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Abstract
In recent years, operations research in agriculture has improved the harvested yield, reduced
the cost and time required for field operations, and maintained economic and environmental
sustainability. The heuristicsmethod, namedEvolutionary neighborhood discovery algorithm
(ENDA), is applied to minimize the inter-field and intra-field distance of the routing plan-
ning of machines in multiple agricultural fields. The problem is an extended version of the
Agricultural Routing Planning (ARP) that takes into consideration the different capacity of
the machines and multiple agricultural fields. This research also describes the mathematical
model to represent the proposed problem formulated as an integer program. The experimental
results show that ENDA successfully solves ARP instances, giving the best results and the
fastest running time compared to those obtained by Genetic Algorithms and Tabu Search.
The results also show that ENDA can save an average of 11.72% of the distance traveled
by the machines outside the working path (when making maneuvers, going to or from the
entrances and going from and returning to the Depot).

Keywords Agriculture · Routing planning · Evolutionary neighborhood discovery
algorithm

1 Introduction

Operations research in the domain of agriculture has become increasingly important since
it can optimize the whole supply chain process and facilitate decision making (Zhang et al.,
1990). Instances in this area include, among others, optimization of forest harvest scheduling
(Neto et al., 2017; St. John and Tóth, 2013; Alonso-Ayuso et al., 2011), sugarcane harvest
planning (Florentino et al., 2018; Sethanan and Neungmatcha, 2016), and crop cultivation
(Aliano Filho et al., 2019). The domain also includes the management of farm andmachinery
as well as the routing of the machine(s) inside the field (Plà et al., 2014).
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Fig. 1 Illustration of an agricultural field (Utamima et al., 2018)

Agricultural Routing Planning (ARP) in farmmanagement is intended to design or sched-
ule the movements of machines inside agricultural fields. A good design can minimize the
distance of the machine’s tours, thereby leading to cost savings. Hence, it is essential to have
an optimized plan for the routing of the machines being used for the agricultural tasks in the
field (Jensen et al., 2015).

The focus of this research is on the routing optimization of machines inside multiple
agricultural fields. Figure 1 illustrates an agricultural field while Fig. 2 shows the possible
graph representation (right) of an ARP problem (left). The field has several established
tracks with symmetrically-planted crops. These tracks can be traversed by both agricultural
machine(s) and harvesters. The headland area to the North and South of the field is the non-
working area (crop-free) where machines perform maneuvers to go to the next track. The
farmer needs to determine which sequence of tracks will cover the shortest distance, thereby
reducing the overall cost of harvesting.

To date, most research on ARP has considered only single-field configurations (Bochtis
et al., 2015; Conesa-Muñoz et al., 2016; Seyyedhasani and Dvorak, 2018a). Most of the ARP
research also utilized a single machine without a capacity constraint (Hameed et al., 2011;
Edwards et al., 2017). Therefore, ARP with multiple fields and capacitated machines is still
a potential research area. ARP belongs to the class of NP-complete problems; therefore,
an exact optimization is too time-consuming and complex to be applied, and a heuristic
algorithm is needed (Marinakis et al., 2017). Hence, this research develops the evolutionary
neighborhood discovery algorithm (ENDA) to deal with ARP.

Most of the current research focuses on real-world scenarios and utilizes general algo-
rithms rather than addressing unique ARP configurations and algorithm improvements. This
study is a continuation of our recent work (Utamima et al., 2019) by extending the ARP
problem. This study makes three significant contributions to the literature. First, the math-
ematical model for the extended ARP is formulated, taking into account multiple fields,
barriers, and multiple machines with heterogeneous capacities. Second, seven problem sets
for the extended ARP are generated and presented. Third, a hybrid heuristic and a set of
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Fig. 2 Illustration of ARP problem (left) with possible graph configurations (right)

experiments are developed in order to compare the proposed heuristics with the Genetic
Algorithm and Tabu Search from the previous literature.

This section is followed by a review of the literature pertaining to ARP and the algorithms
that have been proposed to solve related problems (Sect. 2). The definition of the problem,
the mathematical model, and the proposed algorithm, ENDA, are given in Sect. 3. Section 4
provides the experimental results, including descriptions of the problem set, the parameter
settings, numerical results, and the analysis. Finally, Sect. 5 offers suggestions for future
research in ARP, and concludes the paper.

2 Literature review

2.1 Agricultural routing planning

The ARP problem involves minimizing the distance traveled by machines when performing
field operations inside an agricultural field (Utamima et al., 2018). This problem has been
altered and extended in terms of the targets [e.g., improvement of time (Seyyedhasani and
Dvorak, 2018b), minimization of the headland distance (Bochtis and Vougioukas, 2008)],
specific field operations [e.g. herbicide application (Conesa-Muñoz et al., 2016), potato cul-
tivation (Zhou et al., 2015), or orchard operation (Bochtis et al., 2015)], and limitations [e.g.,
restricted machine limit (Bakhtiari et al., 2013) and obstacles (Zhou et al., 2014)].

