

Quantum Bridge Analytics is devoted to developing tools for bridging classical and quantum
computing to gain the benefits of their alliance in the near term and enable enhanced practical
application of quantum computing in the future.

As observed in Part I of this tutorial (Glover et al., 2021a, 2022), the Quadratic Uncon-
strained Binary Optimization (QUBO) model has an important role in Quantum Bridge
Analytics by unifying a rich variety of combinatorial optimization problems and becoming
at present the most widely applied optimization model in the quantum computing area.

In Part II (the present paper), updated from Glover et al. (2020), we consider applications
called QUBO-Plus problems motivated by the classical QUBO formulation that embrace
larger classes of problems, and that alsomake it possible to solve certain subclasses of QUBO
problems more effectively. Details of the QUBO-Plus model, including its formulation and
illustrative applications, are discussed in Sect. 2.

To underscore the importance of identifying problems that can be treated as QUBO-Plus
applications, we give special attention in this paper to a problem class called the Asset
Exchange Problem (AEP) which is motivated by developments in blockchains that relate to
finding exchanges among investors that are mutually beneficial to all participants. We first
describe a QUBO model for a special instance of the AEP and then adopt the QUBO-Plus
perspective to consider the relevance of characterizing the AEP domain in a more general
form. To further motivate our focus on the AEPwe discuss a range of applications both within
and beyond blockchains where this class of problems is important. As we demonstrate in the
sections that follow, solutions to the AEP enable market players to identify and profit from
exchanges of assets that benefit all participants—exchanges that, in game theory terminol-
ogy, constitute a positive sum game. This provides a mechanism for facilitating exchanges
customarily carried out through mechanisms of money, interest, and middlemen by serving
instead the blockchain goal of disintermediation to remove or reduce reliance on interme-
diaries. The resulting modeling and solution process simultaneously afford a link between
the applications of classical and quantum computing that are envisioned to be increasingly
relevant as the quantum computing area becomes more mature.

We introduce twomain hubs for solvingAEPmodels, the first consisting of amathematical
formulation yielding a network optimization model for a basic version of the AEP and the
second consisting of a metaheuristic optimization framework called combinatorial chaining
that augments the network model to make it possible to derive high quality solutions to more
complex instances of the AEP, notably including instances encountered in a wide variety of
real world applications.

These developments derive special relevance within the context of Quantum Bridge Ana-
lytics, which offers gains by bridging the gap between classical and quantum computational
methods and technologies. As observed in the 2019 Consensus Study Report titled Quan-
tum Computing: Progress and Prospects (National Academies, 2019), quantum computing
will remain in its infancy for perhaps another decade, and in the interim “formulating an
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R&D program with the aim of developing commercial applications for near-term quantum
computing is critical to the health of the field.” The report further notes that such a program
will rely on developing “hybrid classical-quantum techniques.” Innovations that underlie and
enable these hybrid classical-quantum techniques, which are the focus of Quantum Bridge
Analytics, provide a fertile catalyst for introducing the QUBO-Plus applications in the AEP
domain.

Additional links to the Quantum Bridge Analytics theme are provided in Glover et al.
(2017, 2021a, 2022) who observe that QUBO and QUBO-Plus models give rise to a variety
of formulations for portfolio optimization, and these in turn yield a natural basis for integrating
classical and quantum computing via the AEP. Portfolio optimization has a prominent role
in the AEP when the assets under consideration involve those customarily incorporated into
the portfolio domain. The AEP goes further, both in the portfolio domain and others, by
linking the holders of multiple portfolios in a network of cooperative optimization. This
establishes a natural alliance with QUBO-Plus models whose solutions identify desirable
assets for different participants.

After introducing the general representation of QUBO-Plus models in the next section and
providing examples of applications related to the theme of the present paper, in succeeding
sections we provide a mathematical optimization model for a basic instance of the AEP and
then show how the model can be transformed into a network optimization model, thus laying
the foundation for exploiting more complex variants of the AEP.

A note on terminology: we use the term “exchange” rather than “swap” because a swap
typically refers to an exchange involving only two items or two participants, and “multiple
swaps” refer to a collection of pairwise exchanges, in contrast to an integrated process that
requires the coordination among all participants for its execution.

The most developed literature on exchanges occurs for the traveling salesman problem,
where the term k-opt refers to an exchange that removes k edges from a tour and replaces them
by k other edges so that the resulting configuration continues to be a tour (Hamiltonian cycle;
see, e.g., Helsgaun, 2000, 2009). The traveling salesman procedures that come closest to the
process of combinatorial chaining are the ejection chain approaches that have been applied to
TSPs and other combinatorial optimization problems (Glover, 1996; Rego & Glover, 2006;
Rego et al., 2016; Yagiura et al., 2006, 2007).

The blockchain literature refers to exchanges called atomic swaps (also known as cross-
chain trading). As elaborated subsequently, these exchanges arise when two parties whowant
to share their cryptocurrencies execute an exchange by means of Hashed Timelock Contracts
(or HTLCs) as a mechanism to make the transaction secure (Fitzpatrick, 2019; Nolan, 2013).
Combinatorial chaining makes it possible to generalize these swaps to exchanges involving
multiple actors.

Combinatorial chaining and theAEPare to be differentiated from the problemandmethods
arising in combinatorial auctions where swaps are sought to exchange pairs of buy/sell-orders
in futures markets (Müller et al., 2017; Winter et al., 2011). An interesting area for future
investigation would be to determine if the combinatorial chaining approach could likewise be
applied in the setting of combinatorial auctions to enable auctions involving greater numbers
of participants.

The remainder of this paper is organized as follows. Section 2 introducesQUBO-Plusmod-
els that provide computationally important alternatives to standard QUBOmodels. Examples
of asset exchange applications are given in Sect. 3 to set the stage for later more extensive
and technical discussions. Section 4 provides the fundamental mathematical formulation of
the basic AEP problem, and shows how to transform this formulation into a network opti-
mization model. Section 5 characterizes the structure of combinatorial chaining in reference
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to this basic network model, followed by introducing more advanced processes in Sect. 6
for joining network optimization and combinatorial chaining with metaheuristic analysis to
address more complex instances of asset exchanges. The paper concludes with a summary
of the key notions and their implications in Sect. 7.

2 QUBO-Plus models and the Asset Exchange Problem

The classical QUBO model is expressed as follows.

QUBO : minimize/maximizey � xt Qx

where x is a vector of binary decision variables and Q is a square matrix of constants.
The term “QUBO-Plus” refers to a class of models that augment the preceding stan-

dard QUBO representation by introducing important constraints separately from the QUBO
model, enabling them to be treated by algorithms specially designed to handle these special
constraints. This contrasts with the standard approach that seeks to merge such constraints
with the QUBO model by attaching weights to them to create a modified form of the Q
matrix as described in the Part I tutorial. Many problems have special constraints that could
be modeled in pure QUBO form but may afford advantages from both a computational and
“model transparency” point of view by embodying them in a QUBO-Plus model. By keeping
these constraints separate from the QUBO formulation, and developing a special algorithm
that handles the resulting QUBO-Plus problem, it is possible to solve these problems more
efficiently and effectively than by attempting to create a “transformed” QUBO model that
folds the constraints into the Q matrix.

Computational studies (Du et al., 2022) document that QUBO-Plus models often deliver
superior performance, relative to transformed QUBO alternatives, in terms of solution qual-
ity and solution time, and permit larger problems to be solved. Such QUBO-Plus models
also provide a transparent reminder of the special constraint(s) that are otherwise lost in a
transformed QUBO representation.

While the variety of QUBO-Plus models is substantial and application dependent, we
catalog some commonly encountered special cases in the following list. In the cases high-
lighted below, the reference to setting a variable to 1 can encompass a variety of applications
by a correspondence with selecting a particular item from a collection of projects, invest-
ments, assets, facilities, locations, buildings, plans, medical treatments, architectural designs,
itineraries, etc. In such settings, the special constraint(s) defining the “Plus” component of
the QUBO-Plus model embody a key problem feature earmarked for special treatment.

