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Abstract
Municipal solid waste (MSW) management is known as one of the most crucial activities
in municipalities that requires large amounts of fixed/variable and investment costs. The
operational processes of collection, transportation and disposal include the major part of
these costs. On the other hand, greenhouse gas (GHG) emission as environmental aspect
and citizenship satisfaction as social aspect are also of particular importance, which are
inevitable requirements for MSW management. This study tries to develop a novel mixed-
integer linear programming (MILP) model to formulate the sustainable periodic capacitated
arc routing problem (PCARP) for MSW management. The objectives are to simultaneously
minimize the total cost, total environmental emission, maximize citizenship satisfaction and
minimize the workload deviation. To treat the problem efficiently, a hybrid multi-objective
optimization algorithm, namely, MOSA-MOIWOA is designed based on multi-objective
simulated annealing algorithm (MOSA) andmulti-objective invasiveweed optimization algo-
rithm (MOIWOA). To increase the algorithm performance, the Taguchi design technique is
employed to set the parameters optimally. The validation of the proposed methodology is
evaluated using several problem instances in the literature. Finally, the obtained results reveal
the high efficiency of the suggested model and algorithm to solve the problem.
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1 Introduction

Sustainable waste management (SWM) mainly tries to address three pillars of economy,
environment and social in operational (collection, transportation and disposal) activities and
minimize the amount ofmunicipal solidwaste (MSW) that is generated anddisposed.Accord-
ing to reports from the United Nations, about 11.2 billion tonnes of MSW is generated and
collected throughout the world such that almost all of which originates from humans (Bol-
ingbroke et al., 2021). Hence, managers should concurrently manage this waste and come
up with efficient strategies to tackle this issue sustainably. SWM consists of any process
involved in the organization of MSW, from generation to final disposal. At a higher level,
the main goals of SWM systems are to minimize the amounts of natural resources consumed
and maximize reusing of the materials extracted from nature. Operational activities include
the most critical elements of SWM systems in which economic, environmental and social
aspects should be scrutinized (Seadon, 2010; Xu & Yeh, 2017).

Recently, a few researchers have been trying to address to sustainable MSW collection
through vehicle routing problems (VRPs) (Ghannadpour et al., 2021; Inghels et al., 2016; Lin
&Kernighan, 1973;Lou et al., 2020; Paletta&Triki, 2004), location-routing problems (LRPs)
(Tirkolaee et al., 2021) and inventory-routing problems (IRPs) (Cárdenas-Barrón et al., 2019)
within a given network. On the other hand, the application of arc routing problems (ARPs) in
SWM was neglected even though it is a well-known type of routing problems that has been
specifically studied to formulate the vehicle routing operations in waste collection, snow
removal of streets, street painting and other street-related services (de Armas et al., 2019;
Foulds et al., 2015). This type of routing was firstly introduced by Golden and Wang (1981),
which is a specific area of VRP. Furthermore, ARP is known as an extension of the Chinese
Postman Problem (CPP) which can be found in many studies such as Pearn (1994), Filipiak
et al. (2009) and Çodur and Yılmaz (2020).

The most important research works on ARP and in the field of municipal solid waste man-
agement are summarized as follows. Sniezek and Bodin (2006) employed two mixed integer
programming (MIP) techniques to formulate the capacitated arc routing problem (CARP)
for residential sanitation collection. They incorporated the vehicle/site dependencies into the
model and then investigated several examples. Bautista et al. (2008) modified the ARP by
applying changes to the node routing to solve the waste collection problem in the municipal-
ity of a town of Barcelona. These changes were due to road constraints such as no U-turn to
return from the edge. They solved the problem using the ACS algorithm, which was based
on the nearest-neighborhood and closest-placement methods. Rodrigues and Soeiro Ferreira
(2015) developed a mixed CARP for the collection and transportation of municipal waste.
They considered a heterogeneous fleet of vehicles and multiple disposal sites in the proposed
problemand solved the problembyCPLEXsolver using benchmark problems. Tirkolaee et al.
(2016) applied an SA algorithm to solve the robust CARP under fuzzy demand for urban
waste collection. To improve the performance of the proposed algorithm, they employed the
Taguchi design method to tune the algorithm parameters and evaluated the performance of
the algorithm compared to the CPLEX solver. A comprehensive review of ARP was con-
ducted by Mourão and Pinto (2017) which considers the most important researches from
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2010 to 2017. Tirkoaee et al. (2018a) developed a robust CARP to solve the urban waste
collection problem by considering driver and crew shifts. They designed random examples
and solved them by an exact method and SA algorithm in order to validate the applicability
of the proposed mathematical model. A hybrid genetic algorithm (GA) was developed by
Tirkolaee et al. (2018b) to solve the multi-trip capacitated green ARP to collect MSW. To test
the applicability of the proposed algorithm, they generated several random examples in dif-
ferent sizes and evaluated the results compared to the CPLEX solver. Tirkoaee et al. (2019a)
offered a MILP formulation for the problem of multi-trip CARP for urban waste collection.
To solve the problem, they developed an improved max-mini ant system (MMAS) algorithm
and evaluated the performance of the algorithm in comparison with the heuristic algorithms
and the simplified version of the max–min ant colony optimization algorithm by benchmark
samples. Recently, several studies have been done in the area of uncertainty. A robust bi-
objective MILP model was introduced by Tirkoaee et al. (2019b) for multi-period multi-trip
CARP under fuzzy demand. The model aimed to minimize the total cost and the longest trav-
elled distance of vehicles simultaneously. They implemented multi-objective invasive weed
optimization (MOIWO) algorithm and ε-constraint method to treat the problem. Tirkoaee
et al. (2020) developed an improved hybrid ant colony optimization (ACO) algorithm to
solve the multi-trip CARP under fuzzy demand for urban waste collection. They applied
their proposed model on a real case study problem in Iran. Keenan et al. (2021) offered a
strategic oscillation simheuristic to solve a time-capacitated ARP under stochastic demand
which is applicable to waste collection problem. They tested the efficiency of the algorithm
using a set of numerical experiments and against existing algorithms. Recently, a comprehen-
sive review was conducted by De Maio et al. (2021) to survey the most important studies in
the literature addressing different applications of ARP under uncertainty, particularly waste
collection problem.

