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Abstract
We study the problem of scheduling container transport in synchromodal networks consider-
ing stochastic demand. In synchromodal networks, the transportation modes can be selected
dynamically given the actual circumstances and performance is measured over the entire
network and over time. We model this problem as a Markov Decision Process and pro-
pose a heuristic solution based on Approximate Dynamic Programming (ADP). Due to the
multi-period nature of the problem, the one-step look-ahead perspective of the traditional
approximate value-iteration approach can make the heuristic flounder and end in a local-
optimum. To tackle this, we study the inclusion of Bayesian exploration using the Value
of Perfect Information (VPI). In a series of numerical experiments, we show how VPI sig-
nificantly improves a traditional ADP algorithm. Furthermore, we show how our proposed
ADP–VPI combination achieves significant gains over common practice heuristics.

Keywords Synchromodal transport · Intermodal transport · Anticipatory scheduling ·
Approximate dynamic programming · Reinforcement learning

1 Introduction

The interest of Logistic Service Providers (LSPs) in intermodal transport has increased due to
its potential savings in cost (Kordnejad, 2014) and emissions (Craig et al., 2013) compared to
road transport. However, economical and environmental benefits are not alone the precursors
of a change from road to intermodal transport. The organization and synchronization of the
various transportation services in an intermodal network can further ease or impede this
change. Increasingly, LSPs are opting for cooperation and integration approaches among
different processes for planning and controlling intermodal transport (SteadieSeifi et al.,
2014). In this paper, we focus on one of those approaches: synchromodal transport.

In intermodal transport, mode choice decisions are made predominately by the shippers
and transportation modes are booked in advance by the LSPs (Khakdaman et al., 2020).
Synchromodal transport is a form of intermodal transport with so-called mode-free booking
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flexibility, which provides LSPs with network-wide real-time control to maximize the over-
all efficiency while satisfying agreed conditions such as time, costs, emissions, etc. (Riessen
et al., 2015a). In synchromodal transport, any service (transportation mode with specific
attributes such as schedule, duration, capacity, cost, etc.) and any transfer (change from one
service to another in an intermodal terminal) can be used for any shipment (Riessen et al.,
2015a). This increased flexibility allows LSPs to select, or to change, the next part of a
shipment’s route as late as possible, with the possibility of including the latest information
about the transportation network. As a result, there are more consolidation options through-
out the network and throughout time than in traditional intermodal transport, making the
optimization more challenging.

In this paper, we study the problem of scheduling containers in a synchromodal network
with the objective of maximizing performance over a multi-period horizon. Containers are
characterized by a destination, release-day and due-day. The number of containers that will
arrive each period of the horizon and their characteristics are uncertain, but there is proba-
bilistic information about their arrival (which may vary between periods of the horizon). On
the supply side, we consider that all available services and transfers are fixed, but not neces-
sarily the same for each period of the horizon. We consider that a single network-wise LSP
decides over all services and transfers even if they are not its own. In general, the complexity
of synchromodal transport lies in the relation between the possible decisions, and their effect
on the performance over time. At any given period of the horizon (which we refer to as day in
the remainder of this paper), there are three possibilities for scheduling the transport of con-
tainers. The scheduler can, for each possible combination of containers, either (i) transport
them to their destination today, (ii) transport them to intermodal terminals using a service
available today, or (iii) postpone their transportation to another day. Part of the impact of
these scheduling options on the performance can be measured immediately (e.g., transporta-
tion costs, revenue, holding costs, CO2 emissions, capacity utilization). However, another
part of their impact occurs on a posterior moment. For example, transporting a container to
its destination today reduces the number of containers to be considered for consolidation in
the future; transporting a container to an intermodal terminal defines the future services that
can be used for transporting it; and postponing a shipment may reduce its feasible trans-
portation options due to its time-window, or may saturate the network. The future impact
of each scheduling option is dependent on posterior decisions, as well as the containers that
will arrive in the future. It is therefore essential to estimate the impact of current scheduling
decisions on the future performance, and to anticipate on it.

The objective of our investigation is threefold: (i) tomodel the scheduling of synchromodal
transport as a stochastic optimization problem, (ii) to design a solution approach that han-
dles the uncertainty and the time relations among parameters and variables in synchromodal
scheduling, and (iii) to explore the use of our approach under various network configurations
and demand patterns. Following our objective, the contribution of our work is threefold. First,
we model the scheduling problem as a Markov Decision Process (MDP), which maximizes
the expected reward over time. Second, we design an algorithm for the MDPmodel using the
framework of Approximate Dynamic Programming (ADP) and incorporate Bayesian learn-
ing, through the concept Value of Perfect Information (VPI), to cope with the exploration
versus exploitation tradeoff in ADP. Third, we characterize how traditional value-iteration
based ADP designs can make the algorithm flounder and end in a local-optimum, and we
analyze how VPI elements can help the algorithm to overcome those problems. More specif-
ically, we describe, test, and show the benefits of various modifications to the VPI concept
in ADP.
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The remainder of this paper is organized as follows. We begin by examining the relevant
literature about scheduling synchromodal transport in Sect. 2. We formulate an MDP model
for our problem in Sect. 3. Subsequently, we present a common ADP approach to solve this
MDP in Sect. 4. Next, we extend the ADP approach using the VPI concept in Sect. 5. In
Sect. 6, we test our approach under different network settings and discuss the results. We
finalize in Sect. 7 with our main conclusions and insights for further research.

2 Literature review

In this section, we review literature related to scheduling synchromodal transport. First,
we perform a brief literature review specifically on scheduling problems in synchromodal
transport. Since this literature is scarce, we subsequently focus our review on scheduling
problems arising in dynamic and flexible inter/multi-modal transport. We briefly review the
problem characteristics and proposed solutions of relevant intermodal transport studies, and
identify their shortcomings with respect to synchromodality. For an in-depth review of the
scheduling problems arising in intermodal transport, we refer the reader to Caris et al. (2013),
SteadieSeifi et al. (2014), and delMar Agamez-Arias andMoyano-Fuentes (2017). Third, we
focus on literature usingApproximateDynamic Programming (ADP), a suitable approach for
solving large-scale transportation problemswith stochastic demand, and inspect its necessary
changeswhen applied to our problem.Wefinalize this sectionwith our contribution statement.

Scheduling problems in synchromodality deal with flexibility in mode choice and with
decisions based on real-time information (SteadieSeifi et al., 2014). These characteristics
require that there is coordination between multiple network actors and an overview of trans-
portation supply and demand in the network for its scheduling (del Mar Agamez-Arias and
Moyano-Fuentes, 2017), and that a balance between demand and supply is made every
time new information becomes known (Riessen et al., 2015a). Most studies on scheduling
synchromodal transport consider re-planning once new information becomes known without
explicitly incorporating the effect of real-time information in advance. For example, Behdani
et al. (2016) and Riessen etal. (2015b) determine the schedules of transportation modes and
the assignment of containers to the various modes assuming deterministic demand. They take
a reactive approach and assume that re-planning can be done by solving the model again once
the new information becomes known. Studies that explicitly consider re-planning (e.g., due
to new demand or disruptions), such as Zhang and Pel (2016) andMes and Iacob (2016), have
taken a more proactive approach towards re-planning but also do not explicitly anticipate on
future real-time information. Similarly, Lemmens et al. Lemmens et al., (2019) propose a
heuristic decision rule to support real-time switching between transport modes, and Larsen
et al. (2020) propose a method to learn the ideal departure times of barges for real time
co-planning between a barge and a truck operator. The same authors also propose a method
for simultaneous and real-time planning of container transport and vehicle routes using
model predictive control (Larsen et al., 2021). Guo et al. (2020) investigates a dynamic ship-
ment matching problem using a rolling horizon approach to handle newly arrived shipment
requests. Most closely related to our work in the area of synchromodal transport planning
is the work of Yee et al. (2021), who explicitly includes future real-time information, also
by modelling the problem as an MDP. Their model allows adaptations to the modal choice
based on real-time travel time information. However, their focus is on stochastic travel times
under known demand whereas we focus on consolidation opportunities of unknown demand.
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Scheduling problems in intermodal transport that are closely related to synchromodal
transport can be categorized into two groups: (i) those that include dynamic and flexible
assignment of containers to services and (ii) those that include anticipatory decisions on
information that becomes known over time. In the first group, problems fall under the inter-
modal scheduling family of Dynamic Service Network Design (DSND). In DSND methods,
shipments are assigned to transportation services and modes in a network where at least one
feature varies over time (SteadieSeifi et al., 2014). Graph theory and (integer) linear pro-
gramming methods are commonly used to model DSND problems due to their time-space
nature. However, these methods have limitations for large and complex time-evolving prob-
lems (Wieberneit, 2008), which are common to synchromodality (Riessen et al., 2015a).
To tackle these limitations, decomposition algorithms (Ghane-Ezabadi and Vergara, 2016),
receding horizons (Li et al., 2015), and model predictive control (Nabais et al., 2015), have
been combined with DSND models in the literature. One disadvantage of combining these
constructs with DSND models is that the relation between stochastic information and the
decisions is harder to include. This may explain why the majority of DSND studies consid-
ers deterministic demand only (SteadieSeifi et al., 2014) although the need to incorporate
uncertainty in demand has been recognized (Lium et al., 2009).

In the second group, most studies have been about extending DSNDmodels with stochas-
tic demand to anticipate on new information that becomes known over time. For example,
Lium etal. (2009) and Crainic etal. (2014) have used scenario generation methods to create
schedules that are robust to the various demand realizations. However, the resulting schedule
does not adapt to new information dynamically as other methods do. Adapting dynamically
means new schedules depend on the information that became know. Methods such as two-
stage stochastic programming (Lo et al., 2013; Bai et al., 2014) and ADP (Dall’Orto et al.,
2006; Pérez Rivera and Mes, 2015), which include re-planning with the new information
that became known, have been shown to have benefits over static decisions. However, when
considering synchromodal scheduling, some limitations arise. In two-stage stochastic pro-
gramming, explicit probabilistic formulations and computational complexity limit the size
of problem instances that can be solved. In ADP, the design and validation of the approx-
imation algorithm is problem specific. Nevertheless, ADP might reduce the computational
complexity while providing a close-to-optimal solution and has been shown to work well
in the scheduling of intermodal transport (Pérez Rivera and Mes, 2016, 2017) and single-
mode transportation problems (Simao et al., 2009; Ghiani et al., 2012; Ulmer et al., 2017;
van Heeswijk et al., 2017). Although ADP seems to be an ideal candidate to fill the gap in
the literature about anticipatory scheduling of synchromodal transport, our problem requires
more than its mere application.

