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Abstract
The natural gas price is an essential financial variable that needs periodic modeling and
predictive analysis for many practical implications. Macroeconomic euphoria and external
uncertainty make its evolutionary patterns highly complex. We propose a two-stage granular
framework to perform predictive analysis of the natural gas futures for the USA (NGF-
USA) and the UK natural gas futures for the EU (NGF-UK) for pre-and during COVID-19
phases. The residuals of the previous stage are introduced as a new explanatory feature along
with standard technical indicators to perform predictive tasks. The importance of the new
feature is explained through the Boruta feature evaluation methodology. Maximal Overlap
DiscreteWavelet Transformation (MODWT) is applied to decompose the original time-series
observations of the natural gas prices to enable granular level forecasting. Random Forest is
invoked on each component to fetch the respective predictions. The aggregated component-
wise sums lead to final predictions. A rigorous performance assessment signifies the efficacy
of the proposed framework. The results show the effectiveness of the residual as a feature
in deriving accurate forecasts. The framework is highly efficient in analyzing patterns in the
presence of a limited number of data points during the uncertain COVID-19 phase covering
the first and second waves of the pandemic. Our findings reveal that the prediction accuracy
is the best for the NGF-UK in the pre-COVID-19 period. Also, the prediction accuracy of
the NGF-USA is better in the COVID-19 period than the pre-COVID-19 period.
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1 Introduction

Natural gas usage has seen a continuous surge in the world energy systems due to sustain-
ability challenges and to mitigate hazardous environmental impacts (Avraam et al., 2021;
Zhou et al., 2021). Economic activities are closely linked with natural gas prices. As a
result, predicting natural gas prices becomes a highly arduous task of paramount relevance
in the planning and operations of various key assets, including public utilities (Goncharuk &
Cirella, 2020). Natural gas price predictions assist in regulatory decision-making regarding
electric and gas utilities (Costello, 2010). Despite an uninterrupted growth of natural gas
trade, bubbles in natural gas prices in the European Union, Asia, and the US markets have
been documented (Li et al., 2020). Economic euphoria, geopolitical events, fluctuations of
crude oil prices largely account for the same. Unavoidable lockdowns and curbs owing to
the COVID-19 pandemic have further triggered uncertainty in the overall consumption of
natural gas and (Cihan, 2022).

The literature reported the rambling price movements of natural gas played a pivotal role
in political chaos in Venezuela, public protests in Iran, and political turmoil in Kazakhstan
(Rostan &Rostan, 2021). Precise predictions of natural gas prices can help optimize resource
utilization, reserves management, and drawing decisions on economic reforms. Natural gas
pricemovements are susceptible to natural calamities and external economicvolatility (Huang
& Etienne, 2021; Shi & Shen, 2021). Its co-movement and strong nexus with the crude oil
price and stock market across different economies are also apparent (Ftiti et al., 2020; Mensi
et al., 2021). Fluctuations of natural gas prices induce volatility towards gas-and-coal-fired
electricity generation (Linn and Muehlenbachs, 2018). The potential implications of natural
gas price predictions motivate us to develop a robust framework that yields highly accurate
forecasts during the normal and new-normal timelines.

Natural gas futures price forecasting has received less attention than crude oil. The lit-
erature is more focused on predictive analysis of natural gas consumption at industrial and
household levels (Gao & Shao, 2021; Hu et al., 2020; Xiao et al., 2020). We retrieve some
literature that deals with natural gas futures price forecasting. Variants of regression and arti-
ficial neural network (ANN) models have been used for predictive modeling of natural gas
prices (Salehnia et al., 2013). The results revealed that the accuracy of the ANN models was
the best. Historical prices coupled with news on the internet and search data are used to fore-
cast natural gas prices (Tang et al., 2019). The latter two components impacted positively to
achieve better predictions. AVariational mode decomposition-based approach is used to esti-
mate the point and interval forecasts for natural gas prices (Jiang et al., 2021). The obtained
forecasts were more reliable and stable than the other models. Some hybrid approaches are
also proposed to forecast daily natural gas prices (Wang et al., 2020).Unfortunately, the dearth
of predictive modeling work to predict natural gas prices during the COVID-19 pandemic is
pretty apparent. It is also important to acknowledge that the previous studies have considered
the larger sample sizes for model building. They are not tailor-made to identify the patterns
for a shorter sample size, which imposes several practical decision-making restrictions.

This paper contributes in the following twoways: First, it proposes a unique residual driven
ensemble machine learning approach. The residuals of the previous stage have been utilized
as a technical indicator to perform predictive tasks. The inclusion of residuals of predictive
modeling of the previous stage has transpired to be of utmost importance in drawing forecasts
of supreme precision in the subsequent stage. Second, explicitly carrying out forecasting
during the timeline of the pandemic covering the first and second waves is of enormous
practical implications and acts as an acid test to check the robustness and capacity of any
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predictive structure. Thepredictivemodeling approachproposed in this studyhelps to produce
quality forecasts during said periods. Also, it uses relatively small segments of data of the
first and secondwaves of pandemics exhibiting a high degree of turbulence owing to apparent
implications.