To the best of our knowledge and according to the above survey, there is no study in the
literature addressing sustainable waste collection ARP. Furthermore, there are only a few
number of studies that incorporated the sustainable development concept in their waste col-
lection problems. In this study, providing a sustainable waste collection and transportation
system requires the study of conflicts and trade-offs between economic, environmental and
social objectives subject to the main operating constraints. To this end, total cost minimiza-
tion, total pollutionminimization, total job opportunitymaximization andworkload deviation
minimization are taken into account to address these objectives, respectively. An efficient
methodology including mathematical model and solution techniques is designed treat the
problem.Accordingly, a tri-objective novelmixed-integer linear programming (MILP)model
is developed to formulate a sustainable periodic capacitated arc routing problem (PCARP). To
tackle the complexity of the problem efficiently, a hybrid multi-objective optimization algo-
rithm, namely,MOSA-MOIWOA is designed and then tested against the ε-constraint method
using different well-known indexes. Moreover, the Taguchi design method is employed to
provide a higher efficiency for the proposed algorithm.

The remaining sections of the paper are structured as follows. Section 2 explains the
problem and the main assumptions of the model. Moreover, the proposed mathematical
model is given in this section. Section 3 introduces the proposed solution techniques. The
results and comparative analyses are given in Sect. 4. Finally, Sect. 5 concludes the study
and suggest a useful outlook for future studies.
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2 Problem description

This section introduces the sustainable PCARP and its specific characteristics. The opera-
tional objective is to find the optimal number of required waste-collection vehicles among
a fleet of homogeneous vehicles as well as constructing the optimal planning of routes. The
sustainability is addressed by studying its three main aspects (economic, environmental and
social) as separate objective functions in the proposed model. The first objective function
seeks to minimize the total cost including the traversing costs and usage costs of vehicles.
Total pollution emission is taken into account as the second objective function to be mini-
mized. The third objective function is to maximize job opportunities through increasing the
number of hired labor. Finally, total workload deviation of drivers and crew is minimized as
the fourth objective function. Accordingly, the sustainability aspect of the problem can be
studied.

The proposed network can be displayed by a graph G = (V , E), where V = {1, 2… n}
represents the set of nodes and E represents the set of edges. Each pair of nodes constitutes
an edge of the network and each edge contains two arcs in opposite directions. Here, each
edge in the set E may be a waste edge (required edge) or non-waste edge (traversing edges).
Thus, ER ⊆ E displays the set of required edges so that ER = {

(i, j)|di j t > 0
}
, where di j t

represents the demand of edge (i, j) in tth period. So, each non-waste edge has a demand
equals to 0. Moreover, node number 1 stands for the depot and node number n shows the
disposal site.

Figure 1 provides a schematic view to the problem.
As can be seen, the suggested MSW collection network in Fig. 1 is composed of seven

required edges (1–2, 2–3, 3–4, 4–8, 5–6, 6–7, 7–8), one depot node and one disposal site.
As a possible solution for a single planning period, all required edge are covered exactly by
one vehicle and two trips. The required and traversing edges are specified by trash bins and
dashed lines, respectively. The optimal routing for the first and second trips are 1–2 → 2–3
→ 3–4 → 4–8 and 1–8 → 8–7 → 7–6 → 6–5 → 5–8, respectively. Finally, the vehicle
moves back to the depot for completing its tour.

The main assumptions of the model are given in the following:

I. Each required edge is covered only by one vehicle.
II. Separate locations are considered for the depot and disposal site in the network.

Fig. 1 Schematic view of the proposed problem
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III. Each vehicle begins its first trip from the depot and end it at the disposal site. Then
start its possible 2nd, 3rd,…, pth trips from the disposal site and end at there again.

IV. A fleet of homogeneous vehicles is taken into account.
V. Vehicles have a maximum available service time.
VI. Usage cost of vehicles include drivers’ and crew’s wage cost, fuel cost, hiring cost,

etc.
VII. A set of planning periods is regarded to serve the required edges.
VIII. Environmental pollution [greenhouse gas (GHG) emission] is considered for the trans-

portation of waste in urban districts.
IX. Social aspect is studied by maximizing the number of hired labor and minimizing

workload deviation.

