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Abstract
Supply chain disruptions compel professionals all over the world to consider alternate strate-
gies for addressing these issues and remaining profitable in the future. In this study, we
considered a four-stage global supply chain and designed the network with the objectives
of maximizing profit and minimizing disruption risk. We quantified and modeled disrup-
tion risk as a function of the geographic diversification of facilities called supply density
(evaluated based on the interstage distance between nodes) to mitigate the risk caused by dis-
ruptions. Furthermore, we developed a bi-criteria mixed-integer linear programming model
for designing the supply chain in order to maximize profit and supply density. We propose an
interactive fuzzy optimization algorithm that generates efficient frontiers by systematically
taking decision-maker inputs and solves the bi-criteria model problem in the context of a
realistic example. We also conducted disruption analysis using a discrete set of disruption
scenarios to determine the advantages of the network design from the bi-criteria model over
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the traditional profit maximization model. Our study demonstrates that the network design
from the bi-criteria model has a 2% higher expected profit and a 2.2% lower profit vari-
ance under disruption than the traditional profit maximization solution. We envisage that
this model will help firms evaluate the trade-offs between mitigation benefits and mitigation
costs.

Keywords Supply chain network design · Supply density · Disruption · Resilience ·
Interactive fuzzy optimization

1 Introduction

Increased competition and operating expenses have forced companies to strive toward cost
optimization and increased service (Dai & Dai, 2016), allowing decision-makers (DMs) to
extensively focus on supply chain (SC) operations (Ramezani et al., 2014; Ravindran &
Warsing, 2016). Hence, SC network design decisions, which involve tasks such as select-
ing and partnering with the right suppliers (Araz et al., 2007; Xia & Wu, 2007), selecting
facilities among potential locations (Turkoglu &Genevois, 2020), designing facility capacity
(Irawan & Jones, 2019), and maximizing product flow between stages to achieve the best
balance between investment and distribution cost under a set of given demands (Melo et al.,
2009), have gained prominence. Sourcing has become easier because of improvements in
information technology (IT) and transportation infrastructure. Such developments increase
the complexity of SC functions and make them vulnerable to disruptions by mobilizing raw
materials and finished goods from around the world (Pazhani & Ravindran, 2014).

Over the last decade, SC disruptions during the design of SC networks, particularly dur-
ing supplier selection, have been widely studied (see Bilsel & Ravindran, 2011; Ravindran
et al., 2010; Sawik, 2013, 2014). Several factors contribute to SC network disruption: oper-
ational factors, including equipment failure, electrical outages, unscheduled downtime, and
road congestions; political factors, including terrorism, strikes, product recalls, and sud-
den changes in regulations; environmental factors, including severe weather, storms, floods,
snow, landslides, and earthquakes; strategic and control factors, including just-in-time (JIT)
and lean philosophy and low-cost off-shore sourcing strategies (Christopher et al., 2006);
and locational factors, including complexity, node criticality, and density (Craighead et al.,
2007). In this study, we considered the risk due to locational factors while designing an SC
network under a disruption scenario.

Disruptions, particularly in SCs, expose the vulnerabilities of complex business systems
around the world. Such disruptions occur not only upstream but also downstream, where
hoarding and panic-buying consumer behavior cause equally significant disruptions to SCs
(Nikolopoulos et al., 2020). Furthermore, the geographical clustering of facilities in the SC
complicates this situation. Craighead et al. (2007) used the term supply chain density (SCD)
to describe the geographical concentration of nodes within an SC in this context. They added
that the severity of an SC disruption is directly related to the SCD. Hence, it is imperative to
adopt flexibility in sourcing to mitigate disruptions due to locational factors (Snyder et al.,
2016).

This study highlights the amalgamation of two theoretical areas to address the disruption
problem. The first concept is systemic risk, which is derived from finance literature and is
considered analogous to SC because different levels in both SCs and financial systems are
interconnected (Scheibe & Blackhurst, 2018). This highlights the concept of contagion and
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propagation and explains howa small shock can cause havoc in systems (Elsinger et al., 2006).
Keynes (1937) identified systemic risk during the Great Depression, and it has subsequently
been used in fields other than economics, including climate and biology. This theory remains
true in the case of complex SCs since a small shock in one part of the SC can propagate
across the entire SC, causing havoc. This is further supplemented with the contingency
theory (Burns & Stalker, 1961), which is widely used in organizational studies. According
to this theory, an organization should optimize its performance by implementing a strategy
that aligns its capabilities with environmental requirements (Mintzberg, 1978). These two
theoretical foundations provide a lens for studying SC disruption. Since new trends such as
lean, JIT, and other efficiency-focused activities are increasing, SCs are always at risk of
potential disruptions. Hence, determining the impact of alternate SC designs on disruptions
and SC profits is essential.

The SC network considered in this study is a well-known published network structure for
real-world problems. The network structure is well-suited for a range of industries, including
those related to consumer electronics, automotive, batteries, plastic goods, and glass. Based
on the strategic nature of the problem, cost and resiliency are the main factors to consider
while designing today’s global SCs. An SC disruption can cause a firm to have significant
financial losses. This necessitates the search for the best SC design that can allow firms
to operate cost-efficiently with the best network structure while remaining resilient to SC
disruptions.With this motivation, the purpose of this study is to address the issue of designing
a four-stage SC that considers profit and supply density. The problem involves determining
the best suppliers, warehouse locations, and their capacity, as well as the distribution flow
among the chosen facilities in the SC. Furthermore, the geographical dispersion of suppliers,
which affects investment costs, product distribution, and redundancy, was considered in this
study. According to our knowledge, there are few studies on SC network design models
that explicitly integrate SCD characteristics, making it relevant in the current context and
necessitating a separate study. We propose a bi-criteria mixed-integer linear programming
(MILP) approach (Pazhani et al., 2018) for an SC network design problem with the dual
objective of maximizing profit and SCD.

It is difficult to forecast and plan for demands for a strategic problem with long planning
horizons. Firmsmay have to run themodelwith different input settings (e.g., different demand
profiles) tofinalize the best network structure. Furthermore, owing to the intrinsicmulticriteria
nature of the problem, firms would require an efficient algorithm to run the model and choose
the best possible network structure from the available efficient solutions. This necessitates
the search for and implementation of such an algorithm. An interactive fuzzy optimization
algorithm is widely used to systematically solve the bi-criteria problem using the input
of DMs. We adopted this algorithm and defined steps to guide users in this process. The
flexibility of this methodology in analyzing and comparing scenarios helps firms to make
high-quality, confident decisions. The model and proposed methodology are illustrated using
a realistic example. Furthermore, the advantages of designing the SC while considering both
cost and supply density are illustrated using disruption analysis. The analysis shows that the
mitigation benefit outweighs the mitigation cost in the case of disruptions.