In transportation problems such as ours, the complexity of the network could make the
application of ADP difficult (Powell et al., 2012). To begin with, the multi-period traveling
times are a known issue to traditional ADP algorithms in transportation problems (Godfrey
and Powell, 2002). Furthermore, when transportation services have multiple attributes (in
our case, different capacities, durations, costs, revenues, beginning and ending locations),
the design of the Value Function Approximation (VFA) and its learning-phase play a crucial
role in ADP (Simao et al., 2009). In the design of the VFA, additional methods to the common
post-decision state in ADP, such as aggregation of post-decision attributes (Bouzaiene-Ayari
et al., 2016) and sampling (Goodson et al., 2016), may be necessary. In the learning phase of
the VFA, a fundamental challenge that arises is the exploration versus exploitation problem
(Powell, 2011). The problem consists onwhether to let ADPmake the best decision according
to its current estimate of the VFA (exploit) or let it make a different decision that may lead
to an improvement of the VFA (explore).
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The exploration versus exploitation dilemma has been widely studied in the reinforcement
learning (Sutton and Barto, 1998) and optimal learning communities (Powell and Ryzhov,
2012). The dilemma arises when amachine/agent tries to maximize its rewards by interacting
with its environment through a series of actions. A widely studied optimization problem fac-
ing this dilemma is the so-called multi-armed bandit problem (Macready andWolpert, 1998;
Vermorel and Mohri, 2005). Two approaches that have been applied to this problem, and the
exploration versus exploitation dilemma, are evolutionary algorithms (Črepinšek et al., 2013)
and Bayesian learningmethods (Macready andWolpert, 1998; Strens, 2000). Bayesian learn-
ing methods usually rely on the concept of value of information (Dearden et al., 1999), which
appears under different names, among which expected improvement and knowledge gradi-
ent (Ryzhov et al., 2019). Although many real-life problems can be modeled as multi-armed
bandit problems or solved using evolutionary algorithms and Bayesian learning methods,
there are several difficulties to translate these approaches to a transportation problem and
to an ADP method as a solution approach. Among those difficulties we find the so-called
“physical” state where decisions depend on the state of our physical resources, such as con-
tainers and barges, and the correlation of values of alternative decisions (e.g., economies of
scale in adding more containers to a barge) (Ryzhov et al., 2019). These difficulties are incor-
porated by Ryzhov et al. (2019) assuming an infinite horizon, whereas our problem deals
with a finite horizon. To the best of our knowledge, the application of Bayesian learning
techniques within finite horizon ADP has not been studied before. Nevertheless, ADP can
benefit from a translation of the knowledge on Bayesian learning to deal with the exploration
versus exploitation dilemma (Powell, 2011; Ryzhov et al., 2019).

Overall, we observed in the literature that DSND models and methods provide a useful
base for synchromodal scheduling with some additional work. We believe that our contri-
bution to DSND methods and synchromodal scheduling has three focus points. First, we
formulate an MDP model and design a solution method based on ADP that incorporates
stochastic demand as well as the complex time and performance evolution of the transporta-
tion network. Second, we explore the use of new exploration strategies for ADP based on
Bayesian exploration using the value of perfect information, and provide design and vali-
dation insights. Third, we compare our ADP designs against a benchmark heuristic, under
different problem characteristics.

3 Markov decision process model

In this section, we formulate the problem of scheduling synchromodal transport as a Markov
Decision Process (MDP). We begin by introducing the notation and all required input param-
eters (Sect. 3.1); a complete overview of the mathematical symbols used throughout this
paper is provided in “Appendix A”. Subsequently, we formulate the elements of the MDP
model: stages, states, decisions, transitions, and objective function (Sect. 3.2). Finally, we
examine the relations between the various elements of our model and identify challenges that
these relations bring for heuristic approaches to solve the model (Sect. 3.3).

3.1 Notation

We consider a finite horizon T of Tmax days, i.e., T = {0, 1, 2, . . . , Tmax − 1}. A finite-
horizon formulation allows us to support decisions in the real-world for a given state, and
include up-to-date information within our MDP regarding the finite period that lies ahead.
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For example, we may include information about the expected reduced capacity of inland
vessels due to low water levels on some days within the horizon, or an increase in the number
of containers from a given day onward due to the release of a vessel blocking the Suez Canal.
On the contrary, an infinite horizon formulation requires stationary or cyclic information,
e.g., the relatively lower intensity of container arrivals on a Monday. Hence, a finite horizon
formulation makes it easier to use the MDP for re-planning purposes once the information
changes, which is a key characteristic of synchromodality. To cope with the end-effects of
a finite horizon problem, i.e., zero costs at the end of the horizon irrespective of the state
of the system, we include a cost component depending on the containers left in the system
at the end of the horizon (see Sect. 6.1). Although our approach can easily be used in a
rolling-horizon fashion, we limit ourselves to finding a single decision policy to be used for
the whole planning horizon. Note that, although we refer to a period in the horizon as a “day”,
time can be discretized in any arbitrary interval as long as all time-dependent parameters are
measured in that same interval.

The transportation network is represented by a time-dependent directed graph Gt =
(Nt ,At ), as it is usually done in DSND models. Nodes Nt denote locations where services
begin or end, and arcs At denote the services running from one location to another. To ease
the formulation, we categorize nodes into three types: (i) origin nodes NO

t , (ii) destination
nodesND

t , and (iii) intermodal terminal nodesN I
t , such thatNt = NO

t ∪ND
t ∪N I

t ; and we
index all nodes in Nt by i , j , and d . In this categorization, the sets of origin and destina-
tion nodes represent the possible starting and ending locations of a shipment, respectively,
and are mutually exclusive with the set of intermodal terminals nodes. This separation of
nodes applies to our model, but not necessarily to our problem. We further elaborate on this
assumption, and how to overcome it, in “Appendix B”.

Each day t , new containers with different characteristics arrive to the network. Each
container that arrives has a known origin i ∈ NO

t , destination d ∈ ND
t , release-day r ∈

Rt , and time-window k ∈ Kt . The release-day denotes the number of days in which a
container will be released after its arrival. The set Rt = {

0, 1, 2, . . . , Rmax
t

}
ranges from

immediate release to Rmax
t days before release. The time-window denotes the number of

days in which a container must be at its destination after it has been released. The set
Kt = {

0, 1, 2, . . . , Kmax
t

}
ranges from the same day a container is released to Kmax

t days
after it is released. Although shipments are unknown before they arrive, there is probabilistic
knowledge about their arrival in each origin i ∈ NO

t . In between two consecutive days t − 1
and t , for origin i ∈ NO

t , a total of f ∈ N containers arrive with probability pFf ,i,t . A

container that arrives between days t − 1 and t in origin i ∈ NO
t has destination d ∈ ND

t
with probability pDd,i,t , release-day r ∈ Rt with probability pRr ,i,t , and time-window k ∈ Kt

with probability pKk,i,t .
In a similar fashion to the categorization of nodes, we categorize arcs into three types: (i)

arcs between an origin and an intermodal terminal node AO
t = {(i, j)|i ∈ NO

t and j ∈ N I
t },

(ii) arcs between two intermodal terminal nodes AI
t = {(i, j)|i, j ∈ N I

t }, and (iii) arcs
between an origin or an intermodal node, and a destination AD

t = {(i, d)|i ∈ NO
t ∪ N I

t and
d ∈ ND

t }. For services beginning at an origin or ending at a destination (i.e., AO
t and AD

t ),
we assume there is unlimited capacity every day. In other words, we assume that the pre-
and end-haulage operations of our synchromodal network are not restrictive. However, for
each service between two intermodal terminals (i.e., AI

t ), we consider there is a maximum
capacity of Qi, j,t containers and a transportation duration of LA

i, j,t days. In addition to
the duration and capacity of each service, we consider that for each location i ∈ Nt , there
is a transfer duration of LN

i,t days, which includes all handling operations, and we assume
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unlimited handling capacity. Consequently, the total time required for the service between
two intermodal terminal nodes is given by Mi, j,t = LN

i,t + LA
i, j,t + LN

j,t . Finally, we consider
that between any two nodes, there is at most one arc (i.e., one service between two locations)
and that all service durations are at least one (i.e., Mi, j,t ≥ 1 ∀(i, j) ∈ At ). Relaxations of
these assumptions are given in “Appendix B”.

With respect to the objective, we define a generic reward function Rt (·) to capture the
immediate reward (i.e., reward at day t) of transporting a container in the network. Note
that we use the common terminology of rewards to denote the profits given by the revenues
received from transporting containers minus the transportation costs (both fixed costs for
using certain services and variable costs per container). For each arc (i, j) ∈ At , or service
between i and j , we include three components in the reward function: (i) a revenue Ai, j,d,t per
container with destination d , (ii) a setup cost Bi, j,t independent of the number of containers
using the service, and (iii) a variable cost Ci, j,d,t per container with destination d . These
components can also have a value of zero to model different financial conditions such as
receiving the entire revenue of a shipment at the beginning of transportation (i.e., Ai, j,d,t =
0 ∀i /∈ NO

t ) or constant cost for reserved space in a service (i.e., Bi, j,t > 0 and Ci, j,d,t = 0
for the reserved service (i, j)).

3.2 Formulation

The stages at which decisions are made in our MDP model correspond to the days in the
horizon, i.e., t ∈ T . The state of the system St ∈ S is modeled as the vector of all containers,
and their characteristics, that are present at each node and each arc of the network (i.e.,
containers available at a location or traveling to a location) at stage t . In the state vector,
we denote containers at location i ∈ NO

t ∪ N I
t , that have destination d ∈ ND

t , release-day
r ∈ R′

t , and time-window k ∈ Kt with the integer variable Fi,d,r ,k,t . Hence, the state is given
by (1).

St = [
Fi,d,r ,k,t

]
∀i∈NO

t ∪N I
t ,d∈ND

t ,r∈R′
t ,k∈Kt

(1)

Note that we use a different set R′
t for the release-day r to model containers that are

being transported to location i using Fi,d,r ,k,t in a computationally efficient way. We define

R′
t =

{
0, 1, 2, . . . ,max

{
Rmax
t ,max(i, j)∈AI

t
Mi, j,t

}}
and use a virtual time-window to

model containers that are en route. For example, if a container is being transported to location
i using a service that departs onMonday and arrives at i on Thursday, then this container will
be modeled in the state of Tuesday as a container that will be available at i in two days, i.e., a
container with release-day r = 2. Furthermore, if the container has a deadline of Friday, its
time-window on Tuesday will be k = 1, i.e., one day after it arrives, or, in terms of our virtual
time-windows, it is virtually released. So, on Tuesday, instead of modeling the container that
is already released and being transported with r = 0 and k = 3, we model it with r = 2 and
k = 1. We further elaborate on the use of virtual time-windows to capture the evolution of
the network later on in this section.

At every stage, the planner decides which of the released containers (i.e., r = 0) to
transport using a given service and which ones to postpone. Remind that if the planner
decides to transport a container, only the route to the first destination is fixed, which may
be an intermodal terminal or its final destination. We model the decision with the vector xt
consisting of all containers that will be transported at stage t , as shown in (2a). We denote
the number of containers that will be transported from location i to j , having destination
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d ∈ ND
t and time-window k ∈ Kt , with the integer variable xi, j,d,k,t . Naturally, the decision

xt is bounded by the feasible decision space Xt described by constraints (2b) to (2f).

xt = [
xi, j,d,k,t

]
∀(i, j)∈At ,d∈ND

t ,k∈Kt
(2a)

s.t.∑

j∈N I
t ∪{d}

xi, j,d,k,t ≤ Fi,d,0,k,t , ∀i ∈ NO
t ∪ N I

t , d ∈ ND
t , k ∈ Kt (2b)

xi,d,d,LA
i,d,t ,t

≥ Fi,d,0,LA
i,d,t ,t

, ∀(i, d) ∈ AD
t , k ∈ Kt (2c)

xi, j,d,k,t = 0, ∀(i, j) ∈ AO
t ∪ AI

t , d ∈ ND
t , k ∈ Kt |k < Mi, j,t + M̃ j,d,t ′ (2d)

∑

d∈ND
t

∑

k∈Kt

xi, j,d,k,t ≤ Qi, j,t , ∀(i, j) ∈ AI
t (2e)

xi, j,d,k,t ∈ N ∪ {0}, ∀(i, j) ∈ At , d ∈ ND
t , k ∈ Kt (2f)

Constraints (2b) ensure that, for every origin and intermodal terminal, only containers
that are released can be transported. Constraints (2c) guarantee that containers whose time-
window is as long as the duration of direct trucking are transported using this service. Note
that with this constraint, we assume that trucking to a destination is faster than going via an

intermodal terminal, i.e., L A
i,d,t < min j∈N I

t

{
Mi, j,t + L A

j,d,t

}
,∀(i, d) ∈ AD

t . Equation (2d)

ensure that containers are not transported to a terminal j if the fastest “intermodal” route
to their destination after arriving at that terminal (whose duration we denote with M̃ j,d,t ′ ,
with t ′ = t + Mi, j,t ) is longer than the corresponding time-window. This strict definition
of transportation options means that two trucking services cannot be used sequentially. The
value of M̃ j,d,t ′ is case dependent: (i) if a container is at an origin (i.e., i ∈ NO

t ), then M̃ j,d,t ′
includes the duration of the shortest service from terminal j to terminal j ′ and the duration
of trucking from j ′ to the destination d; (ii) if a container is at an intermodal terminal (i.e.,
i ∈ N I

t ) then M̃ j,d,t ′ = Mj,d,t since the intermodal service (i, j) ∈ AI
t already accounts for

the intermodal part. Constraints (2e) ensure that the capacity of each service is not exceeded.
Finally, constraints (2f) define the domains of the variables.