Now, the main components of the suggested mathematical model including sets and
indices, parameters and variables are described in the following.

Sets and Indices

V Set of nodes; i, j ∈ V
E Set of edges; (i, j) ∈ E
ER Set of required edges; ER = {

(i, j)|di j t > 0
}
,

K Set of homogeneous vehicles; k ∈ K
P Set of vehicle trips; p ∈ P
T Set of planning periods; t ∈ T
S Each possible subset of edges
V [S] Set of nodes constituting S

Parameters

ci j Distance of edge (i, j)
W Available capacity for each vehicle
di j t Demand of edge (i, j) in tth period
Tmax Maximum available time for vehicles
M A large number,
ti j Traversing time of edge (i, j)
cvk Usage cost of kth vehicle
θ Conversion factor of distance to cost
Gi j Amount of pollution emission released by traversing edge (i, j)
σ Number of required workforce (drivers and crew) for each vehicle

Variables

x p
i jkt Number of traversing the edge (i, j) ∈ E by kth vehicle in pth trip and tth period

y pi jkt 1 if edge (i, j) ∈ ER is served by kth vehicle in pth trip and tth period, otherwise 0
ukt 1 if kth vehicle is employed in tth period, otherwise 0
LT p

k Total loading time of kth vehicle in pth trip and tth period
UT p

k Total unloading time of kth vehicle in pth trip and tth period
WTkt Total service time of kth vehicle in tth period;

WTkt =
∑

p∈P

LT p
kt +

∑

p∈P

UT p
kt +

∑

p∈P

∑

(i, j)∈E
ti j x

p
i jkt ∀k ∈ K ,∀t ∈ T ,
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Now, the developed MILP formulation of the problem is as follows:

minimize Z1 = θ

⎛

⎝
∑

(i, j)∈E

∑

p∈P

∑

t∈T

∑

k∈K
ci j x

p
i jkt

⎞

⎠ +
∑

t∈T

∑

k∈K
cvkukt (1)

minimize Z2 =
∑

(i, j)∈E

∑

p∈P

∑

t∈T

∑

k∈K
Gi j x

p
i jkt (2)

maximize Z3 =
∑

t∈T

∑

k∈K
σukt (3)

minimize Z4 =
∑

t∈T

∑

k∈K

Tmax − WTkt

Tmax
(4)

subject to
∑

i∈V [E]
x p
i jkt =

∑

j∈V [E]
x p
jikt ∀i ∈ V [E]; (i, j) ∈ E,∀k ∈ K ,∀p ∈ P,∀t ∈ T , (5)

∑

p∈P

∑

k∈K
(y pi jkt + y pjikt ) = 1 ∀(i, j)or( j, i) ∈ ER,∀t ∈ T , (6)

∑

(i, j)∈ER

di j t y
p
i jkt ≤ W ∀k ∈ K ,∀p ∈ P,∀t ∈ T , (7)

y pi jkt ≤ x p
i jkt∀(i, j) ∈ E, ∀k ∈ K ,∀p ∈ P,∀t ∈ T , (8)

∑

p∈P

∑

(i, j)∈E
x p
i jk ≤ Mukt ∀k ∈ K ,∀t ∈ T , (9)

LT p
kt = ul

∑

(i, j)∈ER

di j y
p
i jkt ∀k ∈ K ,∀p ∈ P,∀t ∈ T , (10)

UT p
kt = uu

∑

(i, j)∈ER

di j y
p
i jk ∀k ∈ K ,∀p ∈ P,∀t ∈ T , (11)

∑

p∈P

LT p
kt +

∑

p∈P

UT p
kt +

∑

p∈P

∑

(i, j)∈E
ti j x

p
i jkt ≤ Tmax ∀k ∈ K ,∀t ∈ T , (12)

∑

( j,h)∈S
x p
jhkt ≤ M

∑

i /∈V [S], j∈V [S]\{1,n}
x p
i jkt ∀S ⊆ E,∀k ∈ K ,∀p ∈ P,∀t ∈ T , (13)

∑

j∈V [E]
x11 jkt ≥

∑

j∈V [E]
x2njkt ∀k ∈ K ,∀t ∈ T , (14)

∑

j∈V [E]
x p
njkt ≥

∑

j∈V [E]
x p+1
njkt ∀p ∈ {2, 3, . . . , |P| − 1},∀k ∈ K ,∀t ∈ T , (15)

∑

(1, j) ∈ E
j ∈ V [E]\{1, n}

x p
1 jkt = ukt ∀k ∈ K ,∀p = 1,∀t ∈ T , (16)

∑

( j, n) ∈ E
j ∈ V [E]\{1, n}

x p
jnkt = ukt ∀k ∈ K ,∀p = 1,∀t ∈ T , (17)

∑

(n, j) ∈ E
j ∈ V [E]\{1, n}

x p
njkt ≤ ukt ∀k ∈ K ,∀p ∈ P\{1},∀t ∈ T , (18)
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∑

( j, n) ∈ E
j ∈ V [E]\{1, n}

x p
jnkt ≤ ukt ∀k ∈ K ,∀p ∈ P\{1},∀t ∈ T , (19)

x p
i jkt ∈ Z+, y pi jkt ∈ {0, 1}, ukt ∈ {0, 1} ∀(i, j) ∈ E,∀k ∈ K ,∀p ∈ P,∀t ∈ T , (20)

