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Abstract
The concept of resilience—i.e., the ability of a unified structure to absorb shocks—is of high
relevance in the context of network modelling and analysis, mainly when referred to finance.
This paper starts from this premise, and deals with the resilience of a financial interbanking
system. At this aim, we firstly introduce a new measure of the resilience of a network, by
taking into full consideration the influence of the topology of the network and the weights of
its links in the shocks propagation; then, we build one financial network model related to the
quarterly-based interbanking sector, whose weights are calibrated on high quality empirical
data; lastly, we compute the resilience measure of the considered networks. A discussion of
the results is provided, by considering both finance and network theory perspectives.
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1 Introduction

Assessing the ability of a system to absorb shocks is a very relevant task. Indeed, it is not
rare to assist at macroscopic fluctuations of a complex system generated by a microscopic
impulse occurring in one of its components. The consequences of such sources of instability
might be devastating; hence, their prevention and management represent targets for all the
actors operating around the observed system.

From this perspective, the high attention paid to the resilience is considered useful in
order to acquire insights concerning complex systems and, in particular, complex networks.
Starting from the seminal paper of Albert et al. (2000), resilience in complex networks was
investigated theoretically (Gao et al. 2016) and then extended by considering the effects of
different node removal strategies on the network structure (Ferrraro and Iovanella 2018; Iyer
et al. 2013) or as a function of nodes’ mixing preferences (D’Agostino et al. 2012).

For the special theme of the resilience, it is natural to capture the propagation of a shock
over a systemas a transition fromdifferent sites through their connecting links. In the scientific
literature, the studyof the resilience ismainly related to the analysis of a performancemeasure,
typically the diameter of the network, under two different schemes of stress depending on a
targeted attack to a particular node or considering the random failure of a node, viewed as
a network error (Albert et al. 2000; Chen et al. 2015). Such analysis are relatively easy to
perform and this explains why the models of resilience of a system are framed in the context
of complex networks (Ferrraro and Iovanella 2018).

In this paper, the assessment of the resilience is performed by taking into considerations a
newmeasure based on the shocks occurring in one of the nodes and on its propagation over the
links of the network. We assume that the propagation of a shock from a node to another one
occurs over the shortest path connecting the nodes. In so doing, we develop a model where
the nodes are immunized from the subsequent effects of the shock, once they are infected
for the first time by its propagation. This condition is particularly reasonable in several real-
world situations. Moreover, it offers also relevant advantages under the perspective of the
computational complexity of the applications of such a resilience measure. Indeed, under
a purely methodological point of view, the considered resilience measure is similar to that
presented in Cerqueti et al. (2019), by overcoming its limitations in terms of its applicability
opportunities when focusing on the shortest paths. Indeed, as indicated in Cinelli et al.
(2017), the computation time of all simple paths grows exponentially with the size of the
network (Fortune et al. 1980), thus only small networks can be analysed in an acceptable
time. Importantly, in line with (Cerqueti et al. 2019), we assume that the propagation of the
shock is opportunely rescaled as the distance from the shocked nodes increases. In doing
so, we provide a versatile device which includes either amplified or dampened effects of
the distance from the shocked node—where the nature of the effects has to be identified on
the basis of the considered real world case. In this context, a relevant role is played by the
identification of the size of the shock (on this, see also Acemoglu et al. 2015).

The proposed resilience measure shows some clear advantages with respect to the existing
ones. Indeed, we point out that the most popular resilience measure in the environment of
complex networks is based on the nodes removal, with the assessment of the reaction of
the overall system to such an impulsive shock (see Albert et al. 2000). Under a different
perspective, we can also consider resilience measures based on a cascade model (see e.g.
Rosas-Casals et al. 2015; Scala et al. 2016). In such a context, the failure of a node generates
an avalanche-like event that may generate the disruption of the entire system. Such measures
are not suitable to provide a proper modelling of our framework. Indeed, a resilience measure
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based on nodes removal is not a reliable device in a context such as the financial one—where
the actors go in distress but are not removed from the system; furthermore, cascade-based
models are associated to collapsing systems, while here we discuss the direct reaction of
the single nodes to the shocks propagating from other nodes. In this respect, the resilience
measure proposed in our paper is suitable for financial applications, in that it includes also
the propagation of the financial distress from a country to another one.

As we will see, the methodological proposal is tested over a relevant financial network
associated to the interbanking sector. The motivations for this choice lies in the paradigmatic
relevance of the financial context, mainly when one deals with the concept of resilience. In
fact, accounting for shocks propagation in finance contributes to describe a pivotal feature of
financial systems, which has been tested by several paradigmatic cases such as the financial
contagion associated to the Lehman Brothers’ bankruptcy (Dumontaux and Pop 2013). This
explains why in the wide world of complex networks, those of financial nature are of partic-
ular interest (Allen and Babus 2008). Many applications were studied considering dynamic
evolution (Peron et al. 2012), incomplete information (Cinelli et al. 2021), risk management
(Nagurney and Ke 2006) and diffusion of contagion and its relationship with the network
structure (Elliott et al. 2014,Glasserman and Peyton Young 2016). Indeed, the constitutive
property of a network model—i.e., the presence of disaggregated units which are mutually
interconnected—is crucial when the aim is to describe financial patterns (see e.g. Nedovic
and Devedzic 2002 or the review in Rada (2008)).