After making a decision xt−1 and before entering the state St , exogenous information
on new shipments arrives. We denote the number of new containers with origin i ∈ NO

t ,
destination d ∈ ND

t , release day r ∈ Rt , and time-window k ∈ Kt that arrive in between
two consecutive stages t − 1 and t with the integer variable F̃i,d,r ,k,t . Hence, we model this
exogenous information with the vector Wt , as seen in (3).

Wt = [
F̃i,d,r ,k,t

]
∀i∈NO

t ,d∈ND
t ,r∈Rt ,k∈Kt

(3)

The transition fromstate St−1 to state St depends on (i) the decision xt−1, (ii) the exogenous
information Wt , and (iii) the various time relations involving shipments and services. We
capture this transition using the function SM , as seen in (4). First, andmost naturally, decisions
shift containers from one location to another through time. However, this shift can take longer
than one stage, i.e., when a service duration spans more than one day. To avoid remembering
decisions of services spanning more than one day (i.e., earlier decisions than xt−1), we use
the virtual time-windows. As exemplified before, virtual time-windows increase the release-
day and reduce the time-window of containers that are transported using a service with a
duration longer than one day, i.e., Mi, j,t > 1. Second, the exogenous information increases
the number of containers of a certain type that are present in the network. Third, various time
relations apply to different types of containers. For example, released containers that are not
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transported remain at the same location and their time-window decreases. To capture all these
relations, SM categorizes container variables Fi,d,r ,k,t into seven equations, as shown in (4b)
to (4h).

St = SM (St−1, xt−1,Wt ) (4a)

s.t.

Fi,d,0,k,t = Fi,d,0,k+1,t−1 −
∑

j∈At

xi, j,d,k+1,t−1 + Fi,d,1,k,t−1 + F̃i,d,0,k,t , (4b)

∀i ∈ NO
t , d ∈ ND

t , k + 1 ∈ Kt

Fi,d,0,Kmax
t ,t = Fi,d,1,Kmax

t ,t−1 + F̃i,d,0,Kmax
t ,t , (4c)

∀i ∈ NO
t , d ∈ ND

t

Fi,d,0,k,t = Fi,d,0,k+1,t−1 −
∑

j∈At

xi, j,d,k+1,t−1 + Fi,d,1,k,t−1

+
∑

j∈At |Mj,i,t=1

x j,i,d,k+Mj,i,t ,t−1, (4d)

∀i ∈ N I
t , d ∈ ND

t , k + 1 ∈ Kt

Fi,d,r ,k,t = Fi,d,r+1,k,t−1 + F̃i,d,r ,k,t , (4e)

∀i ∈ NO
t , d ∈ ND

t , r + 1 ∈ Rt |r ≥ 1, k ∈ Kt

Fi,d,Rmax
t ,k,t = F̃i,d,Rmax

t ,k,t , (4f)

∀i ∈ NO
t , d ∈ ND

t , k ∈ Kt

Fi,d,r ,k,t = Fi,d,r+1,k,t−1 +
∑

j∈At |Mj,i,t=r+1

x j,i,d,k+Mj,i,t ,t−1, (4g)

∀i ∈ N I
t , d ∈ ND

t , r + 1 ∈ R′
t |r ≥ 1, k ∈ Kt

Fi,d,|R′
t |,k,t =

∑

j∈At |Mj,i,t=|R′
t |+1

x j,i,d,k+Mj,i,t ,t−1, (4h)

∀i ∈ N I
t , d ∈ ND

t , k ∈ Kt

Equation (4b) define containers that are released (i.e., r = 0) at an origin (i.e, i ∈ NO
t ),

and with a time-window smaller than Kmax
t (i.e., k + 1 ∈ Kt ), as the sum of two

types of containers from the previous stage at that origin with the same destination:
(i) containers with a time-window of one stage longer that were not transported (i.e.,
Fi,d,0,k+1,t−1 − ∑

j∈At
xt−1,i, j,d,k+1), and (ii) containers that had a release-day of one (i.e.,

Fi,d,1,k,t−1) meaning that they would be released at the current stage, in addition to the newly
arriving containers in between the stages that had the same characteristics (i.e., F̃t,i,d,0,k).
Equation (4c) define containers that are released, at an origin, and have the maximum time-
window as the sum of containers with a release-day of one and the newly arriving containers
with the same characteristics. Equation (4d) define containers that are released, at an inter-
modal terminal, and with a time-window smaller than the maximum one, as the result of
three types of containers from the previous stage at that terminal with the same destination:
(i) containerswith a time-windowof one stage longer thatwere not transported, (ii) containers
that had a release-day of one, and (iii) inbound containers from all locations j whose service
duration was one period (i.e., Mj,i,t = 1) and whose time-window was the service duration
longer (i.e., a reduced time-window from k + Mj,i,t to k) at the moment of the decision xt−1

(i.e.,
∑

j∈At |Mj,i,t=1 xt−1, j,i,d,k+Mj,i,t ). Equation (4e) define containers at an origin node that

123



Annals of Operations Research

are still not released and do not have the maximum release-day, as the sum of two types of
containers from the previous stage at that origin with the same destination and time-window:
(i) containers with a release-day of one period longer and (ii) new arriving containers that had
the same characteristics. Containers of the previous type that have the maximum release-day
are the result of only the new arriving containers with the same characteristics, as shown
in (4f). Equation (4g) define containers that are at an intermodal terminal and that are not
released but do not have the maximum release-day, as the sum of two types of containers
from the previous stage at that terminal: (i) containers with the same time-window and with
a release-day of one period longer, and (ii) containers sent in the decision of the previous
stage, from all other locations to that terminal, whose service duration equals the release-day
plus one period and whose time-window was a service duration longer. Finally, containers at
an intermodal terminal with the maximum release-day of the virtual time-windows are the
result of inbound containers to that location following the virtual time-windows reasoning,
as shown in (4h).

The immediate rewards of a decision Rt (xt ) resemble the profits as given by the revenues
minus costs, see (5a). Remind that Ai, j,d,t and Ci, j,d,t are the revenue and variable cost of
using service (i, j) ∈ At for one container with destination d , respectively, and that Bi, j,t is
the setup cost for using the aforementioned service independent of the number of containers.

Rt (xt ) =
∑

(i, j)∈At

∑

d∈ND
t

⎛

⎝(
Ai, j,d,t − Ci, j,d,t

) ∑

k∈Kt

xi, j,d,k,t

⎞

⎠

−
∑

(i, j)∈At

(
Bi, j,t · yi, j,t

)
(5a)

where

yi, j,t =
{
1, if

∑
d∈ND

t

∑
k∈Kt

(
xi, j,d,k,t

)
> 0

0, otherwise
, ∀(i, j) ∈ At (5b)

Since the decision xt depends on the state, and the state is partially random, the objective
is to find a policy that maximizes the expected discounted reward over the planning horizon.
We denote a policywithπ ∈ Π , and define it as a function that determines a decision xπ

t ∈ Xt

for each possible state St ∈ S. Thus, the objective can be expressed as shown in (6), where γt
is the discount factor balancing the impact of future and present rewards and S0 is the initial
state of the system.

max
π∈Π

E

[
∑

t∈T
γt Rt

(
xπ
t

)
∣∣∣∣∣
S0

]

(6)

The optimal expected rewards can be estimated using a set of recursive equations and
Bellman’s principle of optimality, as shown in (7). These equations can be solved backwards,
from the end of the horizon towards the beginning. In (7a), the state St+1 is partially random
and partially the result of decision xt . Using the transition function SM , we can express St+1

as a function of the current state, decision, and a realization of the exogenous information, as
shown in (7b). Assuming that the possible realizations of the exogenous information Ωt+1

(i.e.,Wt+1 ∈ Ωt+1) are finite, and defining pΩt+1
ω as the probability of realization ω ∈ Ωt+1,

we can recursively solve ourMDP as shown in (7c). The solution to these last equations yield
the optimal policy π∗. However, solving these equations is challenging for various reasons.
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In the following, we elaborate further on those solution challenges.

Vt (St ) = max
xt∈Xt

(
Rt (xt ) + γtE

[
Vt+1 (St+1)

])
, ∀St ∈ S (7a)

Vt (St ) = max
xt∈Xt

(
Rt (xt ) + γtE

[
Vt+1

(
SM (St , xt ,Wt+1)

)])
, ∀St ∈ S (7b)

Vt (St ) = max
xt∈Xt

⎛

⎝Rt (xt ) + γt
∑

ω∈Ωt+1

pΩt+1
ω

(
Vt+1

(
SM (St , xt , ω)

))
⎞

⎠, ∀St ∈ S. (7c)

3.3 Solution challenges

As with most MDP models, ours suffers from the so-called three curses of dimensional-
ity (Powell, 2011). Equation (7c) hold for the entire state space S, decision space Xt , and
exogenous information space Ωt , which grow larger with an increasing size of the trans-
portation network and demand parameters. Another challenge arises due to the interaction
among the model’s reward function, transition function, and the finite horizon; and the need
for heuristic/approximation solution methodologies. In the transportation industry, the rev-
enue is usually received at a single point in time (e.g., at the pick-up or at the delivery)
while the costs for the entire route are accrued in several points in time depending on the
route. Although this is not an issue for the MDP model, it may result in strange behavior
of heuristic approaches. When revenue is received at the pick-up, heuristics might prefer to
pick up a container as soon as possible, to receive the revenue, and then take it to the closest
location and leave it there in order to avoid costs. In the opposite case, when the revenue is
received at the delivery, heuristics might prefer to take a container to its destination, as soon
as possible, to receive the revenue, and avoid longer transportation options which might be
cheaper. Consequently, the “greedy” nature of heuristics may lead to a poor performance in
our finite horizon look-ahead model.

Although our MDP model brings various solution challenges, its components (e.g., tran-
sition function, decision constraints, exogenous information) can be used within the ADP
framework to design a heuristic solution for them. We elaborate on this design, and how to
overcome the challenges, in the following section.

4 Approximate dynamic programming solution

To solve the MDP model from the previous section, we use ADP. Here, the solution to the
Bellman’s Equations in (7) is approximated using simulation, along with other optimization
and statistical techniques, in an iterativemanner. As themain contribution of this work relates
to the inclusion of Bayesian learning in ADP to cope with the exploration versus exploitation
tradeoff, we use the standard approximate value iteration form of ADP, see Powell (2011).
In this section, we describe this traditional ADP design combined with the use of basis
functions and ε-greedy exploration, which has been used successfully for other intermodal
transportation problems (Pérez Rivera and Mes, 2017).

