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Abstract
This paper studies the nucleolus of graph-restricted games as an alternative for the Shapley
value to evaluate communication situations. We focus on the inheritance of properties of
cooperative games related to the nucleolus: strong compromise admissibility and compro-
mise stability. These two properties allow for a direct, closed formula for the nucleolus. We
characterize the families of graphs for which the graph-restricted games inherit these proper-
ties from the underlying games. Moreover, for each of these two properties, we characterize
the family of graphs for which the nucleolus is invariant

Keywords Communication situations · Graph-restricted game · Inheritance of properties ·
Strong compromise admissibility · Compromise stability · Invariance of the nucleolus

JEL classification C71

1 Introduction

In a cooperative game with transferable utility, players can coordinate their actions and in
particular obtain a joint monetary profit as a group. One of the main issues in cooperative
game theory is the allocation of this joint profit among the players, taking into account the
economic possibilities of all coalitions. Two distinguished solutions that solve this issue are
the Shapley value (cf. Shapley, 1953) and the nucleolus (cf. Schmeidler, 1969).

Myerson (1977) extended cooperative games by introducing communication situations
in which the communication restrictions of the players are modeled by a communication
graph. The corresponding graph-restricted game is a modified cooperative game in which
the communication restrictions are taken into account.

The Myerson value (cf. Myerson, 1977) of a communication situation is defined as the
Shapley value of the corresponding graph-restricted game. This value is axiomatically char-
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acterized by Myerson (1980) and studied in several other contexts as well: hypergraphs (cf.
van den Nouweland et al., 1992), union stable structures (cf. Algaba et al., 2001), antima-
troids (cf. Algaba et al., 2004), bipartite graphs (cf. van den Brink & Pintér, 2015), two-level
communication structures (cf. van den Brink et al., 2016) and communication situations in
which the players have different bargaining abilities (cf. Manuel &Martín, 2021). Moreover,
several studies are devoted to the inheritance of properties of cooperative games that are
related to the Shapley value. In particular, Owen (1986) studied the inheritance of superad-
ditivity, van den Nouweland and Borm (1991) studied convexity and Slikker (2000) studied,
among others, average convexity. The inheritance of convexity is also studied in a unified
approach by Algaba et al. (2001).

Also the nucleolus is studied in the context of communication situations. Potters and
Reijnierse (1995) showed that the nucleolus is the unique element of the kernel if the com-
munication graph is a tree. Reijnierse and Potters (1998) and Katsev and Yanovskaya (2013)
studied the collection of coalitions that determine the nucleolus and prenucleolus, respec-
tively. Khmelnitskaya and Sudhölter (2013) provided an axiomatic characterization of the
prenucleolus for games with communication structures. Instead, we follow the lines initiated
by Owen (1986) and focus on the inheritance of two properties of cooperative games that
are related to the nucleolus. Moreover, we study the invariance of the nucleolus, that is, the
feature that the nucleolus of the graph-restricted game equals the nucleolus of the underlying
game of a communication situation.

For the inheritance, we concentrate on the properties strong compromise admissibility
and compromise stability. In general, computing the nucleolus of a cooperative game is not
straightforward. However, interestingly, for cooperative games satisfying strong compromise
admissibility or compromise stability, there exists a direct, closed formula for the nucleolus,
based on the Talmud rule for bankruptcy problems (cf. Quant et al., 2005) and (cf. Driessen,
1988). In particular, when these properties are inherited, computation of the nucleolus can
still be facilitated. For strongly compromise admissible games it holds that the nucleolus
coincides with the compromise value (cf. Tijs, 1981), which can be directly computed using
the utopia vector, as shown by Driessen (1988). Furthermore, Driessen (1988) also showed
that strongly compromise admissible games are characterized by their core allocations. The
class of strongly compromise admissible games contains for example the class of simple
games with one veto-player, while the larger class of compromise stable games contains
several interesting classes of economic games, like big boss games (cf. Muto et al., 1988),
clan games (cf. Potters et al., 1989) and bankruptcy games (cf. O’Neill, 1982) and (cf. Curiel
et al., 1987).

With regard to strong compromise admissibility, we show that the graph-restricted game
is strongly compromise admissible for every communication situation with an underlying
strongly compromise admissible game, if the graph is biconnected. In fact, for every con-
nected graph that is not biconnected, we explicitly construct a communication situation with
an underlying strongly compromise admissible game such that the graph-restricted game is
not strongly compromise admissible.

To ensure compromise stability for the graph-restricted game of a communication situation
with an underlying strongly compromise admissible game, the connected graph needs to be
biconnected or a star. Again, for every connected graph that is not biconnected and not a star,
we explicitly construct a communication situation with an underlying strongly compromise
admissible game such that the graph-restricted game is not compromise stable.

Finally, we show that the graph-restricted game is compromise stable for every commu-
nication situation with an underlying compromise stable game, if the graph is complete. For
every connected graph that is not complete (and has at least four players), we explicitly con-
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struct a communication situation with an underlying compromise stable game such that the
graph-restricted game is not compromise stable.

For the invariance of the nucleolus, we identify families of graphs for which it is guaran-
teed that the nucleolus of the graph-restricted game equals the nucleolus of the underlying
game for communication situations with an underlying strongly compromise admissible or
compromise stable game. We use the inheritance results to employ the direct formula for
the nucleolus for both the graph-restricted game and the underlying game. We show that
the nucleolus is invariant for all communication situations with an underlying strongly com-
promise admissible game, if the graph is biconnected. For every connected graph that is
not biconnected, we construct a communication situation with an underlying strongly com-
promise admissible game such that the nucleolus of the graph-restricted game is not equal
to the nucleolus of the underlying game. For communication situations with an underlying
compromise stable game, we show that the connected graph needs to be complete in order to
guarantee the invariance of the nucleolus. That is, we prove the invariance of the nucleolus
if the graph is complete and for every connected graph that is not complete, we provide a
communication situation with an underlying compromise stable game such that the nucleoli
are different.

This paper is structured in the following way. Section 2 provides all relevant preliminaries
on cooperative game theory and graph theory. Section 3 studies the inheritance of strong
compromise admissibility and compromise stability. Section 4 studies the invariance of the
nucleolus. Finally, Section 5 contains the concluding remarks.