The remainder of this article is organized as follows. Section 2 reviews the literature on SC
network design and disruption. Section 3 provides a detailed description of the SC network
design problem for a four-stage SC with cost and supply density objectives and proposes
a new bi-criteria MILP model for the problem. We also propose an interactive bi-criteria
fuzzy optimization model to solve the bi-criteria model. Section 4 presents an example to
illustrate the proposed bi-criteria mathematical model. Section 5 discusses the disruption
scenario analysis to demonstrate the advantages of considering supply density to improve
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SC resiliency against disruptions. Section 6 presents the conclusions and future research
directions.

2 Literature review

Since the 1990s, competition in external businesses has encouraged organizations to improve
efficiencies, and research on SCs has gained prominence as a result. Although SC network
design has been studied extensively (Khalilpourazari & Arshadi Khamseh, 2019; Özceylan
& Paksoy, 2013a, 2013b; Pervin et al., 2018; Sangaiah et al., 2020), awareness of the impact
of disruptions in SC activities has recently increased.

SC disruption as a field of study is not new; it has coexisted with the SC field since its
inception (Snyder et al., 2016). However, over the last two decades, the term “disruption”
regarding SC has gained traction as follows:

(a) Several high-profile events, such as the terrorist attacks of September 11, 2001 (Stecke&
Kumar, 2009), HurricaneKatrina in 2005 (Wachtendorf et al., 2013), and themore recent
COVID-19 pandemic (Ivanov & Dolgui, 2020), have brought studies on SC disruptions
to the forefront of public attention.

(b) According toAnderson (2007),McGillivray (2000), andPeck (2005), the JIT philosophy
tends to intensify SC vulnerability during disruptions. This vulnerability is attributed
to the marginal room for error, which is demanded by the inherent nature of a tightly
optimized, lean design.

(c) As the vertical integration in supplier firms are decreasing, global SCs with suppliers
all over the world are increasing (Cohen & Lee, 2020).

Furthermore, literature reviews conducted by contemporary researchers demonstrate the
emergence of new dimensions to the SC design theme (Table 1).

The field has evolved from simple decision supportmodels in SCnetwork design (Farahani
et al., 2014; Meixell & Gargeya, 2005; Melo et al., 2009) to complex topics such as supply
disruptions, sourcing decisions, and facility location (Snyder et al., 2016). For example, Fazli-
Khalaf et al. (2017) proposed an effective hybrid robust fuzzy stochastic programmingmethod
to control parameter uncertainty and risk-aversion level in the context of a lead-acid batterySC
case study. Özceylan and Paksoy (2013a) proposed a mixed-integer programming model for
optimizing a general closed-loop SC network model with forward and reverse components.
Khalilpourazari et al. (2020) used a neural-learning process to overcome new challenges
based on past experiences. They considered three objective functions that minimized total
transportation time and cost while minimizing unfulfilled demand in a real-world case in
Iran. Goli and Aazami (2018) used an accelerated cuckoo optimization algorithm to optimize
vehicle routing in a case study on dairy product distribution. Similarly, research on SC has
demonstrated the use of algorithms and mathematical models in diverse scenarios.

Recent research has demonstrated that the field of supplier selection is expanding (Table 2).
Some prominent examples are studies on framework development (De Boer et al., 2001), the
need to focus on customer-oriented criteria (Ho et al., 2010), and the evaluation of uncertainty
as a critical factor in supplier selection (Chai et al., 2013).

The literature reviews outlined in Tables 1 and 2 emphasize the importance of investigating
uncertainty in SC designs. According to Sabri and Beamon (2000), uncertainty is one of
the most challenging and prominent problems in SC management. The inherent stochastic
nature of uncertainties is what makes a system complex, and it has attracted the interest of
researchers all over the globe. For example, Goh et al. (2007) developed a stochastic model
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Table 1 Studies on the relationship between SC characteristics and disruption

Author and year Theme Findings

Meixell and Gargeya
(2005)

Reviewed 18 major research articles
from 1982 to 2005 related to the
decision support models for a
global SC design

Addressed four aspects of modeling
issues: decision variables in the
model, performance metrics, SC
integration, and globalization
considerations

Melo et al. (2009) Presented a literature review on 98
journal articles from 1998 to 2008
related to network design in SCs

Emphasized the importance of SC
network design and how these
decisions will have a long-lasting
effect on a firm

Farahani et al. (2014) Reviewed 135 peer-reviewed articles
related to SC network design
models, solution techniques, and
applications

Focused on the effects of the
competitive environment on SC
network design

Snyder et al. (2016) examined 180 studies organized into
six categories: evaluating supply
disruptions; strategic decisions;
sourcing decisions; contracts and
incentives; inventory; and facility
location

the field is likely to continue to grow
over the coming years, with seven
areas identified as promising and
important as avenues for future
research

Table 2 Studies on the relationship between characteristics and disruption

Author and year Theme Findings

De Boer et al. (2001) Studied the supplier selection literature
in a more comprehensive manner

Proposed a framework that includes
four main steps in the supplier
selection process: problem definition,
formulation of selection criteria,
pre-qualification (preliminary
screening), and final selection

Ho et al. (2010) Presented a survey on 78 journal articles
(between 2000 and 2008) related to
multicriteria decision-making
approaches for supplier evaluation and
selection

Need to focus on customer-oriented
criteria (quality, delivery, flexibility)
instead of a cost-based approach to
supplier selection

Chai et al. (2013) Provided a literature review on 123
journal articles (from 2008 to 2012)
on the application of decision-making
techniques for supplier selection

Evaluating with the trend of uncertainty
in supplier selection can be a
promising direction for future studies

for a multistage global SC network problem. They used Moreau–Yosida regularization to
design an algorithm for solving the multistage global SC network problem with the goals of
maximizing profit and minimizing risk.

Similarly, Santoso et al. (2005) proposed a stochastic programming model and solution
algorithm to solve a realistic SC network design problem. They combined the sample average
approximation scheme with an accelerated Benders decomposition algorithm to solve large-
scale stochastic SC design problems. Additionally, Salehi et al. (2017) adopted a new robust
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two-stage multiperiod stochastic model to design a blood supply network in Iran, taking into
account the possibility of a natural disaster. They concluded that such studies are helpful in
developing alternative strategies during SC disruptions.