TheADP algorithm consists of various parts of theMDPmodel, such as the state, decision,
and transition function, as shown inAlgorithm1.The algorithm runs for a number of iterations
N and hence has all its variables indexed with n, as shown in Line 2. The overall idea of ADP
is to replace the expectation of future rewards in (7a) with an approximation V

n
t and to update

this approximation over the iterations. At the end, the algorithm yields the approximation of
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Algorithm 1 ADP Algorithm

1: Initialize
[
V
0
t

]

∀t∈T
2: for n = 1 to N do
3: Sn0 := S0
4: for t = 0 to Tmax − 1 do
5: xn∗

t := argmax
xnt ∈XR

t

(
Rt

(
xnt

) + γt V
n−1
t

(
SM,x (

Snt , xnt
)))

6: Sn,x∗
t := SM,x (

Snt , xn∗
t

)

7: v̂nt :=
(
Rt

(
xn∗
t

) + γt V̄
n−1
t

(
Sn,x∗
t

))

8: Wn
t+1 := Random (Ω)

9: Snt+1 := SM
(
Snt , xn∗

t ,Wn
t+1

)

10: end for
11: for t = Tmax − 1 to 0 do
12: V

n
t (Sn,x∗

t ) := Un
t (V

n−1
t (Sn,x∗

t ), Sn,x∗
t ,

[
v̂nt

]
∀t∈T )

13: end for
14: end for
15: return

[
V
N
t

]

∀t∈T

the last iteration, for all stages, as shown in Line 15. Thus, the output of ADP is a policy,

based on the approximation
[
V

N
t

]

∀t∈T of the expected rewards, in a similar way to theMDP.

The approximation V
n
t is a function of the so-called post-decision state Sx,nt . The

post-decision state is the state of the system after a decision has been made but before
the new exogenous information becomes known and the next stage state is realized, i.e.,
Sn,x
t = SM,x

(
Snt , xnt

)
. The transition SM,x to the post-decision state works in a similar way

as the transition function SM , see (4), with the only difference that no exogenous information
is considered, i.e., all F̃i,d,r ,k,t variables are omitted in (4b) to (4h). To update the approxi-
mation V

n
t , the algorithm simulates the use of its resulting policy for all stages. In contrast

to backwards dynamic programming, ADP moves forward in the stages, as shown in Line 4.
In each stage, the optimality equations in (7) are transformed into one single equation (using
V

n
t ), as shown in Line 7. Furthermore, the decision that attains the maximum reward v̂nt , as

well as its corresponding post-decision state, are stored as shown in Lines 5 and 6. To advance
to the next stage t + 1, the algorithm uses a sample from Ωt+1, obtained through a Monte
Carlo simulation, and the transition function SM defined in (4), as shown in Line 8. After
all stages are processed, a function Un

t−1 is used to update the approximation in a backward
manner, as seen in Lines 11 to 13. This function uses the information stored throughout the
stages. The entire procedure is repeated N times.

The benefit of having the approximation V
n
t in ADP is two-fold. First, it avoids enumerat-

ing all possible realizations of the exogenous informationΩt . Second, it allows the optimality
equation in Line 7 to be solved for one state at a time. These two benefits eliminate two of the
curses of dimensionality. However, the large decision space must be tackled separately. For
this, we propose the use of a restricted decision space XR

t by adding more constraints to the
feasible decision spaceXt described by constraints (2b) to (2f). The restricted decision space
as defined in (8), works with four additional constraints to the feasible decision space. First,
containers that are not urgent (i.e., k > L A

i,d,t ) cannot use direct trucking to their destination
(8b). Second, all containers of the same type, i.e., having the same location, destination, and
time-window, must be transported together (8c and 8d). To achieve this, we use the binary
variable xRi, j,d,k,t , which gets a value of 1 if containers at location i with destination d and
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time-window k are sent using service (i, j) ∈ AI
t and 0 otherwise, and the binary parameter

MR
i, j,d,k,t , which gets a value of 1 if the fastest intermodal route for containers at location i

with destination d and time-window k, going through terminal j , is longer than the container’s
time-window (i.e., k < Mi, j,t + M̃ j,d,t ′ ). Third, we consider that all containers that arrive
at an origin and have the same destination must be either transported to the same intermodal
terminal or postponed (8e). To achieve this, we use the binary variable xRj,d,t , which gets
a value of 1 if the intermodal terminal j is chosen for containers with destination d and 0
otherwise. Naturally, we assume with this last restriction that there is at least one terminal
to which containers from all origins can be brought to. Note that, if computational resources
allow, the restrictions on the policy can be omitted.

xt ∈ Xt (8a)

xi,d,d,k,t = 0, ∀i ∈ NO
t ∪ N I

t , d ∈ ND
t , k ∈ Kt |k > L A

i,d,t (8b)

xi, j,d,k,t = Fi,d,0,k,t xRi, j,d,k,t , (8c)

∀i ∈ NO
t ∪ N I

t , j ∈ N I
t , d ∈ ND

t , k ∈ Kt

xRi, j,d,k,t ≤
(
1 − MR

i, j,d,k,t

)
, (8d)

∀i ∈ NO
t ∪ N I

t , j ∈ N I
t , d ∈ ND

t , k ∈ Kt

∑
i∈NO

t
xi, j,d,k,t = ∣∣NO

t

∣∣ xRj,d,t , ∀ j ∈ N I
t |∃∀i∈NO

t
(i, j) ∈ AI

t , d ∈ ND
t (8e)

For the approximation V
n
t (S

x,n
t ), we make use of basis functions. The overall idea of

basis functions is to quantify characteristics of a post-decision state that explain the expected
future rewards to a certain degree. We denote the basis function of a characteristic b ∈ Bt

with φb,t : Sx,nt → R and the degree (i.e., weight) with which it explains the future rewards
by θnb,t ∈ R. We introduce the vectors φt

(
Sx,nt

)
and θnt containing the basis functions and

weights for all b ∈ B, respectively. The approximated future rewards are the result of the
product between all basis functions and their weights, as shown in (9).

V
n
t

(
Sx,nt

) =
∑

b∈B
θnb,tφb,t

(
Sx,nt

) = φt
(
Sx,nt

)T
θnt (9)

At each stage t , the set of characteristics Bt counts two types of containers per location-
destination pair: (i) containers whose time-window is shorter than the duration of the shortest
intermodal path of the entire network, which we denote as ψ , as shown in (10a), and (ii)
containers whose time-window is at least the duration of the shortest intermodal path of the
entire network, as shown in (10b). Furthermore, we also count the total number of containers
going to each destination, independent of their current location, release-day, or time-window,
as shown in (10c). Finally, we add a constant as shown in (10d). We have a total number
of characteristics |Bt | = 2

(∣∣NO
t

∣∣ + ∣∣N I
t

∣∣) × ∣∣ND
t

∣∣ + ∣∣ND
t

∣∣ + 1. To index them, we use the
functions b, b′′, and b′′′, with range [1, . . . , |Bt |].

φb(i,d),t
(
Sx,nt

) =
∑

k∈Kt |k<Ψ

∑

r∈R′
t

F x,n
i,d,r ,k,t , ∀i ∈ NO

t ∪ N I
t , d ∈ ND

t (10a)

φb′(i,d),t
(
Sx,nt

) =
∑

k∈Kt |k≥Ψ

∑

r∈R′
t

F x,n
i,d,r ,k,t , ∀i ∈ NO

t ∪ N I
t , d ∈ ND

t (10b)

φb′′(d),t
(
Sx,nt

) =
∑

i∈NO
t ∪N I

t

∑

k∈Kt |k≥Ψ

∑

r∈R′
t

F x,n
i,d,r ,k,t , ∀d ∈ ND

t (10c)
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φ|Bt |
(
Sx,nt

) = 1 (10d)

The weights θnb,t depend on iteration n and stage t . The idea is that, throughout the
iterations, the observed rewards for each stage can be used to update the weights, and thus
the approximation V

n
t (S

x,n
t ). For the updating function Un

t−1, we use recursive least squares
for non-stationary data, see Powell (2011).

The ADP design presented before uses the so-called exploitation decision strategy.
Exploitation decisions are those that take us to the best post-decision state given our estimate
of the downstream rewards at that iteration, as seen in Line 5 of Algorithm 1. If these esti-
mates are far from good, the post-decision state they take us too can also be far from optimal,
and since the estimates are updated with the post-decision state we saw (i.e., using the basis
functions), we might end-up in a chain reaction for the worse. A different approach to make
decisions, which aims to avoid such cycles during the learning phase of ADP, is to consider
exploration decisions. In analogy to local search heuristics, exploration decisions can be
seen as moves that prevent ADP from getting stuck in local optima. The benefit of making
exploration decisions in our basis functions approach is that we may observe post-decision
state characteristics we had not seen before (i.e., basis function values different than zero),
or not that often, and therefore improving the approximation of the downstream rewards.
One way to consider exploration decisions is the ε-greedy strategy (Powell, 2011). In this
strategy, a fraction ε of the decisions through the iterations should be exploration ones. To
implement this, we need to update Line 5 in Algorithm 1 such that a random decision from
XR
t is chosen with probability ε.
Although exploration decisionsmay take us to possibly better post-decision states, we also

run the risk of deteriorating our approximation and thusmaking worse exploitation decisions.
This is caused by updating the weights of basis functions that we have already seen (and for
which wemay have reasonable values) using values resulting from possibly far-from-optimal
decisions.Althoughone could update the approximation using the exploitation decision rather
than the explorationone (knownas off-policy updating), in afinite horizonproblem this results
in a larger propagation of errors across the stages since the observed post-decision states (and
hence the value of the basis functions we use for updating our approximation) depend on
the exploration decision and not the exploitation one. In the following section, we introduce
a different exploration strategy that aims to balance the trade-off between visiting relatively
unknown post-decision states and the risk of deteriorating the current approximation using
ideas from Bayesian exploration and implementing them into a hybrid ADP design.

5 ADPwith Bayesian exploration

As argued in the previous section, a traditional ADP design as shown in Algorithm 1, works
for many applications. However, some problems require a more balanced tradeoff between
exploration and exploitation. Exploration decisions have the potential to improve our approx-
imation when the approximation is not good. Exploitation decisions have the potential to
improve our approximation further once the approximation is reasonably good. Since there
is uncertainty on whether we already have a good approximation, the balance between explo-
ration and exploitation decisions can be seen as a stochastic optimization sub-problem. A
way to quantify the uncertainty and balance this tradeoff is through Bayesian exploration,
using the concept of Value of Perfect Information (VPI), as proposed in Ryzhov etal. (2019).
Although this technique has been recently applied successfully to infinite horizon problems,
applying it to finite horizon problems such as ours comes with several challenges. As far as
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we know, this has not been considered before. In this section, we introduce the general idea
of Bayesian exploration and subsequently present the challenges and possible modifications
to apply it to finite horizon problems in what we call a hybrid ADP design. For in-depth
explanation of Bayesian exploration we refer the reader to Powell and Ryzhov (2012).