LT p
kt ,UT p

kt ≥ 0 ∀(i, j) ∈ E,∀k ∈ K ,∀p ∈ P,∀t ∈ T . (21)

Objective functions (1), (2), and (3) and (4) stand for the economic, environmental and
social aspects, respectively. Objective function (1) minimizes the total waste collection rout-
ing cost which is composed of the traversing costs and usage costs of vehicles. Objective
function (2) minimizes the total pollution emission released by vehicles. Objective function
(3) maximizes the number of hired labor in all periods. Constraint (5) indicates the flow
balance in the network for vehicles. Objective function (4) minimizes the workload devia-
tion by balancing the total service time of vehicles in all time periods. In other words, this
objective tries to maximize the satisfaction level of workforce. Constraint (6) ensures that
required edges are served only by one vehicle. Constraint (7) shows the capacity limitation of
vehicles. Constraint (8) states that the required edge can be served by the vehicle traversing
it; i.e., vehicles may just traverse an edge without serving it. Constraint (9) indicates that
vehicles can be employed if only their usage costs are paid. Constraints (10) and (11) calcu-
late the sum of loading and unloading times for vehicles in each period and trip, respectively.
Constraint (12) expresses the maximum available service time for vehicles in each period.
Constraint (13) prevents from the potential sub-tours for vehicles in each period and trip.
Constraints (14) and (15) form the sequence of vehicles’ trips from 1 to P. Constraints (16)
and (17) ensure that the beginning of first trips is the depot and the disposal site is the ending,
respectively. Constraints (18) and (19) indicate that if more than one trip is required, the
next trips (second, third, fourth, etc.) begin from the disposal site and end at there again.
Constraints (20) and (21) display the domain of the variables.

3 Methodology

This section provides the proposed solution techniques to validate, solve and analyze the
proposed problem. Accordingly, MOIWOA-MOSA is designed as a hybrid multi-objective
optimization algorithm based on MOIWOA and MOSA. Moreover, the ε-constraint method
is implemented to solve the model exactly using CPLEX solver/GAMS software.

3.1 Solution representation

In order to design any meta-heuristic algorithm, it is necessary to show how the solutions are
represented via a set of vectors or matrices. In this research, a two-part vector is considered
for routing of vehicles in each period. The first part includes a permutation of all demand
points. In other words, if the number of edges is equal to n, a random order from 2 to n − 1
is created. The second part shows the selected vehicles for each created tour. If a vehicle is
used several times, it means that the vehicle has multiple trips.

To interpret this two-part vector, the first vehicle is selected (according to the second part)
and based on its capacity, it visits a number of edges (according to the first part) and moves
to its final destination. Then the second vehicle is selected from second part and the same
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3 7 5 4 2 6 1 2 1 1 
Part 1 Part 2 

Fig. 2 An example of the solution representation

process occurs until all the edges are visited. An example with 8 edges and 2 vehicles are
depicted in Fig. 2.

3.2 Heuristic for generating initial solutions

In this section, a heuristic algorithm is developed to yield the initial solutions. The main
implementation steps are given as follows:

Step 1 At the starting point of the algorithm, choose the first planning period. Otherwise, if
there is any planning period remaining, choose the next planning period among the existing
periods and go to Step 2. Otherwise, go to Step 6.
Step 2 Select a vehicle randomly among the existing vehicles to begin the first trip from the
depot and go to Step 3.
Step 3Among the existing required edges, take into account all the required edges that can be
added to the trip based on the capacity and available service time limitations of the vehicle,
then select one edge with the minimum distance from the depot and go to Step 5. Differently,
if there is no eligible required edge fulfilling one of these limitations, move to the disposal
site.
Step 4 If the maximum available service time allows the vehicle to build another trip, begin
the next trip from the disposal site and go to Step 3, otherwise, go to Step 5.
Step 5 If there is a remaining required edge to be served, go to Step 3. Otherwise, select the
shortest path to the disposal site and then go to Step 1.
Step 6 Move to the depot and complete the tour.
Step 7 Report the obtained solution.

3.3 MOSA

Simulated annealing (SA) is a local search algorithm with a great sufficiency to prevent from
being trapped in local optima. It is very effective for solving non-convex or discrete problems.
Therefore, SA is employed to solve integer programming problems efficiently (Glover et al.,
2006). From its introduction to the present, SA has represented a high efficiency in solving
large combinatorial optimization problems (Kubotani & Yoshimura, 2003). Furthermore, the
simplicity of implementation, convergence and hill-climbing for eluding local optima are
regarded as the main superiority criteria.