2.1 Common QUBO-Plus model types

(1) Exact cardinality constrained QUBO problems: requiring an exact number of variables
to be set to 1.

(2) Bounded cardinality constrained QUBO problems: requiring a lower bound and an
upper bound on the number of variables set to 1.

(3) Multi-assignment QUBO problems: requiring disjoint sets of variables to sum to 1.
(4) Multi-allocation QUBO problems: requiring disjoint sets of variables to sum to speci-

fied constants (that may differ from 1).
(5) QUBO packing problems: requiring sums of variables to be less than or equal to

specified constants.
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(6) QUBO covering problems: requiring sums of variables to be greater than or equal to
specified constants.

(7) QUBO problems combining (5) and (6) (also called bounded multi-allocation QUBO
problems).

(8) QUBO knapsack problems: requiring a weighted sum of variables to be less than or
equal to a specified constant.

(9) Multi-knapsack QUBO problems: requiring weighted sums of variables to be less than
or equal to specified constants.

(10) Generalized covering QUBO problems: requiring weighted sums of variables to be
greater than or equal to specified constants.

With appropriate modifications, modern QUBO solvers can be customized to produce
solutions that satisfy the explicit “Plus” constraints while optimizing the quadratic objective
function.

We remark that QUBO-Plus models of type (1) arise naturally in the context of the well-
known Maximum Diversity problem and also in portfolio optimization problems where a
pre-specified number of assets must be chosen. These models are generalized by those of
type (2) which apply to broader settings. QUBO-Plus type (3) models, with their assignment
constraints, have many important applications and are further noteworthy for having nat-
ural connections to certain types of network problems. In these network-related problems,
members of certain groups or sub-groups are assigned to members of other groups with the
goal of optimizing some measure that describes the overall effectiveness of the assignments.
Problems of this type have a link to the AEP problem via their network-related component.

We describe specific models below that illustrate these connections.
Model 1 While applications of all ten QUBO-Plus type models are found in practice, Type

(3) models with their assignment constraints are particularly noteworthy due to their con-
nection to various forms of clustering and applications such models accommodate. Consider
for example, an investment setting where xi j � 1 if investor i is assigned to cluster (class
of investments) j, and the constraints are

∑
(xi j : overallj) � 1 for each investor i ensure

that each investor is assigned. A variation of this type of application is where particular
investments are assigned to specific investment classes. Each of these applications involves
considerations that are relevant to the AEP problem, although they fall short of capturing a
variety of additional elements of the AEP as we subsequently indicate.

Model 2 Graph coloring problems present additional applications for QUBO-Plus type (3)
models where a color must be assigned to each node in the graph (the assignment constraints)
while adjacent nodes are required to receive different colors. The adjacency constraints can
be folded into the Q matrix and the node assignment constraints can be imposed traditionally
rather than by penalties in the objective function.

The coloring terminology takes on a practical meaning by equating colors with labels used
to categorize objects (people, institutions, groups, products, processes, etc.). Nodes that are
adjacent (joined by an edge), can be viewed in a context where edges between nodes may be
interpreted, for example, to mean that the associated objects are dissimilar, hence a coloring
will categorize objects so that dissimilar objects fall in different categories. Minimizing the
number of colors results in minimizing the number of categories needed to differentiate the
objects. Other interpretations of the adjacency relationship lead to additional applications.

More formally, for a graph G � (V,E) with n vertices,. the Minimum Sum Coloring
Problem (MSCP) (Kubicka & Schwenk, 1989) seeks to find a coloring such that the sum of
all the colors over all vertices is minimized. If we define xik � 1 if color k is assigned to
vertex i, and we seek a coloring using at most K colors, then the adjacency conditions are

123



190 Annals of Operations Research (2022) 314:185–212

satisfied by xik + x jk <� 1 for all (i, j) ∈ E and all k ∈ (1 . . . K ). For a positive scalar
penalty, P, these constraints can be imposed via penalties of the form Pxik x jk to be added to
objective function. Proceeding in this fashion yields the penalized objective function:

Minimize
n∑

i�1

K∑

k�1

k∗xik + P

⎛

⎝
∑

(i, j)∈E .

K∑

k�1

xik x jk

⎞

⎠

which can be re-written as in the form of xt Qx .

Including the node assignment constraints without taking them into the objective function,
we have the Minimum Sum Coloring Problem in the following form:

Minimize
n∑

i�1

K∑

k�1

k ∗ xik + P

⎛

⎝
∑

(i, j)∈E .

K∑

k�1

xik x jk

⎞

⎠

subject to

K∑

k�1

xik � 1∀i ∈ {1 . . . n}

which is a QUBO-Plus model:

Minimize xt Qx .

subject to

K∑

k�1

xik � 1∀i ∈ {1 . . . n}

Model 3 A practical application involving assignment constraints more closely related
to the problems we treat in this paper involves exchanges to re-balance a set of account
assignments for account executives in a large organization. For this example, assume that
the company in question has K account executives, each responsible for managing a set of
accounts. Currently the firm has P > K accounts of varying size in terms of annual revenues.
Denote the annual dollar amount of account p by dp dollars. As business has grown over the
past few years, the total dollar amount of business managed by a given account executive has
grown in an uneven fashion to produce considerable disparity in the total volume of business
managed by a given executive.

To address this issue, top management wants to re-assign accounts to the various account
executives to re-balance the system and make the differences in total annual book of business
between account executives as small as possible.

This problem can be modeled and solved by a QUBO-Plus model with assignment con-
straints as follows:

Let x pk � 1 if account p is assigned to executive k; zero otherwise. Then, the total annual
volume of business managed by executive k is

totalk �
P∑

p�1

dpx pk k � 1, . . . K

Our objective it to make assignments of accounts to executives so that each account gets
assigned to an executive while minimizing the squared deviations from one executive to
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another. That is, our objective function is:

min deviation � (total1 − total2)
2 + (total1 − total3)

2 + · · · + (total K−1 − total K )
2

Substituting the definition of total p into the above and writing the objective function in
matrix form, we get the QUBO-Plus model with assignment constraints:

QUBO-Plus : Min x Qx

st

K∑

k�1

x pk � 1p ∈ {1 . . . P}

where Q is the square, symmetric matrix that results from collecting terms and x is the vector
of x pk variables relabeled with a single subscript. The constraints ensure that each account
gets assigned to one of the executives and the objective function ensures that the differences
in total account values from one executive to another are as small as possible. Solving this
model will result in a new set of account assignments that re-balance the system.

Our next example illustrates a more general type of application that corresponds to a
QUBO-Plus model of type (4), and likewise has features in common with those we address
in the AEP problem. In this case, we have selected an application relevant to responding to
an outbreak of an epidemic.

Model 4 The goal of this model is to determine an optimal allocation of testing kits, as in
the context of virus detection, to a population of n people whose members may or may not be
infected. Suppose qi� the estimated value of having person i tested, and qi j � the additional
value of having both i and j tested (beyond the value of qi + q j )—as where these individuals
interact with different groups of people and it is desirable not to limit testing to those who
interact within the same group. The qi j coefficients can be made larger if the groups that
person i and person j interact with are high risk groups.

The objective is to maximize the total value of the people tested. This can be modeled as
a QUBO-Plus problem where the number of people tested equals KitsAvailable, the number
of test kits available on a given day.

Define xi � 1 if person i is given the test; 0 otherwise. Then the cardinality constrained
QUBO-Plus model is obtained by:

Maximize total testing value �
n∑

i�1

qi xi +
n−1∑

i�1

n∑

j�i+1

qi j xi x j

subject to

n∑

i�1

xi � Kits available (1)

This basic model incorporating constraint (1) can readily be enriched in a variety of ways.
For instance, suppose each person i belongs to a Group k indexed by k � 1,…,K, where
members of Group k are identified because they interact or because they are a geographical
community or have other features in common considered likely to influence their risk. (These
groups may also be identified by a QUBO clustering algorithm.) This results in constraints
of the form

∑

i∈Ik

xi � Vk for k � 1 . . .K (2)
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where Ik denotes the individuals in group k and Vk denotes the number of kits to be allocated
to group k.