The rest of the paper is organized as follows: In Sect. 2, we discuss the pertinent literature
in brevity to comprehend the trend and highlight the existing gaps to justify the positioning
of current work. Data descriptions alongside the settings to ascertain the prediction quality
during Pre COVID-19 and COVID-19 regimes have been elaborated in Sect. 3. The research
methodology has been elucidated in Sect. 4. The outcome of predictive exercises has been
presented and analyzed in Sect. 5. Finally, the paper is concluded in Sect. 6 by mentioning
the key findings, limitations, and future research agendas.

2 Literature review

Owing to its contribution to the energy market, different aspects of natural gas modeling have
received considerable attention from researchers. The co-movement patterns of natural gas
and crudeoil priceswere studied (Mensi et al., 2021).Natural gas prices offereddiversification
benefits. Scholars also studied the interplay of natural gas prices with other commodity and
financial assets (Ameur et al., 2020; Kumar et al., 2021; Liao et al., 2021). On a similar note,
the natural gas consumption prediction has garnered attention, as reported in the literature
(Liu et al., 2021; Lu et al., 2020; Qiao et al., 2020; Wei et al., 2021; Zhou et al., 2020).
Unfortunately, few studies are available so far in the literature for forecasting natural gas
prices using machine and deep learning techniques despite being a widely used source of
clean energy.

An ensemble predictive structure was proposed to analyze Henry Hub’s natural gas spot
prices using the least-squares boosting technique (Ali, 2020). The predictive performance
was satisfactory. A similar framework was constructed to estimate the daily US natural
gas price (Wang et al., 2020). Long short-term memory network (LSTM), Support vector
regression (SVR), and improved pattern sequence similarity search (IPSS) models were used
for generating initial forecasts that were combined using variance reciprocal framework to
obtain the final forecasts. The approach was found to be extremely proficient in yielding
high-quality predictions.

A granular predictive model was proposed to predict monthly spot prices of natural gas
(Li et al., 2021) of Henry Hub. The methodological framework incorporated variational
mode decomposition (VMD) to disentangle the original series into granular components
and combined particle swarm optimization (PSO) and deep belief network (DBN) to draw
forecasts. The findings revealed that WTI crude oil spot prices and natural gas consumption
largely governed the evolution of Henry Hub’s natural gas spot price. A neoteric short-
term forecasting structure was proposed for natural gas price prediction (Wang et al., 2021).
The granular framework utilized ensemble empirical mode decomposition to decompose the
original series into subseries wherein an RNN model optimized through PSO was applied
to fetch component-wise forecasts to draw the final aggregate forecasts. The framework
performed better than the other benchmark models.

Most of these studies rely on sophisticated mathematical modeling in conjunction with
machine learning and computational intelligence techniques. Unlike natural gas price model-
ing, the evolutionary pattern of natural gas consumption has been critically delved into during
the COVID-19 pandemic (Cihan, 2022). Although natural gas prices and consumption are not
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entirely independent and exclusive, the evolutionary patterns and overall dynamics of both
variables are influenced by different macroeconomic and financial conditions. Therefore,
extending models built for consumption patterns recognition to predict price movement may
not be ideal in challenging circumstances. Hence, the development of a dedicated framework
to estimate futuristic figures of natural gas prices becomes essential.

The review of related literature demonstrates an inclination towards granular and artificial
intelligence-drivenmethodologies for predictive analytics of natural gas prices. Despite being
an influential energy commodity with substantial nexus with other financial assets, modeling
futures prices has seen meager attention. To the best of our knowledge, no attempt has been
made to date to specifically estimate forecast in the COVID-19 period encompassing both
first and secondwaves of infection.Unlike PreCOVID-19 phase, performing prediction in the
COVID-19 regime is extremely difficult irrespective of the high-end model used for drawing
predictions due to profound uncertainty, disruptions, and anticipation of the market crash.
Thus, barring the contribution towards the research void, the current work also propounds a
neoteric feature engineering framework to accomplish the objective that can be leveraged for
predicting extremely chaotic and uncertain events. Precise predictions of the UK and the US
natural gas futures can directly be utilized for risk mitigation through portfolio realignment.
Therefore, the apparent absence of research and profound practical applications justify the
underlying research significantly.

3 Data description

We investigate the predictability of natural gas prices for the pre-and during-COVID-19 peri-
ods and see whether the current pandemic leads to more uncertainty in the pricing structure.
Accordingly, we collect daily data for the NGF-UK and NGF-USA from Bloomberg. The
‘During Covid-19’ period is taken from December 31, 2019, the day of receiving the first
confirmed COVID-19 case in Wuhan, China, to May 20, 2021. The span of the ‘During
COVID-19’ period for this study is 506 days containing 367 observations each for both the
considered series. In the ‘Pre COVID-19’ period, we consider data from August 09, 2018,
to December 30, 2019, to keep the uniformity in the number of observations for both series.

