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Abstract
Pairwise comparisons have been a long-standing technique for comparing alternatives/criteria
and their role has been pivotal in the development of modern decision-making methods. The
evaluation is very often done linguistically. Several scales have been proposed to translate the
linguistic evaluation into a quantitative evaluation. In this paper, we perform an experiment to
investigate, under ourmethodological choices, which type of scale provides the bestmatching
of the decision-maker’s verbal representation. The experiment aims to evaluate the suitability
of eight evaluation scales for problems of different sizes. We find that the inverse linear scale
provides the bestmatching verbal representationwhenever the objective data aremeasured by
means of pairwise comparisons matrices and a suitable distance between matrices is applied
for computing the matching error.

Keywords Decision analysis · Multi-criteria · Pairwise comparison matrix · Evaluation
scales

1 Introduction

Being able to make a good decision is fundamental for the survival of companies, people
and societies. However, to make good decisions, we need to be able to measure performance.
If a performance is not directly objectively measurable, then it can be evaluated. Subjective
evaluations are often given in a linguistic scale (e.g., poor, good, excellent, etc) with a better
result than numeric evaluations (Windschitl and Wells 1996). The question is how to convert
a verbal scale into a numerical scale that can be used in the prioritization of actions. Although
several scales have been proposed (Meesariganda and Ishizaka 2017), it is not clear which one
to choose; indeed, the authors have seen that there is not a unique scale for the conversion of
a fixed problem (i.e., cloud computing strategy selection): each person has its own represen-
tation. To investigate this question, we propose an experimental method to evaluate the same
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scales used by Meesariganda and Ishizaka (2017), but in further problems. Experiments are
very popular in psychology (Wixted 2018). For example, experimental psychology employs
human participants to study a variety of topics, including among others sensation and per-
ception, memory, cognition, learning, motivation and emotion. Experiments have been also
used in economics (Kagel and Roth 2017) and in operational research (Donohue et al. 2018).
An experiment was performed by Keeney et al. (1990), who asked participants to provide
a direct ranking of options. They then solved the problem with the Multi Attribute Utility
(MAU). In the final ranking, 80% of the participants changed their initial ranking, mostly in
agreement with the MAU ranking. Huizingh and Vrolijk (1997) asked participants to select
a room to rent. They observed that the participants were more satisfied with the AHP result
than with a random selection. Linares (2009) asked 18 participants to rank cars with AHP.
Then, an automatic algorithm removed the intransitivities and a new ranking was generated.
In a questionnaire, the majority of the students said that when intransitivities were removed,
their preferences were not better represented. Ishizaka et al. (2011) statistically compared
three rankings: one given directly by the participants, a second by applying AHP, a third after
having provided the information for AHP and a final after learning the ranking provided by
AHP. Their results showed that the rankings were similar. Furthermore, it was found that if
participants changed their ranking, then they followed the suggestion of AHP. Later, Ishizaka
and Siraj (2018) renewed the experiment with a different decision problem solved with AHP,
MACBETH and SMART, and the same results were found. Bozóki et al. (2013) conducted
experiments for testing various characteristics of pairwise comparison matrices. Recently,
Cavallo et al. (2019) measured the coherence of the participants when they express their
subjective preferences by means of additive, multiplicative and fuzzy pairwise comparisons.
They found that the worst level of coherence occurs when participants use the additive pair-
wise comparison. An algorithm for controlling the incoherence during the construction of
the pairwise comparison matrix has been proposed by Ishizaka and Siraj (2020). Relations
among several coherence conditions have been provided by Brunelli and Cavallo (2020b)
and Cavallo and D’Apuzzo (2020).
When we have to solve a problem, we may do not know in advance the range of values in the
problem. The goal of this paper is to investigate the existence of a scale that always provides
the best matching verbal representation of the respondents; therefore, we have selected prob-
lems with different ranges to analyze whether a scale would always perform better whatever
the range.