2 Preliminaries

A (transferable utility) cooperative game is a pair (N , v) where N is a non-empty, finite set
of players and v : 2N → R is a characteristic function with v(∅) = 0. Here, 2N is the
collection of all subsets (called coalitions) of N and v(S) is the worth of coalition S ∈ 2N ,
representing the joint monetary rewards this coalition can obtain on its own. The class of all
cooperative games with player set N is denoted by TUN , and a cooperative game (N , v) is
also denoted by v ∈ TUN .

For a cooperative game v ∈ TUN , the imputation set is given by

I (v) =
{
x ∈ R

N
∣∣∣ ∑
i∈N

xi = v(N ) and xi ≥ v({i}) for all i ∈ N

}
,

the core (cf. Gillies, 1959) is given by

C(v) =
{
x ∈ R

N
∣∣∣ ∑
i∈N

xi = v(N ) and
∑
i∈S

xi ≥ v(S) for all S ∈ 2N
}

,

and the core cover (cf. Tijs & Lipperts, 1981) is given by

CC(v) =
{
x ∈ R

N
∣∣∣ ∑
i∈N

xi = v(N ) and m(v) ≤ x ≤ M(v)

}
,

where M(v),m(v) ∈ R
N are, for all i ∈ N , defined by

Mi (v) = v(N ) − v(N \ {i}),
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and

mi (v) = max
S∈2N :i∈S

⎧⎨
⎩v(S) −

∑
j∈S, j �=i

M j (v)

⎫⎬
⎭ .

A cooperative game v ∈ TUN is called

– imputation admissible if I (v) �= ∅;
– superadditive if v(S) + v(T ) ≤ v(S ∪ T ) for all S, T ∈ 2N with S ∩ T = ∅.
– balanced if C(v) �= ∅;
– compromise stable if CC(v) �= ∅ and C(v) = CC(v), or equivalently if CC(v) �= ∅ and

v(S) ≤ max
{∑

i∈S mi (v), v(N ) − ∑
j∈N\S M j (v)

}
for all S ∈ 2N \ {∅} (cf. Quant et

al., 2005);
– strongly compromise admissible if CC(v) �= ∅ and v(S) ≤ v(N ) − ∑

j∈N\S M j (v) for

all S ∈ 2N \ {∅} [formerly known as 1-convex, (cf. Driessen, 1988), but we adopt the
terminology of Quant et al. (2005)].

Note that strong compromise admissibility implies compromise stability, compromise
stability implies balancedness, and balancedness implies imputation admissibility.Moreover,
for a cooperative game with two players, all notions are equivalent. For a three player game,
only balancedness and compromise stability are equivalent, while all notions differ for games
with more than three players.

Let v ∈ TUN be an imputation admissible game. The excess of a coalition S ∈ 2N with
respect to an imputation x ∈ I (v) is defined as Exc(S, x, v) = v(S) − ∑

i∈S xi , while
the excess vector θ(x) ∈ R

2|N |
is defined as the vector consisting of the excesses in non-

increasing order, i.e. θ(x)k ≥ θ(x)k+1 for all k ∈ {1, . . . , 2|N | − 1}. The nucleolus (cf.
Schmeidler, 1969) nuc(v) ∈ R

N is the unique imputation for which θ(nuc(v)) 
 θ(x) for
all x ∈ I (v), where 
 denotes the lexicographical order. It is known that nuc(v) ∈ C(v) for
all balanced games v ∈ TUN .

A collection B ⊆ 2N \{∅} is called balanced if there exists a function λ : B → R++ such
that

∑
S∈B:i∈S λ(S) = 1 for all i ∈ N . According to the Kohlberg criterion (cf. Kohlberg,

1971), for a balanced game v ∈ TUN and an imputation x ∈ I (v), it holds that x = nuc(v) if
and only if the collection

⋃s
k=1 Bk(x, v) is balanced for all s ∈ {1, . . . , t(x)}, where Bk(x, v)

is recursively defined by:

B1(x, v) =
{
S ∈ 2N \ {∅, N }

∣∣∣ Exc(S, x, v) ≥ Exc(T , x, v) for all T ∈ 2N \ {∅, N }
}

,

and for all k ∈ {2, . . . , t(x)}:

Bk(x, v) =
{
S ∈ 2N \ {∅, N }

∣∣∣∣ S /∈
k−1⋃
r=1

Br (x, v) and Exc(S, x, v) ≥ Exc(T , x, v)

for all T ∈ 2N \ {∅, N } with T /∈
k−1⋃
r=1

Br (x, v)

}
.

Here, t(x) ∈ N is the unique number such that Bk(x, v) �= ∅ for all k ∈ {1, . . . , t(x)} and
Bt(x)+1(x, v) = ∅.

A bankruptcy problem (cf. O’Neill, 1982) is a triple (N , A, c) where N is a non-empty,
finite set of players, A ∈ R+ and c ∈ R

N+ consists of the claims of the players on A
such that

∑
i∈N ci ≥ A. For a bankruptcy problem (N , A, c), the constrained equal awards
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rule (CEA) allocates CEAi (N , A, c) = min {α, ci } for all i ∈ N , where α ∈ R is such
that

∑
i∈N min {α, ci } = A, while the Talmud rule (TAL) (cf. Aumann & Maschler, 1985)

allocates

TAL (N , A, c) =
{
CEA

(
N , A, 1

2c
)
, if

∑
i∈N ci ≥ 2A;

c − CEA
(
N ,

∑
i∈N ci − A, 1

2c
)
, if

∑
i∈N ci < 2A.

For compromise stable games and strongly compromise admissible games, the nucleolus
can be described by a direct, closed formula.

Proposition 2.1 (cf. Quant et al., 2005) and (cf. Driessen, 1988) Let v ∈ TUN .

(i) If v is compromise stable, then, for all i ∈ N,

nuci (v) = mi (v) + TALi

⎛
⎝N , v(N ) −

∑
j∈N

m j (v), M(v) − m(v)

⎞
⎠ ;

(ii) If v is strongly compromise admissible, then, for all i ∈ N,

nuci (v) = Mi (v) − 1

|N |

⎛
⎝∑

j∈N
Mj (v) − v(N )

⎞
⎠ .

A graph is a pair (N , E), where N is a non-empty, finite set of players, with |N | ≥ 3

and E ⊆
{
{i, j}

∣∣∣ i, j ∈ N , i �= j
}
is a finite set of edges. For a graph (N , E) and a subset

of players S ∈ 2N \ {∅}, the induced subgraph on S is defined as the graph (S, ES), where

ES =
{
{i, j} ∈ E

∣∣∣ i, j ∈ S
}
. A path in a graph (N , E) is defined as a sequence of players

(i0, . . . , im) such that ik �= i� for all k, � ∈ {0, 1, . . . ,m}, k �= � and {ik−1, ik} ∈ E for all
k ∈ {1, . . . ,m}.