In summary, we have only 367 observations in each of the pre-and during-COVID-19
periods. We present the temporal patterns of Natural gas futures for the UK and USA during
the investigation periods in Fig. 1. The visual inspection implies that all four pricemovements
are highly nonlinear. In the rest of the paper, we use ‘UK-Pre’, ‘UK-During’, ‘US-Pre’, and
‘US-During’ to denote the time series for the NGF-UK in the ‘Pre COVID-19’ period, NGF-
UK prices in the ‘During COVID-19’ period, NGF-USA in the ‘Pre COVID-19’ period, and
NGF-USA ‘During COVID-19’ period, respectively.

Table 1 provides the summary statistics and statistical tests results to establish the behav-
ioral patterns of the datasets.

From Table 1, we find that the test statistic values of Jarque–Bera, Shapiro Wilk, Kol-
mogorov–Smirnov, and Anderson–Darling are highly significant for all the time series. So,
the natural gas futures exhibit non-parametric behavior. The ADF test statistic values appear
insignificant for all the series in pre-and during COVID-19 periods. Therefore, we conclude
that no series is stationary. A highly significant test statistic value of the Ljung-Box test at lag
10 confirms the presence of a strong autocorrelation structure in all the time series in pre-and
during COVID-19 periods. The test statistic values of both neural network tests substantiate
the nonlinear behavior of all four time series. The Hurst exponent values are significantly
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Fig. 1 Evolutionary patterns of natural gas futures. Figure 1 represents the temporal patterns on Natural gas
futures for the UK and USA during the mentioned periods. The x-axis shows the duration and the y-axis of the
figures (a) and (b) shows the natural gas futures for the UK in US$ per MMBtu. The y-axis of figures (c) and
(d) shows the NGF-USA in US$ per MMBtu

higher than 0.5 for all the time series. So, we find the existence of persistent trends in the
evolutionary patterns of natural gas futures of the UK and the USA.

Several statistical tests on the time series of natural gas futures of the UK and the USA
reveal the presence of long memory and autocorrelation structure in pre-and during COVID-
19 periods. In such situations, a predictive framework developed based on technical indicators
is proven to provide superior forecasts (Ghosh et al., 2019). This encourages us to use a
technical indicator-based predictive modeling framework. We select 30 technical indicators
for predicting natural gas prices (Ghosh et al., 2019; Hsu, 2011; Huang & Tsai, 2009; Jana
et al., 2020), following the previous works. The brief description of the technical indicators
used in this work are as follows: MA5, MA10, and MA20 denote 5-day, 10-day, and 20-
day moving average, respectively; B5, B10, and B20 denote 5-day, 10-day, and 20-day bias,
respectively; MTM5, MTM10, and MTM20 denote 5-day, 10-day, and 20-day momentum,
respectively; ROC5, ROC10, and ROC20 denote 5-day, 10-day, and 20-day rate of change,
respectively; LAG1, LAG2, LAG3, LAG4, and LAG5 denote 1-day, 2-day, 3-day, 4-day,
and 5-day back prices, respectively; EMA5, EMA10, EMA12, EMA20, and EMA26 denote
5-day, 10-day, 12-day, 20-day, and 26-day exponential moving average, respectively; UB,
and LB denote upper and lower Bollinger band, respectively; LOSS denotes the difference
between today’s and next day’s prices; DIFF denotes the difference between 12-day and
26-day moving average; MACD denotes the moving average convergence divergence; HP
signifies the highest price of the day; LP represents the lowest price of the day; and WMS
denotes the Williams overbought/oversold index.
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Table 1 Descriptive statistics

UK-Pre UK-During US-Pre US-During

Mean 0.60 0.44 2.79 2.30

SD 0.21 0.22 0.56 0.48

Median 0.53 0.40 2.65 2.40

Min 0.31 0.10 2.07 1.48

Max 1.03 1.05 4.84 3.35

MAD 0.22 0.30 0.46 0.71

Skewness 0.46 0.34 1.53 0.05

Kurtosis − 1.28 − 1.04 2.25 − 1.42

N.valid 367 367 367 367

Jarque–Bera Test 37.55*** 23.05*** 228.99*** 30.72***

Shapiro–Wilk Test 0.89*** 0.94*** 0.85*** 0.92***

Kolmogorov–Smirnov Test 0.62*** 0.54*** 0.98*** 0.94***

Anderson–Darling Test 15.22*** 6.74*** 14.45*** 11.44***

Augmented Dickey-Fuller Test − 1.18# − 2.39# − 2.60# − 3.24#

Ljung–Box Test 361.79*** 359.78*** 352.36*** 354.17***

Terasvirta’s Neural Network Test 8.07** 23.41*** 30.54*** 6.96**

White’s Neural Network Test 8.15** 17.22*** 8.76*** 6.32**

Hurst Exponent 0.86 0.86 0.83 0.86

***Significant at 1%, **Significant at 5%, *significant at 10% levels of significance, # Not Significant. US-
Pre and UK-Pre denote NGF-USA and NGF-UK from August 09, 2018 to December 30, 2019, respectively.
Similarly, US-During and UK-During denote NGF-USA and NGF-UK from December 31, 2019 to May 20,
2021, respectively

The proposed approach uses residual (Res) of predictive modeling in the previous stage as
an input feature for predicting the movements in the next stage. So, the forecasts are obtained
in the first stage by considering the above 30 features as independent input variables. In the
second stage, we propose to include Res as an explanatory feature in addition to the previous
30 features.