Here the sum of the Vk values equals KitsAvailable. The Vk values may be proportional
to the sizes of the Groups k or may be skewed by the estimated riskiness of each group as a
whole.

The foregoing problem with constraints (1) and (2) is easily formulated as a QUBO
problem by taking the constraints into the objective function as illustrated in Part 1 of this
tutorial (Glover et al., 2021a), but can be solved more effectively by a special QUBO-Plus
algorithm specifically designed for this class of QUBO applications. Constraints (1) and (2)
are instances of more general constraints that arise in the AEP problem and are common in
many network formulations.

2.2 Differentiation among QUBO-Plus models

In essence, we have three types of QUBO-Plus models. The first type consists of those for
which a QUBO formulation can be readily constructed by incorporating certain constraints
into the objective function, but the problem can be solved more effectively by a special
approach that keeps these constraints separate. The second type consists of a binary choice
“logical” problemwhere a QUBO formulation is exceedingly difficult to construct, yet where
again we can develop an effective framework for solving it motivated by the concepts devel-
oped for representing and solving QUBO problems. The third type is an extension of the first
two, arising in response to practical applications that embody highly exploitable problem
structures, such as those in the domain of network-related models which are accompanied
by additional combinatorial conditions that take them beyond classical analysis, but that can
nevertheless be susceptible to tailored algorithms based on the principles that have produced
the most effective QUBO methods.

The first type of QUBO-Plus model is illustrated by the QUBO-Plus formulations above.
The second type of model includes problems that have binary network-related formulations,
where we can exploit the fact that we can represent basic instances of these problems as
QUBO problems and QUBO-Plus problems of the first type. The AEP at the focus of this
paper belongs to the third category.Wewill show thatwe can capture several essential features
of this application within a network optimization model, although one that is exceedingly
large and computationally demanding.Wewill disclose how this structure can alternatively be
made susceptible to an approach called combinatorial chaining, where we employ a strategy
shared with the most effective QUBO algorithms, which iteratively identifies sub-structures
that can be successfully to exploited to yield progressive improvement. A basic (rudimentary)
form of combinatorial chaining is presented in Sect. 5 for simpler AEP problem instances.
Then in Sect. 6 we describe modifications that give rise to advanced forms of combinatorial
chaining that handle more complex AEP formulations.

3 Preliminary examples of the Asset Exchange Problem

As previously intimated, the AEP arises in a variety of contexts, spanning applications in
financial investment, resource allocation, economic distribution and collaborative decision
making. Our approach to solving this problem is based on a form of cooperative optimization,
where multiple parties with complex criteria collaborate as well as compete for resources.
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This could apply to algorithms for distributing packages between trucks in a delivery net-
work, or dynamic switching to alternative sorting facilities. Or it could apply to collaborative
bidding processes for complex multi-criteria contracts or decentralized cooperative group
optimization for multi-criteria investment cryptocurrency portfolios. This is quite distinct
from traditional portfolio optimization, as with a hedge fund that typically seeks to mitigate
risk by diversification with some investments that are negatively correlated.

In the cooperative group optimization setting, our approach generalizes processes that
seek atomic exchanges of baskets of fungible tokens or securities by yielding exchanges at
a higher combinatorial level. Normally, a financial institution that wishes to execute a large
basket of trades, in a way that mitigates execution risk by having an intermediary, can take
the basket into its inventory and unwind the trades on its own. Thus, instead of revealing
specific information about the assets in the basket, knowledge which could be exploited,
the institution and banks can conduct a “zero-knowledge” protocol to effect basket trades.
However, this protocol still requires trust in those institutions providing the service. The
proposed new approach uses both simple and complex combinatorial exchanges to optimize
all parties engaged in the multi-party optimization effort.

The progenitor of such an approach has emerged and is being tested in the cryptocurrency
world—this is known as a cross-chain atomic swap. This is where two parties own tokens in
separate cryptocurrencies, and want to exchange them without having to trust a third party
or a centralized exchange. However, by extending this model and enabling complex multi-
party exchanges, splits and aggregations, we can effect full spectrum combinatorial trading to
provide trustless algorithmic liquidity without requiring even the normal underlying reserve
trading currency.

The simplest instance of such a system is a marketplace of three portfolios. In this market,
Portfolio A has asset X and wishes to own some asset Z, Portfolio B has asset Z but wishes
to acquire only asset Y, and Portfolio C has asset Y and wishes to own some asset X. In a
traditional exchange, participants would exchange what they have for the underlying reserve
settlement currency, and then purchase what they want. This would entail two transaction
fees per portfolio. Alternatively, using cross chain atomic swaps, the parties would never
make any transactions whatsoever, as the global optimal cannot be reached via pairwise
swap transactions.

By enabling all potential complex exchanges, splits and aggregations, for N portfolios,
any market could increase its global utility. However, the computational complexity of this
type of complex combinatorial exchange trading is NP-complete. By using a multi-attribute
trade matching system that includes the unspoken goals of the parties, which are the “utility
functions” of the parties, it is possible to find Pareto-efficient exchange solutions—referring
to the game theory concept of a strategy that cannot be made to perform better against one
opposing strategy without performing less well against another.

Additionally, the inclusion of constraints increases the complexity of the problem. For
example, if the system determines that diversification is required, then a constraint can be
added that limits which types of assets could be included in the diversification target. Only
assets that have been rated by a rating agency or analyst, for example, as better than a “B”
rating, could be included to modify the optimization. A continuous approach would assign
each rating a numerical value, and blend that with volatility metrics, volume data, social
impact scores, and even the user’s personal pet peeves—to enable a multi-objective approach
to optimize both individual and multiple portfolios.

In the future, the user will require the ability to enter or modify both market orders (with
fixed prices) and limit orders (with variable prices). As we transition from market orders
to limit orders, this will help to expand utility expression, and it can become appropriate to
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add constraints to help identify price improvement opportunities—allowing a combinatorial
exchange to operate for a share of price improvement, rather than charging transaction fees.
Just as Bitcoin promises “zero cost transactions”, this could provide a model for “zero cost
exchanges” that provide the appearance of negative transaction cost given a disparity of utility
functions. In Sect. 6 we discuss the use of priorities to address such considerations.

The current model for the most effective form of exchange is the double-sided exchange,
a system in which both buyers and sellers provide bids for matching via the exchange. A
central controlling system matches the sell bids with the buy bids, yielding matched buy bids
and matched sell bids in response thereto so that allocations of the matched buy bids and the
matched sell bids maximize the throughput of the exchange. Combinatorial exchanges using
cooperative optimization could potentially lay a foundation for the next evolutionary step in
market exchange protocols, moving from double sided trading using a reserve currency to
something more general that encompasses new forms of economic transactions.

Double sided exchanges are used to trade goods, services, or other things of value,
including network bandwidth trading, financial-instruments trading, transportation logistics,
pollution-credit trading, electric power allocation, and so on. However, to make double sided
exchanges work, they require fungibility. And so, varying levels of quality, that describe
for example the quality of crude oil, are lumped into fungible categories of sulfur content,
gravity, etc. This further suggests the possibility that combinatorial exchanges could reflect
multi-attribute trading more effectively, allowing traders to work with greater accuracy in
pricing.

Combinatorial exchanges can likewise be used for handling non-fungible assets. As long
as people are willing to assign value to objects to be traded, combinatorial exchanges can
provide a basis to get people what they want. Suppose User A wants to sell a vacation
timeshare he or she is tired of, for a certain collectible car with roughly the same value.
There are no matches as both are relatively illiquid markets and it could take several months
or require a significant discount to find buyers. However, there could be a User B who has
exactly the car A wants, but doesn’t want a timeshare, and instead wants a diamond necklace.
Now if there is a jeweler C who would find that timeshare exciting, and willing to create a
custom necklace to B’s liking, the system could enable algorithmic liquidity by joining all
three into a complex transaction.