A graph (N , E) is called

– connected if for all i, j ∈ N with i �= j , there is a path (i, . . . , j);
– complete if {i, j} ∈ E for all i, j ∈ N with i �= j ;
– biconnected if for all i ∈ N the induced subgraph (N \ {i}, EN\{i}) is connected;
– a star if there exists a player i ∈ N such that E =

{
{i, j}

∣∣∣ j ∈ N \ {i}
}
.

Note that every complete graph is biconnected and that every biconnected graph is con-
nected. Also a star is connected. For a graph (N , E), a component C ∈ 2N \ {∅} is defined
as a maximal (inclusion-wise) subset of players such that the induced subgraph (C, EC ) is
connected. For a graph (N , E) and a subset of players S ∈ 2N \ {∅}, let S/E denote the set
of all components in the induced subgraph (S, ES).

For a graph (N , E) and a cooperative game v ∈ TUN , the graph-restricted game vE ∈
TUN is (cf. Myerson, 1977), for all S ∈ 2N \ {∅}, defined by

vE (S) =
∑

C∈S/E

v(C).

Note that for a connected graph (N , E) and a cooperative game v ∈ TUN , it holds that
vE (N ) = v(N ), since N/E = {N }. Next, we formally define a communication situation,
using a slightly modified version of the definition as stated by Myerson (1977).
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Definition 2.1 A communication situation is a triple (N , v, E) where |N | ≥ 3, v ∈ TUN

and (N , E) is a connected graph such that, for all S ∈ 2N ,

vE (S) ≤ v(S).

The set of all communication situations is denoted by CSN .

Note that, for any (connected) graph (N , E) and any cooperative game v ∈ TUN that is
superadditive, it holds that vE (S) ≤ v(S) for all S ∈ 2N . In other words, the (additional)
inequality in Definition 2.1 is satisfied if the underlying game is superadditive.

3 Inheritance of properties

This section studies the inheritance of two properties: strong compromise admissibility and
compromise stability. For each of these properties, we identify the family of graphs for
which the inheritance of this property from the underlying game to the graph-restricted game
is guaranteed. First, we want to remark that both balancedness and imputation admissibility
are always inherited. That is, for every communication situation with an underlying balanced
(imputation admissible) game it holds that the graph-restricted is balanced (imputation admis-
sible) as well. This was first observed by van den Nouweland and Borm (1991).

For strong compromise admissibility, the graph needs to be biconnected in order to guar-
antee the inheritance. In Theorem 3.1, we show that for every communication situation with
an underlying strongly compromise admissible game it holds that the graph-restricted game
is strongly compromise admissible as well, if the graph is biconnected. Moreover, for every
connected graph that is not biconnected, we construct a communication situation with an
underlying strongly compromise admissible game such that the graph-restricted game is
not strongly compromise admissible. Thus, we can conclude that the family of biconnected
graphs guarantees the inheritance of strong compromise admissibility.

In the proof of Theorem 3.1, we use the following lemma.

Lemma 3.1 Let (N , v, E) ∈ CSN . Then, M(vE ) ≥ M(v) andm(vE ) ≤ m(v). Consequently,
CC(v) ⊆ CC(vE ).

Proof Let (N , v, E) ∈ CSN . Since vE (N ) = v(N ) and vE (S) ≤ v(S) for all S ∈ 2N , we
have

Mi (v
E ) = vE (N ) − vE (N \ {i}) ≥ v(N ) − v(N \ {i}) = Mi (v),

for all i ∈ N . Using this, we have that

mi (v
E ) = max

S∈2N :i∈S

⎧⎨
⎩vE (S) −

∑
j∈S, j �=i

M j (v
E )

⎫⎬
⎭ ≤ max

S∈2N :i∈S

⎧⎨
⎩v(S) −

∑
j∈S, j �=i

M j (v)

⎫⎬
⎭

= mi (v),

for all i ∈ N . Finally, for x ∈ CC(v), we have∑
i∈N

xi = v(N ) = vE (N ),

and

m(vE ) ≤ m(v) ≤ x ≤ M(v) ≤ M(vE ).
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Consequently, x ∈ CC(vE ). �
Theorem 3.1 The following two statements hold:

(i) Let (N , v, E) ∈ CSN be a communication situation with (N , E) is biconnected and v is
strongly compromise admissible. Then, vE is strongly compromise admissible;

(ii) Let (N , E) be a connected graph that is not biconnected. Then, there exists a communi-
cation situation (N , v, E) ∈ CSN where v is strongly compromise admissible such that
vE is not strongly compromise admissible.

Proof (i) Since v is strongly compromise admissible, we have that CC(v) �= ∅. This implies
that CC(vE ) �= ∅, using Lemma 3.1. Moreover, since (N , E) is biconnected, Mi (v

E ) =
Mi (v) for all i ∈ N and hence, for all S ∈ 2N \ {∅},

vE (S) ≤ v(S) ≤ v(N ) −
∑
j∈N\S

M j (v) = vE (N ) −
∑
j∈N\S

M j (v
E ).

Here, the second inequality is due to the fact that v is strongly compromise admissible.
Consequently, vE is strongly compromise admissible.

(ii) Since (N , E) is not biconnected, we can set N = {1, 2, . . . , n} and assume w.l.o.g.
that {1, 2}, {2, 3} ∈ E , while the induced subgraph on N \ {2} is not connected and that
players 1 and 3 are in two different components in the induced subgraph on N \{2}. Consider
the communication situation (N , v1, E) ∈ CSN with, for all S ∈ 2N ,

v1(S) =
{
1, if {1, 2} ⊆ S or {1, 3} ⊆ S;
0, otherwise.

Note that CC(v1) �= ∅, since it can be readily checked that M(v1) = m(v1) =
(1, 0, 0, . . . , 0). Moreover, for S ∈ 2N for which 1 ∈ S, v1(S) ≤ 1 = v1(N ) −∑

j∈N\S M j (v1). For S ∈ 2N for which 1 /∈ S, v1(S) = 0 = v1(N ) − ∑
j∈N\S M j (v1).

Hence, v1 is strongly compromise admissible.
We show that vE

1 is not strongly compromise admissible, by showing that

vE
1 ({3}) > vE

1 (N ) −
∑

j∈N , j �=3

Mj (v
E
1 ).