In detail, we propose a complex network model for the interbanking sector, where nodes
are countries and links are weighted on the basis of the mutual exposures among the banks
headquartered in the countries. Specifically, we hypothesize that the stronger the mutual
exposures among the banks, the higher the weights of the links among the related countries,
as intuitively should be.

Following previous contributions in the quantitative finance literature, we have retrieved
the empirical quarterly data from the Bank for International Settlements (BIS) database (see
e.g. Bongini et al. 2018; Cerqueti et al. 2020; Cinelli et al. 2021; Demir and Onder 2019;
Giudici and Spelta 2016; Minoiu and Reyes 2013; Minoiu et al. 2015). The BIS is owned by
62 central banks covering about 95% of the world’s GDP (BIS database www.bis.org). The
analysis is carried out also at a temporal level. The period under investigation is 2005–2020
(this latter limited to the first two quarters); such a multiperiodal framework leads to a deep
analysis of the resilience evolution in the considered network, in that we build a network
for each quarter of the investigated period. Moreover, the financial crisis due to Lehman
Brothers’ failure (Dumontaux and Pop 2013) is also taken into consideration.

It is also important to notice that BIS networks are not small enough to face the computa-
tional complexity associated to the computation of the resiliencemeasurewhen not restricting
to the shortest paths. However, we point out that such an approximation is quite reasonable
in our specific context, since it describes the real situation of a financial contagion walking
over the easiest and most direct propagation patterns [see the discussion on this point in the
monograph (Chevallier et al. 2019)]. In this respect, our methodological proposal is also
able to model the real world situation where a node is infected only once—hence, through
the shortest paths—and does not react to subsequent solicitations stemming from the same
shocks.

Results on the BIS networks offer a complete view of the considered interbanking sector
over the period under investigation. In particular, we observe different resilience patterns as
time goes from 2005 to 2020 which significantly correlate with the recorded financial history
of such years.
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Interestingly, the action of the amplifying/dampening effect of the shocks as the distance
from the shocked node increases is relevant. Moreover, there is a reasonable dependence of
the resilience of the network on the size of the shock. The obtained outcomes state clearly
that large interbank exposures lead to a high level of resilience. In this respect, the years
related to the recent economic distresses—the Lehman Brothers’ bankruptcy in 2008 and
the COVID-19 pandemic in 2020—are associated to resilience peaks, in agreement with the
stylized fact that correlation among banks increases in situations of financial distress.

The paper is organised as follows. Section 2 introduces the resilience measure used in
our analysis, by including also a discussion related to the complexity of the considered tool.
Section 3 outlines the proposed interbanking network model. Section 4 reports the results of
the simulations performed and the related discussions. Finally, Sect. 5 offers some conclusive
remarks and outlines directions for future research.

2 The resiliencemeasure

Herein, we introduce the measure of resilience that we will use in the analyses as well as the
rationale behind the construction of such ameasure. At this aim, aswewill see in detail below,
we start fromCerqueti et al. (2019) and remove the limitations of the resiliencemeasure in the
quoted paper related on its computational complexity—hence, preventing to its applicability
in contexts of highly dense networks.

We consider a set V = {1, . . . , n}, representing the set of the nodes of a complex directed
and weighted network.

The adjacency matrix of the network is denoted by W = (wi j )i, j∈V . Matrix W is not
necessarily symmetric.

We assume that wi j > 0 if and only if there exists a directed link between nodes i and
j . In doing so, the adjacency matrixW provides a straightforward identification of the links
connecting the nodes of the network. When needed, we refer to E as the set of the links of
the network.

We now give an integer k ≥ 2 and introduce the k-paths with starting node i0 ∈ V by
p(k)
i0

= {i0 → i1 → · · · → ik−1 → ik}, with i0, i1, . . . , ik−1, ik distinct nodes in V and

ih−1 → ih ∈ E , for each h = 1, . . . , k. The node ik is said to be the terminal node of p(k)
i0

.

When needed, we will refer to p(k)
i0,ik

to specify both the initial node and the terminal node.
Intuitively, the (aggregate) weight of a generic k-path starting from i0 and with terminal

node ik is

w(p(k)
i0,ik

) =
k∑

h=1

wih−1ih . (1)

We assume that the diameter of the network is k̄, so that k = 2, . . . , k̄.
All the k-paths of the network are collected in

P(k) =
⋃

i0∈V
P(k)(i0), (2)

where P(k)(i0) is the collection of the k-paths whose starting node is i0.
The set P(k) in (2) can be quite large, mainly when the considered network is dense and

it has a large number of nodes. Indeed, given two nodes i0, ik ∈ V , one can have a large
number of different paths starting from i0 and with terminal node ik . Such an evidence is
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the ground of the computational complexity arising in the resilience measure proposed by
Cerqueti et al. (2019).