SC disruption is one form of uncertainty that is garnering attention from practitioners
and researchers because of increasing globalization (Ravindran et al., 2010) and instability
in the system. Research has focused on both contextual and methodological contributions.
Studies with contextual focus include disruption due to facility failures with equal (Snyder &
Daskin, 2005) andunequal (Bermanet al., 2007) probabilities, unreliable supplies (Qi&Shen,
2007), oligopolistic competition (Nagurney, 2010), facility disruptions (Peng et al., 2011),
random demand and unreliable suppliers (Aryanezhad et al., 2012), and global pandemics
(Chesbrough, 2020; Currie et al., 2020; Ivanov & Dolgui, 2020; Ivanov et al., 2018; Sarkis
et al., 2020). Such lowprobability–high impact disruption effects can bemitigated by sourcing
from nodes dispersed across the globe (Namdar et al., 2018).

The severity of SC disruptions is related to the geographical concentration of nodes within
an SC, known as SCD, which results from an SC network design decision (Craighead et al.,
2007; Falasca et al., 2008). SCD can be measured as the number of nodes divided by the
average internode distance. The SCD is said to be high whenmany nodes are clustered within
the SC. Therefore, the severity of SC disruptions is directly related to the SCD. Snyder et al.
(2016) emphasized that disruption can be mitigated by sourcing flexibility, which can have
an impact on overall SC profits. Thus, we focused on SCD and SC profits in this study.

Other studies have assessed the vulnerability of SCs and evaluated suitable mitigation
strategies in response to uncertainty and disruption. Schmitt and Singh (2009) used theMonte
Carlo analysis to generate a risk profile and discrete-event simulation to evaluate inventory
policies suitable for distribution networks that consider demand uncertainty, supply uncer-
tainty, or both. Klibi and Martel (2012) developed a scenario-based risk model to generate
resilient SCs using the Monte Carlo analysis. In both studies, multiperiod risk profiles were
generated to cover a specified planning horizon. Harrison et al. (2013) proposed an optimiza-
tion approach called resiliency enhancement analysis via deletion and insertion (READI)
to improve SC network resiliency. READI is used to evaluate network resiliency (when an
important SC node or flow is disabled) and mitigation strategies for resilience improvements.

Empirical research has shown the relationship between SC network characteristics and
SC disruption (Wagner & Neshat, 2010). SC network characteristics, including network
decentralization, geographical dispersion, number of nodes, and number of tiers, appear to
be related to the occurrence of SC disruptions (Bode & Wagner, 2015; Kim et al., 2015;
Squire, 2010). Conversely, as shown in Table 3, characteristics such as density, complexity,
node criticality, node centrality, and lack of redundancy are related to the severity of SC
disruptions (Craighead et al., 2007; Falasca et al., 2008; Squire, 2010; Wagner & Bode,
2006).

It is noteworthy that most studies on SC design have focused on optimizing a single cri-
terion, particularly profit (see Chan et al., 2016; Cheraghalipour et al., 2018; Darestani &
Hemmati, 2019; Jiang et al., 2019; Latha Shankar et al., 2013; Sangaiah et al., 2020). How-
ever, DMs inmany fields, including industry, engineering, and social sectors, are increasingly
required to consider multiple conflicting objectives in their decision processes (Ravindran,
2016). Multicriteria decision-making problems are categorized based on whether the con-
straints are (i) finite and known or (ii) infinite and unknown (Ravindran, 2016). SC network
design studies with multiple criteria have used a variety of solution methodologies, including
variants of goal programming (Ravindran et al., 2010), Benders decomposition algorithm
(Garcia-Herreros et al., 2014), exact mathematical modeling (Huang & Goetschalckx, 2014;
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Table 3 Studies on the relationship between SC characteristics and disruption

Authors SC network characteristics Focus

Wagner and Bode (2006) Single sourcing and the reliance on global supply
sources have a positive relationship to the severity
of disruptions

Severity

Craighead et al. (2007)
Falasca et al. (2008)

Density, complexity, node criticality, and capability
of warning and recovery are positively related to
the severity of disruptions

Severity

Squire (2010) Node criticality and node centrality relate to the
severity of the disruption
Geographical distance relates to the probability of
disruption
Redundancy reduces the severity of the disruption
Number of nodes relates to the probability of
disruption

Severity
Occurrence
Severity
Occurrence

Kim et al. (2015) A network structure significantly relates to the
likelihood of a network disruption

Occurrence

Bode and Wagner (2015) The number of suppliers in each tier, the number of
levels, and the geographical dispersion among
members within the network have a positive
relationship with the frequency of SC disruptions

Occurrence

Peng et al., 2011), and network optimization (Mari et al., 2014). Melo et al. (2009) provided
a detailed review of location design in SCs.

We used multicriteria decision-making modeling (Pazhani et al., 2018; Pinto-Varela et al.,
2011) to simulate the problem as a bi-criteria MILP in order to maximize profit and supply
density. The interstage distance between SC nodes was used to calculate and maximize
supply density, which resulted in a geographically dispersed network design. Subsequently,
we propose an interactive fuzzy optimization algorithm that uses the 2-constraint method
to solve the problem and generate a Pareto-efficient frontier. The interactive optimization
algorithm guides the user/DM in choosing the best network design solution from those
available in thePareto-efficient frontier, basedon thefirm’s objectives.Themodel is illustrated
using a realistic example. We also evaluated the resilience of the SC network solutions under
disruptive scenarios and demonstrated the value of incorporating supply density into the
network design. This research contributes to the existing literature by incorporating SC
characteristics into SC design. Additionally, the proposed interactive optimization algorithm
systematically solves the bi-criteria problem. The algorithm reduces the cognitive burden on
the DM by accelerating the convergence of the best compromise solution.

3 Bi-criteria network designmodel

This section presents the proposed bi-criteria network design model for the four-stage SC
network with the objectives of maximizing profit and supply density. Let S � {1, 2,…, nS}
be the set of suppliers, M � {1, 2,…, nM} the set of manufacturing plants, and C � {1, 2,…,
nC} the set of retailers. Let W � {1, 2,…, nW} be the set of potential warehouse sites and L
� {1,2,…, nL} the set of the warehouse capacity levels. Figure 1 shows the considered SC
network.
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Fig. 1 The four-stage SC network

The SC network includes suppliers, manufacturing plants, warehouses, and retailers. The
manufacturing plants procure the rawmaterial required for production from the set of selected
suppliers. The product flows from the manufacturing plants to the warehouses, which are
managed by a single DM (i.e., a centralized control system). The retailers are faced with
demands from customers and are supplied by a set of potential warehouses.