Moving toward amore general example, A andB’s assetsmost likely have different values.
If there is no jeweler willing tomake just the right necklace, the value exchangewould not add
up. Two parties would likely need to add or accept part of the value in cash. However, with
the inclusion of a special user D, who is willing to inject cash and accept a partial tokenized
share of that collectible car or real estate, the complex transaction becomes possible. We
call this special user a “decentralized market maker” who would require a modest premium
to compensate for enabling greater liquidity. That token share could be sold at a later time,
hence it is an offer to sell cash for time.

Additional connections to blockchains via decentralized market making are described in
Appendix 1.

One last note concerns the potential for quantum computing in this arena. In general,
present day quantum computers can handle only a very limited number of qubits, representing
a small number of asset types, or cooperating portfolios. When quantum computers can
offer hundreds of thousands of qubits, with effective partitioning algorithms, combinatorial
exchangeswill be able to scale tomanage real world liquidity needs for applications involving
massive numbers of participants and classes of items to exchange. Until then, quantum
computing will enable exchange functionality for only limited and constrained markets, such
as for cryptocurrencies. For example, a crypto wallet that holds only a dozen types of crypto
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would represent a relatively small variable space and could potentially be optimized using a
quantum computer. Money was invented to simplify barter, and a quantum exchange based
on Pareto-efficient combinatorial exchanges could simplify money.

As noted in Part I, the QUBO model has been adopted as a central focus by the quantum
computing community, and by groups that aspire to solve problems by emulating quantum
computation with classical hardware. Motivated by the Quantum Bridge Analytics perspec-
tive we can enlarge this focus to embrace QUBO-Plus models, and in particular those of
the third type discussed in Sect. 2.2. As we will show, this enables us to provide the desired
exchanges by identifying combinatorial chaining algorithms that are capable of accommodat-
ing variable spaces for AEP models of significantly greater dimension, providing advances
in the near term that can be translated into progressively greater advances in the future as
quantum computing technology becomes more mature.

4 Mathematical formulations of the AEP

The AEP has several levels. We start from the most basic level of the AEP, which we call
AEP0, defined in reference to a graph G � (N, E), with node set N � {1, …, n} and edge set
E � {{i,j}, i, j ∈ N} ⊂ N × N. Each node i ∈ N identifies an entity such as an individual or
business or institution, and each edge {i,j} identifies an exchange link between i and j. Let A
denote the set of asset types (classes), where elements α ∈ A can represent classes of tokens
in a cryptocurrency application or types of securities in a securities market or categories of
commodities in a commodity market, and so forth. In the following we use the term assets
interchangeably with the term asset types.

In AEP0, each node i ∈ N has a set Si of assets it can send (i.e., can agree to send) to
other nodes and a set Ri of assets it can receive (i.e., can agree to receive) from other nodes.
Thus, for example, if α′ ∈ Si and α′′ ∈ Ri, then node i can agree to send asset α’ and agree to
receive asset α" from other nodes. More precisely, Ri denotes assets that i desires (considers
beneficial) to receive and Si denotes assets that i is willing to send (in return for obtaining
an asset in the set Ri). We say a transfer of asset α from node i to node j is admissible if α ∈
Si and α ∈ Rj (α ∈ Si ∩ Rj). We allow only admissible transfers in seeking asset exchanges
that benefit all participants.

Define Ni � {j ∈N: {i,j} ∈ E} to be the set of nodes j that are neighbors of node i (i.e., that
join node i by an edge). Let xijα denote the number of units of asset α transferred from node
i to node j. In restricting consideration to admissible transfers, we assume each node i has
an upper limit Ui

α:R on the number of units of any given asset α ∈ Ri that can be admissibly
transferred from other nodes to node i and an upper limit Ui

α:S on the number of units of α ∈
Si that can be transferred from i to other nodes. Formally, these conditions may be expressed
as

∑
(xα

ji : j ∈ Ni) ≤ Uα:R
i i ∈ N and α ∈ Ri (3)

∑
(xα

ij : j ∈ Ni) ≤ Uα:S
i i ∈ N and α ∈ Si (4)

We also impose an equation that requires the total number of assets transferred from a
given node i to other nodes j to equal the total number of assets transferred in return from
other nodes j to node i. Specifically, for a given node i ∈ N, we observe that the quantity∑

(xijα: α ∈ Si ∩ Rj and j ∈ Ni) identifies the total number of units that can be admissibly
transferred from node i to all nodes j and similarly, the quantity

∑
(xjiα: α ∈ Sj ∩ Ri and j ∈

Ni) identifies the total number of units that can be admissibly transferred from all nodes j to
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node i. We require these two quantities to be equal by stipulating
∑

(xα
ij : α ∈ Si ∩ Rj and j ∈ Ni) �

∑
(xα

ji : α ∈ Sj ∩ Ri and j ∈ Ni) i ∈ N (5)

Finally, we impose an additional limit Ui on the number of all assets α that can be admis-
sibly transferred from node i to other nodes, expressed as

∑
(xα

ij : α ∈ Si ∩ Rj and j ∈ Ni) ≤ Uii ∈ N (6)

As a result of Eq. (5), this inequality is equivalent to
∑

(xα
ji : α ∈ Sj ∩ Ri and j ∈ Ni) ≤ Uii ∈ N (7)

Subject to these conditions, in problem AEP0 we seek to maximize the total number of
admissible exchanges, hence yielding the formulation

Maximize
∑

(xα
ij : i ∈ N, j ∈ Ni, α ∈ Si ∩ Rj)

subject to (3), (4), (5), (6) and xα
ij ≥ 0, i ∈ N, j ∈ Ni and α ∈ Si ∩ Rj (8)

We can also replace (8) by a variety of other objectives, such as

Maximize
∑

(pα
i x

α
ij : i ∈ N, j ∈ Ni, α ∈ Si ∩ Rj) (9)

where piα is a positive monetary value that node i attaches to receiving asset α from the set
Ri.

We now take the step of transforming the foregoing preliminary AEP0 formulation into
a network optimization formulation. Under the assumption that the data are integers, this
allows us to automatically obtain solutions where the variables receive integer values when
an extreme point network algorithm is used.More broadly, it gives a foundation for generating
solutions to the AEP0 model by a corresponding basic version of our combinatorial chaining
approach. From this, we will be able to treat related more complex AEP models by natural
extensions that combine the network optimization and combinatorial chaining components.
The transformationofAEP0 to anetwork formulation significantly increases the problemsize,
but offsets this by making the problem sparser, while our combinatorial chaining algorithm
for this formulation is able to work with a memory based on the number of nodes rather than
the number of arcs in the network, dramatically reducing both the amount of computation
and the memory involved.

4.1 Transforming AEP0 to a network formulation

The transformation of AEP0 to an equivalent network formulation, which we call NetAEP0,
arises by replacing the graph G by a graph G* � G*(N*, A*) consisting of a set of nodes N*
and a set of arcs (directed edges) A* as follows.

To emphasize the arc orientation in creatingG*,we find it useful to augment the customary
representation of an arc from a node p to a node q as an ordered pair (p, q) by alternatively
writing it in the form p → q, which adds clarity when p and/or q is itself represented as an
ordered pair. Lower bounds on all arc flows are assumed to be 0.

To generate G*, we divide each node i ∈ N into two nodes, i[R] and i[S], and create an arc
i[R] → i[S]. In addition, for each i ∈ N and α ∈ Ri we create new nodes (α, i[R]), producing∑

(|Ri|: i ∈ N) nodes, and create arcs (α, i[R]) → i[R] (from node (α, i[R]) to node i[R])
which results in

∑
(|Ri|: i ∈ N) arcs (the same as the number of nodes (α, i[R])). Similarly,
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for each i ∈ N and α ∈ Si we create new nodes (α, i[S]), producing
∑

(|Si|: i ∈ N) nodes, and
create arcs i[S] → (α, i[S]), creating

∑
(|Si|: i ∈ N) arcs (the same as the number of nodes

(α, i[S])). If α ∈ Ri, we assume there is at least one neighbor of node i that can receive the
asset α, or else we can drop α from Ri. Similarly, if α ∈ Si, we assume there is at least one
neighbor of node i that can send α or else we can remove α from Si. If, as a result of these
removals, either Ri or Si becomes empty, we can remove node i from N.