For this reason, we conveniently restrict our attention to a special subset of P(k).
At this aim, given two nodes i0, ik ∈ V , we introduce the shortest path with starting point

i0 and terminal point ik as

pmin
i0,ik = argmin

⎧
⎨

⎩w(pi0,ik ) : pi0,ik ∈
k̄⋃

h=1

P(k)

⎫
⎬

⎭ . (3)

Evidently, formula (3) entails that the shortest path with initial value i0 and terminal value ik
is not necessarily unique. Therefore, once i0 and ik are fixed, being a shortest path connecting
i0 with ik is an equivalence relation. Thus, we can identify the equivalence class collecting
the shortest paths from i0 to ik , namely [pmin

i0,ik
]. Hereafter, we will consider only one element

of each equivalence class [pmin
i0,ik

], without duplicating the shortest paths associated to the

same couple of nodes. We denote the representative element of [pmin
i0,ik

] as pmin
i0,ik

, and we refer
to it simply as shortest path from i0 to ik . All the shortest paths of the network—clearly, to
be intended in the sense of the representative elements—are collected in a set Pshort .

We are now in the position of defining the shocks, which are here local events occurring
to the nodes of the network. The entity of the shock plays a key role in the analysis of the
resilience of the network. Such an entity is assumed to be captured by a positive number
ξ ∈ (0,+∞), and it grows—i.e., the effect of the shock becomes stronger—as the value of
ξ increases.

The shock starts from a given node i0 ∈ V and propagates over the shortest paths with
initial value i0. More specifically, we do not prevent the shock to propagate over all the k-
paths, but we do not consider the effects of the shock propagating outside the shortest paths.
Practically, this means that the effect of the shock on a node connected to i0 is registered
only at the first time in which such a node is reached—thus, through the shortest path. After
that, the node is infected, and it does not react to subsequent solicitations stemming from the
same shock. The way propagation occurs depends on the weights of the shortest k-paths, on
the entity of the shock and on the distance from the node subject to the shock.

According to Cerqueti et al. (2019), we consider the propagation on a generic k-path p(k)
i0

with weight as in (1) and define a discount factor δ ∈ [0,+∞), that captures the effect of the
distance on the propagation as follows

ξh = ξ

h∑

s=1

wis−1is δ
h−s+1, (4)

where ξh is the entity of the shock at node ih , for each h = 0, . . . , k and ξ0 = ξ .
We also include a propagation condition, which is the core of the resilience measure.

Indeed, if the shock is too weak, then the propagation motion stops. To formalize the prop-
agation condition, we introduce a vector � = (γ1, . . . γk̄) ∈ (0,+∞)k̄ and assume that the
existence of s = 0, 1, 2, . . . , h − 1 such that ξs < γs prevents the propagation of the shock
to node ih . The validity of the propagation conditions clusters the k-paths in two classes: the
ones where the shock ξ propagates and those where such a shock does not achieve the last
node. The clusters are, of course, dependent also on the considered vector �. We denote by
P(k)

�,ξ the set collecting the k-paths – not necessarily the shortest k-paths—which satisfy the
propagation condition for � and ξ .

We are ready to define our concept of network resilience.
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Given the vector � and the shock with entity ξ , we define the � − ξ -resilience measure
of the network N = (V , E) as

μ(�,ξ)(N ) = 1 −
k̄∑

k=1

θk
|P(k)

�,ξ ∩ Pshort |
|P(k) ∩ Pshort | , (5)

where θ1, . . . , θk̄ are appropriately selected to be nonnegativeweights such that
∑k̄

k=1 θk = 1.
We denote the vector of the weights by� = (θ1, . . . , θk̄). The selection of� is implemented
on the basis of the specific attention towards the different lengths of the paths whenmeasuring
the resilience of the network.

We observe thatμ(�,ξ)(N ) ∈ [0, 1] and it increases as the shocks propagate less easily over
the network—so that, the network is more resilient. When μ(�,ξ)(N ) = 1 (μ(�,ξ)(N ) = 0,
resp.), then the shock ξ is absorbed (the shock ξ propagates over all the paths, resp.).

2.1 Complexity test

The comparison between our proposal based on shortest paths and the approach of Cerqueti
et al. (2019)—which takes into account all the paths—is associated to the discussion related
to the complexity of the related algorithms. To face this relevant issue, we firstly provide a
brief theoretical overview of the computational times in the two cases; then, we present an
experiment supporting the theoretical side of the discussion.

The computation of all simple paths is well known to be a hard task (Fortune et al. 1980),
while the set of the shortest paths is easy to compute since the time complexity is polynomial
in the size n of a graph G (Ahuja et al. 1988).

Table 1 shows the comparisons between the computation of μ(�,ξ)(N ) when considering
all the simple paths (as in Cerqueti et al. (2019)) and when computing only the shortest paths
according to Eq. 5. The first column contains the type of network under examination, the
second the cardinality of the set P(k), the third the value for μ(�,ξ)(N ) and the fourth the
computational time when computing all the simple paths. The following three columns show
the same results when computing all the shortest paths and, finally, the last column reports
the percentage deviation �μ between the two values of μ(�,ξ)(N ). The simulations have
been performed on ten instances with ξ = 0.1 and δ = 1. All the values in Table 1 are to be
considered averaged over ten instances.