The optimization of the non-working distance, first introduced by (Bochtis and Vou-
gioukas, 2008), is intended to minimize the distance in the headland area. The machine is not
performing an agricultural operation while making the turning maneuvers in the headland
area. Jensen et al. (2015) extend the problem by using capacity constraints. The model was
adapted by Bochtis et al. (2015) for orchard operations, Conesa-Muñoz et al. (2016) for a
weed-killing problem and by Seyyedhasani and Dvorak (2018a) for reducing the field work
time. Barrientos et al. (2011) and Valente et al. (2013) also applied the same concept to aerial
coverage planning.
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Utamima et al. (2019) gathered several publishedARPdatasets fromprevious publications
and presented a mathematical model to generalize the problem. All the datasets are single-
field configuration. The collected datasets can be used as validation data for a new method
when solving a new ARP problem. The work also conducts a comparative study of several
metaheuristic algorithms in order to deal with the collected dataset.

Many of the recent ARP studies focus on a single field. Seyyedhasani and Dvorak (2017),
Conesa-Muñoz et al. (2016), Zhou et al. (2014), Bakhtiari et al. (2013), Valente et al. (2013)
and Hameed et al. (2011) consider both rectangular and non-convex fields. The rectangular
field is the primary type that most researchers use in ARP. Whereas, the non-convex field is
closer to actual cases and most farm situations (Zhou et al., 2014).

Currently, research onmultiple crop fields is found in sugarcane harvesting (Kittilertpaisan
and Pathumnakul, 2017; Sethanan and Neungmatcha, 2016). Sethanan and Neungmatcha
(2016) focused on sugarcane field operations thatminimized the traveling distance inmultiple
fields, while Kittilertpaisan and Pathumnakul (2017) focused on improving the planning of
the cultivation of a new crop. However, neither study considered the tracks inside the fields
and the maneuver of the machines. Hence, this study considers the tracks inside the fields
and the machines’ maneuvers to better address the harvesting problem.

2.2 Heuristic algorithms for agricultural routing planning

Previous studies on ARP focused mostly on real cases and solved the related problems with
several different algorithms. The most frequently used algorithm is the Genetic Algorithm
(GA). GA is an optimisation method based on the concept of genetics and natural selection.
GA uses a population formed of individuals to evolve to a state that maximises fitness under
the defined selection procedure (Haupt and Haupt, 2004; Karatas et al., 2021). In general,
GA simulates a natural evolution process that generates individuals by selecting the best
candidates from the current generation to be applied crossovers and mutations.

GA has been adapted formachine routing to decrease the total distance traveled in biomass
transportation (Gracia et al., 2014). GA was also used for track sequence optimization in a
field, and its solutions haveproven to bemore efficient compared to the conventional fieldwork
patterns (Hameed et al., 2011). Recently, GA has been used in optimizing the scheduling
of crop cultivation (Aliano Filho et al., 2019). GA has also been utilized to optimize the
sugarcane harvesting plan in order to make the harvesting point as close as possible to the
ideal (Florentino et al., 2018).

TS is an algorithm that traverses the solution space by moving iteratively from the current
solution to a (best) solution in its neighborhood. TS improves the search by not re-evaluating
points already visited in the search space. Such a point is considered ‘tabu’ to be rechecked
(for several iterations).This methodmakes use of flexible memory structures with restrictions
and aspiration criteria that exploit the search spaces (Glover and Laguna, 1997).

TS was applied to reduce the fieldwork time in agricultural operations (Seyyedhasani
and Dvorak, 2018b). Seyyedhasani and Dvorak (2017, 2018a) utilized TS to improve field
efficiency and the dynamic directing of several machines in farming tasks. The results show
that TS can optimize the fieldwork timemore effectively than do theClarke-Wright heuristics
(Seyyedhasani and Dvorak, 2017). The TS approach was also applied to solve the location
problem of a forest harvesting machine (Weintraub, 2007).

Sethanan and Neungmatcha (2016) used Particle Swarm Optimization (PSO) with a dif-
ferent structure for route planning in sugarcane fields, while Valente et al. (2013) employed
Harmony Search to optimize coverage path planning in vineyard parcels. A hybrid Simu-
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Fig. 3 Illustration of problem with three fields configurations

lated Annealing was used for route planning of autonomous vehicles in herbicide application
(Conesa-Muñoz et al., 2016). Zhou et al. (2014) utilized Ant Colony Optimization (ACO) to
create useful and efficient solutions for a field with obstacles as opposed tomanual operations
by farmers.

To conclude, there are several research gaps, as indicated earlier. First, there is very
limited research on ARP involving multiple fields, and most of the ARP research utilized a
single machine without capacity constraints. Hence, this study is the first to address several
ARP constraints simultaneously. Second, the results of experiments conducted in this study
show that the solutions given for several datasets in previous research can still be improved.
Therefore, an improved,more efficient algorithmneeds to be developed to enhance the quality
and management of the solution.

3 Materials andmethods

3.1 Problem description

Figure 3 illustrates the problem with three fields. The blue lines indicate the tracks while the
red lines are the field border. Each track is differentiated by a number. Field 1 has 18 tracks
(West to East, 1 to 18), Field 2 has 22 tracks (West to East, 19 to 40), and Field 3 has 16 tracks
(South to North, 41 to 56). The barriers in the problem are the field borders and the rocks,
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Fig. 4 Illustration of a machine’s tour and its maneuvers

which cannot be traversed by the machine. The proposed algorithm addresses the barriers by
limiting the connection between different fields. Therefore, the machines can enter or exit a
field or move from one field to another only from a specific location/entrance.