4 Methodology

In this section, we enunciate the components of the adopted integrated framework to carry
out natural gas futures price forecasting in the considered regime. The construction of the
predictive architecture commences with the feature engineering process. The most important
contribution of the predictive structure lies in the selection of features that can compensate for
the volatile impact of macroeconomic and other external shocks in recognizing the hidden
pattern. Boruta feature screening algorithm has been utilized for accomplishing the task.
MODWT and RF are the other two principal components of the proposed methodology.
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4.1 BORUTA feature selection algorithm

Boruta (Kursa et al., 2010) is an ensemble feature selection algorithm that is in many ways
similar to the RF algorithm with marginal changes. It depends on bootstrapped samples that
augment the induced randomness in the underlying information system. Interested readers
may follow Kursa and Rudnicki (2010) for details about this algorithm. The fundamental
steps of the algorithm are outlined below. In our work, Boruta has been used to evaluate the
importance of residual as an explanatory feature and identify the top three features across
the granular components on which actual predictive exercises are carried out to obtain the
final forecasts. We now discuss the MODWT technique, which is used for the granular
decomposition of considered time series.

4.2 Maximal Overlap DiscreteWavelet Transformation (MODWT)

Wavelet decomposition is a widely used technique ideal for the multi-resolution analysis of
complex time series, allowing simultaneous decomposition in time and frequency space (Das
et al., 2018; Ghosh et al., 2021). We have invoked MODWT to execute the said decomposi-
tion for component-wise predictive analysis. MODWT has been preferred over conventional
discrete wavelet transformation (DWT) as dyadic restriction and sensitivity to the circular
shift of the latter are not applicable to the former.

The technique transforms a given function f (t) into amotherψ(t) and fatherϕ(t)wavelets
at a defined scale. If Fit is the i-th time series value at time t, then the detail (ψri

j , k) and

approximation (ϕri
J , k) can be written as follows:

Fit = SFi
J (t) + DFi

J (t) + DFi
J−1(t) + . . . + DFi

1 (t) (1)

where SFi
J (t) = ∑

k
ϕ

Fi
J , kφJ , k(t), DFi

j (t) = ∑

k
ψ

Fi
J , kω j , k(t), φJ , k(t) = 2−J/2φ

(
t−2J k
2J

)
, and

ω j , k(t) = 2− j/2ω
(

t−2 j k
2 j

)
.

The inverse wavelet transform is

f (t) =
∞∑

l=−∞

∞∑

k=−∞
W̃l, k × ψl, k(t) (2)

where
∼
Wl, k =

∞∫
−∞

f (t)ψl, k(t)dt is the discrete wavelet transform of f (t).

The decomposition can swiftly disentangle the linear and nonlinear parts of original time
series observations into manageable subseries, preserving the fundamental features of finan-
cial time series such as spillovers, heteroscedasticity, volatility clustering, etc. (Das et al.,
2018; Jana et al., 2021; Singh et al., 2019). The ‘haar’ wavelet transform has been used to
implement MODWT to carry out four decomposition levels as it is memory efficient, fast,
and precisely reversible with no edge effects. As a result, one approximation (S4) and four
detailed components (D1, D2, D3, and D4) are generated. The RF is invoked to perform a
forecasting task at each granular component to derive the final forecasts. Mathematically, the
final forecast is derived using (3).

Final_Forecast RF
i = Forecast_DRF

1i + Forecast_DRF
2i + Forecast_DRF

3i

+ Forecast_DRF
4i + Forecast_SRF

4i (3)
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where Final_Forecast RF
i represents the final forecast obtained from RF for a particular

variable i; Forecast_D j
RF
i accounts for the obtained forecasts by RF on detailed compo-

nents, and Forecast_S j
RF
i reflects the forecasted figure at approximation component by

RF.

4.3 Random forest (RF)

The RF (Breiman, 2001) is an ensemble machine learning algorithm capable of handling
complex nonlinear and volatile patterns to carry out classification and regression tasks. It has
been found to be extremely resilient to outliers and overfitting. The algorithm is relatively
faster than classical bagging-based ensemble modeling and better than the adaptive boosting
procedure in terms of accuracy (Breiman, 2001). It relies upon the bootstrapping process to
construct decision trees as a base learner to classify regression tasks. Classical regression
trees are used as base learners in this algorithm. RF utilizes a random sub-spacing principle
in growing the trees wherein the best feature to perform branching operations is selected
from a random subset of features. The aforesaid setup of randomization eventually results in
an unbiased estimation. The operational steps can be found in Breiman (2001).

4.4 Performance evaluation

We have resorted to five distinct metrics to ascertain the quality of predictions as briefly
mentioned next:

Mean Absolute Error (MAE) M AE = 1
N

∑N
i=1

∣
∣Yact (i) − Ypred(i)

∣
∣, where Ypred(i) and

Yact (i) are predicted and actual values for the i-th observation. A lower MAE value implies
a superior prediction.