Since paths are the basic ingredient for our resilience measure, we followed the same
general approach used in the analysis of shortest path problems (Demetrescu et al. 2009)
and we tested the two versions of the measure on grid and random networks. For both we
considered n = {25, 50} and wi j randomly chosen in the set {1, 2, . . . , 10}. Finally, in the
case of random networks, we considered the values of density as d = {0.1, 0.2}.

From Table 1 we may notice that in all the simulations, as expected, the computational
times for μ(�,ξ)(N ) considering all shortest paths outperform the other case. Note also that
the gaps in the resilience measures �μ are remarkably low (less than 1%), i.e. we can use
the shortest paths at the cost of a small difference in the resilience measure.

It is worth noting that the negligible difference between the case of all paths and that of
shortest pathswas quite expected. Indeed, by definition, the shocks propagatemore likely over
the shortest paths than in the non shortest cases. In the considered situation, the percentage of
the paths that are of non shortest nature and allowing the propagation of the shock is so small
that the deviation between the resilience measures introduced in (5) and that in Cerqueti et
al. (2019) is not that relevant.
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Table 1 Result considering either the set of simple paths or the set of shortest paths in theμ(�,ξ)(N ) calculation
for benchmark networks (averaged over 10 instances)

Network All simple paths All shortest paths �μ

|P(k)| μ(�,ξ)(N ) Time |P(k)| μ(�,ξ)(N ) Time

Grid, n = 25 185486.6 0.995 59.34 m 639.6 0.987 4.21 s 0.7%

Grid, n = 50 – – > 2 d 2632.3 0.990 10.57 s –

Random,

n = 25, d = 0.1 201.5 0.978 0.79 s 137.9 0.976 0.41 s 0.1%

Random,

n = 25, d = 0.2 84980, 2 0.993 20.11 m 532, 3 0.984 2.03 s 0.9%

Random,

n = 50, d = 0.1 – – > 2 d 2168.0 0.991 8.28 s –

Random,

n = 50, d = 0.2 – – > 2 d 2897.3 0.998 8.37 s –

In the time columns, s are seconds, m are minutes, h are hours and d are days. In some rows results are not
reported since the simulation ran out of memory after two days of computation

3 The interbanking networkmodel

The financial context here considered is taken from the interbanking system and data are
retrieved by the BIS web site database (BIS database www.bis.org). In particular, we refer
to the activities associated to the consolidated banking statistics (CBS) and to the Locational
Banking Statistics (LBS) of all the available countries (see the details in the Appendix).

The CBS captures the worldwide consolidated positions of internationally active banking
groups headquartered in reporting countries. The CBS include the business of banks’foreign
affiliates but exclude intragroup positions, similarly to the consolidation approach followed
by banking supervisors.

The LBS provide information about the currency composition of banks’balance sheets
and the geographical distribution of their counterparties. The LBS capture the outstanding
financial assets and liabilities of internationally active banks located in reporting countries
against counterparties residing in more than 200 countries.1

The CBS and LBS data present different characteristics, even if they are associated to
the same interbanking context. In our study, we consider the analysis conducted on LBS as
a robustness check on the results obtained for CBS. We explain the reasoning behind this
approach.

One of the reasons for preferring CBS is that consolidated statistics seems to be better
suited for representing a risk-propagation scenario at aggregated level (Tonzer 2015). More-
over, taking into account the nationality of banks, rather than for instance their residency,
could be deemed as a prudential way to involve countries in the process of risk propagation,
especially considering the fact that BIS networks suffer of missing links by construction.
Furthermore, consolidated data seem to be apt for research efforts that do not include an
explicit geographical/spatial dimension as in our analysis.

1 Bank for International Settlements, Monetary and Economic Department, Reporting guidelines for the
BIS international banking statistics, July 2019 (https://www.bis.org/statistics/bankstatsguide.pdf), accessed
October 25th , 2021.
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Nonetheless, some authors argues that LBS display some advantages with respect to CBS
such as available cross-border bank capital flows data, exchange rate adjusted flow data and
a longer time window (Minoiu et al. 2015; Minoiu and Reyes 2013; Tonzer 2015). For these
reasons we repeat stress tests on the LBS dataset and compare it to the CBS dataset, in terms
of our indicator μ, in order to understand whether the resilience displayed by CBS data is
affected by the consolidation.

The considered datasets deal with banking groups in terms of hosting or residence coun-
tries, so that banks are intuitively associated to countries. Therefore, for both CBS and LBS
networks, we take countries as nodes in the set V = {1, . . . , n}.

We assume that the weightwi j is based on the aggregated bank exposures αi j—expressed
in billions of dollars—of the banking groups headquartered in country i to the ones of country
j . Specifically, we consider wi j = αi j , for each i, j ∈ V .