In this paper, we ask participants to evaluate three problems of different known dimensions
with a verbal scale. Then, the verbal evaluations are matched with the real values of eight
numerical scales. We find that, under our methodological choices, the inverse linear scale
provides the best matching verbal representation of the respondents, followed shortly by the
root square scale, while the power scale is the worst.

The remainder of this paper is organized as follows. Section 2 presents the different
evaluation scales and provides basic theoretical notions about pairwise comparison matrices.
The experimental part and its results are given in Sect. 3. Finally, Sect. 4 concludes this paper
and outlines some future avenues of research.

2 Preliminaries

In this section, we provide preliminaries useful in the sequel.
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2.1 Evaluation scales

Pairwise comparisons have been used in psychology since the beginning of last century
(Yokoyama 1921), (Thurstone 1927). They have also been adopted in multi-criteria decision
analysis, for example in AHP (Saaty 1977) and BWM (Rezaei 2015). Decision items are
compared in pairs and their evaluation is entered into a squaredmatrix. The priorities are then
calculated from this matrix. It has previously been experimentally demonstrated that pairwise
comparisons are more precise than direct evaluations (Millet 1997), (Por and Budescu 2017),
(Whitaker 2007). Generally, the comparisons are expressed on a verbal scale because it is
more familiar to decision-makers and they understand it better than numerical evaluations
(Budescu and Wallsten 1985). The verbal scale is only converted into numerical values to
calculate priorities in a second step without the decision-maker. Several scale conversions
have been proposed. Themost commonly used is the linear scale in Table 1 that was proposed
by Saaty, probably because it is integrated into the leading Expert choice software program
(Ishizaka and Labib 2009).

It has been demonstrated that different decision-makers may have different interpretations
of the same verbal expression (Huizingh and Vrolijk 1997). Therefore, several scales have
been proposed (Table 2). For example, another linear scale was proposed by Ma and Zheng

Table 1 Saaty’s scale Value Semantic meaning

1 The two decision items have the same
importance

3 The selected decision item is weakly more
important than the other one

5 The selected decision item is strongly more
important than the other one

7 The selected decision item is very strongly
more important than the other one

9 The selected decision item is absolutely
more important than the other one

2, 4, 6, 8 Intermediate values

Table 2 Evaluation scales

Scale type Definition Parameters

1. Linear c = α · x α > 0, x ∈ {1, 2, . . . , 9}
2. Power c = xα α > 1, x ∈ {1, 2, . . . , 9}
3. Geometric c = αx−1 α > 1,

x ∈ {1, 2, . . . , 9} or x ∈ {1, 1.15, . . . , 4} or other step
4. Logarithmic c = logα(x + (α − 1)) α > 1, x ∈ {1, 2, . . . , 9}
5. Root square c = α

√
x α > 1, x ∈ {1, 2, . . . , 9}

6. Inverse linear c = 9
10−x x ∈ {1, 2, . . . , 9}

7. Balanced c = x
1−x x ∈ {0.5, 0.55, . . . , 0.9}

8. Balanced power c = 9
x−1
n−1 x ∈ {1, 2, . . . , n}
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(1991), where the inverse elements (i.e. 1
x ) are linear instead of the x that is used in the

Saaty’s scale.
The power and root scale were proposed by Harker and Vargas (1987), but they then

recognised that the linear scale would often outperform them. Inspired from auditory stimuli,
the geometric scale was proposed to represent equidistant stimuli (Lootsma 1989). Salo and
Hämäläinen (1997) observed that when two alternatives are compared on an integer scale
one to nine, there is an uneven dispersion of local priorities. This means that there is a lack
of sensitivity when comparing elements, which are preferentially close to each other. Based
on this observation, the authors proposed a balanced scale where the local priorities are
evenly dispersed between the range [0.1, 0.9]. Later, Elliott (2010) developed a balanced
power scale. This scale is based on the same idea as Salo and Hämäläinen (1997) but with
balanced priorities among three alternatives. To avoid the boundary problem that is incurred
by the consistency rule (e.g., if the decision-maker enters ai j = 4 and a jk = 5, the user
is forced to an inconsistent relation when the upper limit of the scale is 9, and therefore
cannot enter aik = 20), Donegan et al. (1992) proposed an asymptotic scale. Ishizaka et al.
(2011) observed that the existing scales disadvantage compromised solutions. To solve this
problem, they suggested a logarithmic scale,which provides a better priority for compromised
solutions.