Accordingly, MOSA generates non-dominated solutions through a simple probability
function that tries to provide the solutions constituting the Pareto optimal front. Based on this
probability function, the total space of objective is covered uniformly generating as a wide
range of possible well-dispersed and non-dominated solutions. These characteristics have
made MOSA a fast reliable algorithm in comparison with the other existing multi-objective
algorithms with a variety of applications. The mechanism of the suggestedMOSA is adapted
from Nam and Park (2000). The superiority of MOSA against other EAs is that there is no
need to employ high memory for keeping the population information. The pseudo-code of
the suggested MOSA algorithm is given in Fig. 3.
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Fig. 3 Pseudo-code of the
suggested MOSA (Nam & Park,
2000)

3 7 5 4 2 6 1 2 1 1 

4 6 3 5 7 2 1 2 1 1 

Fig. 4 An example of creating a neighbor in the proposed MOSA

In order to create a neighbor solution in the MOSA, first, one of the solution parts is
selected randomly. Next, the current values are replaced with new random values. If the first
part is selected, a new random permutation is performed. If the second part is selected, one
of the vehicles is randomly selected and replaced in each cell. An example of these changes
is shown in Fig. 4.

It should be noted that MOSA is implemented to each initial solution generated by the
heuristic algorithm in Sect. 3.2. Finally, we can provide a set of the high-quality initial
solutions.

3.4 MOIWO

Invasive Weed Optimization algorithm (IWO) is an evolutionary and intelligent algorithm
which was inspired by the processes of propagation, adaptability and survival of weeds. It
was first introduced byMehrabian and Lucas (2006) and then has been employed by different
researchers to tackle the complexity of optimization problems. The implementation of IWO
has a suitable performance for all test functions. To simulate the colonizing behavior of
weeds, the main principal features of the process are regarded as follows:

i. A certain number of seeds is spread over the search space.
ii. Each seed grows to a flowering plant and generates childs (seeds) with respect to the

fitness value.
iii. The generated seeds are randomly dispersed over the search space and become new

plants.

This process is maintained until the maximum number of plants is provided. Thereafter,
only the plants with lower fitness values can survive and generate new seeds and the others
are ruined. Accordingly, this process maintained until reaching the maximum number of
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iterations. Finally, the plant with the best fitness value is regarded as the nearest solution to
the optimum.

MOIWOA is a multi-objective variant of the IWO algorithm that was first introduced by
Nikoofard et al. (2012) and has been extensively employed by researchers (Goli et al., 2019a;
2019b).

The execution steps of MOIWOA are given as follows:

Step 1 Generating initial seeds
The initial solutions are called initial seeds. These initial seeds are the output of the MOSA
(Sect. 3.3) applied to the solutions generated by the heuristic algorithm (Sect. 3.2).
Step 2 Seed reproduction
In this phase, a member of the population is permissible to generate seeds regarding its own
and colony’s lowest and highest fitness values according to Eq. (22):

S = Smin + (Smax − Smin)
f − f worst

fbest − fworst
. (22)

where Smin and Smax denote the minimum and maximum number of seeds, respectively.
Furthermore, fworst and fbest represent the worst and best fitness value, respectively. After
specifying the number of seeds, reproduction is performed by executing the following sub-
steps:

Sub-step 1 Swap the routing plan for a certain trip of the vehicle by another vehicle in a
period.
Sub-step 2 Select two various trips of two vehicles randomly. If there is a common edge/edges
between these trips, choose one of them randomly, then divide these trips into two parts. The
first part of the first trip is combined with the second part of the second trip and the other two
parts of the trips are combined. Consequently, two new trips are generated.
Sub-step 3 Select two trips of a vehicle randomly. If there are two common edges among
them, exchange the sequences of the common edges.
Sub-step 4 Select an edge in a trip of vehicle randomly and reverse its direction.
Sub-step 5 Select a part of a trip randomly and reverse the direction of the included edges.

An example of seed reputation in the proposed MOIWOA is provided in Fig. 5.

Step 3: Competitive exclusion
The maximum number of plants can be provided by fast reproduction after several iterations,
nevertheless, it is expected that the desired plants are re-generated more than the undesired
ones. Moreover, it is critical to reach the maximum number of plants (pmax) to efficiently
handle the speed of MOIWOA (Goli et al., 2019a). In this stage, the solutions are sorted
based on the non-dominate sorting technique that is described in the following. The weaker
solutions are removed to keep pmax solutions for the next step.

3 7 5 4 2 6 1 2 1 1 

5 4 3 7 2 6 1 2 1 1 

Fig. 5 An example of seed reputation in MOIWOA
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Fig. 6 Pseudo-code of the suggested MOIWOA (Goli et al., 2019a)

Step 4: Non-dominate sorting
The following parameters are quantified for each solution in order to rank a set of solutions:
np as the number of solutions and Sp as the set of solutions dominated by solution p.

According to this technique, the value of crowding distances is the basic factor for sorting
the solutions, which is calculated by Eq. (23):

dImj = dImj + f
(Imj+1)

m − f
(Imj−1)

m

f max
m − f min

m
∀m, (23)

where f max
m and f min

m stand for the maximum and minimum value of mth objective. Here,

f
(Imj+1)

m and f
(Imj−1)

m show the value of mth objective for the next and previous solution of jth
solution according to the sorted value of mth objective function, respectively.

Finally, the pseudo-code of the suggested MOIWOA is given by Fig. 6.