We present quarterly data, ranging from the first quarter of 2005 to the fourth quarter of
2020. Thus, we have 64 networks—one network for each quarter. The number of nodes and
links varies over the periods: for CBS network, nodes range from 202 to 215 (210.05 on
average) and links from 1922 to 2882 (2448.78 on average); for LBS networks, nodes range
from 209 to 213 (211.72 on average) and links from 2688 to 4942 (3864.72 on average).

For the sake of completeness, consider that countries in the dataset are divided in three
different classes (Bongini et al. 2018): (i) the core, which considers the 26 reporting countries
that have both incoming and outgoing exposure of international financial claims to the BIS
(note that we report the actual number since countries have been added over the years); (ii)
the 10 global systemically (GS) countries where at least one G-SIB bank is headquartered;2

(iii) the periphery, which considers those countries where only inflow is available. Figures 1
and 2 show the network of the fourth quarter of 2020 for CBS and LBS, respectively, while
Figs. 3 and 4 illustrate the network of the GS elements in the same quarter for CBS and LBS,
respectively.

Table 2 reported in Appendix shows the lists of core and GS countries. Such countries
share a high number of links (see Figs. 1, 2, 3, and 4 in both of cases of CBS and LBS
and for a temporal instance), meaning that—under a purely topological perspective, i.e. in
the unweighted case—the corresponding network structure has a local density considerably
higher than the rest of the network. For this reason, the topological structure of the BIS
networks is considered to be of core-periphery type.

Interestingly, in the case of core-periphery strucures, network resilience has some peculiar
characteristics that are worth mentioning (Cinelli et al. 2017). Indeed, in case of classical
error and attack tolerance analysis, such networks are considered to be more resilient because
of the presence of an high global cohesion, predominantly in the core. On the other hand,
such networks are typically characterised by smaller values of the diameter, thus propagation
towards other nodes is more likely to occur. Of course, the presence of the weights might
lead to a departure of the weighted network from the topological core-periphery structure.
However, the arguments above may be viewed as a support of the worthiness of our study.

In Fig. 5 we show the in-degree and the out-degree distributions for CBS and LBS
networks, respectively, as yearly boxplots, throughout the observation period. Implicitly,
such distributions provide a confirmation of the topological core-periphery structure. Indeed,
despite the shapes of the two distributions the values of y-axis differ due to the fact that—
as already mentioned above—the peripheral countries report only inflow. We observe, with
reference to the out-degree, a high number of banks/countries that do not have exchanges.

2 G-SIB banks (Global Systemically Important Banks) are subject to more stringent requirements. See http://
www.fsb.org/2017/11/fsb-publishes-2017-g-sib-list/ for the updated list of banks and requirements.
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Fig. 1 Network of core elements (i.e. reporting countries) for the CBS fourth quarter of 2020. The existence
of a link represents a positive cross-border exposure αi j between the two nodes i, j

Fig. 2 Network of core elements (i.e. reporting countries) for the LBS fourth quarter of 2020. Also in this
case, the existence of a link captures a positive cross-border exposure αi j between the two nodes i, j
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Fig. 3 Network of GS elements (i.e. countries where at least one global systemically important bank has its
headquarter) for the CBS fourth quarter of 2020. Also in this case, the existence of a link captures a positive
cross-border exposure αi j between the two nodes i, j .

Fig. 4 Network of GS elements (i.e. countries where at least one global systemically important bank has its
headquarter) for the LBS fourth quarter of 2020. Also in this case, the existence of a link captures a positive
cross-border exposure αi j between the two nodes i, j

123



Annals of Operations Research (2023) 330:389–409 399

Table 2 List of core countries in
2020 Australia (AU) Core

Austria (AT) Core

Belgium (BE) Core

Canada (CA) Core

Chile (CL) Core

China (CN) GS

Chinese Taipei (TW) Core

Finland (FI) Core

France (FR) Core GS

Germany (DE) Core GS

Greece (GR) Core

Hong Kong SAR (HK) Core

India (IN) Core

Ireland (IE) Core

Italy (IT) Core GS

Japan (JP) Core GS

South Korea (KR) Core

Netherlands (NL) Core GS

Norway (NO) Core

Portugal (PT) Core

Singapore (SG) Core

Spain (ES) Core GS

Sweden (SE) Core

Switzerland (CH) Core GS

Turkey (TR) Core

United Kingdom (GB) Core GS

United States (US) Core GS

Some of them form also the group of GS countries, as indicated

This is due to the fact that the reporting countries make up a limited subset and some of the
null values in the out-degree may be referred to the database incompleteness rather than to
an absence of activity.

Finally, the out-degree shows remarkable fluctuations on the high values and data out-
lines the preferential exposure towards a limited number of banks/countries, with fluctuating
exceptions.

4 Results and discussion

Herein we consider the analysis of the 64 BIS networks. They were built considering the
CBS and LBS dataset fetched using the BIS API and cleaned from artifacts not regarding our
purposes (e.g., rows containing summary data). The data processing, the network analysis
and all simulations were conducted using the software R (R Core Team 2014) with the igraph
package (Csardi and Nepusz 2006).
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Fig. 5 Top panels: yearly distributions of in-degree (left) and out-degree (right) for CBS networks. Bottom
panels: yearly distributions of in-degree (left) and out-degree (right) for LBS networks. In the out-degree
distributions nodes with null out-degree values (peripheral elements) are filtered out

Equation (5) has been implemented through an algorithm which takes the network N , the
values of ξ and δ and of the components � and � as inputs.