The proposed model is developed to (i) select the appropriate suppliers and determine the
quantities allocated to the chosen suppliers, (ii) select the appropriate set of warehouses and
their capacity levels to distribute products from the manufacturing plants to retailers, and (iii)
determine the flow of products in the SC between the selected set of facilities. The model’s
objective is to maximize SC profit and supply density. The total cost includes purchasing
costs, manufacturing costs, warehouse opening costs, and transportation costs between SC
stages. The supply density objective was calculated based on the interstage distances between
the selected set of suppliers and the manufacturing plants to which they supply raw materials
and the intrastage distances between the selected group of suppliers. Hence, a lower supply
density value implies that the nodes in the SC are clustered. Thus, we maximized the supply
density.

The model parameters, decision variables, and cost function components are provided
below:

Input Parameters

capm Production capacity at the manufacturing plant m, ∀ m ∈ M

capl
w Capacity of warehouse w of size l, ∀ w ∈ W , ∀ l ∈ L

caps Capacity of supplier s, ∀ s ∈ S

dc Demand for products at retailer c, ∀ c ∈ C

dissm Distance between supplier s and manufacturing plant m, ∀ s ∈ S, ∀ m ∈ M

idisss’ Intrastage distance between suppliers s and s’, ∀ s, s
′ ∈ S

msm Minimum transportation quantity from suppliers to manufacturers

mas Maximum number of suppliers to be selected in the network
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Cost function components

psm Purchasing cost of raw materials from supplier s by plant m, ∀ s ∈ S, ∀ m ∈ M

trmw Transportation cost per unit from plant m to warehouse w, ∀ m ∈ M, ∀ w ∈ W

trwc Transportation cost per unit from warehouse w to retailer c, ∀ w ∈ W , ∀ c ∈ C

pcm Production cost for a product at plant m, ∀ m ∈ M

np Price of a product

f l
w Fixed cost of opening warehouse w with capacity l, ∀ w ∈ W , ∀ l ∈ L

lsc Lost sales cost at retailer c, ∀ c ∈ C

Decision variables

QSMsm Quantity of raw materials purchased from supplier s by plant m, ∀ s ∈ S, ∀ m ∈ M

QMWmw Quantity of products transported from plant m to warehouse w, ∀ m ∈ M, ∀ w ∈ W

QWCwc Quantity of products transported from warehouse w to retailer c, ∀ w ∈ W , ∀ c ∈ C

LDc Quantity of sales lost at retailer c, ∀ c ∈ C

δl
w

{
1, if warehousew is opened with size l

0, otherwise
, ∀w ∈ W , l ∈ L

Sαsm
{
1, if suppliers supplies raw materials to plant m

0, otherwise
, ∀s ∈ S, m ∈ M

Sβijm
{
1, if supplieri and supplier j supply to plant m

0, otherwise
, ∀(i, j) ∈ S and (i �� j), m ∈ M

Sβ’ijm
{
1, if supplieri and supplier j supply to plant m

0, otherwise
, ∀(i, j) ∈ S and (i �� j), m ∈ M

SUPs
{
1, if suppliers supplies raw materials

0, otherwise
, ∀s ∈ S

The following assumptions were considered when developing the proposed model:

(i) Retailer demands are deterministic. Since the proposed model is a strategic decision-
making model, this assumption is reasonable.

(ii) The suppliers and manufacturing plants have finite production capacity.
(iii) The cost of transporting raw materials from the supplier to the manufacturing plant is

included in the raw material purchasing cost.
(iv) The warehousing facilities in the SC have capacity restrictions.

3.1 The proposed bi-criteria MILPmodel

Considering the purchasing cost, manufacturing cost, transportation cost, fixed cost com-
ponents, interdistance between the suppliers and manufacturing plants, and intradistance
between the suppliers, the problem can be formulated as an MILP with the objectives of
maximizing the total profit and the supply density of the SC:
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3.1.1 Objective 1: maximizing the SC profit (Z1)

Maximize Z1 �
{

np

( ∑
w∈W

∑
c∈C

QWCwc

)}
−

{∑
s∈S

∑
m∈M

psm QSMsm

+
∑

m∈M

pcm

( ∑
w∈W

QMWmw

)
+

∑
m∈M

∑
w∈W

trmw QMWmw

+
∑
w∈W

∑
c∈C

trwc QWCwc +
∑
l∈L

∑
w∈W

f l
wδl

w +
∑
c∈C

lsc L Dc

}
,

where the components of the SC profit objective are: {revenue}—{purchasing cost + pro-
duction cost + transportation cost from plants to warehouses + transportation cost from
warehouses to retailers + fixed cost for opening warehouses + lost sales cost}.

3.1.2 Objective 2: maximizing the supply density based on the interstage distance (Z2)

The supply density is calculated based on the interstage distance between the selected suppli-
ers and plants and the intrastage distance between the selected suppliers.Wewill demonstrate
the computation with an example. Consider a two-stage SC where two suppliers (S1 and S3)
both supply products to a manufacturer (M1). The interstage distance is the distance between
stages. In this example, the interstage distance is the sum of the distance between supplier
S1 and manufacturer M1 and the distance between supplier S3 and manufacturer M1 (see
Fig. 2). The interstage density of the suppliers in the SC is calculated using this metric. The
intrastage distance is the distance within a stage. In this example, the intrastage distance is the
distance between suppliers S1 and S3, as shown in Fig. 2. The intrastage density of suppliers
within a stage in the SC is measured using this metric.

In this study, the supply density objective is the density of the supply entity per unit of
demand, which is defined by the interstage and intrastage distances for the supplier stage in
the objective function:

Maximize Z2 � 1∑
c∈C dc

⎛
⎝∑

s∈S

∑
m∈M

dissm Sαsm +
∑

m∈M

∑
i∈S

∑
j∈S

disi j Sβi jm

⎞
⎠

Fig. 2 Interstage distance and
intrastage distance
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Subject to, ∑
m∈M

QSMsm ≤ caps,∀s ∈ S, (1)

QSMsm ≤ caps × Sαsm,∀s ∈ S,∀m ∈ M (2)

QSMsn ≥ msm × Sαsm,∀s ∈ S,∀m ∈ M (3)

(
2 × Sβi jm

)
+ Sβ ′

i jm � Sαim + Sα jm,∀(i, j) ∈ S, i �� j, i < j, ∀m ∈ M (4)

Sβi jm + Sβ ′
i jm ≤ 1,∀(i, j) ∈ S, i �� j, i < j,∀m ∈ M (5)∑
w∈W

QMWmw ≤ capm,∀m ∈ M (6)

∑
s∈S

QSMsm �
∑
w∈W

QMWmw,∀m ∈ M (7)