First, note that vE
1 ({3}) = v1({3}) = 0. Secondly, since vE

1 (N \ {2}) = 0 (due to the fact that
players 1 and 3 are in two different components of the induced subgraph on N \{2}), we have
that M2(v

E
1 ) = 1. Using Lemma 3.1, M(vE

1 ) ≥ M(v1) ≥ 0 and in particular, M1(v
E
1 ) ≥ 1.

Hence,

vE
1 (N ) −

∑
j∈N , j �=3

Mj (v
E
1 ) ≤ vE

1 (N ) − M1(v
E
1 ) − M2(v

E
1 ) ≤ −1.

Consequently, vE
1 is not strongly compromise admissible. This finishes the construction of

the communication situation (N , v1, E) ∈ CSN where v1 is strongly compromise admissible,
while vE

1 is not strongly compromise admissible. �
Theorem 3.1 characterizes the family of graphs that guarantees the inheritance of strong

compromise admissibility from the underlying game to the graph-restricted game. The next
theoremcharacterizes the family of graphs that guarantees compromise stability for the graph-
restricted game of any communication situation with an underlying strongly compromise
admissible game. This family includes of course all biconnected graphs (cf. Theorem 3.1)
and, in addition, it is seen that it contains all stars.
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Theorem 3.2 The following two statements hold:

(i) Let (N , v, E) ∈ CSN be a communication situation with (N , E) is biconnected or a star
and v is strongly compromise admissible. Then, vE is compromise stable;

(ii) Let (N , E) be a connected graph that is not biconnected and not a star. Then, there exists
a communication situation (N , v, E) ∈ CSN where v is strongly compromise admissible
such that vE is not compromise stable. �

Proof (i) If (N , E) is biconnected, then vE is strongly compromise admissible, according to
part (i) of Theorem 3.1. Hence, vE is compromise stable.

If (N , E) is a star, then let k ∈ N such that E =
{
{i, k}

∣∣∣ i ∈ N \ {k}
}
. First, note that

CC(vE ) �= ∅, by using Lemma 3.1 and the fact that v is strongly compromise admissible.
Secondly, it remains to prove that for all S ∈ 2N \ {∅},

vE (S) ≤ max

⎧⎨
⎩

∑
i∈S

mi (v
E ), vE (N ) −

∑
j∈N\S

M j (v
E )

⎫⎬
⎭ .

Let S ∈ 2N \ {∅}. If k /∈ S, then

vE (S) =
∑
i∈S

v({i}) =
∑
i∈S

vE ({i}) ≤
∑
i∈S

mi (v
E ).

If k ∈ S, then Mj (v
E ) = Mj (v) for all j ∈ N \ S and hence,

vE (S) ≤ v(S) ≤ v(N ) −
∑
j∈N\S

M j (v) = vE (N ) −
∑
j∈N\S

M j (v
E ).

Consequently, vE is compromise stable.
ii) Since (N , E) is neither biconnected, nor a star, it follows that |N | ≥ 4. Set

N = {1, 2, 3, 4, . . . , n} and since (N , E) is connected, we can assume w.l.o.g. that
{1, 2}, {2, 3}, {3, 4} ∈ E , that the induced subgraph on N \ {3} is not connected, and that
players 1 and 2 are in one component of the induced subgraph on N \ {3} and player 4
is in another (Figure 1 provides a schematic representation). Consider the communication
situation (N , v2, E) ∈ CSN with, for all S ∈ 2N ,

v2(S) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

8, if S = N ;
8, if S = N \ { j} for j ∈ N \ {1, 2, 3, 4};
6, if S ∈ {N \ {1}, N \ {2}, N \ {3}, N \ {4}};
3, if |S| ≤ n − 2 and {1, 2} ⊆ S;
0, otherwise.

It can be readily checked that M(v2) = m(v2) = (2, 2, 2, 2, 0, . . . , 0). Hence, CC(v2) �=
∅. Obviously, v2(S) ≤ v2(N )−∑

j∈N\S M j (v2) holds for S ∈ 2N for which |S| > n−2. For

S ∈ 2N for which |S| ≤ n− 2 and {1, 2} ⊆ S, we have v2(N )−∑
j∈N\S M j (v2) ≥ 8− 4 >

3 = v2(S). Finally, for S ∈ 2N for which v2(S) = 0, v2(N )−∑
j∈N\S M j (v2) ≥ 8−8 = 0.

Hence, v2 is strongly compromise admissible.
We show that vE

2 is not compromise stable, by showing that

vE
2 ({1, 2}) > max

⎧⎨
⎩m1(v

E
2 ) + m2(v

E
2 ), vE

2 (N ) −
∑

j∈N , j �=1,2

Mj (v
E
2 )

⎫⎬
⎭ .
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Fig. 1 Schematic representation of the graph (N , E)

First, note that vE
2 ({1, 2}) = v2({1, 2}) = 3. Secondly, since vE

2 (N \ {3}) = v2({1, 2}) = 3
(due to the fact that the induced subgraph on N \ {3} is not connected, but consists of at least
one component with {1, 2} ∈ E), we have that M3(v

E
2 ) = 5. Using Lemma 3.1, we have that

M(vE
2 ) ≥ M(v2) ≥ 0 and in particular, M4(v

E
2 ) ≥ M4(v2) = 2, such that it follows that

vE
2 (N ) −

∑
j∈N , j �=1,2

Mj (v
E
2 ) ≤ vE

2 (N ) − M3(v
E
2 ) − M4(v

E
2 ) ≤ 8 − 5 − 2 = 1.

Moreover, we claim that m1(v
E
2 ) = maxS∈2N :1∈S

{
vE
2 (S) − ∑

j∈S, j �=1 Mj (v
E
2 )

}
≤ 1: for

S = N and S = N \ { j} for j ∈ N \ {1, 2, 3}, we see that {2, 3} ⊆ S and vE
2 (S) ≤ 8, and,

consequently,

vE
2 (S) −

∑
j∈S, j �=1

Mj (v
E
2 ) ≤ vE

2 (S) − M2(v
E
2 ) − M3(v

E
2 ) ≤ 8 − 2 − 5 = 1.

For S = N \ {3}, we have that vE
2 (S) = 3 and M2(v

E
2 ) ≥ 2, and, consequently,

vE
2 (S) −

∑
j∈S, j �=1

Mj (v
E
2 ) ≤ vE

2 (S) − M2(v
E
2 ) ≤ 3 − 2 = 1.