During the early iterations of the ADP algorithm, there is a lot of uncertainty about the
approximation of the downstream rewards. As the algorithm progresses, and more post-
decision states are observed, this uncertainty is reduced. However, if the same post-decision
states are observed over and over again, there could be a bias towards these post-decision
states just because we have good estimates about their downstream rewards. The general idea
of Bayesian exploration is to prevent such a bias in the algorithm by making decisions that
will provide information about which post-decision states are actually better than the ones
we thought were best. In contrast to the way of making decisions in ε-greedy exploration, in
Bayesian exploration we make the decision that provides the maximum value of exploration
v
E,n
t at stage t and iteration n, as shown in (11). In (11), Kn

t represents the knowledge about
the uncertainty in the approximation of the downstream rewards. We now describe v

E,n
t and

Kn
t in more detail.

xn∗
t = argmax

xnt ∈XR
t

(
v
E,n
t (Kn

t , Snt x
n
t )

)
(11)

In the VPI concept applied to ADP, the value of exploration v
E,n
t of a decision xnt is

defined as the expected improvement in the approximated downstream reward that arises
from visiting the post-decision state corresponding to xnt . It is defined as “expected” because
the true value of the approximation is considered to be a random variable for which we have
an initial distribution of belief (Powell and Ryzhov, 2012). The best estimate of the mean of
this random variable at iteration n and stage t is V

n
t (S

n,x
t ). Recall that in our basis function

design, V
n
t (S

n,x
t ) is the scalar product of the values of the basis functions for post-decision

state Sn,x
t and the weights. Thus, the variance of V

n
t (S

n,x
t ) is dependent on the weights θnt

and the basis functions φt . We define Cn
t as the |Bt | by |Bt | covariance matrix at iteration

n and stage t . The uncertainty knowledge Kn
t of the approximated downstream rewards is

defined as the tuple shown in (12).

Kn
t = (V

n
t ,C

n
t ) = (φt , θ

n
t ,Cn

t ) (12)

The value of exploration of a decision should be larger for those decisions that lead us
to choosing a better decision in future iterations, given that we are at the same state in the
same stage, than for the decision that we currently think is the best. Furthermore, the value
of exploration should decrease as we explore though the iterations since the uncertainty of
the estimated downstream rewards is also reduced with increasing number of observations.
Eventually, when we are confident of discriminating between optimal and non-optimal deci-
sions, only exploitation decisions should be made in order to improve the approximation
V

n
t (S

x,n
t ). To achieve this, VPI [as applied by Ryzhov et al. (2019) in the context of infinite

horizon ADP] builds upon the notion of the value of information in reinforcement learning
systems (Dearden et al., 1999) and defines v

E,n
t using the elements of Kn

t as shown in (13).
In (13), the function f quantifies the knowledge gain of an exploration decision based on
the initial belief distribution, and is defined using f (z) = zΦ(z) + ϕ(z) where Φ is the
cumulative distribution function and ϕ the probability density function of the standard nor-
mal distribution. Furthermore, σ

2,n
t (Sx,nt ) represents the prior variance of V

n
t (S

n,x
t ) and is
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computed as shown in (13c). For a comprehensive description and derivation of (13), we
refer the reader to Ryzhov et al. (2019).

v
E,n
t (Kn

t , Snt , xnt ) =
√

σ
2,n
t (Sx,nt ) f

⎛

⎝− δ(Sx,nt )
√

σ
2,n
t (Sx,nt )

⎞

⎠ (13a)

s.t.

δ(Sx,nt ) =
∣∣∣∣V

x,n
t

(
Sx,nt

) − max
ynt ∈Xt |ynt �=xnt

V
x,n
t

(
Sy,nt

)
∣∣∣∣ (13b)

σ
2,n
t (Sx,nt ) = φ

(
Sx,nt

)T
Cn
t φ

(
Sx,nt

)
(13c)

In (13), we observe that the larger the uncertainty σ
2,n
t (Sx,nt ) about the impact of decision

xnt , the larger the value of exploration is. Besides the uncertainty, the difference between
the approximated downstream rewards of decision xnt (given by V

x,n
t

(
Sx,nt

)
) and the best

decision of the remaining feasible decisions ynt ∈ Xt |ynt �= xnt (given by V
x,n
t

(
Sy,nt

)
) is

considered. The larger this difference is, the lower the value of exploration v
E,n
t corresponding

with decision xnt becomes. Thus, the definition of v
E,n
t (Kn

t , Snt , xnt ) in (13) has the desired
characteristic of reducing the risk of deteriorating our approximation through exploration
decisions. To implement it, Line 5 in Algorithm 1 must be replaced by (11). In addition, the
covariance matrix Cn

t must be initialized for all stages t ∈ T before Line 2 in Algorithm 1.
Since it is difficult to define an initial distribution of belief about the true value of the
approximation, the covariance matrix is usually initialized with a large number χC on the
diagonal and with zero on its other entries (Ryzhov and Powell, 2011). This initialization
resembles the case of no prior knowledge about the relation between between the weights of
the basis functions.

The approximation and the belief about its distribution must be updated after each itera-
tion. To update the approximated downstream rewards (i.e., update the weights of the basis
functions), we use (14) where v̂nt is the value of the exploration decision in (11), as calculated
in Line 7 in Algorithm 1, and σ 2,E is a noise term due to themeasurement error. This updating
procedure is identical to the analogous recursive least squares method (Ryzhov et al., 2019),
and considers the difference between approximated and observed downstream rewards as
well as the current uncertainty knowledge through the covariance matrix. Naturally, besides
using the observed rewards, the observed basis functions can be used to update the covariance
matrix. Remind that, with increasing number of observations of a post-decision state Sx,nt
(i.e., observed basis functions), the uncertainty about the approximated downstream rewards
of that post-decision state decreases. We update the covariance matrix as shown in (15),
again using the noise term σ 2,E. To implement these updating methods, we replace Line 12
in Algorithm 1 with (14) and (15).

θnt = θn−1
t −

(
θn−1
t

)T
φ

(
Sx,nt

) −
Tmax−1∑

t

v̂nt

σ 2,E + σ
2,n−1
t (Sx,nt )

Cn
t φ

(
Sx,nt

)
(14)

Cn
t = Cn−1

t − Cn−1
t φ

(
Sx,nt

)
φ

(
Sx,nt

)T
Cn−1
t

σ 2,E + σ
2,n
t (Sx,n−1

t )
(15)

In the updating procedure explained above, we use the downstream rewards from the
exploration decisions. This differs from Ryzhov etal. (2019), where the approximated down-
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stream rewards of the exploitation decision are being used instead of the exploration decision.
This off-policy updating as used by Ryzhov et al. (Ryzhov et al., 2019) is less appropriate
for finite horizon problems, especially in combination with backwards updating (Sutton and
Barto, 1998; Sutton et al., 2009). This minor adjustment might require additional modi-
fications to prevent exploration decisions affecting our approximation in a negative way.
Therefore, we propose to be slightly more conservative in three aspects of exploration: (i)
the definition of “gain” in the value of exploration, i.e., δ(Sx,nt ) defined in (13b), (ii) the use
of the value of exploration in making decisions, i.e., xn∗

t defined in (11), and (iii) the updates
resulting from exploration decisions using the noise term σ 2,E as shown in (14) and (15). In
the following subsections, we elaborate on each of these aspects.

5.1 The gain in value of exploration

To be more conservative with the value of exploration v
E,n
t , we can incorporate more aspects

of the exploitation decision. The first aspect we note is the exclusion of the direct rewards
Rt

(
xnt

)
in the calculation of the value of exploration of decision xnt , as shown in (13). On the

one hand, it is reasonable to use only the expected downstream rewards V
x,n
t

(
Sx,nt

)
in (13)

because the post-decision state corresponding to decision xnt and its basis functions might be
observed without, or with different, direct rewards in a later iteration. Remind that different
states and different decisions at stage t might still lead to the same post-decision state and
thus the same basis function values. On the other hand, if observing basis function values
would always involve direct rewards (as in the “online” use of ADP which we describe at
the end of the next section), it makes sense to include them in the value of exploration. Thus,
we can add Rt (·) to (13b), as seen in (16).

δ(Snt , xnt ) =
∣∣∣∣∣
Rt

(
xnt

) + V
x,n
t

(
Sx,nt

) − max
ynt ∈XR

t |ynt �=xnt

(
Rt

(
ynt

) + V
x,n
t

(
Sy,nt

))
∣∣∣∣∣
. (16)

5.2 The exploration decision

Although the idea from the previous modification decreases the value of exploration for
decisions with relatively low direct rewards, the exploration decision itself, as given by (11),
is still solely based on the value of exploration. Another way to be conservative with the
exploration decisions is to directly include, in addition to the value of exploration, some
aspects of the exploitation decision (i.e., Line 5 in Algorithm 1). Naturally, there are many
forms to include these aspects. We propose three forms of doing so.

First, we can include the approximated downstream reward when making a decision as
proposed by Dearden et al. (Dearden et al., 1999) and shown in (17). This modification
overcomes the disadvantage of making decisions that are far-from-optimal with respect to
downstream rewards due to solely focusing on the value of exploration. Nevertheless, if
v
E,n
t � V

x,n
t we might explore only seldom and therefore converge to a “locally optimal”

policy.

xn,E2
t = argmax

xnt ∈XR
t

(
V

x,n
t

(
Sx,nt

) + v
E,n
t (Snt , Kn

t , xnt )
)

(17)

Second, both the direct and the approximated downstream rewards can be added to the
value of exploration when making a decision as proposed by Ryzhov et al. (2019) and
shown in (18). This modification ensures that towards the last iterations, when the value of
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exploration is approximately the same formany decisions, the exploitation decision is chosen.
Exploitation in the last iterations will improve the downstream estimates if the policy learned
is close to optimal. However, in this approach we need to be even more careful that the value

of exploration is scaled properly, i.e., v
E,n
t ∼

(
Rt

(
Snt , xt

) + V
x,n
t

)
, such that we actually

do some exploration.

xn,E3
t = argmax

xnt ∈XR
t

(
Rt

(
Snt , xt

) + V
x,n
t

(
Sx,nt

) + v
E,n
t (Sx,nt , Kn

t , xnt )
)

(18)

Third, we use the same rationale of the second modification but with a tighter control
over the amount of exploration throughout the iterations. To achieve that in early iterations
decisions are made according to traditional VPI exploration, i.e., (11), and in later iterations
follows pure exploitation, i.e., Line 5 in Algorithm 1, we introduce a weight αn ∈ [0, 1], as
shown in (19). This iteration-dependent weight is close to one in early iterations and close
to zero in later ones.

xn,E4
t = argmax

xnt ∈XR
t

(
(1 − αn)

(
Rt

(
Snt , xt

) + V
x,n
t

(
Sx,nt

)) + αnv
E,n
t (Sx,nt , Kn

t , xnt )
)

(19)

The idea of exploring using the traditional VPI exploration decision in (11) is suitable
as long as we are able to improve our approximation and it does not “cost” anything. How-
ever, some of the applications for which the idea was introduced have costs associated with
exploration. This can happen, for instance, if the algorithm uses real-life observations of the
exogenous information, or if the simulation of the exogenous information is so expensive
that there is a limit on the number of iterations in ADP. This is the so-called “online” use
of ADP (Ryzhov et al., 2019), and for this case, the proposed modification in (18) seems
reasonable. Although in our problem we use the “offline” version of ADP, which means we
first learn the approximation without making real costs and then use the approximation to
make decisions in real-life, we still suffer from exploration due to our on-policy strategy.
This issue brings us to our last proposed modification: to be more conservative with updates
resulting from exploration decisions.