Some scenarios for the values of ξ and δ and a peculiar setting for � and � are
considered, to include a large number of cases in the analysis of the resilience. Specif-
ically, we take ξi = (wmin ∗ 210−i )−1 with wmin as the lowest link weight over all
the 64 instances and i = 1, 2, . . . , 10; thus, the parameter space is: for CBS networks
ξ ∈ {0.0021, 0.0043, 0.0087, 0.0174, 0.03498, 0.0699, 0.1399, 0.2798, 0.5597, 1.1195};
for LBS ξ ∈ {0.0049, 0.0098, 0.0197, 0.0394, 0.0788, 0.1576, 0.3153, 0.6307, 1.2615,
2.5231}; and δ ∈ {0.1, 0.25, 0.5, 0.75, 1, 2, 5, 10, 20, 50}. Summarising, we performed 100
computations for each of the CBS as well as for the LBS networks.

The highest values of ξ has been chosen in order to be greater than the diameter k̄. Needless
to say, k̄ is taken as the maximum diameter of the 64 considered networks.

Regarding the setting for � and �, we considered � = {γi = 1, i = 1, ..., k̄} and
� = {θi = 1/k̄, for i = 1, . . . , k̄}. The former setting is associated to low propagation
thresholds, so that a large number of shocks propagate. This condition can be seen as a
prudential one, in that it avoids an a-priori mechanical removal of the effects of the shocks;
the latter one considers uniform values of the θ ’s, hence leading to a fair evaluation of all the
terms contributing in the definition of the resilience measure μ(�,ξ)(N ).

Figures 6, 7 and 8 report the values of μ(�,ξ)(N ) for the CBS data, for every
quarter and for each value of ξ , when considering all the values of δ, namely δ ∈
{0.1, 0.25, 0.5, 0.75, 1, 2, 5, 10, 20, 50}. According to the selected values of δ, by merging
the three figures we have ten panels.

As intuition suggests, we can generally say that the resilience of the networks decreases
with respect to ξ . Indeed, by definition, a high value of the size ξ leads to an easier propagation
of the shock.

123



Annals of Operations Research (2023) 330:389–409 401

Fig. 6 Measures for the�−ξ -resilienceμ(�,ξ)(N ) in the case ofCBSnetworks for� = {γi = 1, i = 1, . . . , k̄}
and � = {θi = 1/k̄, for i = 1, . . . , k̄}. Different values of ξ are reported on x-axis (as index of the vector),
years on y-axis and values of μ(�,ξ)(N ) on z-axis. (0.1 ≤ δ ≤ 0.75)

We also notice the existence of a critical threshold of ξ above which we have the minimum
level of resilience before year 2014—the year following the Lehman Brothers failure and
its consequences; this threshold reasonably decreases with respect to δ, so that a strong
reduction of the shocks propagation over the paths—i.e., small values of δ—is associated to
the propagation of shocks of large entity—i.e., shocks whose size is above the mentioned
critical threshold.

Furthermore, the general level of the resilience measure decreases as δ increases. This
outcome is due to the role of δ in the shock propagation process. Specifically, as δ increases,
the propagation of the shock over a given path becomes more probable; thus, |P(k)

�,ξ ∩Pshort |
increases while |P(k) ∩ Pshort | remains constant, which implies that the resilience measure
in (5) decreases.

In the extreme case of δ = 0.1—top-left panel in Fig. 6—the resilience attains values
around the theoretical maximum for small values of ξ ; moreover, the resilience surface does
not show remarkable deviations across the years in this case. For high values of δ—more
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Fig. 7 Measures for the�−ξ -resilienceμ(�,ξ)(N ) in the case ofCBSnetworks for� = {γi = 1, i = 1, . . . , k̄}
and � = {θi = 1/k̄, for i = 1, . . . , k̄}. Different values of ξ are reported on x-axis (as index of the vector),
years on y-axis and values of μ(�,ξ)(N ) on z-axis. (1 ≤ δ ≤ 10)

evidently in the bottom panels of Figs. 7 and 8—the resilience measure is close to zero for
large values of ξ . This said, we observe a more scattered situation from 2017 to 2020, where
one has traces of resilience—with resilience measure slightly greater than zero—also when
ξ = 10. Interestingly, there is a resilience peak in 2008 when δ > 1— i.e., when the shock is
amplified as the distance from the shocked node increases. This resilience peak is associated
to the year of the Lehman Brothers’ failure—hence, to the relevant global financial crisis
related to this catastrophic event. Such an outcome can be explained by the amplification
of the cohesiveness of the network in correspondence of the financial distress; this is in
agreement with the stylized fact that economic actors are more correlated in situations of
economic turmoil.