In Fig. 3, the machines can enter the field only through the field’s entrance (green square).
The machine’s tour starts from and ends at the Depot (red square). The goal is to discover the
minimum length of the non-working distance in all tours for a set of machines to harvest all
tracks. The non-working distance in this study refers to the distance traveled by the machines
outside the tracks when making maneuvers, going to or from the entrances and going from
and returning to the Depot.

This research assumes that there are several availablemachines with different capacities to
harvest several fields. The optimization will assign machines to the given routes, taking their
capacities into consideration. If a machine reaches the maximum amount of crop it can hold,
it needs to return to the Depot to unload the harvested crop. This study assumes a uniform
amount of harvest per traveled distance. Hence, the machine capacity can be described as the
maximum distance it can travel on tracks on one trip.

Figure 4 depicts a machine’s trip in two fields and its maneuvers. There are two adjacent
fields in Fig. 4 where the field in the North can be entered only through the field in the South.
The non-working distance is visualized with green lines. The numbers (near the green lines
in Fig. 4) indicate the sequence of tracks that the machine uses. The non-working distances
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can be differentiated by the maneuvers (3 to 6 and 9) and movements between Depot and
entrances or the tracks to the entrances (1, 2, 7, 8, 10, 11, 12 and 13).

The machine starts from the Depot and traverses the south field’s entrance first (1) before
harvests several tracks in the southern field (2–6). The machine then goes to the northern
field’s entrance (7), harvests two tracks in the northern field (8–9), and returns to the entrance
(10). Next, the machine harvests a track in the southern field (11) before going back to the
Depot via the southern field’s entrance (12).

Figure 4 also depicts the four kinds of maneuvers that are considered in this study. The
assumption in Fig. 4 is that the machine needs to skip at least one track to make a flat turn.
Hence, if a machine’s next track is directly besides the current track, then the bulb or bulb�
turns will be made. In Fig. 4, the maneuvers are flat (4, 6), bulb (9), flat� (3) and bulb� (5).
The flat� and bulb� turns are made when the current and next track are aligned with an acute
angle θ(θ < 90◦), while the flat and bulb turns are performed when the current and the next
track are aligned with an acute angle θ(θ = 90◦) and have the same Y-axis coordinate in the
maneuver’s area. The conditions of these maneuvers are listed in Constraint 1 in Sect. 3.2
and adapted from Utamima et al. (2019) and Jin and Tang (2010).

3.2 Mathematical model

The mathematical model used to solve the extended ARP is formulated as an integer
programming model. The group of tracks in the fields are assumed to be a set of vertices and
edges in Graph G. Table 1 describes the parameters used in the mathematical model. The
decision variables are listed in Table 2.

Equations 1–5, adapted from Jin and Tang (2010) and Utamima et al. (2019), are used to
compute the distance themachine travels in order tomake a turningmaneuver in the headland
area. The description of each notations is given in Table 1.

gi jψ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�(i, j, θi jψ), if |i − j | ≤ 2r
w

∧ θi jψ = 90◦

�(i, j, θi jψ), if |i − j | > 2r
w

∧ θi jψ = 90◦

�θ(i, j, θi jψ), if |i − j | ≥ 2r
w

∧ θi jψ < 90◦

�θ(i, j, θi jψ), if |i − j | > 2r
w

∧ θi jψ < 90◦

(1)

�(gi jψ) = |i − j |w + r(π − 2) (2)

�(gi jψ) = r

(

3π − 4 sin−1
(
2r + |i − j |w

4r

))

(3)

�θ(gi jψ) = |i − j |w(1 + cot θi jψ) + r(π − 2) (4)

�θ(gi jψ) = πr + 4r2 − |i − j |w(4r + w cot2 θi jψ + w)

4r − 2w

× sin−1 |i − j |w(4r cot θi jψ − 2w cot θi jψ)

4r2 − |i − j |w(4r + w cot2 θi jψ + w)
(5)

The objective function is given in Eq. 6 which is to minimize the sum of all included edges
in the solution, the distance of the tour between fields, the distance traveled by each machine
to and from the Depot, and the distance between the entrance to the first and last track to
be harvested. Meanwhile, Constraints 7–12 are the restrictions related to the tour between
tracks inside a field. Constraint 7 and 8 specify that each route should start and end at the
Depot (Vertex 0). Constraints 9 and 10 ensure that each node is visited only once.
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Constraint 11 ensures that when a machine enters a vertex, it will also leave that vertex.
Constraint 12 is a sub-tour limitation that eliminates any disjoint sub-tours from a solution.
Then, Constraint 13 ensures that the amount of harvested crop does not exceed the capacity
of a machine. The distance traveled inside the track has the same dimension as the capacity
of a machine. The assumption is that when a machine traverses a track, it completely harvests
that track, so the maximum distance inside the track will depend on the maximum capacity
of a machine. Finally, Constraints 14 and 15 ensure that each field is visited only once.