For S = N \ {2}, we have that {3, 4} ⊆ S and vE
2 (S) ≤ 6, and, consequently,

vE
2 (S) −

∑
j∈S, j �=1

Mj (v
E
2 ) ≤ vE

2 (S) − M3(v
E
2 ) − M4(v

E
2 ) ≤ 6 − 5 − 2 = −1.

For all S ∈ 2N with |S| ≤ n−2 and {1, 2} ⊆ S, we have that vE
2 (S) ≤ v2(S) = 3 and 2 ∈ S,

and, consequently,

vE
2 (S) −

∑
j∈S, j �=1

Mj (v
E
2 ) ≤ v2(S) − M2(v

E
2 ) ≤ 3 − 2 = 1.

Finally, for S ∈ 2N with v2(S) = 0 it clearly holds that vE
2 (S) − ∑

j∈S, j �=1 Mj (v
E
2 ) ≤ 0.

We may conclude that m1(v
E
2 ) ≤ 1. Similarly, one can show that m2(v

E
2 ) ≤ 1 and thus

m1(v
E
2 ) + m2(v

E
2 ) ≤ 2.

Consequently, vE
2 is not compromise stable. This finishes the construction of the communi-

cation situation (N , v2, E) ∈ CSN where v2 is strongly compromise admissible, while vE
2 is

not compromise stable. �
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The next theorem provides a characterization of the family of graphs for which the inheri-
tance of compromise stability is guaranteed. Note that for a three player game, balancedness
and compromise stability are equivalent. Therefore, for every communication situation with
an underlying compromise stable game with three players it holds that the graph-restricted
is compromise stable as well, since balancedness is always inherited. For more than three
players, the graph needs to be complete in order to guarantee compromise stability for the
graph-restricted game, for every communication situation with an underlying compromise
stable game.

Theorem 3.3 The following two statements hold:

(i) Let (N , v, E) ∈ CSN be a communication situation with |N | = 3 or (N , E) is complete,
and v is compromise stable. Then, vE is compromise stable;

(ii) Let (N , E) be a connected graph that is not complete and |N | > 3. Then, there exists a
communication situation (N , v, E) ∈ CSN where v is compromise stable such that vE

is not compromise stable.

Proof (i) It is left for the reader
ii) Since (N , E) is not complete and |N | > 3, set N = {1, 2, 3, 4, . . . , n} with n ≥ 4

and assume w.l.o.g. that {1, 2} /∈ E , while {1, 3} ∈ E . Consider the communication situation
(N , v3, E) ∈ CSN with, for all S ∈ 2N ,

v3(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

7, if S = N ;
6, if S = N \ {1};
5, if S = N \ {2};
4, if S = N \ {4};
3, if S /∈ {N , N \ {1}, N \ {2}, N \ {4}}, and {1, 2} ⊆ S or {1, 3} ⊆ S;
0, otherwise.

Note thatM(v3) = (1, 2, 4, 3, 4, . . . , 4) andm(v3) = (1, 2, 2, 0, 0, . . . , 0),whichmeans that
CC(v3) �= ∅. Obviously, the inequality v3(S) ≤ max

{ ∑
i∈S mi (v3), v3(N ) − ∑

j∈N\S M j

(v3)
}
is satisfied for S ∈ {N , N \ {1}, N \ {2}, N \ {4}} and for all S ∈ 2N with v3(S) = 0.

For S ∈ 2N , S /∈ {N , N \ {1}, N \ {2}, N \ {4}}, it holds that v3(S) ≤ m1(v3) + m2(v3) if
{1, 2} ⊆ S, and v3(S) ≤ m1(v3) + m3(v3) if {1, 3} ⊆ S. Hence, v3 is compromise stable.

We show that vE
3 is not compromise stable, by showing that

vE
3 ({1, 3}) > max

⎧⎨
⎩m1(v

E
3 ) + m3(v

E
3 ), vE

3 (N ) −
∑

j∈N , j �=1,3

Mj (v
E
3 )

⎫⎬
⎭ .

First, note that vE
3 ({1, 3}) = v3({1, 3}) = 3. Secondly, with regard to m1(v3), we have

that v3(S) − ∑
j∈S, j �=1 Mj (v3) ≤ 0 for all S ∈ 2N with 1 ∈ S and S �= {1, 2} and

v3({1, 2}) − M2(v3) = 1. Using the fact that vE
3 (S) ≤ v3(S) for all S ∈ 2N and M(vE

3 ) ≥
M(v3) (according to Lemma 3.1), it can be seen that vE

3 (S) − ∑
j∈S, j �=1 Mj (v

E
3 ) ≤ 0 for

all S ∈ 2N with 1 ∈ S and S �= {1, 2}. Moreover, vE
3 ({1, 2}) = 0 (since {1, 2} /∈ E) and

hence, vE
3 ({1, 2}) − M2(v

E
3 ) ≤ 0. Consequently, m1(v

E
3 ) = 0. Lemma 3.1 also implies that

m3(v
E
3 ) ≤ m3(v3) = 2. Hence,

m1(v
E
3 ) + m3(v

E
3 ) ≤ 2.
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Finally, vE
3 (N ) = v3(N ) = 7, M2(v

E
3 ) ≥ M2(v3) = 2, M4(v

E
3 ) ≥ M4(v3) = 3 and

Mj (v
E
3 ) ≥ Mj (v3) ≥ 0 for all j ∈ N , imply that

vE
3 (N ) −

∑
j∈N ,
j �=1,3

Mj (v
E
3 ) ≤ vE

3 (N ) − M2(v
E
3 ) − M4(v

E
3 ) ≤ 7 − 2 − 3 = 2.

Subsequently, vE
3 is not compromise stable. This finishes the construction of a communication

situation (N , v3, E) ∈ CSN where v3 is compromise stable, while vE
3 is not compromise

stable. �

4 Invariance of the nucleolus

In this section, we study the invariance of the nucleolus. That is, we focus on necessary
and sufficient conditions on a communication situation such that the nucleolus of the graph-
restricted game equals the nucleolus of the game underlying the communication situation.
In particular, we reconsider communication situations with an underlying strongly compro-
mise admissible game and an underlying compromise stable game, respectively. We start
out with the former. Recall from Theorem 3.1 that the family of biconnected graphs guar-
antees the inheritance of strong compromise admissibility from the underlying game to the
graph-restricted game. For communication situations with an underlying strongly compro-
mise admissible game, we show that this family of biconnected graphs also guarantees the
invariance of the nucleolus. Moreover, for every connected graph that is not biconnected,
we explicitly construct a communication situation with an underlying strongly compromise
admissible game for which the nucleolus of the graph-restricted game is not equal to the
nucleolus of the underlying game. For this, we benefit from the construction in the proof of
Theorem 3.1.