For average values of δ—see the bottom panels of Figs. 6 and 7—we observe a collapse of
the resilience measure in the triennium 2009–2012—i.e., after the Lehman Brothers’ failure.
The relevance of such a collapse with respect to the adjacent years 2008 and 2013 is more
evident for 0.5 ≤ δ ≤ 5. This is the period where the world experienced the consequences of
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Fig. 8 Measures for the�−ξ -resilienceμ(�,ξ)(N ) in the case ofCBSnetworks for� = {γi = 1, i = 1, . . . , k̄}
and � = {θi = 1/k̄, for i = 1, . . . , k̄}. Different values of ξ are reported on x-axis (as index of the vector),
years on y-axis and values of μ(�,ξ)(N ) on z-axis. (20 ≤ δ ≤ 50)

the financial turmoil of 2008, with a lower level of interbanking exposures among countries
that is associated to a lower capability of the network to absorb shocks in a post-financial
crisis.

The turbulence of the financial world registered from 2014—with the Russian andChinese
market crashes and the bad performance of the global stock markets in 2018—is associated
to the stronger interbanking relationships, hence leading to higher levels of the resilience
measure after 2014. This argument is stressed in 2020—i.e., in the dramatic socio-financial
crisis generated by the COVID-19 pandemic—where we have the highest level of resilience,
also in accord to the case of 2008.

Furthermore, we observe that the resilience of the network decreases with the value of δ.
This outcome is in line with the role of the discount factor δ in the propagation of the shocks,
and it represents a confirmation of the finding of our model. In this respect, the effect of δ on
the resilience seems to be of remarkable relevance, mainly around the corner cases of δ = 0
and δ = 1. More interesting patterns are observed for fair values of δ—i.e., for δ = 0.4, 0.5,
see Fig. 6. Indeed, in these cases, there is a collapse of the resilience around year 2014, after
the period 2009–2013 of high resilience. The resilient period 2009–2013 corresponds to the
one immediately following the Lehman Brothers’ bankruptcy; hence, one can argue that the
lowest level of interbanking exposures among countries is associated to a high capability of
the network to absorb shocks in a post-financial crisis starting event period.

The results of the simulations of the LBS are reported in Figs. 9, 10, and 11. In general,
we find a good agreement between the CBS and LBS across the parameter space, with the
LBS networks slightly more resilient than the CBS ones and the flattening of the peaks in
2008 and 2020 in the LBS case. The robustness of the results is certified also by means of the
Pearson’s correlation between the time series of the indicator μ over CBS and LBS dataset
for each value of δ and ξ—see Fig. 12.
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Fig. 9 Measures for the�−ξ -resilienceμ(�,ξ)(N ) in the case ofLBSnetworks for� = {γi = 1, i = 1, . . . , k̄}
and � = {θi = 1/k̄, for i = 1, . . . , k̄}. Different values of ξ are reported on x-axis (as index of the vector),
years on y-axis and values of μ(�,ξ)(N ) on z-axis. (0.1 ≤ δ ≤ 0.75)

5 Conclusions

This paper proposes a novel resiliencemeasure for networks that ranges in the unitary interval.
Such a measure represents a relevant extension of the one proposed in Cerqueti et al. (2019).
In particular, the computational complexity of the original measure has been removed by
reasonably assuming—as in the cases of financial contagion—that shocks propagate over
the shortest paths.

The introduced methodological device is tested over two meaningful networks built using
the BIS database—with specific reference to the CBS data—of the interbank exposures
gathered accordingly to the countries of the banks’ headquarters. As robustness check, we
also consider the networks built on the basis of the LBS data. The database is a precious
source of information in that it provides evidence for the core-periphery structure of lending
among banks worldwide, in line with previous results (see e.g. Cinelli et al. 2021 or Kojaku
et al. 2018). The considered model provides insights on the evolution of network resilience
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Fig. 10 Measures for the � − ξ -resilience μ(�,ξ)(N ) in the case of LBS networks for � = {γi = 1, i =
1, . . . , k̄} and � = {θi = 1/k̄, for i = 1, . . . , k̄}. Different values of ξ are reported on x-axis (as index of the
vector), years on y-axis and values of μ(�,ξ)(N ) on z-axis. (1 ≤ δ ≤ 10).

in different time periods. Several scenarios for the empirical analysis have been presented
and discussed.

The dependence of the resilience on the size of the shock and on the presence of a distance-
based mitigating/amplifying term of the propagation has been also detected. In so doing, the
employed resilience measure represents—at least in the treated cases—is a suitable instru-
ment for assessing the stability of the financial system. Importantly, the empirical experiments
offer a resiliencemeasure of the BIS network which takes into full consideration some impor-
tant financial crises of the 2000’s, including the one started with the Lehman Brothers’ failure
in 2008 and the financial distress generated by the COVID-19 pandemic in 2020.

Results suggest that a high level of interbank exposures is able to immunize a system
from the shocks in financial distress, while weakly interconnected banks generate a system
of countries with a scarce attitude to absorb external shocks in presence of a financial turmoil.
A possible interpretation of this outcome lies in the herd immunity against financial crisis of
countries which are strongly linked through the banking system. Once such a link becomes
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Fig. 11 Measures for the � − ξ -resilience μ(�,ξ)(N ) in the case of LBS networks for � = {γi = 1, i =
1, . . . , k̄} and � = {θi = 1/k̄, for i = 1, . . . , k̄}. Different values of ξ are reported on x-axis (as index of the
vector), years on y-axis and values of μ(�,ξ)(N ) on z-axis. (20 ≤ δ ≤ 50).