z = Min

( ∑

f ∈F

∑

i∈V

∑

j∈V

∑

k∈K
gi jψ x

k
f i j +

∑

a∈F

∑

b∈F
dab yabhab

+
∑

f ∈F

∑

k∈K
D f (s

k
f + τ kf ) +

∑

f ∈F

∑

t∈T
z f tδ f t

) (6)

subject to:
∑

j∈V
xkf 0, j = 1, ∀k ∈ K , ∀ f ∈ F (7)

∑

i∈V
xkf i,0 = 1, ∀k ∈ K , ∀ f ∈ F (8)

∑

k∈K

∑

i∈V
xkf i j = 1, i, j 	= 0, ∀ j ∈ V : i 	= j, ∀ f ∈ F (9)

∑

k∈K

∑

j∈V
xkf i j = 1, i, j 	= 0, ∀i ∈ V : i 	= j, ∀ f ∈ F (10)

∑

k∈K

∑

i∈V
xkf i j =

∑

k∈K

∑

j∈V
xkf ji , i, j 	= 0, ∀ j ∈ V , ∀ f ∈ F (11)

∑

i∈S

∑

j∈S
xkf i j ≤ ‖S‖ − 1, ∀S ⊆ V , ‖S‖ ≥ 1, ∀k ∈ K , ∀ f ∈ F (12)

∑

f ∈F

∑

i∈V

∑

j∈V
Pf t x

k
f i j < Qk, ∀k ∈ K , ∀t ∈ T (13)

∑

a∈F
yab = 1, ∀b ∈ F : a 	= b (14)

∑

b∈F
yab = 1, ∀a ∈ F : a 	= b (15)

The total distance traveled for harvesting the crop fields is found with Eq. 16 which is the
sum of the distance between the fields, the length of each track in each field, and the objective
function.

dist =
∑

f ∈F

∑

t∈T
l f t + z (16)

3.3 Proposed algorithm

This study builds a new hybrid algorithm, named ENDA, to solve ARP. Algorithm 1 lists
the ENDA pseudocode. ENDA has two main stages: the exploration stage that searches
the solution among the individuals in a population, and the exploitation stage that searches
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Fig. 5 Representation of
individual

for the best solution found so far. ENDA is a hybrid of three kinds of heuristics, namely
distribution search, inter-neighborhood discovery, and intra-neighborhood discovery. The
exploration stage consists of distribution search and inter-neighborhood discovery, while the
exploitation stage contains the intra-neighborhood discovery procedure. The individuals are
the candidate solution to the problem; the population refers to the group of individuals in the
algorithm. The representation of an individual with 8 tracks is illustrated in Fig. 5.

Algorithm 1 The pseudocode of ENDA

1: procedure ENDA()
2: Initialization_Read_Data()
3: for g=1 to max_generation do
4: OF ← Calculate_ObjectiveFunction()
5: if in DistributionSearch_rate then
6: Selected_Individuals ← Choose_BetterObjectives(OF)
7: NewPopulation ← DistributionSearch(Selected_Individuals)
8: else
9: for i=1 to discovery_iteration do
10: S ← RouletteWheel()
11: [P] ← RandSelect_two_points()
12: c ← Random(3)
13: switch c do
14: case 1:
15: Flip(S,P)
16: case 2:
17: GuidedSwap(S,P)
18: case 3:
19: Inversion(S,P)
20: end for
21: NewPopulation ← Update_Population()
22: end if
23: OF ← Calculate_ObjectiveFunction(NewPopulation)
24: currentBest ← Min(OF)
25: if currentBest < globalBest then
26: globalBest ← currentBest
27: else
28: ndSol ← globalBest
29: while stuck ← false do
30: ndSol ← Intra_NeighborhoodDiscovery()
31: if ndSol > globalBest then
32: stuck ← true
33: end if
34: end while
35: end if
36: if ndSol < globalBest then
37: globalBest ← ndSol
38: end if
39: Elitism()
40: end for
41: end procedure
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Fig. 6 Illustration of the contruction of �

First, the parameters of the ENDA are initialized. The parameter settings are explained
in more detail in Sect. 4.3. The details of the machines (number of machines, their various
capacities, and turning radius) are also initialized at this point. Then, the algorithm reads
the field data that contains the track coordinates, the distance between each entrance and the
Depot, and the length of each track. The iterations start with the computation of the objective
function of every individual. The exploration stage of ENDA will perform the distribution
search according to either the rate or the neighborhood discovery.

The distribution search (Algorithm 1, Line 5–7) will build the new population according
to the probability of the order of tracks for the selected individuals. The distribution search
will run if the DistributionSearch_rate (the probability rate to execute the procedure) is met.
The selected individuals are the group of individuals with a better objective function (H is set
of selected individuals) that are labeled h1, h2, h3, . . . , hn(h ∈ H). Equation 17 calculates
the sum of every track being placed in an order. The graphical illustration of the calculation
of � is shown in Fig. 6. In Eq. 17, 
h

tp is set to 1 if track t is visited at order p, otherwise,
it is set to 0 (t ∈ T , p ∈ P ; P is set of tracks’ order). The size of T and P is equal to the
number of tracks in the fields. The distribution search function will update each individual
in the population by selecting the order of track proportionally according to �.