Theorem 4.1 The following two statements hold:

(i) Let (N , v, E) ∈ CSN be a communication situation with (N , E) is biconnected and v is
strongly compromise admissible. Then, nuc(vE ) = nuc(v);

(ii) Let (N , E) be a connected graph that is not biconnected. Then, there exists a communi-
cation situation (N , v, E) ∈ CSN where v is strongly compromise admissible such that
nuc(vE ) �= nuc(v).

Proof (i) First, note that vE is strongly compromise admissible, according to part (i) of
Theorem 3.1. Hence, by using Proposition 2.1, for all i ∈ N ,

nuci (v
E ) = Mi (v

E ) − 1

|N |

⎛
⎝∑

j∈N
Mj (v

E ) − vE (N )

⎞
⎠

= Mi (v) − 1

|N |

⎛
⎝∑

j∈N
Mj (v) − v(N )

⎞
⎠

= nuci (v),

since M(vE ) = M(v) for any biconnected graph (N , E).
(ii) Since (N , E) is not biconnected, set N = {1, 2, . . . , n} and assume w.l.o.g. that

{1, 2}, {2, 3} ∈ E , that the induced subgraph on N \ {2} is not connected and that players 1
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and 3 are in two different components in the induced subgraph on N \ {2}. Reconsider the
communication situation (N , v1, E) ∈ CSN with, for all S ∈ 2N ,

v1(S) =
{
1, if {1, 2} ⊆ S or {1, 3} ⊆ S;
0, otherwise.

Recall that v1 is strongly compromise admissible and since M(v1) = (1, 0, 0, . . . , 0), we
have that, using Proposition 2.1,

nuc(v1) = (1, 0, 0, . . . , 0).

Moreover, for all S ∈ 2N ,

vE
1 (S) =

{
1, if {1, 2} ⊆ S;
0, otherwise,

and consequently,

nuc(vE
1 ) = (

1

2
,
1

2
, 0, . . . , 0).

Hence, nuc(vE
1 ) �= nuc(v1). This concludes the construction of the communication situa-

tion (N , v1, E) ∈ CSN where v1 is strongly compromise admissible such that nuc(vE
1 ) �=

nuc(v1). �
Next, we reconsider the class of communication situationswith an underlying compromise

stable game. We need a stronger condition than biconnectedness to guarantee the invariance
of the nucleolus for this class, since this class of communication situations is larger than the
class of communication situations with an underlying strongly compromise admissible game.
It turns out that to guarantee invariance, we need the strongest condition possible, a complete
graph. For every connected graph that is not complete, one can construct a communication
situationwith an underlying compromise stable game for which the nucleolus is not invariant.
This construction, however, is quite intricate.

Theorem 4.2 The following two statements hold:

(i) Let (N , v, E) ∈ CSN be a communication situation with (N , E) is complete and v is
compromise stable. Then, nuc(vE ) = nuc(v);

(ii) Let (N , E) be a connected graph that is not complete. Then, there exists a communication
situation (N , v, E) ∈ CSN where v is compromise stable such that nuc(vE ) �= nuc(v).

Proof (i) It is left for the reader
(ii) We distinguish between two cases: either |N | = 3 or |N | ≥ 4. First, suppose that

|N | = 3 and set N = {1, 2, 3}. Assume w.l.o.g. that {1, 3} /∈ E . Then, {1, 2}, {2, 3} ∈ E ,
since (N , E) is connected. Reconsider the communication situation (N , v1, E) ∈ CSN with,
for all S ∈ 2N ,

v1(S) =
{
1, if {1, 2} ⊆ S or {1, 3} ⊆ S;
0, otherwise.

For all S ∈ 2N \ {∅},

vE
1 (S) =

{
1, if {1, 2} ⊆ S;
0, otherwise.
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Consequently, nuc(vE
1 ) = ( 12 ,

1
2 , 0) �= (1, 0, 0) = nuc(v1).

Secondly, suppose that |N | ≥ 4. Set N = {1, 2, 3, 4, . . . , n} and assume w.l.o.g. that
{1, 2} /∈ E and {1, 3} ∈ E . Reconsider the communication situation (N , v3, E) ∈ CSN with,
for all S ∈ 2N ,

v3(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

7, if S = N ;
6, if S = N \ {1};
5, if S = N \ {2};
4, if S = N \ {4};
3, if S /∈ {N , N \ {1}, N \ {2}, N \ {4}}, and {1, 2} ⊆ S or {1, 3} ⊆ S;
0, otherwise.

Then, M(v3) = (1, 2, 4, 3, 4, . . . , 4) and m(v3) = (1, 2, 2, 0, 0, . . . , 0), and using Proposi-
tion 2.1,

nuci (v3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if i = 1;
2, if i = 2;
2 + 2

n−2 , if i = 3;
2

n−2 , otherwise.

To show that nuc(vE
3 ) �= nuc(v3), we use the Kohlberg criterion and show that

B1(nuc(v3), vE
3 ) is not balanced. For this, we need to identify the coalitions (non-empty

and not the grand coalition) with the highest excess. To structure this identification process,
for S ∈ 2N we distinguish between seven cases, in which players 1, 2 and 3 play an important
role:

(i) |S| = 1 or S ∈ {{1, 2}, {1, 3}, {2, 3}};
(ii) |S| = 3 with {1, 2} ⊆ S and 3 /∈ S;
(iii) 3 < |S| < n − 1 with {1, 2} ⊆ S and 3 /∈ S;
(iv) 2 < |S| < n − 1 with {1, 3} ⊆ S;
(v) 1 < |S| < n − 1 with {1, 2} � S, {1, 3} � S and j ∈ S for j ∈ N \ {1, 2, 3};
(vi) |S| = n − 1 with S = N \ { j} for j ∈ N \ {1, 2, 3, 4};
(vii) S ∈ {N \ {1}, N \ {2}, N \ {3}, N \ {4}}.
Case i), vi) and vii) deal with all coalitions with exactly 1 or n−1 players, respectively. Case
i) also includes three 2-player coalitions. For the other coalitions, we distinguish whether
{1, 2} ⊆ S (and 3 /∈ S) or {1, 3} ⊆ S or neither of the two inclusions. In particular, case ii)
deals with the 2-player coalitions that contains both players 1 and 2, but not 3 and case iii)
deals with similar coalitions that contain at least 4 players. In case iv), {1, 3} ⊆ S and finally,
case v) deals with all coalitions such that both {1, 2} � S and {1, 3} � S.