Finally, for each i ∈ N and for each j ∈ Ni and for each α ∈ Si ∩ Rj, each node (α, i[S])
joins by an arc (α, i[S]) → (α, j[R]) to node (α, j[R]). We call these the α-linking arcs of G*,
since the same asset α is referenced by both nodes of each of these arcs. The number of these
arcs is

∑
(| Si ∩ Rj|: i ∈ N, j ∈ Ni).

From this construction we see that N* consists of 2n +
∑

(|Ri| + |Si|: i ∈ N) nodes and A*
contains n +

∑
(|Ri| + |Si|: i ∈ N) +

∑
(|Si ∩ Rj|: i ∈ N, j ∈ Ni) arcs.

To createNetAEP0 fromG*,we introduceflowson the arcs governedbybounds as follows.
Each arc i[R] → i[S] receives an upper bound on its flow of Ui from (6). Correspondingly,
each of the (α, i[R]) → i[R] arcs receives an upper bound on its flow of Ui

α:R from (3) and
each of the arcs i[S]→ (α, i[S]) receives an upper bound on its flow of Ui

α:S from (4). Finally,
the α-linking arcs of G* are not given upper bounds (i.e., their upper bounds may be treated
as infinity). All lower bounds are implicitly 0.

It is assumed that Ui satisfies Ui ≤ Min(
∑

(Ui
α:R: α ∈ Ri),

∑
(Ui

α:S: α ∈ Si)), that is, the
upper bound Ui on the flow across arc i[R] → i[S] is limited by the smaller of the sum of
upper bounds on the arcs (α, i[R]) → i[R] entering i[R] and the sum of upper bounds on the
arcs i[S]→ (α, i[S]) leaving i[S]. (Later we also describe variations in which we additionally
introduce lower bounds Li

α:R and/or Li
α:S on the arcs (α, i[R]) → i[R] and arcs i[S] → (α,

i[S]).)
Because we start from the symmetric graph G in undirected edges to produce the graph

G* with directed arcs underlying NetAEP0, j ∈ Ni implies i ∈ Nj. We additionally observe
that no asset α is contained in both Ri and Si for any given i, under the assumption that if node
i sees a benefit in receiving a unit of α ∈ Ri, then it will not be willing to relinquish a unit of
α by including it in Si. Exceptions can be imagined, as where i may be willing to give up a
particular α’ ∈ Ri if it is able to receive a more highly valued asset α′′ ∈ Ri. Such exceptions
can be modeled by extensions of the constructions used here but make the formulation larger
and more complex. Nevertheless, our basic algorithm can be modified to handle these and
other variations without entailing the complexity introduced by an extended mathematical
formulation.

The foregoing description of G* and the conditions defining NetAEP0 can be translated
into an algorithm for generating the network. As part of this we show how to attach numerical
indexes denoted by k � 1 to n* to the nodes in N* so that NetAEP0 may be represented as a
network in a standard format. We refer to lower bounds as well as upper bounds on arcs for
generality, although in direct transformation of AEP0 to NetAEP0 the lower bounds will be
0.
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4.2 Algorithm to generate NetAEP0

Costs or profits may be attached to the arcs of the network NetAEP0 according to the
objective that is desired to be achieved. Asset arcs, which are linking arcs, should be assigned
a 0 cost or profit.

An illustration of the structure of NetAEP0 is given in Appendix 2.

5 Basic version of combinatorial chaining

Aclassical theoremof networkflows (Fulkerson&Ford, 1962) implies that a feasible solution
to NetAEP0 can be decomposed into a sum of incidence vectors of cycles (not necessarily
disjoint or uniquely determined). Such cycles are of interest for the AEP in both its simpler
AEP0 form and its more complex forms because they identify a collection of participants
who can enter into a succession of mutually beneficial asset exchanges. Such a collection is
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not unduly difficult to identify by reference to a solution to the NetAEP0 formulation but
requires additional effort. Fulkerson and Ford’s max flow algorithm would automatically
identify (augmenting) paths from source to sink in the network, which has some similarity
with combinatorial chaining. But a standard network flow algorithm for solving NetAEP0 is
not capable of being directly adapted to provide good solutions to more complex variations
of the AEP that abound in practical applications, thus motivating the creation of the adaptive
combinatorial chaining approach.

Adopting the netform perspective (Glover et al., 1992), combinatorial chaining is designed
both to exploit the structure of the basic AEP network formulation and to be susceptible to
extensions for solving a variety of AEP variations found in practice. This harmonizes with
the Quantum Bridge Analytics perspective as in applications where quantum computing
can be applied to solve portfolio optimization problems expressed as QUBO models for
individual investors or institutions, andmore generally leads to consideration of aQUBO-Plus
formulation of the third type. Combinatorial chaining can then be applied to the appropriate
AEP variation to integrate and improve these individual solutions to the benefit of each
participant.

The strategy underlying the basic form of combinatorial chaining operates by generating
successions of directed trees (or arborescences in graph theory) rooted at different nodes.
Conditions are monitored to disclose when a directed tree can be extended by connecting a
tip of one of its branches to the root, thus creating a cycle that constitutes a mutually benefi-
cial exchange. The process differs from classical tree generation algorithms by introducing
multiple categories of tree predecessors and establishing a mechanism to trace the prede-
cessors that differentiates between the categories effectively. This introduction of multiple
categories of tree predecessors and mechanisms for tracing them likewise causes our method
to operate differently from classical min cost flow algorithms based on generating augmented
paths (Barr et al., 1978; Glover et al., 1986). This departure from classical approaches arises
because many of the more general AEP models belong to the class of multi-commodity net-
work flow problems (Assad, 1978; Hu, 1963), which are more complex than standard “pure”
network flow problems, and normally cannot be transformed into a pure network problem as
we have accomplished for AEP0. Rather than being a disadvantage, however, this complexity
enables the chaining mechanism to be adapted to AEP variations beyond AEP0.

More broadly, the combinatorial chaining mechanism we employ is closely related to
the ejection chain procedures for combinatorial optimization noted in Sect. 1. In its more
advanced forms outlined in Sect. 6, it is additionally related to the path relinking approaches
that are joinedwith ejection chains inYagiura et al., (2006, 2007) and that produce the leading
methods for the QUBO problem in Resende et al. (2010), Wang et al. (2012), Samorani et al.
(2019) and Glover et al., (2020, 2021b).

5.1 Rudimentary combinatorial chaining for the NetAEP0model

Combinatorial chaining for the basic NetAEP0 model makes use of arrays denoted FlowR(α,
i[R]) to record flows on the arcs (α, i[R]) → i[R] and arrays denoted FlowS(α, i[S]) to record
the flows on the arcs i[S] → (α, i[S]). Hence, for each i ∈ N, we require FlowR(α, i[R]) ≤
Ui

α:R for each α ∈ Ri, and require FlowS(α, i[S]) ≤ Ui
α:S for each α ∈ Si. Flows on the arcs

arc i[R] → i[S] are recorded in an array Flow(i) for each i ∈ N. All flow values are initialized
to 0.

It is convenient to refer to the nodes (α, i[R]), (α, i[S]) and i (the latter collectively
representing the two nodes i[R] and i[S]) as open when their associated flows FlowR(α,
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i[R]), FlowS(α, i[S]) and Flow(i) do not reach their upper bounds and closed otherwise. (A
bit can be set for each such node to determine its open/closed status.)

We refer to two types of predecessor arrays PredR(i) and PredS(i), i ∈ N, accompanied by
associated arrays AssetR(i) and AssetS(i) explained subsequently. The arrays PredR(i) and
PredS(i) are initialized to 0 to indicate predecessors are not yet assigned.

The method performs forward scans and reverse scans to examine nodes i ∈ N (and from
there to examine the arcs these nodes can become linked to in a chain). When a tip of the tree
can successfully be linked to the root, a breakthrough occurs by establishing the existence
of an exchange cycle that is mutually beneficial for all its participants. Breakthrough is
accompanied by appropriately updating (increasing) the flows on arcs of the cycle.