Fig. 12 Correlation matrix between the time series (ranging in each period from 2005 to 2020) ofμ computed
usingCBS and LBS data across the parameter space. Since the parameter ξ is a function ofwmin we considered
its rank values.

weak enough, then the situation is reverted and countries are particularly sensitive to the
contagion as financial distress appears.

Under a purely methodological perspective, the measure herein introduced can be con-
sidered also as a general tool that can be applied to networks belonging to other financial
contexts for measuring systemic risk. This aspect opens the field for future applications in
other financial domains. The analysis performed with our method could be also used in order
to identify the features of the shocks which are correlated with the resilience of the network,
possibly suggesting countermeasures in order to build more resilient financial systems.
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Appendix: BIS description

BIS database is owned by 60 central banks, which cover about 95% of the world’s GDP.
The role of BIS is to provide a rigorous statistical description of international markets and
financial intermediaries.

The available reporting countries—which are also those considered in the present study—
are Australia, Austria, Belgium, Brazil, Canada, Chile, Chinese Taipei, Denmark, Finland,
France, Germany, Greece, Hong Kong SAR, India, Ireland, Italy, Japan, Luxembourg, Mex-
ico, Netherlands, Norway, Panama, Portugal, Singapore, South Korea, South Korea, Spain,
Sweden, Switzerland, Turkey, United Kingdom, United States.

The counterpart countries are:Afghanistan,Albania,Algeria,Andorra,Angola,Argentina,
Armenia, Aruba, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belize,
Benin, Bermuda, Bhutan, Bolivia, Bonaire, Sint Eustatius and Saba, Bosnia and Herzegov-
ina, Botswana, Brunei, Bulgaria, Burkina Faso, Burundi, Cambodia, Cameroon, Cape Verde,
Cayman Islands, CentralAfricanRepublic, Chad, China, Colombia, Comoros, Congo, Congo
Democratic Republic, Costa Rica, Cote d’Ivoire, Croatia, Cuba, Curacao, Cyprus, Czech
Republic, Czechoslovakia, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El
Salvador, Equatorial Guinea, Eritrea, Estonia, Ethiopia, Faeroe Islands, Falkland Islands,
Fiji, French Polynesia, Gabon, Gambia, Georgia, German Democratic Republic, Ghana,
Gibraltar,Greenland,Grenada,Guatemala,Guernsey,Guinea,Guinea-Bissau,Guyana,Haiti,
Honduras, Hungary, Iceland, Indonesia, Iran, Iraq, Isle of Man, Israel, Jamaica, Jersey,
Jordan, Kazakhstan, Kenya, Kiribati, Kuwait, Kyrgyz Republic, Laos, Latvia, Lebanon,
Lesotho, Liberia, Libya, Liechtenstein, Lithuania, Macao SAR, Macedonia (FYR), Mada-
gascar, Malawi, Malaysia, Maldives, Mali, Malta, Marshall Islands, Mauritania, Mauritius,
Micronesia, Moldova, Mongolia, Montenegro Morocco, Mozambique, Myanmar, Nauru,
Nepal, NetherlandsAntilles,NewCaledonia,NewZealand,Nicaragua,Nigeria,NorthKorea,
Oman, Pakistan, Palau, PalestinianTerritory, PapuaNewGuinea, Paraguay, Peru, Philippines,
Poland, Qatar, Romania, Russia Rwanda, Samoa, SanMarino, Sao Tome and Principe, Saudi
Arabia, Senegal, Serbia, Serbia andMontenegro, Seychelles, Sierra Leone, SintMaarten, Slo-
vakia, Slovenia, Solomon Islands, Somalia, South Africa, South Sudan, Soviet Union, Sri
Lanka, St. Helena and Dependencies, St. Lucia, St. Vincent and the Grenadines, Sudan, Suri-
name, Swaziland, Syria, Tajikistan, Tanzania, Thailand, Timor Leste, Togo, Tonga, Trinidad
and Tobago, Tunisia, Turkmenistan, Turks and Caicos Islands, Tuvalu, Uganda, Ukraine,
United Arab Emirates, Uruguay, US Pacific Islands, Uzbekistan, Vanuatu, Vatican City State,
Venezuela, Vietnam, Wallis and Futuna, Yemen, Yugoslavia, Zambia, Zimbabwe.

Countries belong to three different groups (seeBongini et al. 2018): 26 core countries,
which report to the BIS both outgoing and incoming exposures to the BIS; 10 Global System-
ically (GS) countries, each of them being the headquarter of at least one Global Systemically
Important Banks (G-SIB). Such banks have to obey more stringent requirements in reporting
their data (see http://www.fsb.org/2017/11/fsb-publishes-2017-g-sib-list/; data on core and
GS have been included also in Table 2); the peripheral countries, for which only the inflows
are available.
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