Case (i) For this first case, we know that

vE
3 (S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if S = { j} for j ∈ N ;
0, if S = {1, 2};
3, if S = {1, 3};
0, if S = {2, 3},
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and hence, one readily checks that

Exc(S, nuc(v3), v
E
3 ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if S = {1};
−2, if S = {2};
−2
n−2 − 2, if S = {3};
−2
n−2 , if S = { j} for j ∈ N \ {1, 2, 3};
−3, if S = {1, 2};
−2
n−2 , if S = {1, 3};
−2
n−2 − 4, if S = {2, 3}.

Case (ii) For all S ∈ 2N with |S| = 3, {1, 2} ⊆ S and 3 /∈ S, it holds that

vE
3 (S) =

{
3, if the induced subgraph on S is connected;
0, otherwise,

and hence,

Exc(S, nuc(v3), v
E
3 ) =

{ −2
n−2 , if the induced subgraph on S is connected;
−2
n−2 − 3, otherwise.

Note that the induced subgraph on S is connected if and only if {1, j}, {2, j} ∈ E for
j ∈ N \ {1, 2, 3}.

Case (iii) For all S ∈ 2N with 3 < |S| < n − 1, {1, 2} ⊆ S and 3 /∈ S, it holds that

vE
3 (S) ≤ 3,

and hence,

Exc(S, nuc(v3), v
E
3 ) < vE

3 (S) − nuc1(v3) − nuc2(v3) − nuc j (v3)

≤ 3 − 1 − 2 − 2

n − 2
= −2

n − 2
,

since nuci (v3) > 0 for all i ∈ N . Subsequently, these coalitions can not be coalitions with
the highest excess.

Case (iv) For all S ∈ 2N with 2 < |S| < n − 1 and {1, 3} ⊆ S, it holds that vE
3 (S) = 3

and hence,

Exc(S, nuc(v3), v
E
3 ) < vE

3 (S) − nuc1(v3) − nuc3(v3) = 3 − 1 − 2 − 2

n − 2
= −2

n − 2
.

Case (v) For all S ∈ 2N with 1 < |S| < n − 1, {1, 2} � S, {1, 3} � S and j ∈ S for
j ∈ N \ {1, 2, 3}, it holds that vE

3 (S) = 0 and hence,

Exc(S, nuc(v3), v
E
3 ) < vE

3 (S) − nuc j (v3) = 0 − 2

n − 2
= −2

n − 2
.

Case (vi) For all S ∈ 2N with |S| = n − 1 and S = N \ { j} for j ∈ N \ {1, 2, 3, 4}, it
holds that vE

3 (S) = 3, since {1, 3} ⊆ S and hence,

Exc(S, nuc(v3), v
E
3 ) < vE

3 (S) − nuc1(v3) − nuc3(v3) = 3 − 1 − 2 − 2

n − 2
= −2

n − 2
.
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Case (vii) Finally, for all S ∈ 2N with S ∈ {N \ {1}, N \ {2}, N \ {3}, N \ {4}}, the worth
of the coalition S in the graph-restricted game depends on whether the induced subgraph is
connected or not:

vE
3 (N \ {4}) =

{
4, if the induced subgraph on N \ {4} is connected;
3, otherwise,

vE
3 (N \ {3}) =

{
3, if the induced subgraph on N \ {3} is connected;
0, otherwise,

vE
3 (N \ {2}) =

{
5, if the induced subgraph on N \ {2} is connected;
3, otherwise,

vE
3 (N \ {1}) =

{
6, if the induced subgraph on N \ {1} is connected;
0, otherwise.

Consequently,

Exc(N \ {4}, nuc(v3), vE
3 ) =

{
2

n−2 − 3, if the induced subgraph on N \ {4} is connected;
2

n−2 − 4, otherwise,

Exc(N \ {3}, nuc(v3), vE
3 ) =

{
2

n−2 − 2, if the induced subgraph on N \ {3} is connected;
2

n−2 − 5, otherwise,

Exc(N \ {2}, nuc(v3), vE
3 ) =

{
0, if the induced subgraph on N \ {2} is connected;
−2, otherwise,

Exc(N \ {1}, nuc(v3), vE
3 ) =

{
0, if the induced subgraph on N \ {1} is connected;
−6, otherwise.

In order to determine which of the above excesses is the highest, note that, if n ≥ 4,

Exc(N \ {4}, nuc(v3), vE
3 ) ≤ 2

n − 2
− 3 ≤ −2 <

−2

n − 2
,

and, if n > 4,

Exc(N \ {3}, nuc(v3), vE
3 ) ≤ 2

n − 2
− 2 < −1 <

−2

n − 2
.

Wemay conclude that, if the induced subgraph on N \{1} or the induced subgraph on N \{2}
is connected, the highest excess equals 0 and

B1(nuc(v3), v
E
3 ) = {N \ {1}, N \ {2}},

B1(nuc(v3), v
E
3 ) = {N \ {1}}, or

B1(nuc(v3), v
E
3 ) = {N \ {2}}.

Clearly, for these cases, B1(nuc(v3), vE
3 ) is not a balanced collection and nuc(vE

3 ) �= nuc(v3).
Note that, if n = 4, it holds that the induced subgraph on N \ {1} or the induced subgraph
on N \ {2} is connected, due to the connectedness of the graph and the fact that {1, 2} /∈ E .
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For the remaining case, we can assume that n > 4 and that both induced subgraphs on
N \ {1} and N \ {2} are not connected. Then, the highest excess equals −2

n−2 (> −1) and

B1(nuc(v3), v
E
3 ) =

{
{ j}

∣∣∣ j ∈ N \ {1, 2, 3}
}

∪ {{1, 3}}
∪

{
{1, 2, j}

∣∣∣ j ∈ N \ {1, 2, 3} and both {1, j} ∈ E and {2, j} ∈ E
}

.