The basic version of the chaining algorithm only performs forward scans but gives the
foundation for performing reverse scans as well, as subsequently described. We first explain
the nature of the forward scan routine and then give a more formal description.

5.1.1 Rationale of the Forward Scan Routine

The Forward Scan Routine is embedded in aMain Routine that maintains a set No identifying
the open nodes, initialized byNo �N.Nodes to be scanned are placed in a set denoted ScanSet
that begins with a chosen node i* ∈ No. During the Forward Scan Routine, ScanSet acquires
other nodes i ∈ No to form a tree that yields a collection of chains rooted at node i*. The tree
is generated by successively selecting new nodes i from ScanSet as long as ScanSet �� ∅.

For each node i selected from ScanSet, consider each asset α ∈ Si; i.e., each asset α that
node i is willing to send to another node. Given node i, additionally consider each neighbor
j of i that contains α in Rj; i.e., each neighbor j that desires to receive α. (Formally, we refer
to the set NRi

α � {j ∈ Ni: α ∈ Rj}, which consists of those neighbors j of node i such that Rj

contains α.) If node j is not already in the tree, i.e., if it has no predecessor (as indicated by
PredS(j)� 0), then it can acceptably be added to the tree by adopting node i as its predecessor.
For this, we set PredS(j) � i together with AssetS(j) � α, which records the fact that each
chain in the tree that passes through this particular (i. j) link is accompanied by sending asset
α from node i to node j.

If now j � i* (which can result because i* is not assigned a predecessor initially), we
have discovered a chain beginning with node i* that results in a loop which qualifies as a
mutually beneficial exchange cycle (where each participant receives a desired asset and in
return sends a willingly exchanged asset). The Breakthrough Routine handles this outcome
by identifying the cycle and updating the flows and the structure of G* appropriately.

Following the updates of the Breakthrough Routine, the scanning routine is reinitiated
within the Main Routine by selecting a new i* from No (where i* may be the same as before
if it is not removed from No during breakthrough).

Alternatively, the scan from a given node i* may terminate with ScanSet empty and
without achieving breakthrough. In this case, i* is removed from No and once more the
scanning routine is reinitiated within the Main Routine to select a new i* from No.

We let Ni
o � Ni ∩ No denote the (current) neighbors of node i that are in No. Hence Ni

o,
which starts the same as Ni, may shrink as nodes are removed from No. This also modifies
the definition NRi

α � {j ∈ Ni: α ∈ Rj} to become NRi
α � {j ∈ Ni

o: α ∈ Rj}, identifying the
neighbors of i in No that desire to receive asset α.

Termination of the Main Routine occurs when No contains only a single node (|No|� 1),
since then this node has no other nodes it can exchange with.

The formal design of the algorithm is as follows.
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The algorithm can be modified to save part of the tree after the completion of each forward
scan, but the computational savings will not usually be enough to warrant the effort. Reverse
scanning provides a more interestingmodification and can be accomplished by interchanging
R and S in each of the instructions of the Forward Scanning Routine. Forward scanning and
reverse scanning can also be done together, switching from one to the other on selected
iterations. In this case, breakthrough is recognized when j � PredS(i) on a forward scan
yields PredR(j) > 0 (where PredR(j) was set on a reverse scan), or when j � PredR(i) on
a reverse scan yields PredS(j) > 0 (where PredS(j) was set on a forward scan). To show
how reverse scanning can be joined with forward scanning, Appendix 3 gives an example
where a single iteration of reverse scanning is applied before launching the forward scanning
algorithm.

The Breakthrough Routine that accompanies the Forward Scanning Routine may now be
described as follows. The preceding observations and the example in Appendix 3 disclose
how to modify this routine for reverse scanning or for combinations of forward and reverse
scanning.
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6 Advanced forms of combinatorial chaining for more complex AEP
models

There are problems that are too complex to be given mathematical formulations that fully
capture their subtleties and that are simultaneously capable of being solved by standard
math programming algorithms. In adopting the perspective of Quantum Bridge Analytics,
we embrace strategies for such problems that allow their objectives to be pursued approx-
imately and flexibly, thus admitting approaches that solve variations of these problems to
emphasize alternative problem components in an adaptive fashion. As we have emphasized,
our basic combinatorial chaining procedure allows this to be done when joined with network
optimization by giving advanced methods that yield access to more complex AEP variants.

We show how this can be achieved for two chief extensions of the preceding AEP formula-
tion that encompass a broad range of applications. The associated versions of combinatorial
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chaining provide flexible approximation methods that can be embedded in metaheuristic
algorithms and afford the possibility of being incorporated into hybrid classical/quantum
systems. In common with the most effective algorithms for QUBO problems, a natural basis
for these combinatorial chaining methods derives from adaptive memory strategies (Glover
et al., 2020, 2021b; Samorani et al., 2019; Wang et al., 2012).

6.1 Prioritizing the assets exchanged

In some applications of the AEP, participants may wish to prioritize certain exchanges of
assets over others, preferring more strongly to receive particular assets and being more will-
ing to relinquish certain other assets. Priorities attached to these preferences may also differ
among different participants. Upon assigning numerical values to capture these preferences
(as by indicating a dollar amount that different individuals attach to the value of different
exchanges, or by making recourse to an agreed-upon set of subjective weights), the combi-
natorial chaining algorithm can be extended by prioritizing the selection of the elements i*
in No or the choice of elements i in ScanSet, in each instance selecting the highest priority
element from those available.

Priorities can also be used by such an extension to improve the choices for participants
whose exchanges were less favorable on previous executions of the algorithm, since an
effort to achieve a best overall collection of exchanges (such as a maximum number of
beneficial exchanges) can result in better outcomes for some participants than for others. This
means of exploiting the freedom to choose different elements in executing the basic steps
of combinatorial chaining yields an approximation method for a problem whose subtleties
render it unsuitable for a classical mathematical formulation, while allowing the flexibility
to be adapted to different types of priorities. Such priorities can be introduced in the network
formulation and embodied in probabilities for selecting moves in metaheuristic adaptations
as in probabilistic tabu search (Glover and Laguna, 1997; Guemri et al., 2019; Xu et al.,
1997). Combinatorial chaining provides the underlying structure for guiding the search to
produce feasible solutions.

Priorities can also be employed to create larger breakthroughs earlier in the process of
generating combinatorial chains, as by giving higher priority to participants with larger
capacities (upper bounds) on the flows they can receive. The priorities can be based on
measures applied to each base node (participant), such as total sums of capacities or means
of capacities adjusted by standard deviations, and so forth. Refinements arise by considering
the priorities of neighbors. For example, a new priority can be created for a node that is
a weighted combination of its current priority and the priorities of neighbor nodes, where
weights for neighbors are less than for the node under consideration. Such a process may
also be repeated, using the new priorities as a basis for constructing another round of new
priorities. (Additional repetitions may be expected to yield progressively less advantage.)

Particular applications give their own criteria for determining priorities. In exchanges of
cryptocurrencies, for example, larger investors face the most negative impact by failing to
make exchanges of a size deemed satisfactory, so assigning higher priorities to exchanges
of such investors will usually result in the highest increase in utility. Using such priorities,
choosing a node i* fromNo with the highest priority to become the root of the current directed
tree, followed by choosing highest priority nodes i from ScanSet to continue building the
tree, provides a compelling and easily implemented strategy.

As previously observed, there may also be situations where it can be relevant to place
lower bounds as well as upper bounds on the number of units of different assets exchanged
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by different participants. In a cryptocurrency application, for example, an investor may only
be interested in transactions that result in receiving a specified number of units of a given asset.
To illustrate, an investor represented by a node i may seek an exchange in which i receives
precisely 100 units of Ethereum (ETH), represented by asset α (∈ Ri) (accompanied, for
example, by i sending units of Bitcoin (BTC) or Lumen (XLM) to other nodes). The AEP
network model then captures this by putting a lower bound of 100 and an upper bound of
100 on the ETH arc (α, i[R]) → i[R]), giving Li

α:R � Ui
α:R � 100. The situation where an

investor may have an exact demand for an asset (modeled by setting the lower bound equal
to the upper bound), and where this demand cannot be satisfied by an exchange involving
any single other investor, is sometimes called splitting, i.e., the demand must be split into
different transactions with different investors. Combinatorial chaining automatically handles
splitting situations as well as other much more general situations. A simple illustration is
where investor i will only consider an exchange that brings in at least Li

α:R � 50 units of
ETH, but would prefer to receive more units, up to a limit of Ui

α:R � 100. Any number
of other investors, some who may not be neighbors of i, may be involved in transactions
identified by combinatorial chaining.