5.3 The update of the approximation

The last modification we propose deals with the updates resulting from exploration decisions.
Specifically, we propose adjusting the noise term σ 2,E in the updating Eqs. (14) and (15). The
general idea is that the higher this noise term is, the less the observed error (i.e., difference
between the approximated downstream rewards and the observed ones) affects the approxi-
mations, since the difference can be partly attributed to “noise”. Noise, in our context, has two
causes: (i) fluctuations in the downstream rewards due to realizations of the random demand,
and (ii) changes in the policy due to the changing approximation V

n
t (S

x,n
t ). Typically, this

noise term is assumed known and constant across all stages in an infinite horizon problem.
In our problem, however, this would mean that σ 2,E = ηE ∀t ∈ T , where ηE is the problem
specific noise. This is not desirable as we explain below.

Suppose that we are at the same state and stage at iterations n and n + 1 in the ADP
algorithm. Although in both situations the feasible decision space is the same, decision
xn+1,∗
t might differ from decision xn,∗

t because, from iteration n to iteration n + 1, either the
approximation V

n
t (S

x,n
t ) changed or the uncertainty knowledge Kn

t used to make exploration
decisions changed. Typically, the noise resulting from these differences will be smaller in
later iterations as the policy has converged. Furthermore, in a finite horizon problem with
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backward updates, changes in decisions at later stages would accumulate to earlier stages of
the horizon, meaning that at early stages noise would be larger than at later stages. To account
for this decreasing nature of noise across the stages in the horizon, or across the iterations in
our ADP algorithm, we propose three forms of modifying the noise term σ 2,E.

First, we can let the noise term σ
2,E
t depend on the stage t as a linearly decreasing function

of the constant noise term ηE, as shown in (20). The noise term ηE must, nevertheless, be
tuned for the problem.

σ
2,E2
t = Tmax − t

Tmax ηE (20)

Second, to deal with the noise due to changes in the policy across the iterations, as well as
stages, we can let the noise term depend on the uncertainty σ

2,n
t (Sx,nt ) about the impact of a

decision, as shown in (21). The logic behind this modification is that, if we choose a decision
that leads us to a highly uncertain post-decision state (i.e., high variance of the approximated
downstream rewards of that post-decision state), then the resulting observation will have a
lesser impact on our update. In VPI, the decision to visit a highly uncertain post-decision state
is likely to be an exploration decision, and these decisions we typically want to contribute
less since they can be far from optimal.

σ
2,E3
t (Sx,nt ) = σ

2,n
t (Sx,nt ) (21)

Third, we can combine the two previous ideas, as shown in (22). This is the most conser-
vative of our proposals to modify the update of the approximation.

σ
2,E4
t,n (Sx,nt ) = Tmax − t

Tmax ηE + σ
2,n
t (Sx,nt ) (22)

To recap,we proposed severalmodifications in three aspects of the exploration decisions to
decrease the risk of negatively affecting our approximation.We proposed these modifications
because a straightforward application of Bayesian exploration within a finite horizon ADP
not necessarily provides the best results. In the following section, we investigate which of
the 2 × 4 × 4 = 32 combinations (the original plus 31 modifications) work best, and study
the performance of ADP with Bayesian exploration compared to traditional ADP and other
heuristics.

6 Numerical experiments

To evaluate the performance of our ADP designs, with and without Bayesian exploration,
we carry out two types of experiments: tuning and benchmark experiments. In the tuning
experiments, we test several input parameters, such as the exploration probability ε and the
noise term ηE. Furthermore, we test the 32 possible VPI modifications. Our goal in these
experiments is to provide insights into the relation of these parameters and their performance.
We describe these experiments in detail and present their results in Sect. 6.2. In the benchmark
experiments, we compare ourADP approachwith a benchmark heuristic under different time-
window settings. Our goal is to study the relation between time-window characteristics and
the gains or losses of using ADP over using the benchmark heuristic. We describe these
experiments and present their results in Sect. 6.3. We end with a discussion on advantages
and limitations of our approach in Sect. 6.4. But first, we present our experimental design in
Sect. 6.1.
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Fig. 1 Network 1: point-to-point topology

6.1 Experimental design

To test our ADP algorithms, we use three synchromodal network configurations and a plan-
ning horizon of Tmax = 50 days. These three networks, and their settings, are based on
the intermodal consolidation network typologies suggested by Macharis and Bontekon-
ing (2004), Woxenius (2007), and Caris et al. (Caris et al., 2013). Each network increases
in amount of consolidation opportunities (i.e., more services or terminals) compared to the
previous one, as shown in Figs. 1, 2 and 3. In these figures, the axes denote the distance
(in km) between the locations in the network, Q the capacity of each service in number of
containers, and L A the duration of each service in days. The duration of truck connections is
one day. We consider transfer time not to be restrictive in any terminal in the network, i.e.,
LN
i,t = 0, for all terminals i .
All networks span an area of 1000 × 500 km, and have the same locations for origins

and destinations. The distances between the origins and the destinations range from 800 to
1044 km, and the distances between terminals close to the origin and terminals close to the
destinations range from 500 to 854 km, to resemble distances that make consolidation for the
long-haul desirable in Europe according to Woxenius (2007). We use a cost structure com-
parable to the one proposed by Bierwirth et al. (2012) and Janic (2007) to represent internal
and external costs of intermodal transportation networks, and especially, to incorporate the
differences in costs due to economies of scale of various transportation modes. For each day
t in the horizon, the setup cost Bi, j,t ranges between 169 and 425 for barges and trains and
the variable cost Ci, j,d,t ranges between 37 and 868 for barges, trains, and trucks. Further
details of this cost structure are given in “Appendix C”. For each day, the revenue Ai, j,d,t is
868 for each container picked up at its origin, independent of its origin or destination, and 0
otherwise. This entails that the entire revenue is received at the beginning of transportation
(i.e., first mile), and afterwards only costs are incurred for each container.

The number of containers that arrives at each origin, and their destination, varies according
to the probability distributions shown in “Appendix D”. The time-window, upon arrival, is
fixed to r = 0 and k = 6 for all containers (i.e., pR0,i,t = 1 and pK6,i,t = 1 for all origins i).
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Fig. 2 Network 2: collection-distribution topology

Fig. 3 Network 3: hub-and-spoke topology

This means that containers can immediately be transported, or postponed at most 2 days for
a long-haul intermodal service to be feasible.

The initial state S0 for each network contains six containers, one container of each
of the following characteristics: F0,11(12),0,6,0, F1,10(11),0,6,0, F2,10(11),0,6,0, F3,9(10),0,4,0,
F4,11(12),0,5,0, and F5,11(12),0,1,0 (note that destinations in Network 3 are displayed between
parenthesis). This initial state contains “average” containers on the origins plus a few con-
tainers in the network. Our choice of 50 days in the planning horizon ensures a limited effect
of the initial state in the rewards for the entire horizon. To avoid unnecessary postponement
of transport till the end of the horizon, we include an end-effect (i.e., costs after day 50) by
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estimating the costs to send all containers remaining in the network using the benchmark
heuristic (see Sect. 6.3).

6.2 Tuning experiments

In our tuning experiments, we test the variousmodifications of ourADP designwith Bayesian
exploration and compare them to our ADP design with epsilon-greedy exploration. To make
the comparison fair, we test several input values for the tunable parameters of each of the
two designs, under the same conditions. Before presenting the results, we first describe the
conditions under which we test our designs and the input values we use for the tunable
parameters.

As described in Sect. 5, we are interested in the offline use of ADP, which is to first learn
the approximation of downstream rewards within a simulated environment, and then use the
approximation to make real-life decisions. For this reason, we measure performance in two
ways: (i) the learned approximation of downstream rewards after running the ADP algorithm,
which we call learned rewards, and (ii) the realized rewards of using the approximation
for making decisions in a simulation. The two of them are related to the MDP model’s
objective function in (6), the first relates to the optimal expected discounted rewards, and
the second one relates to the policy that obtains these rewards. Although related, these two
performance measurements are not necessarily the same. The basis function weights that our
ADP algorithms learn can be far from the optimal rewards, but the resulting policy can be
close to the optimal policy.

For each ADP design, we use N = 50 iterations and common random numbers, i.e.,
containers that arrive during each day of each iteration are the same across tested designs.
To test the resulting policy of each ADP design, we use 50 simulation runs of the planning
horizon and, again, common random numbers that differ from those used in the learning
phase.

For the ADP design with ε-greedy exploration, we test three values of λ = {0.01, 0.1, 1}
within the recursive least squares method for non-stationary data, and test four values of the
probability of exploration ε = {0, 0.3, 0.6, 0.9}. Remind that ε = 0 means only exploitation
decisions, while ε = 1 means only exploration decisions. Furthermore, we test two ways of
initializing the weights of the basis functions: (i) θ0b,t = 0 for all characteristics b ∈ B and

days t ∈ T , and (ii) θ0|B|,t = β (Tmax − t)/Tmax for the constant basis function and θ0b,t = 0
for all other characteristics b ∈ B|b �= |B| and days t ∈ T . The first initialization represents
a case where we have no knowledge about the weights of the approximated rewards, and
the second one represents a case where we have an estimate of the magnitude of the total
downstream rewards β. In our case, β is defined as the rewards attained by the benchmark
heuristic (see Sect. 6.3): β = 38, 036 for Network 1, β = 33, 445 for Network 2, and
β = 33, 889 for Network 3.

For the ADP design with Bayesian exploration, we initialize the basis function weights
using the second option described before. We test four values of the noise term ηE ={
102, 104, 106, 108

}
. For the initial covariance matrix, we test four values for the diagonal

χC = {
10, 102, 103, 104

}
. We base our settings on Ryzhov et al. (2019), who recommend

that ηE > χC and that their ratio is of the order 10 or 102. For the weight αn in modification
(19), we test αn = {1/n, 10/(n + 9), 100/(n + 99)}. We test all the parameters described
above for each of the 32 combinations of VPI modifications that we proposed in Sect. 5.

Testing all tunable parameters and modifications of our two ADP designs for the three
experimental networks results in more than 3500 experiments. Each experiment provides the
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Table 1 Maximum realized reward and their corresponding learned reward for various ADP designs

ADP design Network 1 Network 2 Network 3

Realized
rewards

Learned
rewards

Realized
rewards

Learned
rewards

Realized
rewards

Learned
rewards

BF − 4912 − 3803 − 11,734 34,060 − 11,949 34,495

BF + ε-greedy 880 37,386 − 11,450 − 12,091 − 11,949 33,356

BF + VPI 40,439 35,407 40,195 31,107 38,314 30,791

Fig. 4 Comparison of (i) average rewards (over all modifications) under different ratios ηE/χC (left) and (ii)
average rewards (over all networks) for our proposed VPI modifications (right)

learned and the realized rewards of ADP. Before discussing the details of the relation between
ADP performance and the tunable parameters/modifications, we limit ourselves to present
the results of the best parameters and modifications from Table 1, which consists of (i) the
result for the tuned value of ε, λ, and β for the ADP design with ε-greedy exploration, and
(ii) the tuned value of ηE, χC, and αn , and the best combination of modifications in Sect. 5
for the ADP design with Bayesian exploration. Note that we use the abbreviation BF to refer
to the basis functions approach.

In Table 1, we observe the maximum realized rewards over all settings of the tunable
parameters and VPI modifications, and their corresponding learned reward, for each ADP
design. Two observations stand out. First, using VPI instead of the traditional ε-greedy strat-
egy for exploration significantly improves the realized rewards. In fact, the policy resulting
from the ε-greedy strategy, although better in most cases than exploitation only (i.e., BF),
ends up in costs. Second, the accuracy of the approximation (i.e., difference between learned
and realized rewards) varies per network for the traditional designs, but is more consistent
for the BF+VPI design. BF+VPI underestimates the rewards by at most 9,088 whereas the
traditional designs overestimate the rewards by at most 45,305.