∑
m∈M

QMWmw ≤
∑
l∈L

capl
w × δl

w,∀w ∈ W (8)

∑
l∈L

δl
w ≤ 1,∀w ∈ W (9)

∑
m∈M

QMWmw ≤
∑
c∈C

QWCwc,∀w ∈ W (10)

∑
w∈W

QWCwc + L Dc � dc,∀c ∈ C (11)

∑
m∈M

Sαsm ≤ M × SU Ps,∀s ∈ S (12)

∑
s∈S

SU Ps ≤ mas (13)

QSMsm, QMWmw, QWCwc, L Dc ≥ 0 (14)

δl
w, Sαsm, Sβi jm, Sβ

′
i jm ∈ {0.1} (15)

Each supplier shas afinite supply capacity: caps. Constraint set (1) ensures that the quantity
of raw materials supplied by supplier s to all manufacturing plants is less than or equal to
its capacity. Constraint sets (2) and (3) determine the binary variables for the interstage
flow between suppliers and manufacturers. Constraint (2) ensures that if there is a shipment
between supplier s and manufacturer m, the binary variable Sαsm � 1. Constraint (3) ensures
that if there is no shipment between stages, the binary variable Sαsm � 0. Constraint (3) also
ensures minimum shipment if there is a shipment between supplier s and plant m. Constraint
sets (4) and (5) determine the binary variables for the intrastage flow for the supplier stage.
The right-side term in Constraint (4) represents the product flow from suppliers i and j to
manufacturer m. If both (supplier i to manufacturer m and supplier j to manufacturer m) links
have product flow, the binary variable Sβ ijm � 1 and Sβ’ijm � 0. If product flow exists in
either the supplier i to manufacturer m link or the supplier j to manufacturer m link, then
Sβ’ijm � 1 and Sβ ijm � 0. If there is no flow in these links, Sβ ijm � 0 and Sβ’ijm � 0.
Constraint (5) ensures that one of the following cases is true: Sβ ijm � 1 and Sβ’ijm � 0,
Sβ ijm � 0 and Sβ’ijm � 1, or Sβ ijm � 0 and Sβ’ijm � 0. Constraint (6) is the production
capacity constraints at the plants. The left-most term represents the total quantity of products
transported to warehouses from plant m, which should be less than or equal to its capacity.
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Constraint set (7) ensures that the quantity of raw materials flowing into plant m equals
the number of products flowing out of the plant to the warehouses. Constraint set (8) ensures
that if a warehouse is selected, the number of products flowing into the warehouse, w, does
not exceed the storage capacity. The left side represents the total quantity of products flowing
into warehouse w. The right side is the capacity of the selected warehouse. If warehouse w
is opened, constraint set (9) ensures that only one capacity level is preferred. Constraint set
(10) ensures that the quantity of products flowing into warehouse w equals the number of
new products flowing out of the warehouse to the retailers. Constraint set (11) represents the
demand satisfaction constraints. The total quantity of products flowing into retailer c and the
lost sales at retailer c should be equal to the demand at that retailer.

Constraint set (12) ensures that the variable, SUPs, is set to 1 when there is a flow from
supplier s. Note that M is a large positive number. Constraint (13) also ensures that the total
number of selected suppliers does not exceed the maximum. Finally, Constraints (14) and
(15) describe the nonnegativity and binary conditions of the decision variables.

3.2 Interactive fuzzy optimization algorithm

Fuzzy programming methods are popular approaches for solving multiobjective program-
ming models because of their ability to explicitly measure and adjust the satisfaction level
of each objective function (Pishvaee & Razmi, 2012). Herein, we propose a fuzzy solution
method based on the 2-constraint method (Hwang & Masud, 1979). This method provides
DMs an appropriate picture of the entire Pareto-optimal set, allowing them to select their
preferred solution. The advantage of this method is that after the entire Pareto-optimal set
has been defined, the DM can determine the final decision more confidently based on com-
prehensive available information (Pishvaee & Razmi, 2012; for a detailed description of the
2-constraint method, see Ehrgott, 2005).
We first generate a set of efficient solutions by varying the right-hand side of the 2-

constraint. The 2values are first varied in more comprehensive steps to develop the entire
Pareto-optimal solution.Next,we present the efficient frontier to theDM, and theDMchooses
a range of 2values that they are interested in. We use the DM’s input to generate solutions
in the interested range by varying the 2values in more adequate steps. Subsequently, the
DM is presented with this solution to determine the best compromise solution. We used an
interactive fuzzy optimization algorithm based on the 2-constraint method for solving the
bi-criteria MILP model.

The general form of the bi-criteria mathematical programming model is as follows:

Maximize f1(x),

Maximize f2(x),

Subject to, yi (x) ≤ 0,∀(1 ≤ i ≤ m),

where x is an n-dimensional vector of the decision variables, f 1 and f 2 represent the profit
and density objectives, respectively, and yi represents Constraint sets (1) to (15).

Let S � {x |yi (x) ≤ 0 } denote the feasible region. We aimed to find the best compromise
solution that maximizes profit and SCD based on the DMs’ utility function. The steps of the
proposed method are as follows:
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At each iteration, we minimized μ1(x) with constraint on μ2(x). The problem can also
be solved by minimizing μ2(x) with a constraint on μ1(x).
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4 Illustrative example

This section presents an analysis of a four-stage SC system as an example. The SC network
comprises the following:

• Twenty potential suppliers of materials required to manufacture new products,
• Five manufacturing plants that produce new products and refurbish returned products,
• Twenty-five possible warehousing facilities for distributing new products to retailers, and
• Approximately 100 retailers, who face demand from customers.

The input and cost-parameter settings used in this example are more realistic with respect
to the location of the facilities and the distances between them. The SC facilities are geo-
graphically spread across six different regions around the world (see Table 4). We selected
latitude and longitude for each facility in the SC. Thereafter, we used the FINDDIST proce-
dure of Ramkumar et al. (2012) to determine the interstage and intrastage distances between
the facilities. See "Appendix" for Tables 18 and 19: Table 18 shows the interstage distance
between the suppliers andmanufacturers, and Table 19 shows the intrastage distance between
the suppliers. Note that the intrastage distance between suppliers i and j, where i � j is not
feasible, is assigned a significant value of 100,000.

The cost parameters are modeled as a function of the product price. Table 5 shows the cost
settings. Note that the purchasing cost of the raw materials includes the distances between
the supplier and the manufacturing plants (dissm).