In cases like these where the AEP model includes lower bounds on numbers of units
received, exchanges can be prioritized in two phases, where Phase 1 is devoted to satisfying
as many of the lower bounds as possible, and Phase 2 then sends additional flow through the
network subject to satisfying upper bounds. These two phases are not required to have the
same priorities for selecting nodes on exchange cycles.

Machine learning provides a natural way to facilitate priority generation. A strategy of
varying the prioritiesmay yield better overall outcomes for a particular objective, for example,
and machine learning can be used to help identify a strategy that leads to the most desirable
results. An instance of machine learning called Programming by Optimization (Hoos, 2012)
is often effective for choosing parameters for optimization algorithms and may be useful in
determining priorities in the combinatorial chaining context. Learning can also be employed
as clustering-based metaheuristics (Samorani et al., 2019). The flexibility of the AEP model
additionally makes it relevant for applications in public health and pandemic containment,
as discussed in Appendix 4.

6.2 Generalized networks

An important extension of the AEP arises where a unit of one asset may be exchanged for
more or less than one unit of another asset. Networks in which the number of units received
at the destination node (to-node) of an arc may differ from the number of units sent from the
origin node (from-node) of an arc are called generalized networks (Glover et al., 1990, 1992)
and the factor that determines the difference between the units sent and received is called
the arc multiplier. For example, an arc multiplier of 1.5 implies that the to-node receives 1.5
units for every unit sent from the from-node. A variety of situations exist where assets may
be exchanged other than on a one-to-one basis.

A convenient feature of the basic combinatorial chaining algorithm is that such multiplier
effects can be captured by joining the treatment of priorities with a modification of the
Breakthrough Routine. The amount of flow transmitted across a chain of generalized arcs
on a path leading from the root node i* to a subsequent node i equals the product of the
multipliers on the arcs between i* and i. Thus, for example, if the chain consists of the
succession of arcs (i*, i1), (i1,i2), (i2,i3), with i3 � i, and if the multipliers on these three
arcs are 0.6, 2.0 and 1.2, then a unit of flow sent from node i* becomes 0.6 × 2.0 × 1.2 �
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1.44 units of flow received at node i3. The Breakthrough Routine can be readily modified to
incorporate this effect, using it to identify the limits on flows required to compute updated
flows across the entire cycle and to determine which assets or elements must be removed
from their associated sets due to these updates.

The approaches of introducing exchange priorities and capitalizing on the ability to incor-
porate arc multipliers in association with generalized networks can be combined to cover
an additionally expanded range of practical problems, which may be usefully exploited by
metaheuristic algorithms in the QBA context.

7 Concluding remarks

The relevance of Quantum Bridge Analytics for real world applications has been demon-
strated by showing an important instance where we are able to apply the QBA perspective to
the challengingAEP,which opens up numerous applications in financial investment, resource
allocation, economic distribution and collaborative decision making. The linkage of network
optimization with metaheuristic optimization via combinatorial chaining gives rise to an
Asset Exchange Technology that can address and solve a wide range of practical variations.

Present day quantum computers can only handle small AEP problems, due to the limited
number of qubits they encompass, but the integration of network formulations and combinato-
rial chaining is capable of accommodating AEP problems of significantly greater dimension.
Through these connections, the AEP model gives an important class of optimization prob-
lems that can be usefully approached within the QBA domain, providing a foundation for
further advances in the future as quantum computing technology becomes more mature.

Acknowledgements The authors are indebted to Yves Crama for insightful observations that have improved
the quality of this paper.

Appendix 1: Blockchains and decentralizedmarket making

Decentralized market making is an intriguing concept that would require a detailed explo-
ration, as it will likely emerge as critical factor for enabling scalable liquidity. But there are
many questions to be answered. For example, what is the value of contributions by the decen-
tralized market makers? Also, could these small investments held by the market—provided
to equalize values in an exchange—be aggregated into baskets, and could those baskets be
traded? How do we accurately assess the risks of items in baskets, to flow them up to the
basket, to avoid “toxic assets” being included?

Finally, it should be noted that a computational system or agent that learns what a user
wants to buy or sell, or might be willing to trade, would be quite valuable as an e-commerce
tool because it provides a means to unveil the deeper purchase intentions of users. AI based
agents could assist not only in the process of helping the user to determine what theymight be
willing to trade for or buy but could even help the user discover new purchase intentions that
might lead to greater personal satisfaction. In other words, instead of just contributing to the
accumulation of more useless stuff in their lives, such a system could explore more complex
human values, as opposed to those reflecting desires and whims stimulated by media and
advertising.

For example, if an AI held a model that understood the OCEAN Big Five personality
traits, which was used so effectively by Cambridge Analytica in 2016, it could predict that
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the user has a high degree in a single trait, openness to new experiences. By balancing knowl-
edge around both investment planning and personality traits, the advisor could provide more
balanced advice to the user that would lead to greater personal satisfaction and fulfillment. A
strictly financial based AI advisor would simply recommend one asset class over other, or the
diversification into additional classes. But an AI advisor that used both financial optimization
as well as heuristics about human personality and psyche, understanding the complex needs
of the investor, might suggest to keep 95% of the portfolio within financial instruments,
but propose that 5% could be invested in experiential learning for the user, in other words,
investing in him or herself. This could include travel to learn a new language or a workshop
to learn a new skill, possibly with permission to tap into the user’s online “bucket list”—the
list of things you’d like to do before you “kick the bucket.”

To put this into the context of the AEP problem and combinatorial chaining, consider a
situation with User A who has inherited a somewhat odd abstract painting from a distant
relative in France, that doesn’t have much value on the resale market in America. However,
on a combinatorial exchange market, there may be a chance of trading it for something not
only less objectionable but desirable for all parties. Her asking price is a value of $3000.
Now, because her interaction with the exchange is managed by a user agent with access to
her private “bucket list,” the trusted agent can now look for something that matches items on
his list. It turns out that she has always wanted to take a class at the Cordon Bleu cooking
school and to learn some French. So our agent can scan against other agents and listings,
to find User B who wants to trade a $3000 workshop pass at Cordon Bleu for ten day stay
in a beachfront Airbnb on some nice tropical island. The combinatorial chain holds that in
place while finding a third or fourth transaction to make the combinatorial exchange pareto-
optimal for all users. Fortunately, it finds User C who has a modest bungalow on a beach in
the Marquesas, which doesn’t get much Airbnb interest because it is too remote. However,
that person looks at the painting, and realizes it was painted by the singer Jacques Brel, who
was a great singer but lousy painter, and actually has quite a bit of value in the Marquesas
because Jacques Brel spent his last days on the island of Hiva Oa, following the footsteps of
Paul Gauguin and learning how to paint untamed landscapes that were so bad they looked
abstract. So his agent offers a 3 week stay for that painting!

In this way, an AI-based financial advisor would advise in amore human and humane way.
Thus, metaheuristic optimization via asset exchange technology could be applied directly to
the issues of happiness, life goals and meaning. For user A, the lifelong goal of learning how
to master the art of French cooking. For User B, a desperately needed vacation he couldn’t
afford otherwise. And for User C, the lifelong goal of appearing on Antique Roadshow, to
show off a barn find of a lifetime. We thus can ascend from cold process of optimizing utility
functions to optimizing the human condition.