3.5 MOIWOA-MOSA

The hybrid algorithm of this study works by generating high-quality initial solutions using
MOSA to be incorporated into the MOIWOA. Finally, the best possible solution will be
found by MOIWOA.
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3.6 Taguchi designmethod

As was clarified in the previous sections, MOSA and MOIWOA have several adjustable
parameters that can affect the performance and final results. Hence, providing a suitable
combination of these parameters can highly enhance the performance and efficiency of the
algorithms. Two approaches for performing the test are known (Taguchi et al., 2005): (i)
Standard analysis of variance (ANOVA) and (ii) Signal to noise (S/N) ratio. The value of S/N
indicates the amount of dispersion around a certain value, or how the obtained solutions have
altered over different experiments. To reduce the dispersion of the objective functions as far as
possible, S/N ratio plays an important role. This ratio stands for noise factors accompanying
controllable parameters.

By investigating among different Taguchi tables, the relevant table to L9 is taken into
account, which is implemented using Minitab statistical software. The input data is repre-
sented in Table 1 and the results of implementing Taguchi design method for MOSA are
displayed in Table 2. After applying the test, the optimal values of the parameters of MOSA
are given in Table 3 and Fig. 7.

Next, the Taguchi tests applied with MOIWO algorithm using L27. The selected initial
value for MOIWO parameters are shown in Table 4. The results of Taguchi method and the
optimal values of MOIWO parameters are represented in Fig. 8 and Tables 5 and 6 and Fig. 8
respectively.

Table 1 Parameter of the MOSA
algorithm Parameters Initial Values

1 2 3

Maximum number of Iterations (A) 100 150 200

Initial Temperature (B) 700 800 900

Temperature reduction rate (C) 0.9 0.95 0.99

Boltzman constant (D) 30 50 70

Table 2 Results of implementing Taguchi design method for MOSA algorithm

Run A B C D Response (MID)

1 1 1 1 1 1760

2 1 2 2 2 1848

3 1 3 3 3 1770

4 2 1 2 3 1716

5 2 2 3 1 1758

6 2 3 1 2 1877

7 3 1 3 2 1794

8 3 2 1 3 1608

9 3 3 2 1 1750
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Table 3 Optimal value for the
parameter of the MOSA
algorithm

Parameters Optimal values

Maximum number of Iterations (A) 200

Initial temperature (B) 800

Temperature reduction rate (C) 0.9

Boltzman constant (D) 70

Fig. 7 Output results of the Taguchi design for the MOSA algorithm

Table 4 Parameter of the
MOIWOA Parameters Initial values

1 2 3

Initial plant (N) 10 20 30

Minimum seed (Smin) 7 9 12

Maximum seed (Smax) 100 150 200

Maximum plant (Pmax) 50 100 150

Maximum iteration (MI) 100 200 300

3.7 ε-constraint approach

The ε-constraint approach is known as an effective way to cope with multi-objective opti-
mization problems in the literature, which can generate Pareto solutions. Here, the Pareto
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Fig. 8 Output results of the Taguchi design for the MOIWOA algorithm

front can be achieved by the ε-constraint approach based onModel (24) (Bérubé et al., 2009):

minimize f1(x)
subject to
x ∈ X ,

f2(x) ≤ ε2,

. . .

fn(x) ≤ εm .

(24)

The execution steps of the ε-constraint approach are given in Fig. 9.
According to the offered ε-constraint method, the first objective function is set to be

the main one, and the other objective functions as sub-objective functions. Now, the final
formulation relates to the suggested model of the study is displayed in Model (25):

minimize f1(x)
subject to
x ∈ X ,

f2(x) ≤ ε2,

f2(x) ≥ ε3,

f4(x) ≤ ε4.

(25)

4 Results

This section provides the model validation and comparisons between the proposed solution
techniques through solving 10 problem instances in Tirkolaee et al. (2019b). The parameters
took value using a uniformdistribution. For example, the demandparameter follows a uniform
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Table 5 Results of implementing Taguchi design method for MOIWO algorithm

Run N Smin Smax Pmax MI Response (MID)

1 1 1 1 1 1 1861

2 1 1 1 1 2 1787

3 1 1 1 1 3 1603

4 1 2 2 2 1 1600

5 1 2 2 2 2 1825

6 1 2 2 2 3 1633

7 1 3 3 3 1 1812

8 1 3 3 3 2 1808

9 1 3 3 3 3 1826

10 2 1 2 3 1 1897

11 2 1 2 3 2 1769

12 2 1 2 3 3 1890

13 2 2 3 1 1 1688

14 2 2 3 1 2 1733

15 2 2 3 1 3 1685

16 2 3 1 2 1 1711

17 2 3 1 2 2 1859

18 2 3 1 2 3 1671

19 3 1 3 2 1 1699

20 3 1 3 2 2 1619

21 3 1 3 2 3 1801

22 3 2 1 3 1 1896

23 3 2 1 3 2 1765

24 3 2 1 3 3 1720

25 3 3 2 1 1 1653

26 3 3 2 1 2 1879

27 3 3 2 1 3 1766

Table 6 Optimal value for the
parameter of the MOIWOA Parameters Optimal Values

Initial plant (N) 10

Minimum seed (Smin) 9

Maximum Seed (Smax) 200

Maximum plant (Pmax) 100

Maximum iteration (MI) 300
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Fig. 9 Execution steps of the proposed ε-constraint

distribution uniform (1, 4). Moreover, Table 7 shows the input information about the problem
instances.