Retailer demandwasgenerated fromauniformdistributionbetween500 and700units. The
maximum number of suppliers (mas) to be selected was set as 10. Table 20 (see "Appendix")
shows the purchasing cost and capacity of the suppliers, as well as the capacity of the
manufacturing plants. Table 21 (see "Appendix") shows the capacity of the warehouses
and fixed costs.

We then solved and analyzed the proposed bi-criteria model and the interactive solution
method using the illustrative example. The example was coded in Microsoft Visual C++

Table 4 Geographical locations of existing and potential facilities

Region Suppliers Plants Warehouses Retailers

Region 1
(Africa)

S16 M3 W17 R65–R68

Region 2
(Asia)

S5, S8, S10, S11,
S12, S15, S17,
S18

M1, M2 W7, W9, W10, W11,
W14, W15, W16,
W19, W20, W21,
W25

R25–R28, R33–R44,
R53–R64, R73–R84,
R97–R100

Region 3
(Europe)

S6, S7, S9, S14,
S19

M4 W3, W4, W8, W13,
W18, W22

R9–R16, R29–R32,
R49–R52,
R69–R72, R85–R88

Region 4
(North America)

S4, S13, S20 M5 W6, W12, W23 R21–R24, R45–R48,
R89–R92

Region 5
(Australia)

S2 – W2 R5–8

Region 6
(South America)

S1, S3 – W1, W5, W24 R1–R4, R17–R20,
R93–R96

Total facilities 20 5 25 100
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Table 5 Cost-parameter settings for the numerical example

Parameter Notation Setting

Total cost of a new product pp $750

Profit margin 20%

Price of new product np $900

Purchasing cost of raw material psm ~ Unif (60%, 65%) * pp + (dissm / 250)

Production cost for a new product pcm ~ Unif (8%, 12%) * pp

Transportation cost per unit between plant and
warehouse

trmw ~ Unif (5.5%, 6.5%) * pp

Transportation cost per unit between retailer and
warehouse

trwc ~ Unif (8.5%, 9.5%) * pp

6.0 and solved using ILOG Concert Technology with CPLEX 12.1 on a personal computer
with a 2.8 GHz INTEL(R) Core (TM) 2 Duo Processor and 2.0 GB RAM. We first ran the
model as a single-objective problem with profit (Z1) and density (Z2) as separate objectives.
Thereafter, we ran the model as a bi-criteria model with both profit (Z1) and density (Z2)
objectives using the proposed interactive fuzzy optimization algorithm.

4.1 Single-objective model solutions

We started by solving the single-objective models to obtain the ideal value of the objec-
tive functions. For the profit maximization model, the ideal value of SC profit (vu) was
$13,160,455.48, with a supply density (wl) of 0.81. For the supply density maximization
model, the ideal value of the supply density (wu) was 30.01, with an SC profit (vl) of
$11,257,836.05. Table 6 summarizes the network design from the single-objective models.
Figure 3 presents the geographical dispersion of the SC network solutions.

Table 6 Single-objective model solutions

Region Profit maximization Supply density maximization

Selected suppliers Selected warehouses Selected suppliers Selected
warehouses

Region 1 S16 – S16 –

Region 2 S5, S8, S11, S15 – S5, S8, S10, S12 W15

Region 3 S6, S7, S9 W8 S9 W8

Region 4 S4, S13 W12, W23 S13 W12

Region 5 – – S2 –

Region 6 – – S1, S3 –

Profit value $13,160,455.48 (ideal profit value) $11,257,836.05

Density value 0.81 30.01 (ideal density value)
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(a) SC network solution from the profit maximization model

(b) SC network solution from the supply density maximization model

Fig. 3 Geographical dispersion of the SC network from the single-objective model

4.2 Bi-criteria model solutions

In this section, we solve the bi-criteria model with profit and density objectives using the
proposed interactive fuzzy optimization algorithmbased on the 2-constraintmethod. Pishvaee
and Razmi (2012) suggested that the DM could adjust the range of the 2values throughout
the calculation process. In early iterations, the DM starts with more comprehensive steps to
quickly generate the whole range of Pareto-optimal solutions. In later iterations, the DMmay
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be interested in selecting the final preferred solution using finer steps such that interesting
areas can be investigated more precisely. Initially, we vary the 2values between 0 and 1 in
steps of 0.05. Table 7 shows the revenue, costs, SC profit, and supply density for 2values
ranging from 0 to 1. Figure 4 shows the entire efficient frontier.

We present theDMwith this efficient frontier solution.We assume that theDM selects an 2
value range of 0.45–0.50.We generate the Pareto-optimal solutions using a finer step value of
0.01. Table 8 shows the corresponding results, and Fig. 5 shows the graphical representation
of the efficient frontier.

We assume that the DM selects the efficient solution for 2� 0.45. Table 9 presents
the selected suppliers and warehouses from the bi-criteria model with an 2value of 0.45.
Suppliers from five regions are selected. Table 10 shows the material flows across the SC
stages. Three warehouses (warehouses 8, 12, and 23), each with a size of 3, are selected to
distribute the finished products to the retailers. The product flows between the manufacturing
plants, and the selected warehouses are presented in Table 11. Figure 6 shows the SC network
configuration from the bi-criteria model for 2� 0.45.

5 Disruption analysis

In this section, we present the disruption analysis using a discrete set of scenarios. The
objective is to compare the severity of disruption to the SC performance of the different SC
network solutions obtained in Sect. 4. We generated six independent disruptive scenarios,
each representing a disruption in each region. Table 12 presents the list of suppliers, plants,
and warehouses that were affected by a disruption in each scenario.

In the MILP model, we set the binary variables relating to the disrupted entities to zero
and re-optimized the model to measure the SC profit and unfulfilled demand. Note that
the SC profit is the difference between the revenue and variable costs (purchasing cost,
production cost, transportation cost, and lost sales cost). The fixed cost was not included
in the profit calculation because the location decision had already been made. Tables 13
and 14 provide the revenue, variable costs, and unfulfilled demand associated with each
disruptive scenario. Table 15 compares the SC profit of two SC network design solutions
under disruptive scenarios.

Since the occurrence of the disruptive scenarios is different, we referred to the number
of disasters, both natural and technological disasters reported by the Centre for Research on
the Epidemiology of Disasters (Guha-Sapir et al., n.d.) between 1900 and 2014, to estimate
the probability of disruption (see Table 16). The likelihood of occurrence for each scenario
is the ratio between the number of disasters reported in a region and the total number of
disasters reported. Table 16 shows the expected profit value and variance for each network
design solution.