Although these scales have advantages and disadvantages, the only question that counts
is: what is the scale in the mind of the decision-maker? To solve this problem, individual
scales have been developed. Dong et al. (2013) and Liang et al. (2008) proposed a method
to calculate personalised scales that minimise the inconsistency of the matrix. However,
these techniques are questionable because inconsistency in the pairwise matrix can have
several origins in addition to the scale effect, including error, lack of information, distracted
or undecided user, and so on. Another approach to choose the most appropriate scale has
been to map verbal scale with comparisons given by the decision-maker on alternatives with
known measures, such as the surface of geometrical figures. This technique has been used
for fuzzy AHP (Ishizaka and Nguyen 2013), ANP (Rokou and Kirytopoulos 2014) and AHP
(Meesariganda and Ishizaka 2017). However, the chosen scale may depend on the objective
problem that is chosen to calibrate the scale. Scale invariance property has been the subject
of some recent papers (Csató 2017, 2018, 2019).

2.2 Pairwise comparisonmatrices

In this section, we provide the theoretical framework about Pairwise Comparison Matrices
(PCMs) that we choose for the experiment; we adopt the multiplicative representation (Saaty
1977). Thus, from now on, we assume that each PCM satisfies the following reciprocity
property:

Definition 2.1 M = [mi j ]n×n , withmi j > 0, is a reciprocal PCM if, for all i, j ∈ {1, . . . , n},
it verifies the following condition:

m ji = 1

mi j
.

The distance (Cavallo 2019) betweenM1 = [m1
i j ]n×n andM2 = [m2

i j ]n×n is:

d(M1,M2) = n(n−1)
2

√
√
√
√

n−1
∏

i=1

n
∏

j=i+1

d(m1
i j ,m

2
i j ); (1)
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Table 3 Evaluation scales used in the experiment

a b c d e f g h i

1. Linear (α = 1) 1 2 3 4 5 6 7 8 9

2. Power (α = 2) 1 4 9 16 25 36 49 64 81

3. Geometric (α = 2) 1 2 4 8 16 32 64 128 256

4. Logarithmic (α = 2) 1 1.58 2 2.32 2.58 2.81 3 3.17 3.32

5. Root square (α = 2) 1 1.41 1.73 2 2.24 2.45 2.65 2.83 3

6. Inverse linear 1 1.13 1.29 1.5 1.8 2.25 3 4.5 9

7. Balanced 1 1.22 1.5 1.86 2.33 3 4 5.67 9

8. Balanced power (n = 9) 1 1.32 1.73 2.28 3 3.95 5.2 6.84 9

where

d(m1
i j ,m

2
i j ) = max{m1

i j/m
2
i j ,m

2
i j/m

1
i j } (2)

is the distance between the entries m1
i j and m2

i j (Cavallo and D’Apuzzo 2009). Thus, the

distance between M1 = [m1
i j ]n×n and M2 = [m2

i j ]n×n is the geometric mean of the

component-wise distances in the upper triangles ofM1 = [m1
i j ]n×n and M2 = [m2

i j ]n×n .
It is nowadays widely acknowledged that seemingly different types of pairwise com-

parisons (e.g. additive (Barzilai 1998), multiplicative and fuzzy (Tanino 1984)) are math-
ematically equivalent (Cavallo and D’Apuzzo 2009; Ramík 2015) because they share the
same algebraic structure; that is, they are pairwise comparisons defined over Abelian linearly
ordered (Alo)-groups. It has been shown that, by means of proper isomorphisms, one can
naturally extend concepts and properties from one representation to another. As an example,
for two additive PCMs A1 = [a1i j ]n×n and A2 = [a2i j ]n×n , the distance equivalent to (1) is
the following one:

d(A1,A2) = 2

n(n − 1)

n−1
∑

i=1

n
∑

j=i+1

|a1i j − a2i j |; (3)

that is, the arithmetic mean of the component-wise absolute differences in the upper triangles
of A1 = [a1i j ]n×n and A2 = [a2i j ]n×n .