Next, the inter-neighborhood discovery procedure is listed in Line 9–20 of Algorithm
1. The procedure is adapted from Hansen et al. (2010) and Utamima et al. (2019). The
procedure runs for discovery_iteration times. At the beginning of every iteration, the roulette
wheel selection is performed, and an individual is selected (S). The roulette wheel selection
expects that the higher the fitness of an individual implies the greater is the chance of its
survival. The fitness function that is used in the Roulette Wheel selection is listed in Eq. 18
which is the inverse of the objective function (mentioned in Eq. 1). The chance of selection
in this approach is proportional to the fitness of an individual.

�tp =
∑

h∈H

∑

t∈T

∑

p∈P

h
tp (17)

f n = 1

z
(18)
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Table 3 Description of operators used in ENDA

No Operators Description

1 Flip Flips the order of tracks between two points

2 Guided swap Choose a track, then find its position in global best solution

Then, place the selected track with the same position of global

best by swapping with the other track in that position

3 Inversion Choose two points, then moves the first point to the second

point and slides forward the remaining points (starting from the

first point + 1 until the second point)

4 Interchange Interchange two elements randomly

5 Reverse Reverse the tracks between two points

After selection, the algorithm chooses two points randomly from S and performs between
flip, guided swap, or inversion operators. The details of the operators are listed in Table 3.
Next, the new population is updated from the results of the inter-neighborhood discovery.

The objective function calculation evaluates the fitness of the new population and finds
the current best solution in the population (Algorithm 1, Line 23). This solution is checked
to determine whether it can replace the global best solution (the best solution found so far
among generations). If the current best solution is not better than the global best solution
(globalBest), then the second stage of ENDA is implemented (Algorithm 1, Line 28–33). In
this stage, the intra-neighborhood discovery searches inside the globalBest to find a better
solution. The procedure is adapted from the local search in Song et al. (2019). In this stage,
the interchange and reverse operators are employed until no further improvement can be
made. The operators are described in Table 3.

If the solution of the intra-neighborhood discovery(ndSol) is better than globalBest, then
ndSol will become the globalBest. Next, the Elitism procedure is run to retain ten percent of
the best individuals through generations in order to protect prospective solutions (Nouri and
Ladhari, 2018). The recorded individuals are copied to the new population and are sent to
the next generation.

3.4 Genetic algorithm and Tabu search

This study also re-coded GA and TS to solve the extended ARP problem set. GA and TS
are chosen because both algorithms have been implemented recently in optimization in the
agriculture domain (Florentino et al., 2018; Seyyedhasani and Dvorak, 2018a). The input
and the fitness calculation are configured to meet the standard procedure of the algorithms.
The number of generation and the size of population in GA and TS are set to be the same as
those in ENDA.

Generally, GA starts from the generation of a new population and continues with the
selection of chromosomes with a better fitness value. The higher the fit of a chromosome,
the higher its chances to be selected. Crossover and mutation are applied to the chosen
chromosomes with a given probability rate. The crossover process cuts two chromosomes
at one point, and the halves are spliced together to create new chromosomes. Meanwhile,
the mutation process changes the value of genes in a small group of chromosomes. After
crossover and mutation, the fitness evaluation detects the best solution, which is recorded.
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Table 4 The solution comparison of GAMS and ENDA

Problem GAMS GAMS’s tour ENDA ENDA’s tour

A 179.713 1: Field 1 [3, 1, 4, 2]; 179.713 1: Field 1 [3, 1, 4, 2];

2: Field 2 [6, 5] 2: Field 2 [6, 5]

B 225.413 1: Field 1 [5, 3, 1, 2, 4, 6]; 225.413 1: Field 1 [5, 3, 1, 2, 4, 6];

2: Field 2 [9, 7, 10, 8] 2: Field 2 [9, 7, 10, 8]

The whole process is repeated until a stopping criterion (i.e. maximum iteration) is met. The
process of evolution in a population of chromosomes over multiple generations represents a
search for a good and feasible solution.

Meanwhile, TS constructs several moves (candidate solution) in the neighborhood. The
representation of the neighborhood structure in S is like the one provided in Table 5. A move
in TS is using Swap techniques between two points (randomly chosen) in the neighborhood.

Next, TS picks a move and checks whether the move is tabu (the move is tabu if it is
listed in the tabu list). If the move is not tabu, TS accepts the move. Otherwise, TS checks
the aspiration criteria of the move. If a tabu move meets the aspiration criteria, the move will
be accepted, otherwise, the move will be refused. If the new solution from an accepted move
is better than the current solution, the solution will be updated. The decision process will be
repeated for a number of iterations (Ji and Tang, 2004).

4 Experimental results and analysis

4.1 Validation of themathematical model

In order to validate the mathematical model, it was implemented using General Algebraic
Modeling System (GAMS) software. Two small problems are tested, and consist of multiple
fields and multiple machines with different capacities. Each problem involves two fields with
tracks measuring 4 meters in width, and two machines available with a turning radius of 3
meters.

Table 4 shows a comparison of the results of GAMS and ENDA (coded with MATLAB).
Both GAMS and ENDA can obtain the same solution for the two problems as well as the
same tours of machine 1 and machine 2.

The experiments show that the running timeofENDAis six times faster than that ofGAMS.
If the size of the problem is increased, the running time is expected to grow exponentially for
the GAMS implementation. Therefore, the utilization of ENDA is required for both small
and large problems because it can achieve a good solution with a faster running time.