The expected profit of the SCnetwork solution thatwas obtained from the profitmaximiza-
tion model is $9,959,864.60, with a variance of 8.5 × 1012. The expected payoff of the SC
network solution that was obtained from the bi-criteria model is $10,162,625.72, with a vari-
ance of 8.31 × 1012. The high value of anticipated profit and the low value of profit variance
both indicate that the SC network design solution obtained from the bi-criteria model is more
resilient than the one obtained from the profit maximization model. The bi-criteria solution
yielded a higher expected profit value of $202,771 or 2% than the profit maximization solu-
tion. The bi-criteria solution had a lower profit variance than the profit maximization solution
(about 2.2%). Note that the cost of redundancy is $13,160,455–$12,880,839 � $279,615.68,
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Fig. 4 The efficient frontier for 2values between 0 and 1

as calculated from the difference in profit values between the profit maximization and the
bi-criteria solutions.

5.1 Discussions andmanagerial implications

In Sect. 5, we compared the SC performance of two SC network designs in a normal situation
and under disruption. This section compares the number of selected suppliers of our model
to that of Rienkhemaniyom and Pazhani (2015), as shown in Table 17.

The following are some of the inferences drawn from the analysis and the managerial
implications from the model:

• SC network design, which is highly focused on profit maximization, tends to select suppli-
ers that are clustered in regions that offer low costs. Even though the region has a relatively
low possibility of facing random disruptions, our analysis shows that the expected profit
loss and variance are high.

• The SC network design from the bi-criteria model diversifies risk by locating suppliers
in different geographical locations. Even though it increases the probability of facing SC
disruption, the expected profit loss, as well as its variance, is relatively low. Hence, the
SC network design from the bi-criteria model is more resilient than that from the single-
objective model. other.

• By adding a constraint to the model (limiting the maximum number of selected suppliers
to 10), the SC profit decreases. In terms of resiliency, the SC network design from the
bi-criteria model is more resilient than the one from the profit maximization model in both
cases.

• Mitigation cost versus mitigation benefit: the mitigation benefit from the bi-criteria model
(without the maximum number of supplier constraints) outweighs the mitigation cost.
Conversely, the mitigation benefit from the bi-criteria model (with the maximum number
of suppliers) is higher than the mitigation benefit from the profit maximization model.
SC managers can use this comparison to evaluate the effectiveness of various mitigation
strategies.
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Fig. 5 The efficient frontier for 2values between 0.44 and 0.50

Table 9 Selected suppliers and
warehouses from the bi-criteria
model solution

Region Selected suppliers Selected warehouses

Region 1 S16 –

Region 2 S5, S8, S11 –

Region 3 S6, S7, S9 W8

Region 4 S4, S13 W12, W23

Region 5 S2 –

Region 6 – –

6 Conclusions and future research

Tomanufacture and distribute products efficiently and effectively, network design in SC is one
of the most crucial decisions to make. In this study, we attempted to integrate systemic risk
theory and contingency theory to investigate the impact of supply density on SC resilience
and the design of a four-stage SC network. Furthermore, the consideration of SCD and
profitability in network design is novel, and this will open up new avenues for similar studies
in the field.

We formulated a bi-criteria MILP model to optimally select suppliers, determine the
location of facilities, and design a distribution plan between the selected set of facilities in
order to maximize SC profit and supply density. We developed an interactive fuzzy solution
approach based on the ε-constraint method to solve the proposed bi-criteriaMILPmodel. The
solution approachwas able to interactively generate a Pareto-efficient frontier that represented
a trade-off between SC profit and supply density objectives. A realistic illustrative example
was solved to demonstrate the use of the bi-criteriaMILPmodel and the interactive algorithm.

We also evaluated the resiliency of the SC network solutions and compared them based
on the expected profit and variance. According to the findings, the SC network design that
prioritized profit maximization tended to select facilities that were nearby such that the total
cost wasminimized. However, this resulted in a high expected severity of randomdisruptions.
Conversely, the bi-criterion SC network design allowed redundancy in the SC by spreading
facilities to different regions. Thus, the SC expected the disruptions to be less severe. For the
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Table 11 Product flows from the manufacturing plants to the selected warehouses

Facilities Warehouse 8 Warehouse 12 Warehouse 23 Total

Manufacturing plant 1 3143 0 4502 7645

Manufacturing plant 2 0 0 12,870 12,870

Manufacturing plant 3 16,478 0 0 16,478

Manufacturing plant 4 0 9724 1305 11,029

Manufacturing plant 5 0 11,483 0 11,483

Total 19,621 21,207 18,677 59,505

Fig. 6 SC network configuration for the bi-criteria model

illustrative example, the results indicate that the bi-criterion SC network design yielded a 2%
higher expected profit and a 2.2% lower expected profit variance than the profit maximization
network design. The model can help companies evaluate the trade-off between mitigation
benefit and mitigation cost.

However, this study has limitations that allow scope for future work. First, the current
model does not discuss the profit and risk-sharing mechanisms that govern the SC. We
acknowledge that these have significant implications for sharing benefits and risks along the
SC, and we believe that this can be considered as a follow-up study.

Second, the density of plants and warehouses in the network can be considered. In this
case, the interstage and intrastage functions must also be extended to the other stages.We can
also develop themathematical model to incorporate other SC network characteristics, such as
network complexity and node criticality, to gain a better understanding of SC resilience. The
model can also be developed into a multiperiod model, and a risk profile can be formulated
to evaluate SC resiliency on a tactical level.

Finally, the model does not consider the stochastic nature of the variables that impact SC
profitability and resilience. Parameters such as demand and cost factors in the SC directly
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Table 12 Disrupted SC entities in each scenario

Scenario Region Affected suppliers Affected plants Affected warehouses

Bi-criterion
SCN*

Profit
SCN

Bi-criterion
SCN

Profit
SCN

Bi-criterion
SCN

Profit
SCN

1 Region
1

S16 S16 M3 M3 – –

2 Region
2

S5, S8, S11 S5, S8,
S11,
S15

M1, M2 M1,
M2

– –

3 Region
3

S6, S7, S9 S6, S7,
S9

M4 M4 W8 W8

4 Region
4

S4, S13 S4, S13 M5 M5 W12, W23 W12,
W23

5 Region
5

S2 – – – – –

6 Region
6

– – – – – –

*SCN SC network

affect the network design and SC performance indicators. Based on its strategic nature, the
problem can be extended by incorporating demand and cost uncertainty. Several researchers
(Belen et al., 2009; Savku &Weber, 2017; Yılmaz et al., 2015) have investigated stochastical
optimal control problems in diverse topics; such studies can also be conducted in the context
of SC design and optimization.
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Table 15 Comparison of the SC profit between two SC network design solutions under disruptive scenarios