Because of its extensibility, e.g. to the additive and fuzzy PCMs, in our experiment we will
use distance in (1) between multiplicative PCMs, in order to evaluate the scales in Table 3.
Moreover, remaining in the same theoretical framework, the same distance could be also used,
in a future work, for measuring several levels of coherence (Brunelli and Cavallo 2020a, b)
of the PCMs in the experiment.

3 The experiment

Our experiment aims to evaluate the suitability of the evaluation scales in Table 3, that are
the same scales used by Meesariganda and Ishizaka (2017), for problems of different sizes
with known measures. For this purpose, we compare the scales against known measurable
evaluations (i.e., distances between cities). In the next section, we will describe the problems
in more detail.
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Table 4 Verbal scale for measuring how much farther the selected city is from Naples than the other city

Value Semantic meaning

a The two cities have the same distance from Naples

c The selected city is weakly farther from Naples than the other one

e The selected city is strongly farther from Naples than the other one

g The selected city is very strongly farther from Naples than the other one

i The selected city is absolutely farther from Naples than the other one

b, d, f h Intermediate values

3.1 Problem description

We deal with the following three problems:

PA. Evaluating distance ratios between cities in Campania region;
PB . Evaluating distance ratios between cities in Italy;
PC . Evaluating distance ratios between cities in Europe.

Thus, given the following sets:

XA = {Caserta, Avellino, Salerno, Benevento},
XB = {Rome, Florence, Bologna, Milano, Bolzano},
XC = {Rome, Paris, Berlin, Oslo, Moscow},

and the corresponding distances, expressed in km, between each city and Naples, that is:

A = {a1, a2, a3, a4} = {25, 45, 45, 53},
B = {b1, b2, b3, b4, b5} = {191, 409, 471, 659, 671},
C = {c1, c2, c3, c4, c5} = {191, 1293, 1301, 2137, 2374},

for each pair in XA, XB and XC , a decision maker has to select the farthest city from Naples,
and to measure how much farther the selected city is from Naples than the other city; they
have to express a verbal judgement among those given in Table 4.

The real distance ratios among the cities in XA, XB and XC are represented by the
following multiplicative PCMs:

A = [ai j ]4×4 =
[
ai
a j

]

4×4
=

⎡

⎢
⎢
⎣

1 0.556 0.556 0.472
1.8 1 1 0.849
1.8 1 1 0.849

2.120 1.178 1.178 1

⎤

⎥
⎥
⎦

; (4)

B = [bi j ]5×5 =
[
bi
b j

]

5×5
=

⎡

⎢
⎢
⎢
⎢
⎣

1 0.467 0.406 0.290 0.285
2.141 1 0.868 0.621 0.610
2.466 1.152 1 0.715 0.702
3.450 1.611 1.399 1 0.982
3.513 1.641 1.425 1.018 1

⎤

⎥
⎥
⎥
⎥
⎦

; (5)

C = [ci j ]5×5 =
[
ci
c j

]

5×5
=

⎡

⎢
⎢
⎢
⎢
⎣

1 0.148 0.147 0.089 0.080
6.770 1 0.994 0.605 0.545
6.812 1.006 1.000 0.609 0.548
11.188 1.653 1.643 1 0.900
12.429 1.836 1.825 1.111 1

⎤

⎥
⎥
⎥
⎥
⎦

; (6)
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respectively. Our experiment aims to assess the suitability of the scales in Table 3 to represent
the entries of the PCMs A = [ai j ]4×4, B = [bi j ]5×5 and C = [ci j ]5×5.