Next, we analyze the tuning of the noise and Bayesian-belief related parameters. In Fig. 4
(left), we provide a comparison of different ratios ηE/χC. From this figure, we can gather
important insights for the ratio ηE/χC: (i) realized rewards and accuracy initially seem to
improvewith an increasing ratio, (ii) in the areawhere the ratio results in the best performance
(in our case 104), we also find the smallest difference with the learned rewards, and (iii) for
even larger ratios, realized rewards rapidly decrease, even though the learned rewards remain
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the same. In line with Ryzhov et al. (2019), we observe that with ratios of 102 through 104,
VPI works best on average over all modifications.

Finally, we analyze the performance of our VPI modifications. In Fig. 4 (right), we show
the average realized rewards (over all networks) as a function of the decision and noise
modifications explained in Sects. 5.2 and 5.3, respectively. We exclude from our analysis the
modification to the gain in value of exploration using the direct rewards (Sect. 5.1), since
this performed significantly worse than the original definition of the value of exploration,
for all decision and noise modifications. The superscript E1 represents the original noise
and decision definition in VPI, meaning that the upper corner corresponds to the original
VPI design. We observe that the modifications of how to make a decision have a larger
impact than the modifications to the noise used when updating the approximation. Overall,
including the downstream rewards in addition to the value of exploration when making
decisions (i.e., xE2t ) and letting the noise depend only on the post-decision state of the given
stage and iteration (i.e., σE3

t ) are the best modifications tested for our problem. It seems that
including the downstream rewards instead of the direct rewards helps the algorithm avoid the
aforementioned greedy behavior. It also seems that considering the uncertainty of the post-
decision state instead of a constant noise term when updating pays off. Using modifications
xE2t and σE3

t for our BF+VPI design, we continue to our benchmark experiments.

6.3 Benchmark experiments

In our benchmark experiments, we compare the realized rewards of our best ADP design
(i.e., BF + VPI with the modifications xE2t and σE3

t ) against a Benchmark Heuristic (BH).
The objective is to compare the use of the learned ADP policy against a simpler but effective
scheduling heuristic. For this, we use a rule-of-thumb BH as used by practitioners and for
which competitive performance has been shown compared to a typical ADP implementation
(Pérez Rivera and Mes, 2016). This BH aims to use the intermodal services efficiently, i.e.,
consolidating as many containers as possible in a service once the setup costs for using that
service can be covered. The BH consists of fours steps: (i) define the shortest and second
shortest path for each container to its final destination, considering only variable costs for
services between terminals, (ii) calculate the savings between the shortest and second shortest
path and define these as savings of the first intermodal service used in the shortest path, (iii)
sort all containers in non-decreasing time-window length, i.e., closest due-day first, and (iv)
for each container in the sorted list, check whether the savings of the first intermodal service
of its shortest path are larger than the setup cost for using this service; if so, use this service
for the container, if not, postpone the transportation of the container. The pseudo-code for
this heuristic can be found in “Appendix F”.

Using the three networks from the previous section plus additional time-window distri-
butions, we set up our experiments as follows. For each network, we replicate ten times the
process of learning the ADP weights and simulating the use of the resulting policy. The BH
is also replicated ten times, using common random numbers with the corresponding ADP
part, such that differences arise due to the scheduling differences and not the arriving con-
tainers. Identical to the tuning experiments of the previous section, one replication of the
ADP process consists on running the ADP algorithm for 50 iterations and simulating the
entire planning horizon 50 times. For the networks with different time-window distributions,
we re-tune the noise parameters, since they are dependent on the inherent uncertainty of the
problem. Here we fix the best ratio ηE/χC found, i.e., 104, but increase the values of ηE and
χC.
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Table 2 Average realized rewards (over the replications) of BH and ADP

Scheduling policy Network 1 Network 2 Network 3

Average Gain Average Gain Average Gain

BH 37,347.36 – 33,066.79 – 32,963.79 –

ADP 37,502.84 0% 36,867.96 11% 33,839.92 3%

Fig. 5 Percentage gain of ADP over BH with respect to short (S), medium (M), and long (L) release days
(RD) and time-window (TW) lengths

Table 2 shows the average realized rewards, over the ten replications, using the same
networks from the tuning experiments of the previous section. We observe that, for Network
1, ADP performs slightly better than the benchmark heuristic, but not with a significant dif-
ference. In Networks 2 and 3, however, ADP performs significantly better than the heuristic.
The differences in performance of both the BH andADP across the networks seem to indicate
that the larger the complexity of the network is, the lower the average realized rewards are,
but up to a certain extent (we come back to this later).

In the experiments above, all containers that arrive are immediately released and have a
time-window length of six days.With this time-window length, containers can be postponed at
most 2 days for a long-haul intermodal service to be feasible. However, the length and uncer-
tainty of the time-windows may affect the performance of an ADP algorithm (Pérez Rivera
and Mes, 2017). To test this, we design three distributions for Release-Days (RD) and three
distributions for Time-Window (TW) lengths, as shown in Tables 7 and 8 in “Appendix D”.
Each distribution is categorized as short, medium, or long. Short RD means that 60% of
the containers are released immediately while long RD means that 60% of the containers
are released two days after arriving. Short TW means that 60% of the containers must be at
their destination within 4 days after being released while long RD means that 60% of the
containers have a time-window length of 6 days. We follow the same procedure as before,
with ten replications. To reduce computation time and provide a fair comparison, both ADP
and BH work with the restricted decision space. Relative results are shown in Fig. 5 and
absolute results in Table 9 (see “Appendix E”).

As can be expected, the longer the distribution of time-window length, the larger the real-
ized rewards are for both schedulingmethods in each network, independent of the release-day.
This happens because both methods are able to postpone transport and anticipate on better
consolidation opportunities. Furthermore, with larger time-windows the difference between
ADP and BH increases, as ADP can better anticipate on future consolidation opportunities.
For small time-windows in Network 3, we see that the heuristic outperforms ADP. Actually,
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it is to be expected that ADP is less useful when there are short time-windows since post-
ponement may directly result in using the expensive alternative mode (i.e., truck). In other
words, anticipatory decisions do not make sense in such a problem. With respect to RD dis-
tributions, we observe that for each TW distribution, the gains of ADP are larger in the case
of short RD. There are two possible reasons for this: (i) the basis functions do not include
any feature about release-days, so it is difficult (impossible) to learn among post-decision
containers with different release-days, (ii) when there are short release-days, rewards and
costs are observed earlier, which improves the learning of the feature weights. These two
reasons hint that the design of the approximation itself (i.e., the choice of basis functions)
in transportation problems such as ours should take into account the time when rewards and
costs are realized and their constraints.

In general, our experiments show that including VPI in ADP improves its performance
compared to traditional designs, and that this new design can lead to substantial gains over
a benchmark heuristic for various problem settings. However, they also showed that a “one-
size fits all” ADP solution is hard to achieve, and some tuning is necessary. In the following
section, we reflect upon our results and discuss their implications.

6.4 Discussion

In our tuning experiments, we observed differences between the learned and realized rewards
for most ADP designs. We observed that in the traditional ADP designs, a large learned
reward did not necessarily results in a good policy. Most of the times, the learned rewards
were positive while the realized rewards were negative. When looking for causes of the
mismatch between learned and realized rewards, one can argue that problem characteristics
such as the cost structure (i.e., revenue received at the beginning of transportation) and
restricted decision space (i.e., some post-decision states are not attainable) have a strong
influence on the mismatch. Nevertheless, we observe that through the inclusion of VPI, ADP
is able to tackle these issues and significantly improves the results of traditional designs, both
in learned and realized rewards. Specifically, we observed that during the learning phase,
combining downstream rewards with the value of exploration in VPI was the best way of
making exploration decisions, and that incorporating the uncertainty of a post-decision state
when updating was the best way to update the approximation. More generally, our results
indicate that the inclusion of VPI in ADP helps to balance the uncertainty in objective value
across time, which particularly plays a role in problems with delayed rewards and costs,
resulting in a more challenging exploration versus exploitation dilemma. However, a major
disadvantage of this ADP+VPI combination is the effort required for tuning and calibration
as well as the increase in computation time per iteration of ADP (which might be negated by
a faster convergence).

A limitation of our experiment is the use of a restricted decision space. When comparing
the performance of ADP with restricted decision space with the benchmark heuristic without
restrictions on the decisions, ADP will often be outperformed. Nevertheless, we have seen
that if we consider the restricted decision space to be part of the problem, ADP outperforms
the benchmark heuristic drastically. These improved gains provide an indication of the gains
that are possible if restrictions in the decision space of ADP would be removed. However,
removing restrictions in the decision space canmake itmore computationally complex,which
in turn can make exploration in the ADP learning phase more challenging.

To provide an indication of the computation times, the ADP learning phase for BF and
BF+VPI, per replication consisting of 50 iterations, took roughly half an hour, 2 hours, and 15
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hours for networks 1, 2, and 3, respectively, on average across all replications, modifications
and settings of the noise parameters. The computation times of the simulation phase are
roughly the same (also per replication consisting of 50 iterations). Removing the restrictions
on the decision-space results in computation times that are roughly 10 times higher. Note that
this might still be feasible in practice as the time-consuming training phase of ADP can be
performed offline and easily be parallelized. The addition of VPI did not result in a significant
increase in computation time compared to a pure exploitation strategy. However, ADP + ε-
greedy resulted in roughly 40% lower computation times as we not always had to enumerate
all possible decisions. The balance between the computationally complex decision space,
the computational demands of a more advanced exploration strategy (such as VPI), and the
restricted decision space, needs further research. We distinguish two promising directions.
First, restricting the policy during early iterations of ADP and then removing the restrictions
in later iterations may overall result in a better policy learned with reasonable time. Second,
using a heuristic decision policy rather than restrictions might also result in a better policy
with less computational burden.

7 Conclusions

In this paper, we formulated an MDP model for the anticipatory scheduling of containers
in a synchromodal transportation network, and designed a heuristic solution based on ADP.
We used the traditional constructs of basis functions and ε-greedy exploration, as well as
methods from Bayesian exploration, specifically VPI. We described how the one-step look-
ahead perspective of the traditional ADP design can make the algorithm flounder and end in
a local-optimum, and how the ADP algorithm can escape this local-optimum and at the same
time improve the solution by using the value of exploration from VPI. We proposed various
modifications to VPI, which appeared to be beneficial for finite horizon ADP designs.

In a series of numerical experiments, we evaluated our ADP designs and our proposed
modifications to VPI and provided insight into which modifications and tunable settings
work best. We showed how VPI significantly improves the traditional ε-greedy strategy, as
long as exploring and updating in VPI is done slightly more conservative than in the original
application of VPI in infinite horizon problems. We exemplified how ADP and VPI achieve
significant gains in scheduling synchromodal transport compared to a benchmark heuristic
under different demand patterns. Finally, we reflected on the limitations of our study and
possible ways to tackle these limitations. Further research about the reduction of the decision
space and the robustness of VPI settings in finite horizon problems is necessary for ADP to
achieve the best performance in the scheduling of containers in a synchromodal transportation
network considering demand uncertainty and performance over time.