Root Mean Squared Error (RMSE) RM SE =
√

1
N

N∑

i=1

(
Yact (i) − Ypred(i)

)2, where Ypred(i)

and Yact (i) are predicted and actual values for the i-th observation. A lower RMSE value
implies a superior prediction.

Nash–Sutcliffe Efficiency (NSE) N SE = 1 −
∑N

i=1{Yact (i)−Ypred (i)}2
∑N

i=1
{
Yact (i)−Y act

}2 , where Y act represents

the mean of actual observations. NSE values lie between −∞ to 1. The NSE value should be
close to 1 for superior forecast accuracy.

Index of Agreement (IA) I A = 1 −
∑N

i=1(Yact (i)−Ypred (i))
2

∑N
i=1

{∣
∣Ypred (i)−Y act

∣
∣+∣

∣Yact (i)−Y act
∣
∣
}2 . The IA value should

be close to 1 for superior forecast accuracy.

Theil Index (TI) T I =
[
1
N

∑N
i=1(Yact (i)−Ypred (i))

2
]1/2

[
1
N

∑N
i=1 Yact (i)2

]1/2+
[
1
N

∑N
i=1 Ypred (i)2

]1/2 . The TI value should be close

to zero for superior forecast accuracy.

5 Results and discussion

This section systematically presents the main findings of MODWT decomposition of the
original time series corresponding to the natural gas futures of the UK and the USA, feature
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(a) (b) 

(c)  (d)

Fig. 2 MODWT decomposition of natural gas futures

importance and impact of Error as a feature, predictive modeling exercise, and a comparative
performance assessment.

5.1 MODWT decomposition

We decompose the natural gas futures time series in pre-and during COVID-19 periods using
the MODWT model into four components. The “haar” filter is selected for proving the best
decomposed components. The decomposition results are presented in Fig. 2a–d. In each
figure, observations are shown along the horizontal axis, and absolute values are given along
the vertical axis of respective decomposed components.

5.2 Feature importance and impact of Res as a feature

We extensively study the feature importance and the impact of the newly introduced residual
(Res) in the second stage of forecasting the natural gas prices. For this purpose, the Boruta
feature selection algorithm is run for 100 iterations only as we do not find significant changes
in the importance of features and their rankings. Tables 2, 3, 4, 5 denote the key findings
of the feature selection experiment that include mean of squared residuals and percentage
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Table 2 Features importance of the decomposed components of UK-Pre (Pre COVID-19 NGF-UK)

Series Mean of
squared
residuals

% Var
explained

Feature Importance Execution
Time (sec)

Feature #1 Feature #2 Feature #3

D1 (F) 0.000045 61.33 Res(42.71) EMA12 (8.15) MTM5 (7.82) 0.41

D1 (NF) 0.000114 3.04 LAG1 (8.91) MTMS (7.84) WMS (6.56) 0.52

D2 (F) 0.000041 75.9 Res(37.2) LOSS (20.29) WMS (16.71) 0.43

D2 (NF) 0.000085 50.58 LOSS (21.62) WMS (17.33) LAG1 (13.89) 0.36

D3 (F) 0.000031 87.03 Res(24.18) LAG1 (20.48) WMS (15.48) 0.49

D3 (NF) 0.000044 81.69 LAG1 (21.90) LOSS (16.61) WMS (15.88) 0.37

D4 (F) 0.000017 95.74 LAG1 (19.76) Res(17.77) B5 (16.46) 0.36

D4 (NF) 0.000020 94.73 LAG1 (19.23) LOSS (16.06) B5 (14.61) 0.36

S4 (F) 0.000054 99.88 MTM10 (10.53) B10 (9.63) LAG1 (7.87) 0.37

S4 (NF) 0.000056 99.87 MTM20 (9.47) MTM5 (9.33) LAG1 (8.86) 0.34

Table 3 Features importance of the decomposed components of UK-During (During COVID-19 NGF-UK)

Series Mean of
squared
residuals

% Var
explained

Feature Importance Execution
Time (sec)

Feature #1 Feature #2 Feature #3

D1 (F) 0.000049 56.29 Res(43.39) UB (7.86) EMA10 (6.11) 0.47

D1 (NF) 0.000133 18.06 UB (10.29) EMA10 (7.48) EMA12 (7.35) 0.50

D2 (F) 0.000091 51.93 Res(27.57) WMS (11.96) LAG1 (11.07) 0.36

D2 (NF) 0.000144 23.71 LAG1 (14.05) WMS (12.04) EMA5 (8.75) 0.38

D3 (F) 0.000062 75.20 Res(20.98) LAG1 (17.64) MTM5 (12.46) 0.44

D3 (NF) 0.000078 68.73 LAG1 (19.87) EMA5 (12.50) B5 (12.18) 0.42

D4 (F) 0.000017 97.20 LAG1 (18.18) Res(17.87) MTM5 (13.49) 0.36

D4 (NF) 0.000019 96.72 LAG1 (18.37) MTM5 (14.74) LAG2 (12.85) 0.36

S4 (F) 0.000101 99.78 LAG1 (12.68) LAG2 (12.21) ROC20 (11.28) 0.33

S4 (NF) 0.000101 99.78 LAG1 (12.20) LAG2 (11.75) EMA5 (11.11) 0.34

variance explained top three features with their importance and execution time. For each
decomposed component of the time series representing the NGF-UK and the NGF-USA in
the pre-and during COVI-19 periods, we compare the performance of the of by considering
the Res as not a feature (NF) and Res as a feature (F).