3.2 Methodology

We use an opinion survey with a sample of 66 students of the Department of Architecture of
University of Naples Federico II, Italy. The students received instructions on how to fill out
the survey and they completed it during a class period. On average, the experiment lasted 20
minutes. The survey forms are as follows:

QA The respondent has to perform four pairwise comparisons. For each pairwise compar-
ison of cities in XA, they have to select the farthest from Naples and they also have to
select a verbal judgement from Table 4 to express how much farther the selected city
is from Naples than the other city;

QB The respondent has to performfivepairwise comparisons. For each pairwise comparison
of cities in XB , they have to select the farthest from Naples and they have to select a
verbal judgement from Table 4 to express how much farther the selected city is from
Naples than the other city;

QC The respondent has to performfivepairwise comparisons. For each pairwise comparison
of cities in XC , they have to select the farthest from Naples and they also have to select
a verbal judgement from Table 4 to express how much farther the selected city is from
Naples than the other city.

The survey forms have been developed by means of Google Forms in such a way that
each question is mandatory. For example, Fig. 1 provides a question in the survey QA; as
we can see, the participants have full information: the map with the cities and the distance
to Naples.

We discard surveys where the students select a wrong city as the farthest from Naples
because we assume a minimal level of coherence; thus, let m be the number of students who
always select the correct city. Although discarding all surveys of a student committing a
mistake in any survey QA, QB or QC is selective, this choice ensures that, for each problem,
we have the same number of surveys to analyze and that, for each student, we can obtain
the type of scale that provides the best matching of his/her verbal representation for each
problem.

To evaluate the suitability of the scales in Table 3 for the given problems, we perform the
following steps:

Step 1 For each student (i.e., for each k ∈ {1, . . . ,m}), the verbal judgements provided in
the surveys QA, QB and QC are matched with the real values of the scales in Table
3 by building the PCMs Aks = [aksi j ]4×4, Bks = [bksi j ]5×5 and Cks = [cksi j ]5×5, where
s = {1, . . . , 8} is the index of the scale in Table 3 (e.g., s = 2 refers to the power
scale);

Step 2 For each student (i.e. for each k ∈ {1, . . . ,m}) and for each scale (i.e., for each
s ∈ {1, . . . , 8}), by applying (1), we compute the following matching errors:

d(A,Aks) = 6

√
√
√
√

3
∏

i=1

4
∏

j=i+1

max{ai j/aksi j , aksi j /ai j }; (7)
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Fig. 1 Example of question in the survey QA

d(B,Bks) = 10

√
√
√
√
√

4
∏

i=1

5
∏

j=i+1

max{bi j/bksi j , bksi j /bi j }; (8)

d(C,Cks) = 10

√
√
√
√
√

4
∏

i=1

5
∏

j=i+1

max{ci j/cksi j , cksi j /ci j }. (9)
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Example 3.1 Let us suppose that student k provides the following verbal judgements to the
survey QA:

1. Avellino is weakly farther (i.e., value= c in Table 4) from Naples than Caserta;
2. Salerno is weakly farther (i.e., value= c in Table 4) from Naples than Caserta;
3. Benevento is weakly farther (i.e., value= c in Table 4) from Naples than Caserta;
4. Avellino and Salerno have the same distance (i.e., value= a in Table 4) from Naples;
5. Benevento is less than weakly farther (i.e., value= b in Table 4) than Avellino from

Naples;
6. Benevento is less than weakly farther (i.e., value= b in Table 4) than Salerno from

Naples.

The verbal judgements can be synthesized by the following matrix:

Ak = [aki j ]4×4 =

⎡

⎢
⎢
⎣

c
c a
c b b

⎤

⎥
⎥
⎦

.