Note that if B1(nuc(v3), vE
3 ) =

{
{ j}

∣∣∣ j ∈ N \ {1, 2, 3}
}

∪ {{1, 3}}, then B1(nuc(v3), vE
3 )

is not balanced, since 2 /∈ S for all S ∈ B1(nuc(v3), vE
3 ). So let j ∈ N \ {1, 2, 3} be

such that {1, 2, j} ∈ B1(nuc(v3), vE
3 ). Suppose λ : B1(nuc(v3), vE

3 ) → R++ is such that∑
S∈B1(nuc(v3),vE

3 ):i∈S λ(S) = 1 for all i ∈ N . For i = 3, this condition boils down to
λ({1, 3}) = 1. Then, however,∑

S∈B1(nuc(v3),vE
3 ):1∈S

λ(S) ≥ λ({1, 3}) + λ({1, 2, j}) > 1.

Hence, also in this case, nuc(vE
3 ) �= nuc(v3). This concludes the construction of the commu-

nication situation (N , v, E) ∈ CSN (with v = v1 if |N | = 3 and v = v3 if |N | ≥ 4) where
v is compromise stable such that nuc(vE ) �= nuc(v). �

5 Concluding remarks

In this paper, we studied both the inheritance of strong compromise admissibility and compro-
mise stability and the invariance of the nucleolus. With regard to the inheritance, the results
are summarized in Table 1. Loosely speaking, in Theorem 3.1, we showed that strong com-
promise admissibility is always inherited from the underlying game to the graph-restricted
game if and only if the graph is biconnected.Moreover, to go from strong compromise admis-
sibility for the underlying game to compromise stability for the graph-restricted game, the
graph needs to be either biconnected or a star, as shown in Theorem 3.2. Finally, in Theorem
3.3, we showed that compromise stability is always inherited if and only if there are only
three players or the graph is complete. To finalize Table 1, it remains to check whether we
can obtain a strongly compromise admissible graph-restricted game if the underlying game
is compromise stable. Example 5.1 shows that this is not possible. More precisely, for every
connected graph there exists a communication situation with a compromise stable underlying
game such that the graph-restricted game is not strongly compromise admissible.

Table 1 Survey of inheritance of properties

Graph-restricted games

Underlying games Strong compromise admissi-
bility

Compromise stability

Strong compromise admissibility Biconnected graphs
(Theorem 3.1)

Biconnected graphs and stars
(Theorem 3.2)

Compromise stability No graphs (Example 5.1) |N | = 3 and complete graphs
(Theorem 3.3)
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Example 5.1 Let (N , E) be a connected graph. We can set N = {1, 2, . . . , n} and assume
w.l.o.g. that {1, 2} ∈ E . Consider the communication situation (N , v4, E) ∈ CSN with, for
all S ∈ 2N ,

v4(S) =
{
1, if {1, 2} ⊆ S;
0, otherwise.

Note that M(v4) = (1, 1, 0, . . . , 0) and m(v4) = (0, 0, 0, . . . , 0), and hence, CC(v4) �= ∅.
Moreover, v4(S) ≤ v4(N ) − ∑

j∈N\S M j (v4) for all S ∈ 2N for which {1, 2} ⊆ S and

v4(S) ≤ ∑
i∈S mi (v4) for all other S ∈ 2N . Hence, v4 is compromise stable.

Furthermore, vE
4 = v4, which is not strongly compromise admissible, because

v4({3}) = 0 > −1 = v4(N ) −
∑
j∈N\S

M j (v4). �

Table 2 Survey of invariance of the nucleolus

Underlying games Condition on the graph

Strong compromise admissibility Biconnected graphs (Theorem 4.1)

Compromise stability Complete graphs (Theorem 4.2)

With regard to the invariance of the nucleolus, Table 2 summarizes our results. For both
properties, it identifies the weakest condition on the graph for which invariance of the nucle-
olus is guaranteed for all communication situations with an underlying game satisfying this
property.

Interestingly, the condition on the graphwith regard to compromise stability can be relaxed
if we restrict attention to communication situations with an underlying simple game. A
cooperative game v ∈ TUN is called simple if v(S) ∈ {0, 1} for all S ∈ 2N , v(N ) = 1 and
v(S) ≤ v(T ) for all S, T ∈ 2N with S ⊆ T . Moreover, for a simple game v ∈ TUN , the set
of veto-players is given by

veto(v) =
⋂ {

S ∈ 2N
∣∣∣ v(S) = 1

}
.

For simple games, having veto-players is equivalent to balancedness, which in turn is equiva-
lent to compromise stability. Moreover, if a simple game has veto-players, then the nucleolus
divides the worth of the grand coalition equally among these veto-players. Note that if the
game underlying a communication situation is simple, then the graph-restricted game is
simple too.

If, in addition to compromise stability, we also require that the underlying game is simple,
it turns out that the nucleolus is invariant for all such communication situations if the graph
is biconnected. Furthermore, for every connected graph that is not biconnected, we construct
a communication situation with an underlying game that is both compromise stable and
simple for which the nucleolus of the graph-restricted game is not equal to the nucleolus of
the underlying game. Again, we benefit from the construction in the proof of Theorem 3.1
(and Theorem 4.1).
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Proposition 5.1 The following two statements hold:

(i) Let (N , v, E) ∈ CSN be a communication situation with (N , E) is biconnected and v is
both compromise stable and simple. Then, nuc(vE ) = nuc(v);

(ii) Let (N , E) be a connected graph that is not biconnected. Then, there exists a communi-
cation situation (N , v, E) ∈ CSN where v is both compromise stable and simple such
that nuc(vE ) �= nuc(v).

Proof (i) It suffices to show that veto(v) = veto(vE ). Since vE (S) = 1 implies that v(S) = 1,
it holds that veto(v) ⊆ veto(vE ). Suppose there exists i ∈ veto(vE ) with i /∈ veto(v).
Clearly, v(N \ {i}) = 1. Then, since the induced subgraph on N \ {i} is connected, it holds
that vE (N \ {i}) = v(N \ {i}) = 1. This contradicts the fact that i ∈ veto(vE ).

(ii)As before, since (N , E) is not biconnected, set N = {1, 2, . . . , n} and assume w.l.o.g.
that {1, 2}, {2, 3} ∈ E , that the induced subgraph on N \{2} is not connected and that players
1 and 3 are in two different components in the induced subgraph on N \ {2}. Reconsider the
communication situation (N , v1, E) ∈ CSN with, for all S ∈ 2N ,

v1(S) =
{
1, if {1, 2} ⊆ S or {1, 3} ⊆ S;
0, otherwise.

Note that v1 is simple. Recall that v1 is strongly compromise admissible, and thus compromise
stable. Moreover, as seen before, nuc(vE ) = ( 12 ,

1
2 , 0, . . . , 0) �= (1, 0, 0, . . . , 0) = nuc(v),

which concludes the proof. �
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