For the UK-Pre, Res has transpired to be extremely important features for detailed com-
ponents. The Res turned out to be themost important feature for D1, D2, andD3 and occupied
the second spot for D4. These detailed components reflect the high-frequency nonlinear parts
of the original series. Thus, the inclusion of Res is extremely useful for nonlinear modeling.
The high quantum of actual variation can be explained by Res solely. The degree of variation
explained by Res is substantially higher than any other feature. When Res has not been
used, other technical indicators have taken the spot. Among the technical indicators, LAG1
has appeared to be very influential that signifies the dependence of natural gas prices on the
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Table 4 Features importance of the decomposed components of US-Pre (Pre COVID-19 NGF-USA)

Series Mean of
squared
residuals

% Var
explained

Feature Importance Execution
Time (sec)

Feature #1 Feature #2 Feature #3

D1 (F) 0.003222 33.03 Res(20.76) MACD (5.35) MA20 (4.81) 0.52

D1 (NF) 0.003923 25.46 LAG5 (5.81) EMA12 (4.76) MACD (4.44) 0.62

D2 (F) 0.001165 68.57 Res(27.77) LAG1 (13.89) EMA5 (10.94) 0.42

D2 (NF) 0.002380 35.79 LAG1 (15.37) EMA5 (12.82) WMS (12.27) 0.48

D3 (F) 0.000822 85.56 LAG1 (19.39) Res(18.46) EMA5 (12.47) 0.39

D3 (NF) 0.001133 80.10 LAG1 (20.72) EMA5 (13.52) MTM10 (12.64) 0.52

D4 (F) 0.000661 94.74 LAG1 (19.39) LAG2 (13.81) EMA5 (12.50) 0.37

D4 (NF) 0.000796 93.67 LAG1 (19.98) LAG2 (15.33) EMA5 (12.69) 0.37

S4 (F) 0.001700 99.43 LAG1 (13.24) Res(13.14) LAG2 (11.82) 0.34

S4 (NF) 0.001964 99.34 LAG1 (13.20) LAG2 (13.01) EMA5 (11.21) 0.34

Table 5 Features importance of the decomposed components of US-During (During COVID-19 NGF-USA)

Series Mean of
squared
residuals

% Var
explained

Feature importance Execution
Time (sec)

Feature #1 Feature #2 Feature #3

D1 (F) 0.000575 64.74 Res(40.61) LAG1 (6.60) LAG2 (6.56) 0.44

D1 (NF) 0.001687 23.43 LAG2 (7.74) LAG5 (7.46) LAG1 (7.04) 0.45

D2 (F) 0.000596 77.62 Res(35.80) LOSS (22.42) WMS (15.07) 0.39

D2 (NF) 0.001317 50.53 LOSS (23.58) LAG1 (15.17) WMS (13.90) 0.39

D3 (F) 0.000448 88.69 Res(23.54) LAG1 (21.49) LOSS (17.89) 0.36

D3 (NF) 0.000695 82.44 LAG1 (22.52) LOSS (20.67) WMS (15.29) 0.36

D4 (F) 0.000289 95.52 LAG1 (20.56) Res(15.82) LAG2 (14.27) 0.36

D4 (NF) 0.000341 94.71 LAG1 (20.10) LOSS (15.39) MTM5 (14.00) 0.36

S4 (F) 0.000649 99.69 LAG1 (12.24) LAG2 (11.53) B20 (11.19) 0.34

S4 (NF) 0.000730 99.65 LAG1 (12.11) LAG2 (11.26) EMA5 (11.15) 0.34

immediate past information. On the approximation component, Res has not turned out to be
lying on the top three spots in terms of feature importance.

The features importance UK-During are almost like that of UK-Pre. Res has appeared to
possess significant explanatory power for modeling nonlinear components. It would be inter-
esting to compare whether the actual predictive performance reflects the same phenomenon
or not. Among the technical indicators, LAG1 has turned out to be highly important as well.

For the US-Pre, Res has appeared to be crucial as well. Unlike the UK counterparts, Res
has not appeared to be important for the D4 component. Nevertheless, it has transpired to
play a critical role in explaining the variation for the approximation component. Its inclusion
increases the overall explained variation component. LAG1 has emerged to be important
among the set of technical indicators implying that natural gas futures for the US depend on
its immediate past behavior.
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Features evaluation of US-During justifies the inclusion of Res. It is amply apparent that
the said feature has appeared to be an extremely impactful feature that largely expounds the
overall variability on all high-frequency detailed components. Likewise, in earlier instances,
LAG1 has turned out to be a critical technical indicator also. Hence, it is evident that Res
plays a pivotal role in explaining highly nonlinear trends that may be beneficial for prediction
exercise in the pandemic time horizon. It becomes imperative to evaluate how the previous
stage unexplained behavior can explain the future volatile traits. Natural gas futures of both
the UK and USA across the regimes have significantly depended on immediate historical
information.