Then, by applying this methodology, we obtain the following eight different matrices (i.e.,
one for each scale):

Step 1

Ak1 =

⎡

⎢
⎢
⎣

1 1
3

1
3

1
3

3 1 1 1
2

3 1 1 1
2

3 2 2 1

⎤

⎥
⎥
⎦

Ak4 =

⎡

⎢
⎢
⎣

1 1
2

1
2

1
2

2 1 1 1
1.58

2 1 1 1
1.58

2 1.58 1.58 1

⎤

⎥
⎥
⎦

Ak7 =

⎡

⎢
⎢
⎣

1 1
1.5

1
1.5

1
1.29

1.5 1 1 1
1.22

1.5 1 1 1
1.22

1.5 1.22 1.22 1

⎤

⎥
⎥
⎦

Ak2 =

⎡

⎢
⎢
⎣

1 1
9

1
9

1
9

9 1 1 1
4

9 1 1 1
4

9 4 4 1

⎤

⎥
⎥
⎦

Ak5 =

⎡

⎢
⎢
⎣

1 1
1.73

1
1.73

1
1.73

1.73 1 1 1
1.41

1.73 1 1 1
1.41

1.73 1.41 1.41 1

⎤

⎥
⎥
⎦

Ak8 =

⎡

⎢
⎢
⎣

1 1
1.73

1
1.73

1
1.73

1.73 1 1 1
1.32

1.73 1 1 1
1.32

1.73 1.32 1.32 1

⎤

⎥
⎥
⎦

Ak3 =

⎡

⎢
⎢
⎣

1 1
4

1
4

1
4

4 1 1 1
2

4 1 1 1
2

4 2 2 1

⎤

⎥
⎥
⎦

Ak6 =

⎡

⎢
⎢
⎣

1 1
1.29

1
1.29

1
1.29

1.29 1 1 1
1.13

1.29 1 1 1
1.13

1.29 1.13 1.13 1

⎤

⎥
⎥
⎦

;

Step 2

d(A,Ak1) = 1.5, d(A,Ak2) = 3.27, d(A,Ak3) = 1.73,

d(A,Ak4) = 1.15, d(A,Ak5) = 1.11, d(A,Ak6) = 1.24,

d(A,Ak7) = 1.14, d(A,Ak8) = 1.09.

Thus, for this student, the less suitable scale (i.e., the worst fitting scale) is the power
scale because the matching error d(A,Ak2) = 3.27 is the biggest, and the most
suitable scale is the balanced power scale because the matching error d(A,Ak8) =
1.09 is the smallest; note that there is a very small difference among logarithmic,
root square, balanced and balanced power scales.
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Table 5 Counting the best
matching scales for each problem

PA PB PC

1. Linear (α = 1) 0 0 0

2. Power (α = 2) 0 0 0

3. Geometric (α = 2) 0 0 1

4. Logarithmic (α = 2) 0 4 3

5. Root square (α = 2) 15 18 4

6. Inverse linear 28 28 37

7. Balanced 4 1 4

8. Balanced power (n = 9) 5 1 3

Table 6 Averages (geometric
means) of the errors obtained in
problems PA , PB and PC for
each scale

PA PB PC

1. Linear (α = 1) 2.135 2.766 2.274

2. Power (α = 2) 6.628 13.483 9.760

3. Geometric (α = 2) 4.402 11.823 10.435

4. Logarithmic (α = 2) 1.371 1.506 2.122

5. Root square (α = 2) 1.244 1.401 2.071

6. Inverse linear 1.196 1.406 1.795

7. Balanced 1.314 1.639 1.839

8. Balanced power (n = 9) 1.475 1.957 1.915

3.3 Results and discussion

We discarded about 20% of the surveys; that is, 14 surveys where the evaluations were not
transitive or an incorrect ranking of the cities was provided. The selection of the wrong city
shows incoherence or an error that does not depend on the kind of scale in Table 3. Thus, we
analyze m = 52 surveys.

By performing Step 1 and Step 2 described in the previous section, and by counting how
many times a scale provides the smallest matching errors (7), (8) and (9), we obtain Table 5; it
shows that the inverse linear scale is always the best fitting scale, followed by the root square
scale. As obtained by Meesariganda and Ishizaka (2017) for a strategy selection problem,
we obtain that the traditional linear scale used by Saaty and the power and geometric scales
provide the worst matching verbal representation of the students.