Appendix 2: Illustration of the network structure of NetAEP0

The structure of the network NetAEP0 created in Sect. 4 is illustrated in the following
diagram, where the i nodes are represented in their duplicated form i[R] and i[S], giving rise
to the arc i[R] → i[S], for a network with N � {1, …, 6}. The assets α are represented by the
letters A, B, C, D and E, giving rise to asset nodes of the form (α, i[S]) and (α, j[R]) which
are joined by arcs (α, i[S]) → (α, j[R]) (called α-linking arcs in Sect. 4), where i and j may
vary but the asset α (� A, B, …, etc.) must be the same in each such arc. It should be noted
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that these linking arcs do not have limiting bounds on their flows other than an implicit lower
bound of 0.

The arcs of the network can be represented by a succession of columns of R-labeled nodes
and S-labeled nodes, in a pattern that begins with the R-labeled i nodes i[R], followed by the
S-labeled i nodes i[S], followed in turn by the S-labeled asset nodes (α, i[S]), then followed
by the R-labeled asset nodes (α, j[R]) and finally followed by the R-labeled i nodes i[R] to
repeat the pattern. A further interesting pattern seen in the diagram is that all S-labeled nodes
have exactly 1 arc entering but may have multiple arcs leaving, while all R-labeled nodes
have exactly 1 arc leaving but may have multiple arcs entering. The i nodes are enclosed in
circles in the diagram and the asset nodes are enclosed in rectangles.

Since the asset arcs (linking arcs) do not have bounds on their flows, the foregoing pattern
implies that an asset arc whose S-labeled node has a single arc out can be collapsed to be
represented only by the R-labeled node, and an asset arc whose R-labeled node has a single
arc in can be collapsed to be represented only by the S-labeled node. It should be emphasized
that the staged structure shown in the diagram above is slightly misleading, since cycles
typically vary in length and, in addition, duplicated i nodes may be encountered at various
stages without implying they form a cycle that can be traced back to a previous instance of
a duplicated node. The i indexes and the assets in the diagram have been ordered to show
the patterns produced by arranging the nodes in columns. By contrast, the algorithm given
in Sect. 4 for generating the network applies for any ordering of the indexes i in N and is
independent of any ordering of the assets, which shows that such orderings are irrelevant in
the general case.
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Appendix 3: Illustration for reverse scanning
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Appendix 4: Additional applications of the Asset Exchange Problem
in public health and pandemic containment

The AEP arises in a variety of contexts, and recently, a new class of problems has become
quite pertinent: the application of optimization processes to nonpharmaceutical interventions
used in public health and pandemic containment. The basis of our approach on a form of
cooperative optimization, where multiple parties with complex criteria collaborate as well as
compete for resources, becomes additionally relevant in such situations where the objective
to be optimized can be expressed in terms of the number of lives saved.

This is an area that is still in its infancy, and we make general observations about its nature
and importance that should be considered speculative at the current stage. In the form of
cooperative group optimization treated here, our approach generalizes processes that seek
exchanges of pandemic resources or classes of citizens to enable combinatorial optimization.
For example, a simple instance of such a systemwould be in the setting of elementary schools,
in the formation of classroom bubbles to limit community spread of a highly infectious virus.
In this example, a school wishes to allocate students and teachers to classroom bubbles to
control the spread of the virus that currently poses a threat to health.

At present, schools assign students to bubbles in an ad hoc fashion. It becomes important
to consider how this can be improved if additional information were available to assess the
risk of infection for individual students, or infection via their home bubbles due to family
members in high-risk occupations or the incidence of vaccination.We then pose the question:
howwould the formation of bubbles bemodified to reduce the overall risk for the community?
Each bubble is like a portfolio, and the assets in those portfolios contain their own risk levels.
Key considerations are summarized by posing the further questions: Is it preferable to assign
low risk students to low-risk bubbles, or to spread the risk around? If the school intended
to achieve a kind of incremental herd immunity, then it might be supposed that it would be
better to assign a low number of higher risk students from anti-vax families, with a larger
number of low-risk students that belong to highly vaccinated families. However, when the
wishes of individual vaccinated parents enter into the equation, these parents may not wish
to allow their children to mix with children from unvaccinated households. Is there some
science that could help to settle this issue?

The AEP framework makes it possible to address such issues using combinatorial
swaps—moving interchangeable students around between bubbles, to seek more optimal
configurations. Again, by enabling all potential complex exchanges, splits and aggregations
to compose bubbles optimally, the school could decrease its overall risk of community spread.
However, the computational complexity of this type of complex combinatorial exchange
trading produces an NP-hard problem. This is further complicated by the inclusion of con-
straints—whether some students have special needs, certain students tend to be disruptive,
and so forth—which increase the complexity of the problem.

The foregoing example is only one of many other possible areas that can be explored
with both QUBO and AEP approaches, ranging from the allocation of scarce testing kits, to
the early detection of asymptomatic spreaders, to the implementation of anomaly detection
applications for improving the odds of early detection of variants of interest and concern.
However, the most interesting is the vaccine allocation problem.

In the midst of a pandemic such as the one we are facing today, public health officials must
make rapid vaccine allocation decisions—choosing who will receive the vaccines, where and
when. Currently, there are two approaches to distributing vaccines to the general population:
pull-based (in which requests from healthcare providers for specific quantities are filled) and
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push-based allocation (which is focused on distributing quantities to achieve equity among
priority groups). The current preferred solution is to distribute the majority of vaccine doses
via pull-based requests, while a smaller percentage of vaccine doses are held back by public
health officials whomustmake decisions on how to allocate these doses to address and correct
the inequities that may arise in a strictly pull-based process.

These decisions are extremely complex, and intersect with both logistical and ethical
perspectives, especially when dealing with priority groups such as healthcare personnel, the
elderly and people with certain health risks. The solutionsmust be fair, simple, effective (such
as getting the right type of vaccines to specific locations), cognizant of cold chain constraints
and quantity management. It is simply not possible for humans to make optimal decisions in
this case. This is an ideal problem for mathematical optimization, that could help humans in
making more optimal decisions.

Researchers have already begunusingmixed integer programming to address this problem.
This tool has proven to be valuable in deciding what percentage of available vaccines to keep
in reserve for push-based allocation. As demonstrated in studies reported in Part 1 of this
tutorial (Glover et al., 2021a, 2022), the use of algorithms specifically designed forQUBOand
QUBOPlusmodels yield better solutions thanMIP algorithms for these problem classeswhen
theMIP algorithms are allowed to run one to three orders of magnitude longer. Moreover, the
best algorithms for QUBO-related applications can obtain high quality solutions to problems
much larger than the MIP approaches are capable of handling. In the QUBO-Plus category,
the AEP model and its specialized algorithm afford a way to enlarge the strategies available
for identifying a more efficient and equitable way to distribute vaccines, considering the
factors highlighted here. Furthermore, with the significant risk for wastage of ultracold doses,
faster optimization technologies could be valuable for optimizing real-time local distribution
situations.

Finally, it may be possible to use these QUBO-related optimization technologies in
the realm of behavioral economics to address situations where people often do not act in
their own best interest. Hundreds of behavioral biases affect our daily decision-making.
Many of those biases are accentuated in situations of stress, fatigue, propaganda, or
fear. During a pandemic, both during lockdown and as vaccines have been released,
factors like optimism bias and vaccine hesitancy impact the calculations people make
on the probability of getting sick and dying. Compounding this situation, the lifting
of social distancing measures can produce a false sense of security that worsens some
of these biases and causes people to take fewer precautions. Through the relevance of
the AEP model and its solution approach for cryptocurrency applications, it may be
possible to use the AEP technology, in concert with cryptocurrency-based behavioral
incentive tokens or nudge-based interventions, to address these challenges in behav-
ioral economics as well. [See: https://www.zs.com/insights/how-behavioral-science-can-
solve-vaccine-hesitancy and https://mgmt.wharton.upenn.edu/wp-content/uploads/2021/03/
Covid19_Vaccine-Uptake-Behavioral-Science_Task-Force_Report_Feb-23-2021.pdf].

In sum, in the fight against a virus such as COVID-19, using technology that enjoys two
orders of magnitude faster optimization for significantly larger variable spaces would allow
for faster and better predictions about the spread of the virus, the ability to cluster higher risk
cases more quickly and accurately for scarce testing supplies, and perhaps also, demonstrate
that AI can be ethical.
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