The decomposed series obtained through MODWT contains one approximation (S4) and
four detailed components (D1, D2, D3, and D4). Out of the four detailed components, D1
accounts for the most volatile part (high frequency). It contains the maximum unexplained
component compared to the other three detailed components. So, the Res corresponding to
D1 has the maximum importance as a feature used in the second stage and plays the most
crucial role in the forecasting process.

5.3 Predictive analytics

The proposed two-stage predictive framework utilizes the MODWT, Boruta, and RF algo-
rithms. Time series corresponding to the NGF-UK and theNGF-USA is initially decomposed
using MODWT. In the first stage, 30 independent features are used, whereas, in the second
stage Res is added as the 31st independent feature. In each stage, the final forecast is obtained
by summing the component-wise forecasts.

The original daily time series corresponding to all the natural gas futures are randomly
portioned into training (70%), testing (15%), and validation (15%) datasets to conduct the
predictive exercise. It may be noted here that there are only 367 observations for each time
series. Therefore, the training dataset contains 256 observations to build the random forest
model. The entire predictive performance is done using the ‘rattle()’ package in R. The
number of trees in the model is set to 500, a default value in the package. In this study,
we extensively investigate the predictability the natural gas prices in the pre-and during
COVID-19 periods. The investigation roadmap is as follows:

a. We partition each of the NGF-UK and the NGF-USA into two time zones—pre (August
09, 2018, to December 30, 2019) and during (December 31, 2019, to May 20, 2021)
COVID-19 periods. So, there are four time series that are denoted by UK-Pre, UK-
During, US-Pre, and US-During. We then decompose each of them into five granular
components using MODWT. So, we have a total of 20-time series.

b. We apply the FR algorithm on thementioned 20-time series to obtain the stage 1 forecasts
for UK-Pre, UK-During, US-Pre, and US-During based on the 30 selected features. The
final forecast of this stage is obtained by aggregating the forecasts obtained from the
granular decomposed components.

c. We calculate the Res for all 20-time series and update the feature lists.
d. Then, we calculate the stage 1 forecasts for all 20 decomposed time series based

on initially selected 30 features and the Res as the additional feature. Following
a similar process, as followed in stage 1, the final forecast of the second stage is
obtained.

e. To compare the performance of the proposed two-stage framework, we obtain fore-
casts from the original UK-Pre, UK-During, US-Pre, and US-During time series without
decomposing them and applying the RF algorithm.
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Finally, we calculate forecast errors and access the predictive performances for the training
and the whole datasets for all the decomposed components, aggregate series, and the original
series without decomposition considering. For the first two cases, we compute forecast errors
and predictive performances for stage 1 (Res not as a feature) and stage 2 (Res as a feature).
These results are presented in Tables 6, 7, 8. Also, the forecast errors and predictive perfor-
mances based on the training dataset on MODWT-decomposed individual components for
both the stages are shown in the "Appendix" to obtain more insights on the overall predictive
performance of the proposed two-stage ensemble machine learning approach.

We discuss the forecasting performance of the proposed approach based on the forecast
errors and predictive performances presented in Tables 6, 7, 8. As expected, the MAE and
RMSE values for UK-Pre, UK-During, US-Pre, and US-During are superior for the training
dataset with Res as a feature compared to the MODWT-decomposed series with Res not
as a feature and without MODWT-decomposition. The forecasting errors are minimum for
the NGF-UK in the pre-COVID-19 period. The corresponding MAE and RMSE values are
0.001732 and 0.002878, respectively. On the other hand, the forecasting errors are worst
for the NGF-USA in the pre-COVID-19 period. Surprisingly, the forecast errors are smaller
for the NGF-USA during the during-COVID-19 period compared to the pre-COVID-19
period. However, the forecast errors are smaller for the NGF-UK in the pre-COVID-19
period compared to the during-COVID-19 period.

The predictive performances manifested through IA, NSF, and TI values indicate that the
proposed approach is the best. The IA and NSE values are close to 1 for the whole series.
For the training dataset, these values are slightly inferior as there are only 256 observations.
Smaller TI values indicate superior predictive performance. The best TI values have been
obtained for the whole series. As before, these values are marginally less for the training
dataset. The predictive performances of the ensemble approach without MODWT decom-
position are second best (Table 8). However, both the error components are relatively higher
compared to the proposed approach under training and whole datasets.