Figures 2, 3, and 4 provide further information, in addition to the count provided in Table
5. In particular, it shows that although the linear scale has never been found to be the best
matching verbal representation of the participants, its matching errors are less than the errors
provided by the power and geometric scales. In order to highlight the scales with the best
matching verbal representations, Figures 2b, 3b and 4b provide a zoom on all the scales with
the exclusion of the worst scales (i.e. geometric and power).

In order to analyze the matching errors averages, we provide Table 6; in particular, it
confirms that the average error of the linear scale is less than the average errors of the power
and geometric scales.

To analyze if the differences among the means in Table 6 are significant, we performed
ANalysis Of VAriance (ANOVA) tests. Table 7 shows that the differences among all the
scales are significant with an ANOVA test at a confidence threshold pt = 0.05. Indeed, p
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Fig. 2 Matching errors in problem PA computed by applying (7)

Fig. 3 Matching errors in problem PB computed by applying (8)
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Fig. 4 Matching errors in problem PC computed by applying (9)

Table 7 ANOVA results Fcrit = 2.032 PA PB PC

p 0 0 0

F 108.368 83.337 49.787

value is always smaller than pt and F value is always higher than critical value Fcrit . In
particular, there are highly significant differences among all the scales because p = 0.

In order to know exactly which means are significantly different from the other ones, we
performed a pairwise multiple comparisons; the results are shown in Table 8.

Tables 6 and 8 show that the geometric scale (3.) provides a smaller matching error mean
than the power scale (2.) in both PA and PB , but not in PC , and that there is a significant
difference between the two means in PA and no significant differences in PB and PC . Note
that the difference between these two means and the other ones is always significant. Thus,
we can conclude that the power scale provides the worst matching verbal representation of
the respondents.

Let us focus now on the scales with the smallest matching errors averages. Tables 6 and
8 show that the inverse linear scale provides the smallest matching errors mean in both PA

and PC ; moreover, in PA there is not significant difference with the root square scale, and in
PC there is not significant difference with the balanced scale and the balanced power scale.
Concerning PB , the inverse linear and the root square provide the smallest matching errors
means and there is not significant difference between them.
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Table 8 Pairwise multiple comparisons. Y= there is significant difference. N= there is not significant differ-
ence. Numbering of the scales is given in Table 6

1. 2. 3. 4. 5. 6. 7.

PAPB PC PAPB PC PAPB PC PAPB PC PAPB PC PAPB PC PAPB PC
2. Y Y Y

3. Y Y Y Y N N

4. Y Y Y Y Y Y Y Y Y

5. Y Y Y Y Y Y Y Y Y Y Y N

6. Y Y Y Y Y Y Y Y Y Y N Y N N Y

7. Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y N

8. Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y N Y Y N

Thus, we can confirm the results provided in Table 5: the inverse linear scale provides the
best matching verbal representation of the respondents.

4 Conclusions

Pairwise comparisons have been used extensively for evaluations in decision-making. How-
ever, because they often use linguistic evaluations, conversion to a numerical scale is not
obvious. In this paper we use an opinion survey to evaluate the suitability of eight numeri-
cal scales to represent the decision maker’s verbal representations in problems of different
sizes. For this purpose, we compare the scales against known measurable evaluations (i.e.
distances between cities). By analyzing the results by means of ANOVA tests, under our
methodological choices, we found that the power scale provides the worst matching verbal
representation, followed by the geometric scale. The inverse linear scale provides the best
matching verbal representation. However, problem-specific scales can be used if the decision-
maker has exogenous information on the likely distribution of the pairwise comparisons.

Different parameters on the scales and different distance functions can also be evaluated
in a future work. Experiments has been proven to be effective in psychology, economics and
recently in behavioral operation research (such as in this paper). In the future, we plan to
design more experiments to validate subjective decision techniques; for example, to investi-
gate the suitability of the same numerical scales for subjective decision-making problems.
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