Based on previous research by Bochtis and Sørensen (2009) and Utamima et al. (2018),
ARP is similar to Vehicle Routing Problem (VRP) in the agricultural field. VRP itself is
an NP-Complete problem (Toth and Vigo, 2002), hence ARP can also be considered as
NP-complete. Therefore, finding exact solutions as done by GAMS is restricted to smaller
instances as the running time is growing exponentially. Metaheuristics and evolutionary
algorithms like ENDA are used on larger instances to achieve near-optimal solutions with
short running times.
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4.2 Problem sets description

The experiments conducted in this study are comprised of two steps. The first step involves
the validation of the proposed algorithm by using the data in the literature. The datasets are
gathered from published studies and by contacting the corresponding authors. Table 5 shows
a description of the data. In Table 5, the first and second columns are the instance code and the
total number of tracks in that instance, respectively. The track widths and lengths (meters),
turning radii (meters), shapes, and machines used are listed in Column 3 to 6 in Table 5. The
last column in Table 5 contains the references to the problem instances, and the details are
listed immediately below the table.

In the second step, experiments are run using the extended ARP datasets. Table 6 gives
the attributes of the datasets that are used in this study. There are seven datasets with multiple
fields and different shapes. The problems are generated and vary in terms of the total number
of tracks, their width (meters), and turning radius (meters). The number of fields ranges from
two to five, with total tracks ranging from 30 to 112. The machines used (Table 7) have
different capacities (ranging from 700 to 3000m). As indicated earlier, this study assumes a
uniform measure of harvest per traveled distance. Hence, the machine capacity is depicted
with the maximum distance it can travel on one trip.

Figure 7 illustrates the seven problem instances: 2A(a), 2B(b), 3A(c), 3B(d), 4A(e), 4B(f),
and 5A(g). The number in the middle of each field is the field number, and the small number
near the track is the track number. These numbers are used to give a better understanding of
the output of the program that is shown later in Table 12.

4.3 Parameters settings

The parameter set-up is acquired by directing a two-level factorial plan with four elements.
Each factor joins high and low dimensions (Montgomery, 2013). The algorithm is run ten
times to make up for the non-deterministic nature of the heuristics (Guan and Lin, 2016).
Table 8 lists factors and the levels of each set-up. To adjust to the extent of the problem, the
settings use n, which is the number of tracks in the fields. A larger problem requires a bigger

Table 5 Description of previous datasets

Instance Total Track Track Turning Field Machines References
code tracks width length radius shape

8rt 8 2.89 30 3.5 Rectangular 1 Bochtis and
Vougioukas (2008)

12rta 12 2.5 40 3.5 Rectangular 1 Conesa-Muñoz et al.
(2016)

12rtb 12 2.5 70 3.5 Rectangular 1 Conesa-Muñoz et al.
(2016)

20rt 20 2.5 80 3.5 Rectangular 1 Conesa-Muñoz et al.
(2016)

37nc 37 9 Vary 6 Non-convex 1 Conesa-Muñoz et al.
(2016) and Hameed
et al. (2011)

74nc 74 19 Vary 9.77 Non-convex 3 (Homogeneous) Seyyedhasani and
Dvorak (2018a)
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Table 6 Description of the extended ARP problem set

No Problem code Number of fields Total tracks Tracks width Turning radius Shape

1 2A 2 30 8 7.5 Non-convex

2 2B 2 36 8 7.5 Non-convex

3 3A 3 56 7 5.5 Non-convex and
rectangular

4 3B 3 62 6 4.8 Non-convex

5 4A 4 78 6 4.8 Non-convex and
rectangular

6 4B 4 100 5 3.9 Non-convex and
rectangular

7 5A 5 112 5 3.9 Non-convex

Table 7 Machines provided

Machines Maximum distance Availability
when harvesting

1 3000 1

2 2500 2

3 2200 3

4 700 1

population and more generations. The value shown in bold indicates the better setting for
ENDA. The selected settings for the number of generations and the size of the population
are also applied to GA and TS.

4.4 Numerical results

The results of the conducted experiments are listed in Tables 9, 10, 11 and 12. Table 9 shows
details of the first step of the experiments, while Table 10 lists the results of the second step
of the tests. Table 11 presents the running time of all algorithms when solving the second
step of the experiments. Table 12 lists the solution of ENDA in the second step of the tests
that contains the order of tracks in the fields.

Table 9 shows details of the non-working distance of six published data. In Table 9, the first
and second columns show the problem code and the associated references. The third column
is the best-known solution to date obtained from the latest publication (Conesa-Muñoz et al.,
2016; Seyyedhasani and Dvorak, 2018a), while the last column shows the results obtained
by ENDA. The bold values in the third and fourth columns refer to the minimum value in
that row. As shown by the results, ENDA can obtain the same solution for four instances (8rt,
12rta, 12rtb, 20rt) and achieve better solutions in two instances (37nc, 74nc). These results
indicate that ENDA can achieve the expected results for ARP instances.