In terms of the methodology, the forecast errors are least for the proposed MODWT-
based ensemble technique with Res as a feature, followed by the MODWT-based ensemble
machine learning technique with Res not as a feature as evident from Table 6 and 7 on both
training and the whole datasets. FromTable 6 and Table 8, we find that the proposed approach
outperforms the ensemble machine learning technique without integrating MODWT applied
to all the four original series in pre-and during-COVID-19 periods. Even the MODWT-based
ensemble technique with Res not as a feature also outperforms the ensemble technique.
Another interesting fact is coming out from the comparison of the second part of Tables 7 and
8. TheMODWT-based ensemble machine learning technique with Res not as a feature offers
no better performance than the ensemble machine learning technique. The MAE and RMSE
values are higher in this case. In summary, we conclude that Res residual-driven MODWT-
based ensemble machine learning approach for forecasting natural gas prices appeared to be
the best compared to all other scenarios. This was possible because of the inclusion of Res of
the first stage as a feature in the second stage for forecasting the future movements of natural
gas prices.

Interested readers may please refer to the "Appendix" for finding the forecast error and
predictive performance based on the training dataset on decomposed components with Res
as a feature and Res not as a feature (Fig. 3).
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Table 8 Forecast error and predictive performance based on thewhole datasetwithoutMODWT-decomposition

Series MAE RMSE IA NSE TI

UK-Pre 0.01076 0.01500 0.99871 0.99488 0.01938

UK-During 0.01093 0.01747 0.99848 0.99394 0.02649

US-Pre 0.04339 0.07496 0.99551 0.98225 0.02529

US-During 0.04109 0.06108 0.99585 0.98376 0.02453

Table 9 presents the correlation between the predicted and actual values. These values
should ideally be close to 1 for a better fit model. In all three cases, the correlation values
are very high and almost approach 1. This confirms the appropriateness of the predictive
frameworks used for forecasting future values of natural gas future prices. For the proposed
approach with Res as a factor, the correlation value is maximum for the UK-Pre, followed by
UK-During, US-During, and US-Pre. Correlation values obtained for the proposed approach
are higher than the values obtained for the other two approaches. In particular, the correlation
values are slightly inferior for the decomposed series with Res not as a feature than the series
without decomposition. So, the correlation test indicates that the proposed residual-based
predictive framework is a better fit than the other two models.

6 Conclusion

This research proposes a residual-driven ensemble machine learning approach for forecast-
ing natural gas prices. We combine the MODWT decomposition technique and an ensemble
machine learning algorithm to achieve the research endeavors. The introduction of the unex-
plained components in terms of the residuals of the previous stage to build a granular
forecasting structure for the next stage is a substantial contribution that resulted in highly
accurate predictions. The significant findings of this research are summarized next.

The natural gas futures markets of the UK and US have exhibited persistent trends that
suggested the deployment of technical indicators as explanatory features. The feature, Res has
enhanced the quality of forecasts by largely explaining the nonlinear granular components of
respective original series. The efficacy of the two-stage forecasting approach is amply evident
through the incorporation of Res as a feature. Despite being developed on a relatively small
chunk of samples, the predictive architecture demonstrates the ability to yield high-quality
predictions in challenging circumstances. The role of MODWT in improving the accuracy
of obtained forecasts is imminent that conforms to previous cognate literature of MODWT
based complex financial time series prediction (Jana et al., 2021). The prediction accuracy of
NGF-UK in Pre COVID-19 phase has appeared to be better than the COVID-19 phase. On
the other hand, the prediction accuracy of the NGF-USA has turned out to be better in the
COVID-19 phase than Pre COVID-19 regime. So, there is no clear evidence of the impact
of COVID-19 on the natural gas future prices was established through this study.

The most challenging part of this research was to obtain a superior forecast for the natural
gas prices in the presence of a limited number of observations using machine learning. The
availability of more observations will undoubtedly lead to superior predictive performance.
The scope of the present work is limited to the UK and US natural gas futures markets.
However, this research opens up the opportunities of applying the proposed residual-driven
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Fig. 3 Prediction of natural gas
futures. Note. Figure 3 represents
the comparison of prediction of
Natural gas futures for the UK
and USA during the mentioned
periods. The x-axis shows the
duration, and the y-axis of the
figures (a) and (b) shows the
natural gas futures for the UK in
US$ per MMBtu. The y-axis of
figures (c) and (d) shows the
NGF-USA in US$ per MMBtu
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Table 9 Correlation between the actual and predicted values

Series Series with decomposition and
Res as a feature

Series with decomposition and
Res not as a feature

Series without
decomposition

Correlation Correlation Correlation

UK-Pre 0.99855 0.99671 0.99745

UK-During 0.99817 0.99673 0.99696

US-Pre 0.99252 0.98897 0.99112

US-During 0.99527 0.99042 0.99192

framework for predictive modeling of any economic and financial time series. The approach
will offer more benefits for the time series that are more volatile and complex. The scalability
of the presented framework makes it ideal for carrying out the predictive task for time
series representing high-frequency intraday data as well. Real-life portfolio management
and realignment can be conducted based on future figures. The exercise can separately be
performed during normal and new normal timelines using predictive residuals of the previous
stage as a key component. The unique feature processing utility described here needs further
exploration to predict extremely volatile events, including market crashes.

Appendix

See Tables 10, 11.
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