Scenario Profit SCN ($) Bi-criteria SCN ($) % Increase in profit

SC1 12,759,387.00 13,025,473.32 2.09

SC2 9,203,655.00 9,614,620.62 4.47

SC3 9,550,812.90 9,526,178.98 − 0.26

SC4 4,010,556.20 4,010,556.17 0.00

SC5 14,909,497.00 14,087,803.17 − 5.51

SC6 14,909,497.00 14,884,886.49 − 0.17

Average % increase 0.10

Table 16 Probability of occurrence for each scenario and expected SC profit under disruptive scenarios

Scenario Number of
disasters reported
during
1900–2014

Probability of
occurrence

Expected profit value of
the profit maximization
solution ($)

Expected profit value
of the bi-criteria
solution ($)

1 4345 0.21 12,759,387.48 13,025,473.32

2 8819 0.43 9,203,654.99 9,614,620.62

3 2736 0.13 9,550,812.91 9,526,178.98

4 2359 0.11 4,010,556.17 4,010,556.17

5 668 0.03 14,909,497.48 14,087,803.17

6 1646 0.08 14,909,497.48 14,884,886.49

Expected value 9,959,854.596 10,162,625.72

Variance 8.50173E+12 8.3124E+12
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Table 17 Comparison of the SC performance for different SC network designs with/without disruption

SC network design model without
maximum number of supplier
constraint

SC network design model with
the maximum number of
suppliers � 10

Profit
maximization

Bi-criteria
model ( 2�
0.68)

Profit
maximization

Bi-criteria model
( 2� 0.45)

No
disruption

Number of
selected
suppliers

13 20 10 10

profit value $13,248,680 $12,954,399 $13,160,455.48 $12,880,839.75

Density
value

1.34 31.85 0.81 17.1

Under dis-
ruptions

Expected
profit
value

$10,602,016.36 $10,988,433.3 $9,959,854.59 $10,162,625.72

variance of
profit
value

1.05E + 13 0.69E + 13 0.85E + 13 0.83E + 13

Mitigation cost $294,281 $279,616

Mitigation benefit $386,417 $202,771
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Table 18 Interstage distance (in miles) between the supplier and the manufacturing plants

Plant 1 Plant 2 Plant 3 Plant 4 Plant 5

S1 12,143 9756 5466 5782 5338

S2 5502 6363 6417 8647 8803

S3 10,471 8038 4446 5816 5383

S4 7043 7154 7428 2322 2129

S5 560 2947 7380 5915 6351

S6 5498 4264 5331 4932 4945

S7 5170 4055 5488 4912 4965

S8 2824 525 4405 8454 8791

S9 5519 4113 5076 5189 5195

S10 1442 4221 8639 5060 5513

S11 720 3580 7945 5774 6226

S12 8696 9262 7812 2435 1983

S13 8270 9904 8897 1997 1607

S14 5351 4236 5496 4822 4855

S15 1977 2589 6747 5545 5907

S16 7856 5121 704 9699 9324

S17 1356 2101 6038 7711 8152

S18 4533 2579 4387 6461 6562

S19 5446 4620 5919 4344 4377

S20 7373 7790 7838 1907 1619

S supplier
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Table 20 The purchasing cost of the suppliers, the capacity of the suppliers, and the capacity of the manufac-
turing plants

Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Capacity at supplier i
(units)

S1 508.78 514.72 474.87 503.67 477.98 3969

S2 486.66 476.62 494.57 515.11 497.16 5483

S3 496.18 503.00 481.71 489.27 503.19 3113

S4 482.22 502.98 486.84 481.18 461.25 6295

S5 466.21 486.01 492.10 489.03 479.46 5975

S6 498.06 485.64 505.89 472.90 473.15 5788

S7 505.11 497.65 490.10 474.56 481.14 6900

S8 494.95 458.17 491.42 511.33 521.52 6882

S9 492.79 485.13 476.75 489.09 499.79 6990

S10 462.62 490.70 503.81 490.97 496.66 3767

S11 453.20 486.09 492.61 500.56 483.09 3670

S12 495.56 492.78 509.75 478.51 485.36 5646

S13 516.55 491.81 491.99 479.30 465.88 6188

S14 486.67 490.83 472.78 493.42 490.51 3604

S15 490.16 470.87 496.63 482.15 502.01 4304

S16 508.98 472.37 457.84 506.45 519.29 6597

S17 482.13 469.72 504.41 505.41 496.63 3453

S18 490.39 491.91 501.77 497.74 481.54 4538

S19 495.06 498.61 488.26 494.26 486.26 5057

S20 516.22 494.49 488.89 484.91 493.27 4578

Production cost at
plant m

82.56 76.70 62.24 76.57 83.73

Capacity of plant m
(units)

17,442 18,262 16,478 11,029 12,829

S supplier
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Table 21 Capacity and fixed cost of the warehouses

Size 1 Size 2 Size 3

Capacity
(units)

Fixed cost Capacity
(units)

Fixed cost Capacity
(units)

Fixed cost

W1 10,704 429,710 13,972 484,574 20,815 599,472

W2 9221 404,814 16,831 532,581 18,571 561,788

W3 11,475 442,658 16,286 523,435 23,349 642,000

W4 8217 387,955 16,900 533,729 20,054 586,685

W5 7982 384,007 14,727 497,248 20,575 595,437

W6 8451 391,883 13,892 483,239 18,241 556,251

W7 6244 354,828 16,988 535,214 22,484 627,484

W8 10,030 418,406 15,965 518,043 19,621 579,420

W9 5969 350,216 17,592 545,354 22,075 620,613

W10 9303 406,197 14,467 492,889 21,678 613,955

W11 10,930 433,503 15,089 503,333 19,982 585,475

W12 8310 389,518 17,200 538,780 21,207 606,052

W13 6841 364,853 17,675 546,755 22,429 626,558

W14 10,844 432,061 15,275 506,460 21,700 614,329

W15 11,362 440,753 17,524 544,214 19,656 580,012

W16 7181 370,575 12,708 463,363 20,022 586,151

W17 7347 373,362 17,101 537,118 21,393 609,170

W18 8648 395,190 15,305 506,954 19,381 575,390

W19 9152 403,661 14,547 494,239 23,218 639,801

W20 7691 379,137 14,665 496,211 22,235 623,307

W21 6931 366,364 16,977 535,030 23,565 645,632

W22 10,637 428,585 12,036 452,082 21,585 612,395

W23 9518 409,799 13,224 472,028 18,677 563,570

W24 7578 377,227 15,985 518,368 19,037 569,619

W25 8287 389,135 17,718 547,476 18,519 560,910

W warehouse
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