Table 10 presents the non-working distance of multiple field data with multiple machines
of the extended ARP data. In Table 10, the first column lists the problem code, the second
column specifies the number of tours required to complete all tracks in the fields, and the third,
fourth, and fifth columns list the solutions obtained by ENDA, GA, and TS, respectively. The
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Fig. 7 Illustration of Problem 2A to 5A (a–g)

values in bold refers to the minimum value in that row. The last column in Table 10 is the
average distance savings obtained by ENDA compared to those of GA and TS for every
problem, while the last row in bold is the average of the distance savings for all problems.
ENDA successfully achieves the shortest non-working distance for all problem sets compared
to the performances of GA and TS. The GA solutions are better than TS in four instances
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Table 8 Factor settings for
ENDA

Factors Levels
Low (n) High (n)

Generations 40 50

Population size 4 5

Discovery iteration 2 2.5

DistributionSearch_rate 0.05 0.1

Table 9 The non-working distance of the published data (single field)

Problem References* Best-known solution ENDA

8rt Bochtis and Vougioukas (2008 and Conesa-Muñoz et al. (2016) 94.439 94.439

12rta Bochtis and Vougioukas (2008 and Conesa-Muñoz et al. (2016) 146.027 146.027

12rtb Bochtis and Vougioukas (2008 and Conesa-Muñoz et al. (2016) 145.602 145.602

20rt Bochtis and Vougioukas (2008 and Conesa-Muñoz et al. (2016) 235.491 235.491

37nc Conesa-Muñoz et al. (2016) and Hameed et al. (2011) 961.470 958.930

74nc Seyyedhasani and Dvorak (2018a) 4416.300 3869.590

Table 10 The non-working distance of the extended ARP problem set (multiple fields)

Problem code Number of tours GA TS ENDA Distance savings (%)

2A 2 1051.118 1029.329 955.869 8.10

2B 2 1101.292 1279.074 1044.038 11.79

3A 3 1121.185 1013.578 967.872 9.09

3B 3 2018.031 2333.044 1909.220 11.78

4A 4 1776.730 1645.868 1504.245 11.97

4B 6 2923.140 3063.433 2605.433 12.91

5A 6 4145.357 4782.591 3711.986 16.42

Average: 11.72

Table 11 The running time of
ENDA, GA, and TS for all
problem set

Problem code Number of tours Average running time (s)
GA TS ENDA

2A 2 1.388 1.359 0.807

2B 2 6.842 9.171 4.565

3A 3 4.142 2.948 2.179

3B 3 12.264 16.986 7.974

4A 4 9.527 7.459 5.283

4B 6 25.608 23.814 11.942

5A 6 26.438 25.629 13.663

(2B, 3B, 4B, 5A), while the TS solutions for the remaining three instances (2A, 3A, 4A) are
better than those obtained by GA. In terms of average distance savings, ENDA successfully
saves 11.72% of the non-working distance compared to other algorithms.

Table 11 shows the running time of all the algorithms for each problem set. The running
time of ENDA is the fastest compared to those of GA and TS. On the other hand, the runtimes
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Table 12 The details of every tour in each problem set obtained by ENDA

Problem Tours (max in-track distance) Order of tracks in fields [field number (tracks’s order)]

2A 1 (3000) Field 1 [10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 13, 14, 12, 11];

Field 2 [29, 27, 28, 30]

2 (2500) Field 2 [24, 26, 25, 23, 22, 20, 21, 19, 18, 16, 17, 15]

2B 1 (3000) Field 1 [2, 1, 3, 6, 10, 11 , 8]; Field 2 [33, 35, 36, 34, 32,
30, 28, 26, 24, 22, 21, 19, 20, 23, 25, 27, 29, 31]; Field
1 [4]

2 (2500) Field 1 [5, 7, 9, 12, 13, 14, 15, 16, 17, 18]

3A 1 (3000) Field 1 [13, 15, 17, 18, 16, 14, 12, 11, 8, 7, 4, 3, 1, 2, 5,
6, 9, 10];

Field 2 [40, 39, 36, 35, 37, 38]

2 (2500) Field 2 [29, 31, 33, 34, 32, 30, 28, 27, 25, 23, 20, 19, 21,
22, 24, 26];

Field 3 [54, 56, 55, 53, 50, 52]

3 (2500) Field 3 [51, 49, 47, 45, 48, 46, 44, 42, 41, 43]

3B 1 (3000) Field 1 [13, 11, 9, 7, 5, 3, 1, 2, 4, 6, 8, 10, 12, 14, 16, 15]

2 (2500) Field 1 [17, 18, 20,19]; Field 2 [25]; Field 3 [52, 50, 51,
48, 49, 47, 45, 43, 44, 46, 42, 41, 39, 40]; Field 2 [23,
22, 21]

3 (2500) Field 2 [24]; Field 3 [57, 54, 53, 55, 56, 58, 60, 62, 61,
59];

Field 2 [26, 28, 27, 29, 30, 32, 31, 36, 35, 37, 38, 34, 33]

4A 1 (3000) Field 1 [5, 3, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 21, 19, 22,
20, 17, 15, 13, 11, 9, 7]; Field 2 [33, 34, 36, 38, 40, 39,
37, 35]

2 (2500) Field 2 [32, 31, 29, 30, 28, 27, 24, 23, 25, 26];