The obtained results by the proposed solution techniques are shown in Table 8. With
respect to the multi-objective essence of the suggested model, MOSA-MOIWOA and the
ε-constraint approach are compared using the mean of ideal distance (MID), number of
solutions (NOS), rate of achievement to several objectives (RASO), distancing (D), and CPU
time metrics. MID is employed to calculate the mean distance of the Pareto solutions from
the ideal solution or the origin of the coordinates. Based on Eq. (25), the lower value of MID
indicates more efficiency for the solution methods. Moreover, RAS and D are calculated
based on Eqs. (26)–(28).

MI D = 1

NOS

N∑

s=1

√√√√
4∑

m=1

f 2s,m, (26)

Table 7 Information of the problem instances

Problem No. of nodes No. of edges No. of required edges No. of periods No. of vehicles

P1 8 14 9 2 3

P2 10 19 15 3 4

P3 13 29 21 4 5

P4 14 39 27 5 6

P5 15 46 34 6 7

P6 17 56 41 8 8

P7 19 76 55 11 9

P8 21 101 71 13 11

P9 23 151 111 16 13

P10 26 201 151 21 16
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Fig. 10 Comparison of CPU time values

RASO =

n∑

i=1

(
fi,1−Fi

Fi

)
+

n∑

i=1

(
fi,2−Fi

Fi

)
+

n∑

i=1

(
fi,3−Fi

Fi

)
+

n∑

i=1

(
fi,4−Fi

Fi

)

NOS
, (27)

D =
√√√√

4∑

m=1

(
max
s=1:n fs,m − min

s=1:n fs,m

)2

. (28)

where fsol,m represents the mth objective value for the sth solution, and Fi =
min{ f1i , f2i , f3i , f4i }.

Moreover, a run time limitation of 10,000 s is regarded to evaluate the performance of the
solution techniques.

Figures 10, 11 and 12 depict the comparisons for the metrics between solution techniques
in different problems.

As can be seen in Table 4, the ε-constraint approach couldn’t solve P10 within the run time
limitation of 1000 s due to the complexity of the proposed problem in large sizes and the low
efficiency of CPLEX solver to solve it. On the other hand, the suggested MOSA-MOIWOA
solved the problem instances in less than 85 s. In fact, the comparison of the average CPU
time values for these two solution techniques identifies that theMOSA-MOIWOA just spends
about 1.2% of the CPU time required for the ε-constraint approach. Figure 5 represents this
comparison trends for the CPU time values.

Moreover, by analyzing the values obtained for the twoMID and NOSmetrics, the quality
of the final solutions can be evaluated. The lower MID and the more NOS reflect a more
efficient solution technique. Figure 6 displays that these two solution techniques have a close
behavior against each other in terms of MID value. Furthermore, the comparison of NOS
values in Fig. 12 demonstrates that the MOSA-MOIWOA has a relatively higher efficiency
in this index. In order to complete the comparisons, the trend of RASO and D are illustrated
in Figs. 13 and 14.

As can be seen, the average RASO index in the EPC method and MOSA-MOIWO is 0.94
and 0.74, respectively. Accordingly, it is concluded that the MOSA-MOIWO algorithm has
been able to achieve higher quality Pareto solutions. This is while the scattering of Pareto
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solutions is also of great importance in comparingmulti-objectivemethods (Goli et al., 2020).
Accordingly, index D determines the degree of scatter of Pareto solutions. As can be seen
in Fig. 14, in all solved problems, the MOSA-MOIWO algorithm has a higher dispersion
index than the EPC. Therefore, in general, it is concluded that the designed meta-heuristic
algorithm, in addition to the high quality of Pareto solutions, has been able to provide complete
coverage of the optimal boundary of the study optimization problem.

The numerical results demonstrate important findings from solving different samples. Due
to the high CPU time of the EPC, it can be concluded that the problem is of high complexity.
Therefore, MOSA-MOIWO is an efficient method that can solve large-scale problems in a
reasonable time. It is also quite obvious that increasing the dimension of the problem leads
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to a larger value for each objective function. Therefore, it is observed that an upward trend
is followed by MID index.

On the other hand, by increasing the dimension of the problem, the solution space also
increases, and then, more Pareto solutions can be found. A closer look at RASO index in
Fig. 13 and D index in Fig. 14 confirms that the diversity of Pareto solutions is directly related
to the problem scale.

123



Annals of Operations Research (2023) 324:189–214 209

4.1 Sensitivity analysis

This section provides a sensitivity analysis on P10 as the largest-sized problem that is the
closest one to the real-world scale. For this purpose, the parameter of the maximum avail-
able service time (Tmax ) is studied under different change intervals and the behavior of the
objective functions is assessed using MOSA-MOIWOA. The obtained results are shown in
Table 9 and Figs. 15, 16, 17 and 18.

As can be seen in Table 9 and Figs. 15, 16, 17 and 18, all objective functions reflect
remarkable fluctuations against the changes of Tmax , but in various behavioral directions.
Accordingly, the 1st, 3rd and 4th objective functions decreased by the increase of Tmax . This
is due to the generated decrease in the usage costs of vehicles and this reduction leads to a
significant decrease in the number of hired labor and also deviation of workload. However,
the 2nd objective directly increased by the increase of Tmax as it was expected due to more
usage of vehicles and less movement from the disposal site to the operational zone.