Acknowledgements This research has been partially funded by the Dutch Institute for Advanced Logistics,
DINALOG, under the project SynchromodalIT.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Annals of Operations Research

Table 3 Sets and their elements/indices

Set Elements Description

T t Set of time periods, with T = {
0, 1, 2, . . . , Tmax − 1

}

Rt r Set of release days, with R = {
0, 1, 2, . . . , Rmax

t
}

Kt k Set of time-window lengths, with R = {
0, 1, 2, . . . , Kmax

t
}

Nt i, j, d Set of all nodes at time t

NO
t i, j Set of origin nodes at time t

ND
t i, j, d Set of destination nodes at time t

N I
t i, j Set of intermodal nodes at time t

At (i, j) Set of all arcs (intermodal services between nodes) at time t

AO
t (i, j) Set of arcs between an origin and an intermodal node at time t

AD
t (i, j) Set of arcs between an origin or an intermodal node, and a destination node at time t

AI
t (i, j) Set of arcs between two intermodal nodes at time t

Π π Set of all possible policies

B b Set of all characteristics/features of states

S St State space

Xt xt Feasible decision space at time t

XR
t xt Restricted feasible decision space at time t

Ωt ω Outcome space containing all possible realizations of the exogenous information Wt
at time t

A Notation

In this appendix, we present all mathematical notation used throughout the paper. Table 3
provides an overview of all sets, and Table 4 contains all variables, parameters, and functions
used.

BModeling assumptions

To simplify the formulation of the MDP model in Sect. 3, we made several assumptions.
These assumptions apply to our model, but not necessarily to our problem. In this Appendix,
we briefly describe the possible modifications to the MDP model such that each assumption
or condition can be bypassed.

The first condition we impose in our model is the separation between origin, intermodal,
and destination nodes. If an intermodal terminal is also an origin or destination, a duplicate
node can be included in the set of origins or destinations and their related parameters can be
changed accordingly. The second assumption in our model relates to the unlimited capacity
for the services beginning at an origin or ending at a destination node. In other words,
we assume that the pre- and end-haulage operations of our synchromodal network are not
restrictive. If there is a restriction, this must be added to the decision space and, in case of
penalization, the transition function must be changed accordingly. The third assumption is
related to having at most one service between two terminals. To allow for multiple services,
duplicate intermodal nodes can be added, and services need to be modified accordingly.
However, this modification is more than just altering the arcs, it involves: (i) modifying the
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Table 4 Variables, parameters, and functions

Item Description

pFf ,i,t Probability of f containers arriving between t − 1 and t at origin node i

pDd,i,t Probability that a container arriving at t at origin i has destination d

pRr ,i,t Probability that a container arriving at t at origin i has release-day r

pKk,i,t Probability that a container arriving at t at origin i has time-window k

Qi, j,t Capacity of the intermodal service (i, j) departing at time t

LNi,t Transfer duration at node i (e.g., time for loading/unloading)

LAi, j,t Transportation time of the intermodal service (i, j) departing at time t

Mi, j,t Total duration of the intermodal service (i, j) departing at time t

M̃ j,d,t ′ Fastest intermodal route of a container with destination d located at node j at time t ′

MR
i, j,d,k,t Binary variable that gets a value of 1 if the fastest intermodal route for containers at i

having destination d and time-window k, going through terminal j , is longer than the
container’s time-window

Rt (·) Function of the immediate rewards at time t

Ai, j,d,t Revenue for a container with destination d using the intermodal service (i, j) departing at
time t

Bi, j,t Setup costs of using the intermodal service (i, j) departing at time t

Ci, j,d,t Variable costs per container with destination d using the intermodal service (i, j)
departing at time t

St State of the system at time t

Sx,nt Post-decision state at time t and iteration n

Fi,d,r ,k,t Number of containers at or inbound to node i , having destination d, release-day r , and
time-window k at time t

F̃i,d,r ,k,t Newly arriving containers at origin node i , having destination d, release-day r , and
time-window k at time t

xi, j,d,k,t Number of containers to transport using intermodal service (i, j), departing at time t ,
having destination d and time-window k

xRi, j,d,k,t Binary variable that gets a value of 1 if containers at i having destination d and
time-window k are sent using service (i, j) at time t

xRj,d,t Binary variable that gets a value of 1 if the intermodal terminal j is chosen for containers
with destination d at time t

Wt Vector of exogenous information, also denoted by a realization ω

SM (·) Transition function from one state to the next state

SM,x (·) Transition function from a state to the next post-decision state

π Policy that determines a decision for each possible state

pΩt
ω Probability of realization ω ∈ Ωt

γt Discount factor at time t

Vt (·) Value function at time t given state St

V
n
t (·) Value function approximation at time t and iteration n as a function of the post-decision state

v̂nt Expected maximum rewards
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Table 4 continued

Item Description

Un
t (·) Function to update the value function approximation at time t and iteration n

φb,t (·) Basis function value of a characteristic b at time t for a given post-decision state

θnb,t Weight assigned to the basis function b at time t and iteration n

v
E,n
t (·) Maximum value of exploration at time t and iteration n

Cn
t Covariance matrix for the value of states at time t and iteration n

Kn
t Represents the knowledge about the uncertainty in the value function approximation at

time t and iteration n

σ
2,n
t (·) Prior variance of the value function approximation of a post-decision state at time t and

iteration n

σ 2,E Noise term due to the measurement error

δ(·) Gain in the value of exploration from a given state and action

ψ Duration of the shortest intermodal path of the entire network

transition function such that the same containers appear/disappear in the duplicated nodes
and (ii) modifying the decision space constraints such that service capacities going to/from
the duplicated nodes are respected and such that no more than the existing containers (i.e.,
not duplicated) can be transported.

C Cost and network settings

To model the costs and the effects of container consolidation (i.e., setup costs), we use
the costs per km presented in Bierwirth et al. (2012) and the model with which they were
calculated originally in Janic (2007). This cost model was developed for internal and external
costs of intermodal and road transportation networks, and the logic behind it is that costs
decrease non-linearly with distance and at different rates depending on the transport mode.
The variable cost (i.e., euro per km) for truck is 5.46d−0.278, for train is 0.58d−0.26, and for
barge is 0.46d−0.26, where d is the distance between two locations. For the fixed or setup
cost (i.e., euro per service independent of the number of containers) of a service for the train
is q((15600.74)/q + 40) and for barge is 0.8q((15600.74)/q + 40), where q is the capacity of
the service. We refer the reader to Janic (2007) for a thorough explanation on the cost model.
In the next paragraph, we describe the consolidation opportunities and challenges of making
decisions in each network.

Network 1 represents the so-called point-to-point topology (Macharis and Bontekoning,
2004). Although there are no transfers in this network, there are three consolidation oppor-
tunities for each origin, namely the two train and barge services. The complexity of the
decisions in this network is two-fold: (i) the restrictions imposed by the capacity of each
service and (ii) the relation between the transportation duration with the time-windows. Net-
work 2 represents the so-called collection-distribution topology (Macharis and Bontekoning,
2004). In this network, there are four additional services, and new transfers connected to
the central terminals, compared to Network 1. The new consolidation opportunities bring
two additional challenges to those of Network 1, the trade-off of using truck against truck-
and-train to (i) bring a container from its origin to the start of the long-haul and (ii) bring a
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Table 5 Demand probability
distributions for all networks

Origin 0 Origin 1 Origin 2

Containers Prob. Containers Prob. Containers Prob.
f pFf ,0,t f pFf ,1,t f pFf ,2,t

0 0.14 0 0.22 0 0.37

1 0.27 1 0.33 1 0.37

2 0.27 2 0.25 2 0.18

3 0.18 3 0.13 3 0.06

4 0.14 4 0.07 4 0.02

container from the end of the long-haul to its destination. Network 3 represents the so-called
hub-and-spoke network topology (Macharis and Bontekoning, 2004). In this network, there
is one additional terminal, four additional services, and new transfers connected to the new
terminal, compared to Network 2. The number of paths a container can take from its origin
to its destination significantly increases, and thus the complexity of the decisions increases
as well.

D Experimental probability distributions

The probability distributions used for the experiments can be found in Table 6, Table 7, and
Table 8.

Table 6 Destination probability distributions for all networks

Origin 0 Origin 1 Origin 2

Destination* Prob. Destination* Prob. Destination* Prob.
d pDd,0,t d pDd,1,t d pDd,2,t

9 (10) 0.1 9 (10) 0.33 9 (10) 0.14

10 (11) 0.1 10 (11) 0.34 10 (11) 0.29

11 (12) 0.8 11 (12) 0.33 11 (12) 0.57

*Destinations for Network 3 are displayed between parenthesis

Table 7 Release Day (RD)
distributions for all networks in
the Benchmark Experiments

Short Medium Long

RD Prob. RD Prob. RD Prob.

0 0.6 0 0.33 0 0.1

1 0.3 1 0.34 1 0.3

2 0.1 2 0.33 2 0.6
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E Absolute results of the benchmark experiments

The absolute results of the benchmark experiments can be found in Table 9.

F Benchmark heuristic

Algorithm 2 Benchmark heuristic
1: Define List := released containers (i.e., Fi,d,0,k,t ) sorted by (a) non-decreasing time-window k and (b)

non-increasing size Fi,d,0,k,t
2: Randomize order of containers with the same time-window and size in List
3: for Fi,d,0,k,t in List do
4: if t > L A

i,d,t (i.e., container is not urgent) then

5: Define P1
i,d,k := path to transport Fi,d,0,k,t to its destination with the cheapest variable cost

6: Define C1
i,d,k := variable cost of P1

i,d,k

7: Define P2
i,d,k := path to transport Fi,d,0,k,t to its destination with the second cheapest variable cost

8: Define C2
i,d,k := variable cost of P2

i,d,k

9: Define Si,d,k := Savings between the two cheapest-variable-cost paths of f (i.e., C2
i,d,k − C1

i,d,k )
10: else
11: Schedule Fi,d,0,k,t in truck
12: end if
13: end for
14: Initialize T (i, j) := 0 for all services (i, j) ∈ At
15: for Fi,d,0,k,t in List do
16: Define i := first element of P1

i,d,k (i.e., location o Fi,d,0,k,t )

17: Define j := second element of P1
i,d,k (i.e., next location to transport Fi,d,0,k,t )

18: Increase T (i, j) :+ S f (i.e., adding savings from a container to overall savings of service (i, j)
19: end for
20: for Fi,d,0,k,t in List do
21: if t > L A

i,d,t (i.e., container is not urgent) then

22: Define i := first element of P1
i,d,k (i.e., location o Fi,d,0,k,t )

23: Define j := second element of P1
i,d,k (i.e., next location to transport Fi,d,0,k,t )

24: if T (i, j) >= Bi, j ,t then
25: Schedule Fi,d,0,k,t in service (i, j) if there is available capacity.
26: end if
27: end if
28: end for

Table 8 Time-window (TW)
length distributions for all
networks in the Benchmark
Experiments

Short Medium Long

TW Prob. TW Prob. TW Prob.

4 0.6 4 0.33 4 0.1

5 0.3 5 0.34 5 0.3

6 0.1 6 0.33 6 0.6
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Table 9 Average realized rewards for different time-window distributions

RD distribution TW distribution Network 1 Network 2 Network 3

BH ADP BH ADP BH ADP

Short Short 9273 12, 131 9014 11, 289 9374 −19

Medium 9677 22, 775 9244 23, 486 9537 15,001

Long 10, 151 35, 111 9601 32, 524 9728 29,745

Medium Short 9322 10, 938 9003 9877 9494 209

Medium 9814 22, 267 9338 23, 015 9728 14,612

Long 10, 341 34, 508 9719 31, 806 9881 29,502

Long Short 9438 10, 724 9074 9281 9601 −44

Medium 10, 037 21, 956 9485 23, 422 9890 14,167

Long 10, 643 34, 511 9944 32, 462 10, 150 29,274
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