Field 3 [61, 62, 59, 60, 58, 57, 55, 56, 54, 53]

3 (2500) Field 3 [51, 52, 50, 49, 47, 48, 46, 45, 43, 44, 42, 41];

Field 4 [74, 72, 69, 66, 64, 67, 70, 77, 78, 76]

4 (700) Field 4 [75, 73, 71, 68, 65, 63]

4B 1 (3000) Field 1 [1, 5, 7, 12, 15, 19, 22, 25, 27, 29, 30, 28, 26, 24,
21, 17, 13, 11, 9, 3]

2 (2500) Field 1 [2, 4, 6, 8, 10, 14, 16, 18, 20, 23]; Field 2 [37,
40, 42, 41, 38]

Field 3 [70, 72]; Field 2 [32]

3 (2500) Field 2 [31, 33, 35]; Field 3[74, 76, 75, 73, 71, 68, 66,
61, 59, 64, 57, 55, 56, 58, 60, 62, 63, 65, 67, 69]; Field
2 [34]

4 (2200) Field 2 [36, 44, 46, 48, 50, 52, 54, 53, 51, 49, 47, 45, 43,
39];

Field 4[98, 100, 99, 97, 94, 96]

5 (2200) Field 4 [92, 90, 87, 85, 83, 81, 79, 77, 78, 80, 82, 84, 88,
95]

6 (700) Field 4 [93, 91, 89, 86]
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Table 12 continued

Problem Tours (max in-track distance) Order of tracks in fields [field number (tracks’s order)]

5A 1 (3000) Field 1 [28, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 2, 4, 6, 8,
10, 12, 14 16, 18, 30]

2 (2500) Field 1 [31, 34, 32, 33, 29, 27, 25, 23, 20, 22, 24, 26];

Field 2 [47, 45, 43, 44, 46, 48]

3 (2500) Field 2 [49, 51, 53, 54, 52, 50, 42, 41, 39, 37, 35, 36, 38,
40];

4 (2200) Field 3 [59]; Field 4 [92, 94, 93, 96, 95, 90, 89, 87, 85,
82, 80, 78, 77, 79, 81, 83, 84, 86, 88, 91]; Field 3[58]

5 (2200) Field 3 [62, 64, 66, 68, 70, 72, 74, 76, 75, 73, 71, 69, 67,
65, 60, 57]

6 (2200) Field 3 [55, 56, 61, 63]; Field 5 [112, 110, 108, 106, 104,
102, 100, 98, 97, 99, 101, 103, 105, 107, 109, 111]

of TS are faster than GA in five instances, while those for two problems (2B, 3B) are slower
than GA.

Table 12 lists the details of the ENDA solution for each problem set. In Table 12, the first
column lists the problem code, and the second column shows the tours and the maximum
in-track distance of the machine. The last column is the order of tracks in the fields and lists
the field number and the order of the tracks that correspond to Fig. 7. For example, problem
2A needs two machines (with maximum distance inside the tracks are 3000m and 2500m,
respectively) to harvest the fields. The first machine goes to Field 1 and harvests 14 tracks in
the order of [10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 13, 14, 12, 11] and then goes to Field 2 and harvests
four tracks [29, 27, 28, 30]. Next, the second machine goes to Field 2 and harvests 12 tracks
in the order of [24, 26, 25, 23, 22, 20, 21, 19, 18, 16, 17, 15]. Note that every machine must
start from the Depot and return to the Depot.

Figure 8 illustrates themaneuver of themachines in Problem5A. In Fig. 8, the field number
is in the center of each field, and the track numbers are indicated by the small number in
the corner of each field. Each of the six tours of the machines is represented by a different
colored line. In this problem, the turning radius (r ) is 3.9 and the tracks’ width (w) is 5. Thus,
according to Constraint 1 in Sect. 3.2, the machine can perform a flat turn by skipping at
least one track in order to go to the next track. As shown in Fig. 8, the predominant type of
maneuver is the flat turn.

5 Conclusion

It is anticipated that this research will improve the planning of conventional machinery
systems by producing better routing designs. The reduction of resources such as machines,
fuel, and personnel can result in a competitive advantage and access tomarkets in a lower price
sector. Subsequently, this contributes to addressing the issue of sustainability in agriculture.
The scope of this research comprises ARP for a harvesting problem with the tracks inside
several fields on a flat surface. This study also assumes that the machine capacity is the
maximum distance covered on tracks during the trip.
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Fig. 8 Illustration of the tours and the maneuvers in five fields

This study presents the extended ARP by considering multiple constraints simultaneously
in order to better generalize the harvesting problem.This research also presents seven problem
sets for the extended ARP. Furthermore, it recommends the application of a new hybrid
algorithm (ENDA) that outperforms GA and TS. The experimental results demonstrate that
during the validation process with the previous ARP dataset, ENDA can achieve the same
best solution in four instances, and produces a better solution for the other two instances.
Moreover, ENDA successfully achieves the best objective function by saving an average of
11.72% of non-working distance compared to other algorithms in the seven problem sets of
the extended ARP. ENDA also achieves the fastest running time for all the given problems.

The validation of the mathematical model with GAMS software is also provided in this
research. Future research can focus onmore experiments regarding the capacities ofmachines
with different field layouts.
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