Table 10 represent different change percentages of the objective functions against the four
change intervals considered for Tmax . Accordingly, it is revealed that the most increase is
related to the 2nd objective function; i.e., total pollution emission, where a 19.50% increase

Table 9 Obtained results for the sensitivity analysis

Objective functions Parameter’s change interval

− 20% − 10% 0% + 10% + 20%

Total cost 261,414.57 256,181.05 244,315.24 230,837.82 210,551.35

Total pollution emission 1736.59 2000.18 2133.19 2472.44 2549.07

Total job opportunity 382 370 354 326 313

Total service time deviation 0.968 0.865 0.826 0.793 0.788
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Fig. 15 Sensitivity analysis of the 1st objective function
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Fig. 17 Sensitivity analysis of the 3rd objective function

occurs for the 20% increase in Tmax . On the other hand, the most decrease is again related
to this objective function, where a 18.59% decrease occurs for the 20% decrease in Tmax .
Overall, increasing the parameter improves the 1st, 3rd and 4th objective functions but it
leads to a worse value for the 2nd objective function.

Based on the obtained results, managers can investigate these trade-offs to find the optimal
level of the resources to be prepared and allocated in the waste collection system. In fact,
sensitivity analysis is a useful tool to identify the optimal policy in a real-world situation.

The results of sensitivity analysis can provide useful managerial insights in the design
of SWM systems. In the real world, the parameter Tmax is set experimentally and based on
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Fig. 18 Sensitivity analysis of the 4th objective function

Table 10 Change percentages of the objective functions against parameter’s change intervals

Objective functions Parameter’s change interval

− 20% − 10% 0% + 10% + 20%

Total cost 7.00% 4.86% – − 5.52% − 13.82%

Total pollution emission − 18.59% − 6.24% – 15.90% 19.50%

Total job opportunity 7.81% 4.51% – − 7.94% − 11.52%

Total service time deviation 17.19% 4.72% – − 4.00% − 4.60%

historical data. Managers set a specific value for the parameter Tmax according to vehicle
fuel consumption, driver fatigue, etc. However, with respect to the analyses conducted in
this research, this parameter can have several effects in terms of economic, environmental
and social aspects to address the sustainable development. It is true that large values for this
parameter reduce routing costs, but create unfavorable conditions in terms of pollution and
job opportunities. Therefore, it is necessary to find and set the most appropriate value for
Tmax before designing such a MWM system with a complete and accurate perspective.

5 Conclusions and outlook

This study designed an effective methodology to determine the optimal plans for waste-
collection routes and the essential number of vehicles. For this purpose, a novel MILP model
was developed to formulate a multi-objective multi-trip sustainable PCARP. The main goals
of the problem were to concurrently minimize the total cost, total pollution emission and
total workload deviation and also maximize total job opportunity. To validate the proposed
mathematicalmodel and copewith its tri-objectiveness, the ε-constraint approachwas utilized
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by CPLEX solver/GAMS software. Moreover, to treat the problem efficiently in large scales,
a multi-objective meta-heuristic algorithm, namely, MOSA-MOIWOA was then developed.
To enhance the efficiency of the algorithm, the Taguchi design method was also applied to set
the parameters. The performance of the MOSA-MOIWOAwas then evaluated using various
problem instances and three metrics of MID, NOS, D, RASO and CPU time in comparison
with the ε-constraint method. The obtained results proved that the MOSA-MOIWOA can
provide high-quality solutions within a much shorter CPU time. Moreover, the MID values
were close to each other but the proposed algorithm could yield much better NOS value.
Eventually, a number of sensitivity analyses were implemented on the maximum available
service time of vehicles to assess the behavior of the objective functions and offer useful
managerial decision aids. It was obvious that the total cost and total job opportunity have
indirect relations with this parameter, but the total pollution emission reflects a direct relation.

According to the main limitations of the study, following suggestions are raised for future
research directions:

(i) Considering multiple depots and disposal sites within the network.
(ii) Taking into account the locational decisions for depots and disposal sites, accordingly

more environmental and social aspects can be incorporated into the model, such as
minimizing proximity to inhabited areas and maximizing work safety at disposal sites,
respectively (Sagnak et al., 2021).

(iii) Extending the MSW management network by adding more facilities such as inciner-
ators and recycling/recovery sites.

(iv) Developing the social sustainability by minimizing the number of garbage pick-up to
reduce social discomfort of odor presence time or under pandemics outbreak (e.g.,
COVID-19 (Tirkolaee et al., 2021)).

(v) Studying the effect of milk-run strategy in the problem.
(vi) Applying uncertainty modeling such as fuzzy theory (Tirkolaee et al., 2021), grey

systems (Roy et al., 2017), robust optimization (Tirkolaee et al., 2019b), stochastic
optimal control (Yılmaz et al., 2020), regime switching (Savku & Weber, 2018).

(vii) Employing other multi-objective algorithms like non-dominated sorting genetic algo-
rithm III (NSGA-III) (Sangaiah et al., 2020).
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